CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 16 December 2019
Accepted 20 December 2019

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: powellite; mixed alkaline-earth powellite; single-crystal XRD.

CCDC reference: 1973412
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN ∂ ACCESS

Synthesis and crystal structure of a mixed alkalineearth powellite, $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$

Ryan M. Kissinger, Saehwa Chong,* Brian J. Riley and Jarrod V. Crum

Pacific Northwest National Laboratory, Richland, WA 99354, USA. *Correspondence e-mail: saehwa.chong@pnnl.gov

A mixed alkaline-earth powellite, $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$ (calcium strontium molybdate), was synthesized by a flux method and its crystal structure was solved using single-crystal X-ray diffraction (SC-XRD) data. The compound crystallized in the $I 4_{1} / a$ space group as with a typical CaMoO_{4} powellite, but with larger unitcell parameters and unit-cell volume as a result of the partial incorporation of larger Sr cations into the Ca sites within the crystal. The unit cell and volume were well fitted with the trendline calculated from literature values, and the powder X-ray diffraction ($\mathrm{P}-\mathrm{XRD}$) pattern of the ground crystal is in good agreement with the calculated pattern from the solved structure.

1. Chemical context

Powellite $\left(\mathrm{CaMoO}_{4}\right)$ is a naturally occurring mineral with the scheelite $\left(\mathrm{CaWO}_{4}\right)$ structure and has been studied for different applications including laser materials, phosphors, catalysts, electrodes, and radionuclide waste forms (Kato et al., 2005; Lei \& Yan, 2008; Rabuffetti et al., 2014; Peterson et al., 2018; Ryu et al., 2007). Powellites doped with rare-earth elements have broad absorption bands and fluorescence emissions in the visible to near-infrared range (Kim \& Kang, 2007; Lei \& Yan, 2008; Schmidt et al., 2013), and isostructural BaMoO_{4} and SrMoO_{4} crystals have high photoluminescence emission in the visible spectral region (Bi et al., 2008; Lei et al., 2010). Powellite has been investigated for use in a potential electrode with Li cyclability for battery applications (Reddy et al., 2013). Alkaline-earth powellites crystallize during the development of the ceramic-waste forms for radionuclides in the high-level waste (HLW) raffinate stream from aqueous reprocessing of used nuclear fuel (Crum et al., 2019; Peterson et al., 2018).

Various methods have been used to synthesize scheelitestructured crystals including vapor diffusion sol-gel (VDSG), hydrothermal, molten salt reaction, Pechini, sonochemical, precipitation, solid-state, and pulsed-laser-induced methods (Culver et al., 2013; Lei \& Yan, 2008; Wang et al., 2006; Kodaira et al., 2003; Geng et al., 2006; Ahmad et al., 2006; Ryu et al., 2007). The sizes and morphologies of the scheelite-structured crystals are important for specific applications and were controlled under some of these methods. Culver et al. (2013) successfully synthesized $<30 \mathrm{~nm} A \mathrm{MoO}_{4}(A=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba})$ crystals using the VDSG method for Li-ion battery electrodes. Lei \& Yan (2008) showed different sizes (30-40 nm) of $\mathrm{Ca} M \mathrm{O}_{4}: R E(M=\mathrm{W}, \mathrm{Mo} ; R E=\mathrm{Eu}, \mathrm{Tb})$ by varying the synthesis temperature $\left(120-220^{\circ} \mathrm{C}\right)$ of hydrothermal experiments. Geng et al. (2006) used a sonochemical method with varying pH to synthesize PbWO_{4} with different morphologies.

Figure 1
(a) Crystal structure of $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$ and (b) coordination of eight $\left[\mathrm{MoO}_{4}\right]^{2-}$ tetrahedra with respect to the $\mathrm{Ca} / \mathrm{Sr}$ cations.

Ryu et al. (2007) used the pulsed-laser ablation method to synthesize spherical powellite particles of 16-29 nm.

2. Structural commentary

Powellite crystallizes in the tetragonal space group $I 4_{1} / a$ and contains Ca^{2+} cations coordinated by eight $\left[\mathrm{MoO}_{4}\right]^{2-}$ tetrahedra, sharing an oxygen atom with each tetrahedron. The crystal structure of $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$ is isostructural to powellite, but with larger unit-cell parameters and $(\mathrm{Ca} / \mathrm{Sr})-\mathrm{O}$ bond distances compared to CaMoO_{4} powellite because of the partial incorporation of the larger Sr^{2+} cation into the Ca^{2+} sites (Fig. 1). Similarly, the $\mathrm{Ba}-\mathrm{O}$ and $\mathrm{Sr}-\mathrm{O}$ bond distances in BaMoO_{4} (Nassif et al., 1999; Panchal et al., 2006; Cavalcante et al., 2008) and SrMoO_{4} (Egorov-Tismenko et al., 1967; Gürmen et al., 1971; Nogueira et al., 2013) are longer than the $\mathrm{Ca}-\mathrm{O}$ bond distance in CaMoO_{4} (Aleksandrov et al., 1968; Gürmen et al., 1971) or the $(\mathrm{Ca} / \mathrm{Sr})-\mathrm{O}$ bond distance in this study. Fig. 2 shows a summary of unit-cell parameters (a and c), unit-cell volumes (V), and unit-cell densities (ρ) from the literature as well as the current composition including CaMoO_{4} (Aleksandrov et al., 1968; Gürmen et al., 1971; Wandahl \& Christensen, 1987; Peterson et al., 2018), $\mathrm{Ca}_{0.747} \mathrm{Sr}_{0.194} \mathrm{Ba}_{0.059} \mathrm{MoO}_{4}$ (Peterson et al., 2018), SrMoO_{4} (Gürmen et al., 1971; Egorov-Tismenko et al., 1967; Nogueira et al., 2013; Peterson et al., 2018), $\mathrm{Sr}_{0.81} \mathrm{Ba}_{0.19} \mathrm{MoO}_{4}$ (Nogueira et al., 2013), $\mathrm{Sr}_{0.59} \mathrm{Ba}_{0.41} \mathrm{MoO}_{4}$ (Nogueira et al., 2013), $\mathrm{Ca}_{0.088} \mathrm{Sr}_{0.256} \mathrm{Ba}_{0.656} \mathrm{MoO}_{4}$ (Peterson et al., 2018), $\mathrm{Sr}_{0.27} \mathrm{Ba}_{0.73} \mathrm{MoO}_{4}$ (Nogueira et al., 2013), and BaMoO_{4} (Cavalcante et al., 2008; Panchal et al., 2006; Vegard \& Refsum, 1927; Nogueira et al., 2013; Nassif et al., 1999; Bylichkina et al., 1970; Peterson et al., 2018). The structural parameters of $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$ fit well to the trendlines in Fig. 2, and the data show well-fit linear relationships for the unit cell and volume. For the density, a non-linear trendline was drawn based on the densities of end members, and a linear trendline was drawn using the densities from both end members and

Figure 2
Summary of (a) unit-cell parameter a, (b) unit-cell parameter c, (c) unitcell volume (V), and (d) density (ρ) as a function of the average ionic crystal radii in the structure (coordination number $=8$) from Shannon (1976). Data for the end members include averages and standard deviations from multiple sources.

Table 1
Summary of data on $(\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}) \mathrm{MoO}_{4}$ crystals from the literature and current study.
Densities are calculated from crystallographic data.

Chemistry	$a(\AA)$	$c(\AA)$	Volume (\AA^{3})	Density ($\mathrm{Mg} \mathrm{m}^{-3}$)	Reference
CaMoO_{4}	5.224	11.43	311.93	4.26	(Aleksandrov et al., 1968)
CaMoO_{4}	5.224	11.43	312.17	4.26	(Gürmen et al., 1971)
CaMoO_{4}	5.2235	11.4298	311.86	4.26	(Wandahl \& Christensen, 1987)
CaMoO_{4}	5.2268	11.4345	312.38	4.25	(Peterson et al., 2018)
$\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$	5.2592	11.5500	319.45	4.32	Current study
SrMoO_{4}	5.394	12.017	349.64	4.7	(Egorov-Tismenko et al., 1967)
SrMoO_{4}	5.3944	12.02	349.78	4.7	(Gürmen et al., 1971)
SrMoO_{4}	5.4026	12.0411	351.46	4.68	(Nogueira et al., 2013)
SrMoO_{4}	5.3963	12.0248	350.16	4.7	(Peterson et al., 2018)
$\mathrm{Sr}_{0.81} \mathrm{Ba}_{0.19} \mathrm{MoO}_{4}$	5.4571	12.2548	364.95	4.68	(Nogueira et al., 2013)
$\mathrm{Sr}_{0.59} \mathrm{Ba}_{0.41} \mathrm{MoO}_{4}$	5.5073	12.4789	378.49	4.7	(Nogueira et al., 2013)
$\mathrm{Sr}_{0.27} \mathrm{Ba}_{0.73} \mathrm{MoO}_{4}$	5.5491	12.6680	390.08	4.83	(Nogueira et al., 2013)
BaMoO_{4}	5.567	12.78	396.07	4.99	(Vegard \& Refsum, 1927)
BaMoO_{4}	5.62	12.82	404.91	4.88	(Bylichkina et al., 1970)
BaMoO_{4}	5.5479	12.743	392.22	5.03	(Nassif et al., 1999)
BaMoO_{4}	5.5800	12.820	399.17	4.95	(Panchal et al., 2006)
BaMoO_{4}	5.5696	12.7865	396.64	4.98	(Cavalcante et al., 2008)
BaMoO_{4}	5.5848	12.8292	400.15	4.93	(Nogueira et al., 2013)
BaMoO_{4}	5.5828	12.8204	399.59	4.94	(Peterson et al., 2018)

mixed powellites from the literature (Fig. 2d). Despite our expectation, the density values did not fit well into either trendline, and more density values from different chemistries of mixed alkaline-earth powellites would help to understand the behavior of densities in powellites. The trendlines show that the unit cells, volumes, and densities all increase with larger alkaline-earth cations. Details of unit cell parameters, volumes, and densities from literature and the current study are summarized in Table 1.

3. Synthesis and crystallization

The mixed alkaline-earth powellite, $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$, was synthesized using the end-member powellites within a LiCl flux. The loss of mass due to dehydration for LiCl was measured by placing a given amount of LiCl (Alfa Aesar, $>99 \%$) into a furnace at $100^{\circ} \mathrm{C}$ and weighing daily for five days. For the synthesis of CaMoO_{4} and SrMoO_{4}, the stoichiometric amounts of CaCO_{3} (Alfa Aesar, $>99.5 \%$), SrCO_{3} (Sigma Aldrich, $>99.9 \%$), and MoO_{3} (Alfa Aesar, $>99.5 \%$) were placed in $\mathrm{Pt} / 10 \% \mathrm{Rh}$ crucible and heated to $1500^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, held for 30 min , ramped down to $1400^{\circ} \mathrm{C}$ at $1^{\circ} \mathrm{C}$ $\min ^{-1}$, held for 1 h , and then cooled down to room temperature at $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Details of synthesis are provided elsewhere (Peterson et al., 2018). For the synthesis of $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$, appropriate amounts of CaMoO_{4} and SrMoO_{4} powders were used as precursors and mixed together in $\mathrm{Pt} / 10 \% \mathrm{Rh}$ crucibles. Then, LiCl was added at a 1:1 ratio by mass, where the mass of $\mathrm{CaMoO}_{4}+\mathrm{SrMoO}_{4}$ was equivalent to that of the LiCl . The crucible was covered with a tight-fitting $\mathrm{Pt} / 10 \% \mathrm{Rh}$ lid and heated according to a method described by Arora et al. (1983). The furnace was ramped up to $850^{\circ} \mathrm{C}$, held for 2 h , abruptly decreased to $750^{\circ} \mathrm{C}$, cooled to $550^{\circ} \mathrm{C}$ at a rate of $3^{\circ} \mathrm{C} \mathrm{h}^{-1}$, and then the furnace was shut off. Crystals were recovered after washing in a sonic bath and rinsing with deionized water.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. For the occupancy refinement of the Ca and Sr sites, the occupancy parameters of both Sr and Ca were refined with isotropic atomic displacement parameters while keeping the total occupancy as 1 . The refined occupancy values were 0.86 for Ca and 0.14 for Sr after rounding, and then these values were fixed and anisotropic refinements were performed on all the atoms including Ca, Sr, Mo, and O. The final refinement converged at $R_{1}=4.30 \%$, and the goodness-of-fit was 1.44. The single crystals of $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$ were ground with a mortar and pestle. A selected crystal for SC-XRD was placed on a cryoloop in oil

Figure 3
Comparison between P-XRD pattern of ground $\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$ single crystals and calculated pattern generated from the solved structure.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$
M_{r}	207.6
Crystal system, space group	Tetragonal, $I 4_{1} / a$
Temperature (K)	293
$a, c(\AA)$	$5.2592(1), 11.5497(4)$
$V\left(\AA^{3}\right)$	$319.46(1)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	7.92
Crystal size (mm)	$0.05 \times 0.05 \times 0.03$
Data collection	Bruker D8 QUEST CMOS area
Diffractometer	detector
	Multi-scan $(S A D A B S)$
Absorption correction	$0.628,0.747$
$T_{\text {min }}, T_{\text {max }}$	$6597,396,238$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.131
R int	
Refinement	$0.043,0.042,1.44$
$R[F>3 \sigma(F)], w R(F), S$	396
No. of reflections	14
No. of parameters	$2.76,-2.57$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: APEX3 and SAINT (Bruker, 2012), JANA2006 (Petříček et al., 2014), SUPERFLIP (Palatinus \& Chapuis, 2007), VESTA (Momma \& Izumi, 2011), publCIF (Westrip, 2010).
(Parabar 10312, Hampton Research). Powder X-ray diffraction (P-XRD) was performed using a Bruker D8 Advance diffractometer on a zero-background quartz sample holder. The measured P-XRD pattern was compared to the calculated pattern from the solved structure, and they were in good agreement (see Fig. 3).

Acknowledgements

The authors acknowledge financial support from the US Department of Energy Office of Nuclear Energy (DOE-NE). The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05-76RL01830.

References

Ahmad, G., Dickerson, M. B., Church, B. C., Cai, Y., Jones, S. E., Naik, R. R., King, J. S., Summers, C. J., Kröger, N. \& Sandhage, K. H. (2006). Adv. Mater. 18, 1759-1763.

Aleksandrov, V. B., Gorbatyii, L. V. \& Ilyukhin, V. V. (1968). Kristallografiya, 13, 512-513.
Arora, S. K., Godbole, R. S. \& Rao, G. S. T. (1983). J. Am. Ceram. Soc. 66, 321-323.

Bi, J., Cui, C.-H., Lai, X., Shi, F. \& Gao, D.-J. (2008). Mater. Res. Bull. 43, 743-747.
Bruker (2012). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bylichkina, T. I., Soleva, L. I., Pobedimskaya, E. A., Porai Koshits, M. A. \& Belov, N. V. (1970). Kristallografiya, 15, 165-167.

Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Joya, M. R., Pizani, P. S., Varela, J. A. \& Longo, E. (2008). J. Phys. Chem. Solids, 69, 2674-2680.
Crum, J. V., Chong, S., Peterson, J. A. \& Riley, B. J. (2019). Acta Cryst. E75, 1020-1025.
Culver, S. P., Rabuffetti, F. A., Zhou, S., Mecklenburg, M., Song, Y., Melot, B. C. \& Brutchey, R. L. (2013). Chem. Mater. 25, 4129-4134.
Egorov-Tismenko, Y. K., Simonov, M. A. \& Belov, N. V. (1967). Kristallografiya, 12, 511-512.
Geng, J., Zhu, J.-J. \& Chen, H.-Y. (2006). Cryst. Growth Des. 6, 321326.

Gürmen, E., Daniels, E. \& King, J. S. (1971). J. Chem. Phys. 55, 10931097.

Kato, A., Oishi, S., Shishido, T., Yamazaki, M. \& Iida, S. (2005). J. Phys. Chem. Solids, 66, 2079-2081.
Kim, T. \& Kang, S. (2007). J. Lumin. 122-123, 964-966.
Kodaira, C. A., Brito, H. F. \& Felinto, M. C. F. C. (2003). J. Solid State Chem. 171, 401-407.
Lei, F. \& Yan, B. (2008). J. Solid State Chem. 181, 855-862.
Lei, H., Zhang, S., Zhu, X., Sun, Y. \& Fu, Y. (2010). Mater. Lett. 64, 344-346.
Momma, K. \& Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
Nassif, V., Carbonio, R. E. \& Alonso, J. A. (1999). J. Solid State Chem. 146, 266-270.
Nogueira, I. C., Cavalcante, L. S., Pereira, P. F. S., de Jesus, M. M., Rivas Mercury, J. M., Batista, N. C., Li, M. S. \& Longo, E. (2013). J. Appl. Cryst. 46, 1434-1446.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Panchal, V., Garg, N. \& Sharma, S. M. (2006). J. Phys. Condens. Matter, 18, 3917-3929.
Peterson, J. A., Crum, J. V., Riley, B. J., Asmussen, R. M. \& Neeway, J. J. (2018). J. Nucl. Mater. 510, 623-634.

Petříček, V., Dusek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Rabuffetti, F. A., Culver, S. P., Suescun, L. \& Brutchey, R. L. (2014). Inorg. Chem. 53, 1056-1061.
Reddy, M., Subba Rao, G. V. \& Chowdari, B. V. R. (2013). Chem. Rev. 113, 5364-5457.
Ryu, J. H., Bang, S. Y., Yoon, J.-W., Lim, C. S. \& Shim, K. B. (2007). Appl. Surf. Sci. 253, 8408-8414.
Schmidt, M., Heck, S., Bosbach, D., Ganschow, S., Walther, C. \& Stumpf, T. (2013). Dalton Trans. 42, 8387-8393.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Vegard, L. \& Refsum, A. (1927). Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse, 1.
Wandahl, G. \& Christensen, A. N. (1987). Acta Chem. Scand. 41, 358360.

Wang, Y., Ma, J., Tao, J., Zhu, X., Zhou, J., Zhao, Z., Xie, L. \& Tian, H. (2006). Mater. Lett. 60, 291-293.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Synthesis and crystal structure of a mixed alkaline-earth powellite,

$\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$

Ryan M. Kissinger, Saehwa Chong, Brian J. Riley and Jarrod V. Crum

Computing details

Data collection: APEX3 (Bruker, 2012); cell refinement: JANA2006 (Petřiček et al., 2014); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus \& Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petřičcek et al., 2014); molecular graphics: VESTA (Momma \& Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Calcium strontium molybdate

Crystal data

$\mathrm{Ca}_{0.84} \mathrm{Sr}_{0.16} \mathrm{MoO}_{4}$
$M_{r}=207.6$
Tetragonal, $I 4_{1} / a: 1$
Hall symbol: I 4bw -1bw
$a=5.2592$ (1) Å
$c=11.5497$ (4) \AA
$V=319.46$ (1) \AA^{3}
$Z=4$
$F(000)=388$

Data collection

Bruker D8 QUEST CMOS area detector diffractometer
Radiation source: X-ray tube
φ and ω scans
Absorption correction: multi-scan (SADABS)
$T_{\text {min }}=0.628, T_{\text {max }}=0.747$
6597 measured reflections

Refinement

Refinement on F
$R[F>3 \sigma(F)]=0.043$
$w R(F)=0.042$
$S=1.44$
396 reflections
14 parameters
0 restraints
$D_{\mathrm{x}}=4.317 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 6597 reflections
$\theta=4.3-36.5^{\circ}$
$\mu=7.92 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular, light white
$0.05 \times 0.05 \times 0.03 \mathrm{~mm}$

396 independent reflections
238 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.131$
$\theta_{\text {max }}=36.5^{\circ}, \theta_{\text {min }}=4.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-8 \rightarrow 8$
$l=-19 \rightarrow 19$

2 constraints
Primary atom site location: iterative
Weighting scheme based on measured s.u.'s $w=$
$1 /\left(\sigma^{2}(F)+0.0001 F^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.024$
$\Delta \rho_{\max }=2.76 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.57 \mathrm{e}^{-3}$

Special details

Refinement. F000 reported from JANA is 388.0 and calculated is 387.5 from CheckCIF.Both occupancies of Ca and Sr were refined with isotropic ADP while keeping the total occupancy at 1 and same position for both atoms, and their occupancy values were closed to 0.84 ± 0.001 and 0.16 ± 0.001 respectively between the refinements. Therefore, we fixed the occupancy to 0.84 and 0.16 with rounding off, and the anisotropic refinement was applied after fixing the occupancies. The difference in reported and caculated rho(max)is likely due to difference in how PLATON and JANA2006 calculate Fourier maps and take weights of reflections into Fourier calculations.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Mo1	0.5	0.5	0	$0.00778(13)$	
Ca1	1	0.5	0.25	$0.0074(2)$	0.84
Sr1	1	0.5	0.25	$0.0074(2)$	0.16
O1	$0.7420(7)$	$0.6444(7)$	$0.0837(3)$	$0.0114(8)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	$0.0067(2)$	$0.0067(2)$	$0.0100(2)$	0	0	0
Ca1	$0.0076(4)$	$0.0076(4)$	$0.0072(4)$	0	0	0
Sr1	$0.0076(4)$	$0.0076(4)$	$0.0072(4)$	0	0	0
O1	$0.0127(17)$	$0.0088(16)$	$0.0126(10)$	$-0.0017(14)$	$-0.0039(12)$	$0.0016(11)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

Mo1-Sr1 ${ }^{\text {i }}$	3.7188	$\mathrm{Ca1}-\mathrm{Sr} 1^{\text {iii }}$	3.9054
$\mathrm{Mo} 1-\mathrm{Sr} 1^{\text {ii }}$	3.7188	$\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iv }}$	3.9054
Mol-Srr ${ }^{\text {iii }}$	3.7188	Sr 1 - $\mathrm{Sr}^{\text {viii }}$	3.9054
Mol-Sr1 ${ }^{\text {iv }}$	3.7188	$\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	3.9054
Mo1-O1	1.769 (3)	$\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {iii }}$	3.9054
Mo1-O1 ${ }^{\text {v }}$	1.769 (3)	$\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	3.9054
Mo - $\mathrm{Ol}^{\text {vi }}$	1.769 (3)	Sr1-O1	2.471 (3)
Mol-O1 ${ }^{\text {vii }}$	1.769 (3)	Sr1-O1 ${ }^{\text {x }}$	2.471 (3)
$\mathrm{Ca} 1-\mathrm{Ca1}{ }^{\text {viii }}$	3.9054	Sr1-O1 ${ }^{\text {ix }}$	2.505 (4)
$\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {ix }}$	3.9054	Sr1-O1 ${ }^{\text {xi }}$	2.505 (4)
$\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iii }}$	3.9054	Sr1-O1 ${ }^{\text {xii }}$	2.505 (4)
$\mathrm{Ca} 1-\mathrm{Ca} 1{ }^{\text {iv }}$	3.9054	$\mathrm{Sr} 1-\mathrm{O}{ }^{\text {xiii }}$	2.505 (4)
Ca1-Sr1	0	Sr1-O1 ${ }^{\text {xiv }}$	2.471 (3)
$\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {viii }}$	3.9054	Sr1-O1 ${ }^{\text {xv }}$	2.471 (3)
$\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {ix }}$	3.9054		
Sr1 ${ }^{\text {i }}$-Mol- $\mathrm{Sr}^{\text {ii }}$	90	$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Ca} 1^{\text {ix }}$	0
$\mathrm{Sr} 1^{\text {i }}$-Mol- $\mathrm{Sr}^{\text {iii }}$	90	$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Ca1}{ }^{\text {iii }}$	0
$\mathrm{Sr} 1^{\text {i }}$-Mol- $\mathrm{Sr}^{\text {iv }}$	180.0 (5)	$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Ca1}{ }^{\text {iv }}$	0
Srl ${ }^{\text {i }}$ - $\mathrm{Mo} 1-\mathrm{O} 1$	144.30 (11)	$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {viii }}$	0
Sr1 ${ }^{\text {i }}$-Mo1-O1 ${ }^{\text {v }}$	35.70 (11)	$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	0
$\mathrm{Sr} 1^{\text {i }}$-Mol- $\mathrm{Ol}^{\text {vi }}$	78.16 (12)	$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	0
$\mathrm{Sr} 1^{\text {i }}-\mathrm{Mol}-\mathrm{O} 1^{\text {vii }}$	101.84 (12)	$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	0

Sr1 ${ }^{\text {iii }}$ - Mol- $\mathrm{Sr}^{\text {1ii }}$	180.0 (5)
$\mathrm{Sr} 1^{\text {ii }}-\mathrm{Mol-Sr1}{ }^{\text {iv }}$	90
Srl ${ }^{\text {ii- }} \mathrm{Mol-O1}$	101.84 (12)
$\mathrm{Sr1}{ }^{\text {ii }}-\mathrm{Mol-O1}{ }^{\text {v }}$	78.16 (12)
Sr1ii-Mol-O1 ${ }^{\text {vi }}$	144.30 (11)
Sr1 ${ }^{\text {ii }}-\mathrm{Mol-O1}{ }^{\text {vii }}$	35.70 (11)
$\mathrm{Sr} 1^{\text {iii }}-\mathrm{Mo} 1-\mathrm{Sr} 1^{\text {iv }}$	90
Sr1 ${ }^{\text {iii] }}$-Mo1-O1	78.16 (12)
$\mathrm{Sr}^{\text {iii-}} \mathrm{Mol-O1}{ }^{\text {v }}$	101.84 (12)
Sr1 ${ }^{\text {iii }}$-Mo1-O1 ${ }^{\text {vi }}$	35.70 (11)
$\mathrm{Sr} 1^{\text {iii- }} \mathrm{Mo} 1-\mathrm{O} 1^{\text {vii }}$	144.30 (11)
Sr1 ${ }^{\text {iv }}-\mathrm{Mol-O1}$	35.70 (11)
$\mathrm{Sr}^{\text {iv }}-\mathrm{Mo} 1-\mathrm{O} 1^{\text {v }}$	144.30 (11)
$\mathrm{Sr} 1^{\text {iv }}$-Mo1-O1 ${ }^{\text {vi }}$	101.84 (12)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Mo} 1-\mathrm{O} 1^{\text {vii }}$	78.16 (12)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 1^{\text {v }}$	113.77 (15)
$\mathrm{O} 1-\mathrm{Mol-O1}{ }^{\text {vi }}$	107.37 (16)
$\mathrm{O} 1-\mathrm{Mo}-\mathrm{O} 1^{\text {vii }}$	107.37 (16)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Mol-} \mathrm{Ol}^{\text {vi }}$	107.37 (16)
$\mathrm{O1}^{\mathrm{v}}-\mathrm{Mol-O1}{ }^{\text {vii }}$	107.37 (16)
$\mathrm{O} 1^{\text {vi}}-\mathrm{Mo} 1-\mathrm{O} 1^{\text {vii }}$	113.77 (15)
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Ca} 1^{\text {ix }}$	84.65
$\mathrm{Ca} 1^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iii }}$	123.14
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Ca}^{\text {iv }}$	123.14
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Sr} 1$	0
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Ca} 1-\mathrm{Sr}^{\text {viii }}$	0.0 (5)
$\mathrm{Ca} 1{ }^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Sr}^{1{ }^{\text {ix }}}$	84.65
$\mathrm{Ca} 1^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iii }}$	123.14
$\mathrm{Ca} 1^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iv }}$	123.14
$\mathrm{Ca} 1{ }^{\mathrm{ix}}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iii }}$	123.14
$\mathrm{Ca} 1^{\mathrm{ix}}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iv }}$	123.14
$\mathrm{Ca} 1{ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Sr} 1$	0
$\mathrm{Ca} 1^{\mathrm{ix}}$ - $\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {viii }}$	84.65
$\mathrm{Ca} 1{ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {ix }}$	0.0 (5)
$\mathrm{Ca1}{ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iii }}$	123.14
$\mathrm{Ca} 1^{\mathrm{ix}}-\mathrm{Ca} 1-\mathrm{Sr}^{\text {iv }}$	123.14
$\mathrm{Ca} 1{ }^{\text {iii }}-\mathrm{Ca} 1-\mathrm{Ca} 1^{\text {iv }}$	84.65
$\mathrm{Ca1}{ }^{\text {iii- }} \mathrm{Ca} 1-\mathrm{Sr} 1$	0
$\mathrm{Ca} 1{ }^{\text {iii }}$ - $\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {viii }}$	123.14
$\mathrm{Ca} 1^{\text {iii- }}$ - $\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {ix }}$	123.14
$\mathrm{Ca1} 1^{\text {iii- }} \mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iii }}$	0.0 (5)
$\mathrm{Ca} 1^{\text {iii- }}$ - $\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iv }}$	84.65
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Ca} 1-\mathrm{Sr} 1$	0
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {viii }}$	123.14
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {ix }}$	123.14
$\mathrm{Ca1}{ }^{\text {iv }}-\mathrm{Cal}-\mathrm{Sr} 1^{\text {iii }}$	84.65
$\mathrm{Ca1}{ }^{\text {iv }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iv }}$	0.0 (5)
$\mathrm{Sr} 1-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {viii }}$	0

Ca1-Sr1-O1	0
$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{O}^{\text {x }}$	0
$\mathrm{Ca}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	0
$\mathrm{Ca}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	0
$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	0
Ca1-Sr1-O1 ${ }^{\text {xiii }}$	0
$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{Ol}^{\text {xiv }}$	0
$\mathrm{Ca} 1-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {xv }}$	0
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Ca} 1^{\text {ix }}$	84.65
$\mathrm{Ca1}{ }^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Ca1}{ }^{\text {iii }}$	123.14
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Ca} 1^{\text {iv }}$	123.14
$\mathrm{Ca1}{ }^{\text {viii }} \mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {viii }}$	0.0 (5)
$\mathrm{Ca} 1^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	84.65
$\mathrm{Ca1}{ }^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {iii }}$	123.14
$\mathrm{Ca1}{ }^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	123.14
$\mathrm{Ca1}{ }^{\text {viii- }} \mathrm{Sr} 1-\mathrm{O} 1$	101.82 (8)
$\mathrm{Ca} 1^{\text {viii }} \mathrm{Sr} 1-\mathrm{O} 1^{x}$	160.80 (8)
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	102.56 (7)
$\mathrm{Ca1}{ }^{\text {viii }}$-Sr1-O1 ${ }^{\text {xi }}$	37.99 (8)
$\mathrm{Ca} 1^{\text {viii }}$-Sr1-O1 ${ }^{\text {xii }}$	130.55 (8)
$\mathrm{Ca} 1^{\text {viii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	85.44 (8)
$\mathrm{Ca1}{ }^{\text {viii }}$-Sr1-O1 ${ }^{\text {xiv }}$	68.42 (8)
$\mathrm{Ca} 1^{\text {viii }} \mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xv}}$	38.60 (8)
$\mathrm{Ca} 1^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Ca} 1^{\text {iii }}$	123.14
$\mathrm{Ca} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Ca} 1^{\text {iv }}$	123.14
$\mathrm{Ca1}{ }^{\text {ix }}$ - Sr 1 - $\mathrm{Sr}^{\text {viii }}$	84.65
$\mathrm{Ca} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	0.0 (5)
$\mathrm{Ca} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	123.14
$\mathrm{Ca} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	123.14
$\mathrm{Ca} 1{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{O} 1$	160.80 (8)
$\mathrm{Ca} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{x}}$	101.82 (8)
$\mathrm{Ca} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{ix}}$	37.99 (8)
$\mathrm{Ca} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	102.56 (7)
$\mathrm{Ca} 1^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	85.44 (8)
$\mathrm{Ca1}{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	130.55 (8)
$\mathrm{Ca} 1^{\text {ix }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	38.60 (8)
$\mathrm{Ca} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xv}}$	68.42 (8)
$\mathrm{Ca} 1^{\text {iii- }} \mathrm{Sr} 1-\mathrm{Ca} 1^{\text {iv }}$	84.65
$\mathrm{Ca} 1^{\text {iii- }} \mathrm{Sr} 1-\mathrm{Sr} 1^{\text {viii }}$	123.14
$\mathrm{Ca1}{ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	123.14
$\mathrm{Ca1}{ }^{\text {iii- }} \mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	0.0 (5)
$\mathrm{Ca1}{ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {iv }}$	84.65
$\mathrm{Ca} 1{ }^{\text {iiii- }} \mathrm{Sr} 1-\mathrm{O} 1$	68.42 (8)
$\mathrm{Ca} 1{ }^{\text {iii-Sr1-O}}{ }^{\text {O }}{ }^{\text {x }}$	38.60 (8)
$\mathrm{Ca} 1^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	85.44 (8)
$\mathrm{Ca} 1^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	130.55 (8)
$\mathrm{Ca} 1{ }^{\text {iii }}$-Sr1-O1 ${ }^{\text {xii }}$	102.56 (7)
$\mathrm{Ca1} 1^{\text {iii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	37.99 (8)

$\mathrm{Sr} 1-\mathrm{Ca} 1-\mathrm{Sr}^{1 \mathrm{ix}}$	0
Sr1-Ca1-Sr1 ${ }^{\text {iii }}$	0
$\mathrm{Sr} 1-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iv }}$	0
$\mathrm{Sr} 1^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Sr}^{1}{ }^{\text {ix }}$	84.65
$\mathrm{Sr} 1^{\text {viii - }} \mathrm{Ca} 1-\mathrm{Sr}^{1{ }^{\text {iii }}}$	123.14
$\mathrm{Sr} 1^{\text {viii }}-\mathrm{Ca} 1-\mathrm{Sr}^{1}{ }^{\text {iv }}$	123.14
Sr1 ${ }^{\text {ix }}-\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iii }}$	123.14
	123.14
$\mathrm{Sr} 1^{\text {iii] }}$ - $\mathrm{Ca} 1-\mathrm{Sr} 1^{\text {iv }}$	84.65
Mo1 ${ }^{\text {viii —Sr1—Mo1 }}{ }^{\text {xvi }}$	90
Mo1 ${ }^{\text {viii }}$-Sr1-Mo1 ${ }^{\text {ix }}$	90
Mo1 $1^{\text {viii }}$-Sr1—Mo1 ${ }^{\text {xvii }}$	180.0 (5)
Mo1 ${ }^{\text {viii }}$-Sr1—Ca1	0
Mo1 $1^{\text {viii }} \mathrm{Sr} 1-\mathrm{Ca} 1^{\text {viii }}$	61.57
Mo1 ${ }^{\text {viii- }} \mathrm{Sr} 1-\mathrm{Ca} 1{ }^{\text {ix }}$	118.43
Mo1 ${ }^{\text {viii-Sr1-Ca1 }}{ }^{\text {iii }}$	61.57
Mo1 ${ }^{\text {viii-Sr1-Ca1 }}{ }^{\text {iv }}$	118.43
Mol ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Srr}{ }^{\text {viii }}$	61.57
Mo1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	118.43
Mo1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	61.57
Mo1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	118.43
Mol ${ }^{\text {viii-Sr1-O1 }}$	80.15 (8)
Mo1 ${ }^{\text {viii }}$-Sr1-O1 ${ }^{\text {x }}$	99.85 (8)
Mo1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	98.33 (8)
Mo1 ${ }^{\text {viii }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	81.67 (8)
Mo1 ${ }^{\text {viii }}$ - Sr1-O1 ${ }^{\text {xii }}$	155.66 (7)
Mo1 ${ }^{\text {viii- }}$ Sr1-O1 ${ }^{\text {xiii }}$	24.34 (7)
Mo1 ${ }^{\text {viii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	127.27 (8)
Mo1 ${ }^{\text {viii - }} \mathrm{Sr} 1-\mathrm{O}{ }^{\text {xv }}$	52.73 (8)
Mo1 ${ }^{\text {xvi }}$ - $\mathrm{Sr} 1-\mathrm{Mo1} 1^{\text {ix }}$	180.0 (5)
Mo1 ${ }^{\text {xvi }}$-Sr1-Mo1 ${ }^{\text {xvii }}$	90
Mo1 ${ }^{\text {xvi }}$-Sr1—Ca1	0
Mo1 ${ }^{\text {xvi }}$ - $\mathrm{Sr} 1-\mathrm{Ca} 1^{\text {viii }}$	61.57
Mo1 ${ }^{\text {xvi }}$-Sr1-Ca1 ${ }^{\text {ix }}$	118.43
Mo1 ${ }^{\text {xvi }}$-Sr1-Ca1 ${ }^{\text {iii }}$	118.43
Mo1 ${ }^{\text {xvi }}$-Sr1-Ca1 ${ }^{\text {iv }}$	61.57
Mol ${ }^{\text {xvi }}$ - $\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {viii }}$	61.57
Mo1 ${ }^{\text {xvi }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	118.43
Mo1 ${ }^{\text {xvi }}$-Sr1—Sr1 ${ }^{\text {iii }}$	118.43
Mo1 ${ }^{\text {xvi }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	61.57
Mo1 ${ }^{\text {xvi }}$-Sr1-O1	52.73 (8)
Mo1 ${ }^{\text {xvi }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {x }}$	127.27 (8)
Mo1 ${ }^{\text {xvi }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	155.66 (7)
Mo1 ${ }^{\text {xvi }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	24.34 (7)
Mo1 ${ }^{\text {xvi }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	81.67 (8)
Mo1 ${ }^{\text {xvi }}$-Sr1-O1 ${ }^{\text {xiii }}$	98.33 (8)
Mo1 ${ }^{\text {xvi }}$ - $\mathrm{Sr} 1-\mathrm{Ol}^{\text {xiv }}$	80.15 (8)
Mo1 ${ }^{\text {xvi }}$ - Srl-O1 ${ }^{\text {xv }}$	99.85 (8)

$\mathrm{Ca} 1^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	160.80 (8)
$\mathrm{Ca} 1^{\text {iii }} \mathrm{Sr} 1-1^{\text {xv }}$	101.82 (8)
$\mathrm{Ca} 1{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {viii }}$	123.14
$\mathrm{Ca1}{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	123.14
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	84.65
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr}^{\text {iv }}$	0.0 (5)
$\mathrm{Ca} 1^{\text {iv- }} \mathrm{Sr} 1-\mathrm{O} 1$	38.60 (8)
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {x }}$	68.42 (8)
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	130.55 (8)
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	85.44 (8)
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	37.99 (8)
$\mathrm{Ca} 1^{\text {iv- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	102.56 (7)
$\mathrm{Ca1}{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	101.82 (8)
$\mathrm{Ca} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xv }}$	160.80 (8)
Sr1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	84.65
Sr1 ${ }^{\text {viii }} \mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	123.14
Sr1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	123.14
Sr1 ${ }^{\text {viii }} \mathrm{Sr} 1-\mathrm{O} 1$	101.82 (8)
$\mathrm{Sr} 1^{\text {viii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {x }}$	160.80 (8)
Sr1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	102.56 (7)
Sr1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	37.99 (8)
$\mathrm{Sr} 1^{\text {viii }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	130.55 (8)
Sr1 ${ }^{\text {viii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	85.44 (8)
Sr1 ${ }^{\text {viii }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	68.42 (8)
Sr1 ${ }^{\text {viii }} \mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xv}}$	38.60 (8)
$\mathrm{Sr}^{1}{ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	123.14
$\mathrm{Sr} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	123.14
Sr1 ${ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{O} 1$	160.80 (8)
$\mathrm{Sr} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {x }}$	101.82 (8)
$\mathrm{Sr} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	37.99 (8)
$\mathrm{Sr} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	102.56 (7)
$\mathrm{Sr} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	85.44 (8)
$\mathrm{Sr} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	130.55 (8)
$\mathrm{Sr} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	38.60 (8)
$\mathrm{Sr} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xv}}$	68.42 (8)
$\mathrm{Sr} 1^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	84.65
Sr1 ${ }^{\text {iii- }} \mathrm{Sr} 1-\mathrm{O} 1$	68.42 (8)
Sr1 ${ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {x }}$	38.60 (8)
$\mathrm{Sr} 1^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	85.44 (8)
$\mathrm{Sr} 1^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	130.55 (8)
$\mathrm{Sr} 1^{\text {iii }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	102.56 (7)
$\mathrm{Sr} 1^{\text {iii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	37.99 (8)
Sr1 ${ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	160.80 (8)
$\mathrm{Sr} 1^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xv }}$	101.82 (8)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Srl}-\mathrm{O} 1$	38.60 (8)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {x }}$	68.42 (8)
$\mathrm{Sr} 1^{\mathrm{iv}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	130.55 (8)
$\mathrm{Sr} 1^{\mathrm{iv}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	85.44 (8)

Mo1 ${ }^{\text {ix }}$-Sr1—Mo1 ${ }^{\text {xvii }}$	90
Mol ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Cal}$	0
Mo1 ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Ca1}{ }^{\text {viii }}$	118.43
Mol ${ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Ca} 1^{\text {ix }}$	61.57
Mol ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Cal}{ }^{\text {iii }}$	61.57
Mol ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Ca1}{ }^{\text {iv }}$	118.43
Mo1 ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {viii }}$	118.43
Mo1 ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {ix }}$	61.57
Mo1 ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	61.57
Mo1 ${ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{Sr}^{1{ }^{\text {iv }}}$	118.43
Mo1 ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{O} 1$	127.27 (8)
Mol ${ }^{1 \times}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{x}}$	52.73 (8)
Mol ${ }^{\text {ix }}$ - $\mathrm{Srl}-\mathrm{Ol}{ }^{\text {ix }}$	24.34 (7)
Mol ${ }^{\text {ix }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	155.66 (7)
Mo1 ${ }^{\text {ix }}$-Sr1-O1 ${ }^{\text {xii }}$	98.33 (8)
Mo1 ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	81.67 (8)
Mo1 ${ }^{\text {ix }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	99.85 (8)
$\mathrm{Mo} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xv}}$	80.15 (8)
Mo1 ${ }^{\text {xvii }}$-Sr1-Ca1	0
Mo1 ${ }^{\text {xvii }}$-Sr1—Ca1 ${ }^{\text {viii }}$	118.43
Mo1 ${ }^{\text {xvii }}$ - Srl-Ca1 ${ }^{\text {ix }}$	61.57
Mo1 ${ }^{\text {xvii }}$-Sr1-Ca1 ${ }^{\text {iii }}$	118.43
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{Ca1}{ }^{\text {iv }}$	61.57
Mo1 ${ }^{\text {xvii }}$-Sr1— $\mathrm{Sr}^{\text {viii }}$	118.43
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {ix }}$	61.57
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iii }}$	118.43
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{Sr}^{\text {iv }}$	61.57
Mo1 ${ }^{\text {xvii-Sr1-O1 }}$	99.85 (8)
Mo1 ${ }^{\text {xvii }}$-Sr1-O1 ${ }^{\text {x }}$	80.15 (8)
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	81.67 (8)
Mo1 ${ }^{\text {xvii }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	98.33 (8)
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	24.34 (7)
Mo1 ${ }^{\text {xvii- }} \mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	155.66 (7)
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	52.73 (8)
Mo1 ${ }^{\text {xvii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xv }}$	127.27 (8)
$\mathrm{Ca1}-\mathrm{Sr} 1-\mathrm{Ca1}{ }^{\text {viii }}$	0

$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	37.99 (8)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	102.56 (7)
	101.82 (8)
$\mathrm{Sr} 1^{\text {iv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xv }}$	160.80 (8)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {x }}$	77.98 (11)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{Ol}^{\text {ix }}$	151.21 (11)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O}^{\text {xi }}$	73.95 (11)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	76.60 (11)
O1-Sr1-O1 ${ }^{\text {xiii }}$	68.41 (11)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	127.16 (12)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xv }}$	127.16 (12)
$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {ix }}$	73.95 (11)
$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xi }}$	151.21 (11)
$\mathrm{O}^{\mathrm{x}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	68.41 (11)
$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Srl}-\mathrm{O} 1^{\text {xiii }}$	76.60 (11)
$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	127.16 (12)
$\mathrm{O1}^{\mathrm{x}}-\mathrm{Sr} 1-\mathrm{O}^{\text {xv }}$	127.16 (12)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xi}}$	134.61 (10)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xii }}$	98.56 (12)
$\mathrm{O} 1^{\mathrm{ix}}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	98.56 (12)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	76.60 (11)
$\mathrm{O} 1^{1 \mathrm{ix}}-\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xv}}$	68.41 (11)
$\mathrm{O}{ }^{\text {xi }}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {xii }}$	98.56 (12)
$\mathrm{O} 1^{\text {xi }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiii }}$	98.56 (12)
$\mathrm{O} 1^{\text {xi }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	68.41 (11)
$\mathrm{O} 1^{\text {xi }}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {xv }}$	76.60 (11)
$\mathrm{O} 1^{\text {xii }}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {xiii }}$	134.61 (10)
$\mathrm{O} 1^{\text {xii }}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {xiv }}$	73.95 (11)
$\mathrm{O} 1^{\text {xii }}-\mathrm{Sr} 1-\mathrm{O}{ }^{\text {xv }}$	151.21 (11)
$\mathrm{O} 1^{\text {xiii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xiv }}$	151.21 (11)
$\mathrm{O} 1^{\text {xiii }}$ - $\mathrm{Sr} 1-\mathrm{O} 1^{\mathrm{xv}}$	73.95 (11)
$\mathrm{O} 1^{\text {xiv }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {xv }}$	77.98 (11)
Mol-O1-Sr1	133.45 (18)
Mol-O1-Sr1 ${ }^{\text {iv }}$	119.96 (15)
Sr1-O1-Sr1 ${ }^{\text {iv }}$	103.40 (13)

Symmetry codes: (i) $-y+1 / 2, x-1, z-1 / 4$; (ii) $-y+1 / 2, x, z-1 / 4$; (iii) $-y+3 / 2, x-1, z-1 / 4$; (iv) $-y+3 / 2, x, z-1 / 4$; (v) $-x+1,-y+1, z$; (vi) $y,-x+1,-z$; (vii) $-y+1, x,-z$; (viii) $-y+1, x-1 / 2, z+1 / 4$; (ix) $-y+2, x-1 / 2, z+1 / 4$; (x) $-x+2,-y+1, z$; (xi) $y,-x+3 / 2, z+1 / 4$; (xii) $-x+2,-y+3 / 2,-z+1 / 4$; (xiii) $x, y-1 / 2,-z+1 / 4$; (xiv) $y+1 / 2,-x+3 / 2,-z+1 / 2$; (xv) $-y+3 / 2, x-1 / 2,-z+1 / 2$; (xvi) $-y+1, x+1 / 2, z+1 / 4$; (xvii) $-y+2, x+1 / 2, z+1 / 4$.

