COMMUNICATIONS

Received 1 January 2020
Accepted 14 January 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; sulfonamide; N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond; $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

CCDC reference: 1977684
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 4-methyl-N-(4-methylbenzyl)benzenesulfonamide

Brock A. Stenfors, ${ }^{\text {a }}$ Richard J. Staples, ${ }^{\text {b }}$ Shannon M. Biros ${ }^{\text {a }}$ and Felix N. Ngassa ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Department of Chemistry, 1 Campus Dr., Grand Valley State University, Allendale, MI 49401, USA, and ${ }^{\mathbf{b}}$ Center for Crystallographic Research, Michigan State University, Department of Chemistry and Chemical Biology, East Lansing, MI 48824, USA. *Correspondence e-mail: ngassaf@gvsu.edu

The title compound, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$, was synthesized via a substitution reaction between 4-methylbenzylamine and p-toluenesulfonyl chloride. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules, forming ribbons running along the b-axis direction. One of the aromatic rings hosts two intermolecular C $\mathrm{H} \cdots \pi$ interactions that link these hydrogen-bonded ribbons into a threedimensional network.

1. Chemical context

Sulfonamides, commonly referred to as 'sulfa drugs', are a biologically significant class of drugs. Over 70 years since its discovery, the sulfonamide moiety is frequently used in modern medicine (Zhao et al., 2016). First recognized as a class of antibiotics in the 1930s, this class of drugs is used today to treat infectious diseases such as malaria, tuberculosis, HIV, and many more by targeting the dihydropteroate synthase (DHPS) pathway (Dennis et al., 2018). Sulfonamides also exhibit remarkable antitumor, anticancer, and antithyroid activities among others (Scozzafava et al., 2003).

The title compound, 4-methylbenzylamine-4-methylbenzenesulfonamide (I), is structurally similar to N-benzyl $-p$ toluene sulfonamide (BTS, Fig. 1). BTS is known to be a potent and specific inhibitor of the ATPase activity of skeletal myosin II subfragment 1 (S1) (Cheung et al., 2002). The properties of BTS are significant in the study of muscle contraction (Pinniger et al., 2005). In addition, the 4-methyl-benzylamine-4-methylbenzenesulfonamide moiety is found in a potent and selective kappa opioid receptor (KOR) antagonist (Frankowski et al., 2012; Fig. 1).

As therapeutic properties of sulfonamides continue to be discovered, it is important to synthesize these compounds efficiently. Sulfonamides are commonly synthesized by a mechanism analogous to the nucleophilic acyl-substitution reaction between an electrophile and a nucleophilic amine (Patel et al., 2018). A review of the literature suggests that the most efficient method for synthesizing these compounds is by the sulfonylation of amines using either sulfonyl halides or sulfonic acids as electrophiles (Yan et al., 2007; De Luca \& Giacomelli, 2008). The title compound was synthesized in dichloromethane using a sulfonyl chloride, in the presence of

(a)

(b)

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.
$C g$ is the centroid of the $\mathrm{C} 9-\mathrm{C} 14$ ring

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$	0.95	2.51	$2.890(4)$	104
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.86(1)$	$2.03(2)$	$2.889(3)$	$170(3)$
$\mathrm{C}^{\mathrm{ii}}-\mathrm{H} 5 \cdots C \mathrm{I}^{\mathrm{ii}}$	0.95	2.86	$3.761(3)$	159
$\mathrm{C} 10-\mathrm{H} 10 \cdots C g^{\mathrm{iii}}$	0.95	2.89	$3.564(3)$	129

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+1$; (ii) $x+1, y, z$; (iii) $-x, y-\frac{1}{2},-z+2$.
title compound into ribbons that run parallel to the b axis (Table 1, Fig. 4). The $\mathrm{C} 9-\mathrm{C} 14$ ring hosts two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions that link the ribbons into an intricate three-dimensional network (Table 1, Fig. 5).

Figure 3
Depiction of the intra- and intermolecular hydrogen bonds present in the structure of the title compound, using standard CPK colors with a ball-and-stick model. Hydrogen bonds and contacts are depicted with purple dashed lines, while $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown with green dotted lines. [Symmetry codes: (i) $-x,-\frac{1}{2}+y, 1-z$; (ii) $1+x, y, z$; (iii) $-x,-\frac{1}{2}+y$, $2-z$.]

Figure 4
Depiction of the supramolecular ribbons formed via intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (purple dashed lines), as viewed down the a axis.

Figure 5
A view down the b axis of the crystal, showing the supramolecular interactions. Hydrogen bonds and contacts and are shown with purple dashed lines, and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown with green dotted lines. For clarity, only hydrogen atoms involved in a non-covalent interaction are shown, and the intramolecular hydrogen-bonding interactions have been omitted.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.40, Aug 2019; Groom, et al., 2016) contains 11 structures with the N -benzyl- p-toluene sulfonamide moiety. Included in this set is the structure of N-benzyl- p-toluene sulfonamide (BTS, Fig. 1). This structure has been deposited four times as PTSBZAPTSBZA03 (Cameron, et al., 1975; Yi-Ni, 2014; Bagchi et al., 2014; Valerga \& Puerta, 2016). Other structures that are closely related to the title compound are N-(2,4-dimethoxy-benzyl)-4-methylbenzenesulfonamide (DERXAA; Hashmi et al., 2006) and 2-(p-tosylaminomethyl)aniline (MILHIZ; Sanmartín et al., 2007). All three crystal structures exhibit intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and MILHIZ is the only structure that does not show $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

5. Synthesis and crystallization

The title compound was prepared by the dropwise addition of p-toluenesulfonyl chloride $(1.00 \mathrm{~g}, 5.25 \mathrm{mmol})$ to a stirring mixture of 4-methylbenzylamine ($0.75 \mathrm{ml}, 5.90 \mathrm{mmol}$), pyridine ($0.48 \mathrm{ml}, 5.90 \mathrm{mmol}$) and 10 ml of degassed dichloromethane under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 24 h under a nitrogen atmosphere. The mixture was acidified with $5 M \mathrm{HCl}$ and diluted with 15 ml of dichloromethane. The organic phase was washed with water. The aqueous layers were combined and back extracted with dichloromethane (10 ml). The combined organic layers were dried over anhydrous sodium sulfate and evaporated to dryness. The residue was dissolved in hot ethanol and filtered. The filtrate was transferred to a scintil-

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$M_{\text {r }}$	275.35
Crystal system, space group	Monoclinic, $P 2_{1}$
Temperature (K)	173
$a, b, c(\AA)$	9.655 (2), 5.8820 (15), 12.180 (3)
$\beta\left({ }^{\circ}\right.$)	96.275 (3)
$V\left(\mathrm{~A}^{3}\right)$	687.5 (3)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.23
Crystal size (mm)	$0.49 \times 0.22 \times 0.16$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.474, 0.745
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	10794, 2811, 2619
$R_{\text {int }}$	0.047
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.625
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.035, 0.092, 1.04
No. of reflections	2811
No. of parameters	178
No. of restraints	2
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.35,-0.21$
Absolute structure	Flack x determined using 1114 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter	0.06 (4)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) and CrystalMaker (Palmer, 2007).
lation vial and, upon standing for 24 h , crystallized to afford pale-yellow crystals that were filtered from the mother liquor (42\%; m.p. 376-378 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene groups and aromatic hydrogen atoms, and $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups. The hydrogen atom bonded to the nitrogen atom (H1) was located using electron-density difference maps. The $\mathrm{N} 1-\mathrm{H} 1$ bond distance was restrained using DFIX instructions in SHELXL (Sheldrick, 2015) at $0.88 \AA$ to agree with the known value.

Acknowledgements

The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. MRI CHE-1725699); Grand Valley State University (Chemistry Department's Weldon Fund).

References

Bagchi, V., Paraskevopoulou, P., Das, P., Chi, L., Wang, Q., Choudhury, A., Mathieson, J. S., Cronin, L., Pardue, D. B., Cundari, T. R., Mitrikas, G., Sanakis, Y. \& Stavropoulos, P. (2014). J. Am. Chem. Soc. 136, 11362-11381.
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2015). Acta Cryst. A71, 59-75.
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
Cameron, T. S., Prout, K., Denton, B., Spagna, R. \& White, E. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 176-185.

Cheung, A., Dantzig, J. A., Hollingworth, S., Baylor, S. M., Goldman, Y. E., Mitchison, T. J. \& Straight, A. F. (2002). Nat. Cell Biol. 4, 8388.

De Luca, L. \& Giacomelli, G. (2008). J. Org. Chem. 73, 3967-3969.
Dennis, M. L., Lee, M. D., Harjani, J. R., Ahmed, M., DeBono, A. J., Pitcher, N. P., Wang, Z., Chhabra, S., Barlow, N., Rahmani, R., Cleary, B., Dolezal, O., Hattarki, M., Aurelio, L., Shonberg, J., Graham, B., Peat, T. S., Baell, J. B. \& Swarbrick, J. D. (2018). Chem. Eur. J. 24, 1922-1930.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Frankowski, K. J., Hedrick, M. P., Gosalia, P., Li, K., Shi, S., Whipple, D., Ghosh, P., Prisinzano, T. E., Schoenen, F. J., Su, Y., Vasile, S., Sergienko, E., Gray, W., Hariharan, S., Milan, L., Heynen-Genel, S., Mangravita-Novo, A., Vicchiarelli, M., Smith, L. H., Streicher, J. M., Caron, M. G., Barak, L. S., Bohn, L. M., Chung, T. D. Y. \& Aubé, J. (2012). ACS Chem. Neurosci. 3, 221-236.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hashmi, A. S. K., Weyrauch, J. P., Kurpejović, E., Frost, T. M., Miehlich, B., Frey, W. \& Bats, J. W. (2006). Chem. Eur. J. 12, 58065814.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Patel, Z. S., Stevens, A. C., Bookout, E. C., Staples, R. J., Biros, S. M. \& Ngassa, F. N. (2018). Acta Cryst. E74, 1126-1129.
Pinniger, G. J., Bruton, J. D., Westerblad, H. \& Ranatunga, K. W. (2005). J. Muscle Res. Cell Motil. 26, 135-141.

Sanmartín, J., Novio, F., García-Deibe, A. M., Fondo, M. \& Bermejo, M. R. (2007). New J. Chem. 31, 1605-1612.

Scozzafava, A., Owa, T., Mastrolorenzo, A. \& Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sutor, D. J. (1958). Acta Cryst. 11, 453-458.
Sutor, D. J. (1962). Nature, 195, 68-69.
Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.
Valerga, P. \& Puerta, M. C. (2016). Private communication (refcode PTSBZA03). CCDC, Cambridge, England.
Yan, J., Li, J. \& Cheng, D. (2007). Synlett, pp. 2442-2444.
Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955964.

Yi-Ni, Y. (2014). Private communication (refcode PTSBZA01). CCDC, Cambridge, England.
Zhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. \& Lee, R. E. (2016). Bioorg. Med. Chem. Lett. 26, 3950-3954.

supporting information

Acta Cryst. (2020). E76, 235-238 [https://doi.org/10.1107/S2056989020000535]

Crystal structure of 4-methyl-N-(4-methylbenzyl)benzenesulfonamide

Brock A. Stenfors, Richard J. Staples, Shannon M. Biros and Felix N. Ngassa

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

4-Methyl-N-(4-methylbenzyl)benzenesulfonamide

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=275.35$
Monoclinic, $P 2_{1}$
$a=9.655$ (2) \AA
$b=5.8820(15) \AA$
$c=12.180(3) \AA$
$\beta=96.275$ (3) ${ }^{\circ}$
$V=687.5(3) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\min }=0.474, T_{\text {max }}=0.745$
10794 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.092$
$S=1.04$
2811 reflections
178 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
$F(000)=292$
$D_{\mathrm{x}}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6778 reflections
$\theta=2.6-26.4^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, pale yellow
$0.49 \times 0.22 \times 0.16 \mathrm{~mm}$

2811 independent reflections
2619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=-12 \rightarrow 12$
$k=-7 \rightarrow 7$
$l=-15 \rightarrow 15$

H atoms treated by a mixture of independent
and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0564 P)^{2}+0.0356 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$
Absolute structure: Flack x determined using 1114 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter: 0.06 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	0.12783 (6)	0.74015 (12)	0.63296 (5)	0.03224 (19)
O1	0.0878 (2)	0.7954 (4)	0.51967 (17)	0.0460 (6)
O2	0.1502 (2)	0.9174 (4)	0.71256 (18)	0.0414 (5)
N1	0.0070 (2)	0.5761 (4)	0.66826 (19)	0.0323 (5)
H1	-0.028 (3)	0.485 (5)	0.617 (2)	0.040 (9)*
C1	0.2818 (3)	0.5768 (5)	0.6401 (2)	0.0307 (6)
C2	0.2808 (3)	0.3720 (5)	0.5847 (2)	0.0344 (6)
H2	0.1980	0.3194	0.5432	0.041*
C3	0.4009 (3)	0.2447 (6)	0.5903 (2)	0.0352 (6)
H3	0.4007	0.1047	0.5514	0.042*
C4	0.5223 (3)	0.3174 (5)	0.6518 (2)	0.0323 (6)
C5	0.5210 (3)	0.5225 (6)	0.7066 (2)	0.0381 (7)
H5	0.6036	0.5745	0.7486	0.046*
C6	0.4011 (3)	0.6544 (5)	0.7014 (2)	0.0358 (6)
H6	0.4012	0.7955	0.7394	0.043*
C7	0.6530 (3)	0.1762 (6)	0.6601 (3)	0.0434 (8)
H7A	0.6287	0.0170	0.6440	0.065*
H7B	0.7013	0.1882	0.7349	0.065*
H7C	0.7141	0.2316	0.6067	0.065*
C8	0.0272 (3)	0.4685 (5)	0.7768 (2)	0.0334 (6)
H8A	0.1206	0.5097	0.8131	0.040*
H8B	0.0248	0.3014	0.7671	0.040*
C9	-0.0812 (3)	0.5358 (5)	0.8516 (2)	0.0298 (6)
C10	-0.1137 (3)	0.3858 (5)	0.9318 (2)	0.0340 (6)
H10	-0.0709	0.2403	0.9371	0.041*
C11	-0.2081 (3)	0.4445 (5)	1.0049 (2)	0.0370 (6)
H11	-0.2292	0.3385	1.0595	0.044*
C12	-0.2721 (3)	0.6552 (5)	0.9995 (2)	0.0351 (6)
C13	-0.2383 (3)	0.8054 (5)	0.9192 (2)	0.0343 (6)
H13	-0.2810	0.9511	0.9139	0.041*
C14	-0.1435 (2)	0.7477 (6)	0.8463 (2)	0.0321 (5)
H14	-0.1212	0.8544	0.7924	0.038*
C15	-0.3752 (3)	0.7190 (7)	1.0793 (2)	0.0451 (7)
H15A	-0.4628	0.6372	1.0597	0.068*
H15B	-0.3925	0.8831	1.0753	0.068*
H15C	-0.3370	0.6779	1.1545	0.068*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0313(3)$	$0.0305(3)$	$0.0357(3)$	$0.0031(3)$	$0.0072(2)$	$0.0024(3)$
O1	$0.0453(11)$	$0.0546(16)$	$0.0393(11)$	$0.0127(10)$	$0.0100(9)$	$0.0138(10)$
O2	$0.0414(11)$	$0.0331(11)$	$0.0510(13)$	$0.0007(9)$	$0.0112(9)$	$-0.0031(10)$
N1	$0.0286(11)$	$0.0358(13)$	$0.0332(12)$	$-0.0018(10)$	$0.0060(9)$	$-0.0034(10)$
C1	$0.0282(12)$	$0.0313(14)$	$0.0334(14)$	$0.0010(10)$	$0.0076(10)$	$0.0040(12)$
C2	$0.0310(13)$	$0.0343(16)$	$0.0375(15)$	$-0.0029(11)$	$0.0023(11)$	$-0.0027(13)$
C3	$0.0380(13)$	$0.0316(13)$	$0.0369(13)$	$0.0002(14)$	$0.0076(10)$	$-0.0011(14)$
C4	$0.0288(12)$	$0.0387(15)$	$0.0310(13)$	$0.0007(11)$	$0.0103(10)$	$0.0058(11)$
C5	$0.0307(13)$	$0.0430(17)$	$0.0406(16)$	$-0.0066(12)$	$0.0041(11)$	$-0.0015(14)$
C6	$0.0357(14)$	$0.0334(14)$	$0.0387(15)$	$-0.0054(12)$	$0.0059(11)$	$-0.0037(12)$
C7	$0.0346(14)$	$0.0469(19)$	$0.0500(17)$	$0.0068(13)$	$0.0103(12)$	$0.0019(14)$
C8	$0.0310(12)$	$0.0303(14)$	$0.0397(15)$	$0.0033(11)$	$0.0079(11)$	$0.0023(12)$
C9	$0.0259(12)$	$0.0294(14)$	$0.0339(14)$	$-0.0035(10)$	$0.0030(10)$	$-0.0044(11)$
C10	$0.0332(13)$	$0.0307(14)$	$0.0375(15)$	$0.0025(11)$	$0.0013(11)$	$0.0007(12)$
C11	$0.0386(14)$	$0.0362(16)$	$0.0369(15)$	$-0.0014(12)$	$0.0072(12)$	$0.0041(12)$
C12	$0.0302(13)$	$0.0417(16)$	$0.0334(14)$	$-0.0010(12)$	$0.0037(10)$	$-0.0062(12)$
C13	$0.0285(12)$	$0.0301(15)$	$0.0443(16)$	$-0.0001(10)$	$0.0037(11)$	$-0.0047(12)$
C14	$0.0292(11)$	$0.0284(13)$	$0.0394(13)$	$-0.0022(13)$	$0.0068(10)$	$0.0027(15)$
C15	$0.0401(14)$	$0.052(2)$	$0.0458(16)$	$0.0010(16)$	$0.0152(12)$	$-0.0031(18)$

Geometric parameters ($A,{ }^{\circ}$)

S1-O1	1.429 (2)	C7-H7C	0.9800
S1-O2	1.424 (2)	C8-H8A	0.9900
S1-N1	1.608 (2)	C8-H8B	0.9900
S1-C1	1.764 (3)	C8-C9	1.513 (4)
N1-H1	0.865 (13)	C9-C10	1.378 (4)
N1-C8	1.460 (4)	C9-C14	1.382 (4)
C1-C2	1.380 (4)	C10-H10	0.9500
C1-C6	1.380 (4)	C10-C11	1.385 (4)
C2-H2	0.9500	C11-H11	0.9500
C2-C3	1.375 (4)	C11-C12	1.383 (4)
C3-H3	0.9500	C12-C13	1.383 (4)
C3-C4	1.388 (4)	C12-C15	1.513 (4)
C4-C5	1.379 (4)	C13-H13	0.9500
C4-C7	1.504 (4)	C13-C14	1.385 (4)
C5-H5	0.9500	C14-H14	0.9500
C5-C6	1.389 (4)	C15-H15A	0.9800
C6-H6	0.9500	C15-H15B	0.9800
C7-H7A	0.9800	C15-H15C	0.9800
C7-H7B	0.9800		
O1-S1-N1	105.50 (13)	H7B-C7-H7C	109.5
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	108.00 (12)	N1-C8-H8A	108.9
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	119.71 (14)	N1-C8-H8B	108.9

O2-S1-N1	108.51 (12)	N1-C8-C9	113.5 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	107.52 (13)	H8A-C8-H8B	107.7
N1-S1-C1	106.98 (13)	C9-C8-H8A	108.9
S1-N1-H1	115 (2)	C9-C8-H8B	108.9
C8-N1-S1	118.26 (18)	C10-C9-C8	119.1 (2)
C8-N1-H1	113 (2)	C10-C9-C14	118.6 (2)
C2-C1-S1	119.3 (2)	C14-C9-C8	122.3 (2)
C6-C1-S1	119.7 (2)	C9-C10-H10	119.6
C6- $\mathrm{C} 1-\mathrm{C} 2$	121.0 (3)	C9-C10-C11	120.9 (3)
C1-C2-H2	120.3	C11-C10-H10	119.6
C3-C2-C1	119.3 (3)	C10-C11-H11	119.5
C3-C2-H2	120.3	C12-C11-C10	120.9 (3)
C2-C3-H3	119.4	C12-C11-H11	119.5
C2-C3-C4	121.1 (3)	C11-C12-C15	120.9 (3)
C4-C3-H3	119.4	C13-C12-C11	117.9 (3)
C3-C4-C7	121.3 (3)	C13-C12-C15	121.2 (3)
C5-C4-C3	118.6 (3)	C12-C13-H13	119.3
C5-C4-C7	120.2 (3)	C12-C13-C14	121.3 (3)
C4- $\mathrm{C} 5-\mathrm{H} 5$	119.4	C14-C13-H13	119.3
C4-C5-C6	121.2 (3)	C9-C14-C13	120.4 (3)
C6- $\mathrm{C} 5-\mathrm{H} 5$	119.4	C9-C14-H14	119.8
C1-C6-C5	118.8 (3)	C13-C14-H14	119.8
C1-C6-H6	120.6	C12-C15-H15A	109.5
C5-C6-H6	120.6	C12-C15-H15B	109.5
C4-C7-H7A	109.5	C12-C15-H15C	109.5
C4-C7-H7B	109.5	H15A-C15-H15B	109.5
C4-C7- H 7 C	109.5	H15A-C15-H15C	109.5
H7A-C7-H7B	109.5	H15B-C15-H15C	109.5
H7A-C7-H7C	109.5		

Hydrogen-bond geometry $\left(\hat{A},{ }^{\circ}\right)$
$C g$ is the centroid of the C9-C14 ring

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$	0.95	2.51	$2.890(4)$	104
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Ol}^{\mathrm{i}}$	$0.86(1)$	$2.03(2)$	$2.889(3)$	$170(3)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg}^{\text {gi }}$	0.95	2.86	$3.761(3)$	159
$\mathrm{C} 10-\mathrm{H} 10 \cdots C g^{\text {iii }}$	0.95	2.89	$3.564(3)$	129

Symmetry codes: (i) $-x, y-1 / 2,-z+1$; (ii) $x+1, y, z$; (iii) $-x, y-1 / 2,-z+2$.

