

Received 6 November 2019 Accepted 14 November 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; europium; organophosphate; coordination compound; isostructural; hydrogen bonding; luminescence.

CCDC reference: 1965700

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tris[bis(2,6-diisopropylphenyl) phosphato- κO]pentakis(methanol- κO)europium methanol monosolvate

Alexey E. Kalugin,^{a,b} Konstantin A. Lyssenko,^{c,d} Mikhail E. Minyaev,^{a,e*} Dmitrii M. Roitershtein,^{a,e} Lada N. Puntus,^{a,f} Evgenia A. Varaksina^{a,g} and Ilya E. Nifant'ev^{a,d}

^aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow, 119991, Russian Federation, ^bMoscow Institute of Physics and Technology, Department of Biological and Medical Physics, 9 Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russian Federation, ^cG.V. Plekhanov Russian University of Economics, 36, Stremyanny Per., Moscow, 117997, Russian Federation, ^dChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Building 3, Moscow, 119991, Russian Federation, ^eN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, ^fV.A. Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, 11-7 Mokhovaya Str., Moscow, 125009, Russian Federation, and ⁸P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russian Federation. *Correspondence e-mail: mminyaev@mail.ru

The mononuclear title complex, $[Eu(C_{24}H_{34}O_4P)_3(CH_4O)_5]\cdot CH_4O, (1)$, has been obtained as a minor product in the reaction between $EuCl_3(H_2O)_6$ and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in a methanol medium. Its structure exhibits monoclinic $(P2_1/c)$ symmetry at 120 K and is isostructural with the La, Ce and Nd analogs reported previously [Minyaev *et al.* (2018*a*). *Acta Cryst.* C74, 590–598]. In (1), all three bis(2,6-diisopropylphenyl) phosphate ligands display the terminal $\kappa^1 O$ -coordination mode. All of the hydroxy H atoms are involved in $O-H\cdots O$ hydrogen bonding, exhibiting four intramolecular and two intermolecular hydrogen bonds. Photophysical studies have demonstrated luminescence of (1) with a low quantum yield.

1. Chemical context

Rare-earth complexes with organic ligands are widely used as reagents, catalysts or precatalysts in organic synthesis or in various polymerization reactions and even in technological processes. For example, complexes with organophosphate ligands are used in the polymerization of 1,3-dienes (Anwander, 2002; Friebe *et al.*, 2006; Kobayashi & Anwander, 2001; Minyaev *et al.*, 2018*a,b,c*; Nifant'ev *et al.*, 2013, 2014; Zhang *et al.*, 2010). Rare-earth organophosphates are also formed during the isolation and separation of lanthanides in industry (Atwood, 2016; Chen, 2016).

The luminescence of coordination compounds of certain lanthanide cations (Eu³⁺, Tb³⁺, Dy³⁺, Nd³⁺ etc.) is well-known (Bünzli, 2017); however, the photophysical properties of rareearth organophosphates have not been reported so far. Meanwhile, a so-called 'antenna' ligand possessing a conjugated π -electron system may increase the quantum yield of lanthanide complexes dramatically (Bünzli & Piguet, 2005; Guillou et al., 2016). In order to examine the possibility of applying a disubstituted organophosphate anion as an 'antenna' ligand for luminescence sensitization, we have chosen the bis(2,6-diisopropylphenyl) phosphate anion, which allows single crystals of mono- and binuclear rare-earth complexes to be obtained (Minyaev et al., 2017, 2018a,b), unlike most other di(alkyl/aryl) phosphate ligands that do not

provide crystallizable lanthanide compounds. Mononuclear rare-earth complexes with this ligand form two isotructural series of bis- and tris(phosphate) complexes: {Ln[O₂P(O- $2,6^{-i}Pr_2C_6H_3)_2]_2Cl(CH_3OH)_4$ ·2CH₃OH (*Ln* = Nd, Y, Lu; Minyaev et al., 2017) and $[Ln[O_2P(O-2,6^{-i}Pr_2C_6H_3)_2]_3$ - $(CH_3OH)_5$ · CH_3OH (*Ln* = La, Ce, Nd; Minyaev *et al.*, 2018*a*). It was found that the bis(phosphate) monochloride complex of Nd is thermally unstable in a solution and can be easily converted into the corresponding tris(phosphate) complex upon mild heating (>310 K) in methanol. Moreover, bis-(phosphate) monochloride complexes of lighter lanthanides cannot be obtained. However, the heaviest lanthanide for obtaining the tris(phosphate) complex has not been determined. Herein, we report on the crystal structure and luminescent properties of the complex {Eu[O₂P(O- $2,6^{-i}Pr_2C_6H_3)_2]_3(CH_3OH)_5]\cdot CH_3OH$ (1), which bears the heaviest lanthanide within the tris(phosphate) series (Minyaev et al., 2018a)

2. Structural commentary

The asymmetric unit of (1) contains the complex $[Eu{O_2P(O-2,6^{-i}Pr_2C_6H_3)_2}_2(CH_3OH)_5]$ and one non-coordinating methanol molecule (Fig. 1). Selected bond distances in complex (1) are given in Table 1. The Eu³⁺ cation is coordinated by five methanol molecules and three diarylphosphate ligands displaying the terminal κ^1O -coordination mode, which leads to the Eu³⁺ coordination number of eight. Two phosphate ligands are located close to each other (atoms P1, P2), but the third phosphate ligand (atom P3) is separated from them by the methanol molecules. The complex itself does not have any symmetry element (the C_1 point group), but in a rough approximation, the EuO₈ core might be thought of as belonging to the C_s point group with a mirror plane passing

 Table 1

 Selected bond lengths (Å).

Eu1-O1	2.3915 (14)	P2-07	1.5978 (16)
Eu1-O5	2.3166 (15)	P2-O8	1.4923 (17)
Eu1-O9	2.3525 (15)	P3-O9	1.5010 (16)
Eu1-O13	2.4374 (16)	P3-O10	1.6007 (16)
Eu1-O14	2.4933 (16)	P3-O11	1.5970 (16)
Eu1-O15	2.4312 (17)	P3-O12	1.4855 (17)
Eu1-O16	2.4664 (17)	O2-C1	1.413 (2)
Eu1-O17	2.4665 (16)	O3-C13	1.413 (2)
P1-O1	1.4963 (16)	O6-C25	1.410 (3)
P1-O2	1.5991 (15)	O7-C37	1.402 (3)
P1-O3	1.5935 (16)	O10-C49	1.411 (3)
P1-O4	1.4922 (16)	O11-C61	1.406 (3)
P2-O5	1.4972 (16)	O13-C73	1.420 (3)
P2-O6	1.5938 (16)		
	. ,		

through atoms Eu1, O9 and O16. This supports the conclusions drawn from photophysical studies about the Eu^{3+} environment (see §4).

The Eu $-O_P$ distances are on average 0.11 Å shorter than Eu $-O_{MeOH}$ (Table 1), being in agreement with ion-ion and ion-dipole *Ln*-ligand interaction types, accordingly. The phosphorous atoms are in a distorted tetrahedral environment. The smallest $O-P-O_C$ bond angle in each ligand corresponds to the O_C-P-O_C angle between bulky aryl substituents [99.08 (8)° for O2-P1-O3; 100.80 (9)° for O6-P2-O7, 101.24 (8)° for O10-P3-O11], whereas the largest bond angles are for $O_{Ln}-P=O$ [114.89 (9)° for O1-P1-O4, 116.23 (9)° for O5-P2-O8, 116.11 (9)° for O9-P3-O12].

Molecular structure of complex (1), with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, the solvent methanol molecule and the C-bound H atoms have been omitted. Minor components of the disordered isopropyl group are shown with open solid lines.

research communications

Table 2	
Hydrogen-bond geometry (Å, °).	
	-

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O13−H79···O12	0.81 (3)	1.83 (3)	2.632 (2)	171 (3)
O14−H80···O4	0.76 (3)	2.27 (3)	2.941 (2)	148 (3)
O15-H81···O4	0.82(3)	1.79 (3)	2.583 (2)	160 (3)
O16-H82···O18	0.82(3)	1.86 (3)	2.684 (3)	178 (4)
O17−H83···O8	0.82(3)	1.99 (3)	2.783 (2)	165 (3)
O18−H84…O8	0.82 (4)	1.94 (4)	2.723 (3)	160 (4)

The O- C_{ipso} bond lengths [1.402 (3)–1.413 (2) Å; Table 1] are only slightly shorter (by ~0.02 Å) than a regular single O-C bond length. The P- O_{Ln} and P=O bond lengths are nearly identical and on average 0.10 Å shorter than the P- O_C distances. The values of P-O bonds and O-P-O angles indicate a more pronounced double-bond character for the P- O_{Ln} and P=O bonds with nearly equal charge redistribution on the two corresponding oxygen atoms (Minyaev *et al.*, 2017). A roughly single-bond character for both the O- C_{ipso} and P- O_C bonds indicates no conjugation between the aryl fragments and the phosphorus atom and consequently prevents charge transfer from aryl groups to Eu³⁺. Therefore, the chosen organophosphate is inapplicable as an 'antenna' ligand, which is in agreement with the rather low quantum yield of the complex (see §4).

3. Supramolecular features

Complex (1) forms four intramolecular $O-H\cdots O$ hydrogen bonds and two intermolecular hydrogen bonds with one noncoordinating methanol molecule, yielding a molecular associate {[$(O_2P(OAr)_2)_3Eu(MeOH)_5$]·MeOH} (Fig. 2, Table 2). The presence of the two-dimensional hydrogenbonding network in bis(diaryl phosphate) complexes

Figure 2

Intra- and intermolecular $O-H\cdots O$ bonding in the crystal structure of complex (1). Only core atoms and hydroxy H atoms are shown. Atomic displacement parameters are set to the 50% probability level.

Figure 3 Luminescence excitation spectrum (*a*), and luminescence spectrum (*b*), of complex (1) at 300 K.

 $[Ln(O_2P(OAr)_2)_2Cl(CH_3OH)_4] \cdot 2CH_3OH$ (Minyaev *et al.*, 2017) substantially decreases their solubility compared to tris(diaryl phosphate) complexes $[Ln(O_2P(OAr)_2)_3(CH_3. 3OH)_5] \cdot CH_3OH$, which do not have such a network, and which are soluble in aromatic and aliphatic hydrocarbons (Minyaev *et al.*, 2018*a*). Likely due to both this fact and incomplete reaction, the precipitate contains complex (**2**) as a major product (see §5, Fig. 4), which is isostructural to the bis(diaryl phosphate) monochloride complexes.

4. Luminescence studies

The steady-state luminescence excitation spectrum of (1)(Fig. 3a) was recorded in the spectroscopic range from 250 to 600 nm with emission monitored on the hypersensitive ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition at 612 nm. This spectrum consists of narrow bands assigned to the 4f-4f intraconfigurational transitions and a broad band centered around 350 nm. The latter could be tentatively assigned to an interligand charge-transfer (ILCT) band due to the presence of the anion-assisted strong hydrogen bonding between coordinated methanol molecules and oxygen atoms at the O=P bonds of the organophosphate ligands (see §3 and Fig. 2). A similar charge-transfer band was observed in the case of lanthanide triflates, where the charge redistribution caused by intermolecular hydrogen bonds resulting in an additional CT state was found and confirmed by combined research of luminescence data and the experimental electron density distribution function analysis (Nelyubina et al., 2014).

The emission spectrum of (1) (Fig. 3*b*), recorded in the range from 400 to 720 nm under excitation at 394 nm $({}^{7}F_{0} \rightarrow {}^{5}L_{6}$ transition), exhibits intense narrow bands corresponding to the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions (J = 0-4). These electronic transitions display the maximum possible number of Stark components pointing to a low site symmetry for Eu³⁺, *i.e.* equal to or lower than $C_{2\nu}$. Generally, the intensities and Stark splittings of the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions are influenced by the

Figure 4

Synthesis of $\{Eu[O_2P(O-2,6-^iPr_2C_6H_3)_2]_3(CH_3OH)_5\}$ ·CH₃OH, (1), and $\{Eu[O_2P(O-2,6-^iPr_2C_6H_3)_2]_2Cl(CH_3OH)_4\}$ ·CH₃OH (2).

strength and symmetry of the ligand. A forbidden ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition (region 570–585 nm) of the Eu³⁺ cation is presented by a relatively intense symmetric line that indicates the presence of only one type of Eu environment. The integrated intensity of this transition is 0.13, which corresponds to a relatively strong deviation of the Eu^{3+} site symmetry from C_i . The electric dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (region 600–620 nm) is extremely sensitive to the symmetry of the europium surroundings and called hypersensitive, and so the ratio of integrated intensities of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ is a measure of the symmetry of the coordination sphere. In a centrosymmetric environment the magnetic dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition is dominating and the above ratio is < 1, while the distortion of the symmetry around the ion causes an intensity enhancement of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. In (1), this ratio equals 5, which points to a remarkable deviation from a centrosymmetric environment of the Eu³⁺ ion. These facts correlate with the found site symmetry for Eu³⁺ from the X-ray data (see Figs. 1 and 2). The high intensity of the first Stark component of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition at 300 K can potentially be used for obtaining a relatively high colour purity (the line at 610 nm, \sim 50% of the total integrated intensity). Furthermore, a weak broad band was observed in this spectrum in the region 400-550 nm, indicating the residual luminescence of the ligands. Consequently, the overall quantum yield is quite low for the complex ($\sim 2.5\%$), which prevents the use of complex (1) in luminescent applications.

5. Synthesis

Complex (1) was obtained as a minor product in the reaction of lithium bis(2,6-diisopropylphenyl) phosphate with $EuCl_3(H_2O)_6$ in a 3:1 ratio in methanol at room temperature (Fig. 4). Only a few single crystal samples were represented by analytically pure (1), whereas the precipitated bulk microcrystalline product was a mixture and mainly contained $\{Eu[O_2P(O-2,6^{-i}Pr_2C_6H_3)_2]_2Cl(CH_3OH)_4\}$ ·CH₃OH (2), according to IR and C/H analysis. The structure and photophysical properties of (2) will be reported elsewhere. Attempts to isolate (1) as the only product in this reaction failed. Furthermore, attempts to synthesize and grow single crystals of the analogous Tb and Gd tris(phosphate) complexes failed as well. Therefore, the isostructural complexes $\{Ln[O_2P(O-2,6-^iPr_2C_6H_3)_2]_3(CH_3OH)_5\}$ ·CH₃OH can only be obtained for lanthanides from La to Eu.

5.1. General experimental remarks

The synthesis of (1) was carried out under an argon atmosphere. Methanol was distilled over Ca/Mg alloy and stored over molecular sieves (4 Å). The salt [{($2,6^{-i}Pr_2C_6H_3^{-i}$) O)₂POO}Li(MeOH)₃]·MeOH was prepared according to the literature (Minyaev et al., 2015). C/H elemental analysis was performed with a PerkinElmer 2400 Series II elemental analyser. Steady-state luminescence and excitation measurements in the visible region were performed with a Fluorolog FL 3-22 spectrometer from Horiba-Jobin-Yvon-Spex, which has a 450 W xenon lamp as the excitation source and an R-928 photomultiplier. The quantum yield measurements were carried out on solid samples with a Spectralone-covered G8 integration sphere (GMP SA, Switzerland) under ligand excitation, according to the absolute method by Wrighton (Wrighton et al., 1974; de Mello et al., 1997; Greenham et al., 1995).

5.2. Synthetic procedure

A solution of [$\{(2,6^{-i}Pr_2C_6H_3-O)_2POO\}Li(MeOH)_3$]·MeOH (3.315 g, 6.00 mmol) in methanol (12 ml) was added to a stirred solution of EuCl₃·6H₂O (0.733 g, 2.00 mmol) in methanol (5 ml). Then, the reaction mixture was allowed to stand overnight at room temperature. Some single crystals (~150 mg) that had formed on the walls of the flask were taken for X-ray studies and elemental analysis, which showed that their composition corresponds to (1). Analysis found (calculated for C₇₈H₁₂₆EuO₁₈P₃) (%): C 58.79 (58.67), H 8.02 (7.95).

The remaining reaction mixture was kept at room temperature for 2 days and for 1 day in a freezer (255 K). The formed precipitate was filtered off, washed with cold (268 K) methanol (3×5 ml), then dried under vacuum to provide 1.861 g of a microcrystalline product. The C/H elemental analysis and FT IR studies demonstrated that the formed

research communications

Table 3
Experimental details.

Crystal data Chemical formula [Eu(C24H34O4P)3(CH4O)5]·CH4O 1596.65 М., Crystal system, space group Monoclinic, $P2_1/c$ Temperature (K) 120 23.4010 (17), 10.6604 (8), *a*, *b*, *c* (Å) 33.543 (2) $\beta (^{\circ})$ V (Å³) 91 964 (1) 8363.0 (11) Z 4 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.87 $0.46 \times 0.36 \times 0.22$ Crystal size (mm) Data collection Bruker APEXII CCD area-Diffractometer detector Absorption correction Multi-scan (SADABS; Krause et al., 2015) 0.644, 0.748 T_{\min}, T_{\max} No. of measured, independent and 158417, 29661, 24028 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.061 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.752 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.049, 0.091, 1.16 No. of reflections 29661 No. of parameters 973 12 No. of restraints H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³) 1.27, -1.33

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2013 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

product contains (2) with some impurities of (1) and possibly of the starting lithium salt.

Numerous attempts to obtain (1) as a single product by varying the reaction conditions failed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The positions of all non-H and hydroxy H atoms were found from difference electron-density maps. All other H atoms were also found from difference-Fourier maps (with the exception of the disordered fragments) but were positioned geometrically (C-H = 0.95 Å for)aromatic, 0.98 Å for methyl, 1.00 Å for tertiary hydrogen atoms) and refined as riding atoms with $U_{iso}(H) = 1.5U_{eq}(C$ methyl) and $1.2U_{eq}(C)$ for other H atoms. A rotating group model was applied for the methyl groups. Reflection 100 was affected by the beam stop, and omitted from the final refinement. Atoms C8, C9 and C47, C48 and corresponding H atoms were disordered over two positions in two isopropyl fragments. Since the residual electron density was not enough to properly position minor components of the disordered isopropyl groups, initial positions for corresponding carbon atoms were taken from isostructural compounds (Minyaev et al., 2018a). This allowed the disorder to be resolved successfully [the disorder ratios are 0.921 (5):0.079 (5) for atoms C8A, C9A / C8B, C9B and 0.879 (6):0.121 (6) for C47A, C48A / C47B, C48B] and to improve the crystallographic model slightly.

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 17-13-01357).

References

- Anwander, R. (2002). Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH.
- Atwood, D. A. (2016). *Sustainable Inorganic Chemistry*. New York: Wiley.
- Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bünzli, J. G. (2017). Eur. J. Inorg. Chem. pp. 5058-5063.
- Bünzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.
- Chen, J. (2016). Application of Ionic Liquids on Rare Earth Green Separation and Utilization. Berlin, Heidelberg: Springer-Verlag.
- Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1– 154.
- Greenham, N. C., Samuel, I. D. W., Hayes, G. R., Phillips, R. T., Kessener, Y. A. R. R., Moratti, S. C., Holmes, A. B. & Friend, R. H. (1995). *Chem. Phys. Lett.* **241**, 89–96.
- Guillou, O., Daiguebonne, C., Calvez, G. & Bernot, K. (2016). Acc. Chem. Res. 49, 844–856.
- Kobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1–307. Berlin, Heidelberg: Springer-Verlag.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Mello, J. C. de, Wittmann, H. F. & Friend, R. H. (1997). *Adv. Mater.* 9, 230–232.
- Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673–682.
- Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Kostitsyna, N. N., Churakov, A. V. & Nifant'ev, I. E. (2018c). Struct. Chem. 29, 1475– 1487.
- Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820–827.
- Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A. & Zeynalova, S. S. (2015). *Acta Cryst.* E71, 443–446.
- Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590–598.
- Nelyubina, Y. V., Puntus, L. N. & Lyssenko, K. A. (2014). *Chem. Eur. J.* **20**, 2860–2865.
- Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). *Appl. Catal. Gen.* 478, 219–227.
- Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). *Dalton Trans.* 42, 1223–1230.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
- Wrighton, M. S., Ginley, D. S. & Morse, D. L. (1974). J. Phys. Chem. 78, 2229–2233.
- Zhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). *Struct. Bond.* **137**, 49–108.

Acta Cryst. (2019). E75, 1892-1896 [https://doi.org/10.1107/S2056989019015421]

Crystal structure of tris[bis(2,6-diisopropylphenyl) phosphato- κO]pentakis-(methanol- κO)europium methanol monosolvate

Alexey E. Kalugin, Konstantin A. Lyssenko, Mikhail E. Minyaev, Dmitrii M. Roitershtein, Lada N. Puntus, Evgenia A. Varaksina and Ilya E. Nifant'ev

Computing details

Data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-\ κO)europium methanol monosolvate

Crystal data

$[Eu(C_{24}H_{34}O_4P)_3(CH_4O)_5]$ ·CH ₄ O
$M_r = 1596.65$
Monoclinic, $P2_1/c$
a = 23.4010 (17) Å
b = 10.6604 (8) Å
c = 33.543 (2) Å
$\beta = 91.964 \ (1)^{\circ}$
$V = 8363.0 (11) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: X-Ray tube ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.644, T_{\max} = 0.748$ 158417 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.091$ S = 1.1629661 reflections 973 parameters 12 restraints F(000) = 3384 $D_x = 1.268 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9998 reflections $\theta = 2.5-30.2^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 120 KBlock, colorless $0.46 \times 0.36 \times 0.22 \text{ mm}$

29661 independent reflections 24028 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 32.3^\circ, \ \theta_{min} = 1.5^\circ$ $h = -35 \rightarrow 35$ $k = -15 \rightarrow 16$ $l = -50 \rightarrow 50$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.024P)^2 + 8.2744P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$

$$\Delta \rho_{\text{max}} = 1.27 \text{ e } \text{\AA}^{-3}$$

 $\Delta \rho_{\text{min}} = -1.33 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. moisture sensitive

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Eu1	0.21264 (2)	0.01198 (2)	0.12253 (2)	0.01371 (3)	
P1	0.30150 (2)	0.10405 (5)	0.04210 (2)	0.01430 (10)	
P2	0.28809 (2)	0.07752 (5)	0.21773 (2)	0.01634 (10)	
P3	0.09000 (2)	-0.19974 (5)	0.12637 (2)	0.01590 (10)	
01	0.29035 (6)	0.09169 (14)	0.08558 (4)	0.0172 (3)	
O2	0.32035 (6)	0.24664 (13)	0.03573 (4)	0.0150 (3)	
03	0.35910 (6)	0.03625 (13)	0.03007 (5)	0.0174 (3)	
O4	0.25347 (7)	0.06299 (15)	0.01474 (5)	0.0196 (3)	
05	0.27848 (7)	0.05181 (14)	0.17413 (5)	0.0187 (3)	
O6	0.34194 (7)	0.16726 (14)	0.22491 (5)	0.0185 (3)	
O7	0.31298 (7)	-0.05192 (14)	0.23493 (5)	0.0204 (3)	
08	0.23761 (7)	0.12372 (15)	0.23943 (5)	0.0203 (3)	
09	0.12428 (6)	-0.09030 (14)	0.11230 (5)	0.0180 (3)	
O10	0.04631 (6)	-0.24582 (14)	0.09163 (5)	0.0177 (3)	
011	0.04729 (7)	-0.13794 (15)	0.15688 (5)	0.0193 (3)	
O12	0.12327 (7)	-0.30716 (15)	0.14321 (5)	0.0208 (3)	
013	0.22177 (7)	-0.19159 (15)	0.15521 (5)	0.0223 (3)	
O14	0.23584 (8)	-0.14526 (16)	0.07049 (5)	0.0233 (4)	
015	0.16784 (7)	0.08781 (17)	0.06066 (5)	0.0241 (4)	
O16	0.19455 (8)	0.23884 (16)	0.12912 (6)	0.0267 (4)	
O17	0.15557 (7)	0.05522 (16)	0.18145 (5)	0.0213 (3)	
O18	0.19450 (10)	0.33364 (19)	0.20326 (7)	0.0414 (5)	
C1	0.34644 (9)	0.29122 (18)	0.00110 (6)	0.0156 (4)	
C2	0.31138 (10)	0.3397 (2)	-0.02967 (7)	0.0192 (4)	
C3	0.33846 (12)	0.3867 (2)	-0.06304 (7)	0.0267 (5)	
H3A	0.315991	0.418677	-0.084867	0.032*	
C4	0.39734 (12)	0.3873 (2)	-0.06481 (7)	0.0294 (6)	
H4A	0.414962	0.418716	-0.087872	0.035*	
C5	0.43060 (11)	0.3426 (2)	-0.03324 (7)	0.0245 (5)	
H5A	0.471046	0.344730	-0.034773	0.029*	
C6	0.40629 (10)	0.29440 (19)	0.00091 (7)	0.0181 (4)	
C7	0.24736 (10)	0.3513 (2)	-0.02465 (6)	0.0234 (5)	
H7A	0.234295	0.274598	-0.010405	0.028*	0.921 (5)
H7B	0.236648	0.316383	0.001739	0.028*	0.079 (5)
C8A	0.21244 (15)	0.3613 (4)	-0.06395 (10)	0.0450 (9)	0.921 (5)

H8A	0.171582	0.361802	-0.058434	0.067*	0.921 (5)
H8B	0.220955	0.289401	-0.080955	0.067*	0.921 (5)
H8C	0.222413	0.439127	-0.077620	0.067*	0.921 (5)
C9A	0.23577 (12)	0.4649 (3)	0.00187 (9)	0.0316(7)	0.921 (5)
H9A	0.194886	0.468914	0.007185	0.047*	0.921 (5)
H9B	0.247245	0.541763	-0.011750	0.047*	0.921 (5)
H9C	0.257749	0.456734	0.027131	0.047*	0.921 (5)
C8B	0.2173 (17)	0.278 (4)	-0.0586(9)	0.0450 (9)	0.079 (5)
H8D	0.232223	0.192191	-0.059081	0.067*	0.079 (5)
H8E	0.224418	0.319236	-0.084093	0.067*	0.079 (5)
H8F	0.176099	0.275951	-0.054395	0.067*	0.079 (5)
C9B	0.2356 (14)	0.4926(7)	-0.0262(12)	0.0316(7)	0.079 (5)
H9D	0.258671	0.534868	-0.005344	0.047*	0.079 (5)
H9E	0.194950	0.507916	-0.022001	0.047*	0.079 (5)
H9F	0.245597	0.525343	-0.052389	0.047*	0.079 (5)
C10	0.44439(10)	0.2534(2)	0.03586 (8)	0.0216(5)	
H10A	0.419456	0.220624	0.057124	0.026*	
C11	0.48529(11)	0.1481(2)	0.02417(10)	0.0350 (6)	
H11A	0.463186	0.077680	0.012902	0.052*	
H11B	0.507338	0.119821	0.047856	0.052*	
H11C	0.511455	0.179541	0.004278	0.052*	
C12	0.371753 (11)	0.3653 (2)	0.05312 (8)	0.022	
H12A	0.452034	0.3033 (2)	0.061125	0.045*	
H12R	0.503655	0.398296	0.032831	0.045*	
H12C	0.503635	0.337737	0.076415	0.045*	
C13	0.36357 (9)	-0.09326(18)	0.070415	0.045 0.0146 (4)	
C14	0.30337(9) 0.34882(10)	-0.1371(2)	-0.01624(7)	0.0140(4) 0.0201(4)	
C15	0.34002(10) 0.35576(11)	-0.2660(2)	-0.02265(8)	0.0201(4) 0.0257(5)	
H15A	0.345594	-0.300033	-0.048100	0.0237 (3)	
C16	0.37686 (11)	-0.3449(2)	0.048100	0.031 0.0265 (5)	
H16A	0.380607	-0.432115	0.001734	0.0205 (5)	
C17	0.39259 (11)	-0.2967(2)	0.001734	0.032 0.0247 (5)	
U17 H17A	0.39239 (11)	-0.351/37	0.04389 (8)	0.0247 (3)	
	0.407341 0.38688 (10)	-0.1687(2)	0.004021 0.05227(7)	0.030	
C10	0.32008(10)	-0.0507(2)	-0.05227(7)	0.0200(4)	
U10A	0.32308 (11)	0.0307 (2)	-0.038465	0.0234 (3)	
C20	0.321170 0.27450 (14)	-0.0958(3)	-0.07127(10)	0.030°	
U20	0.27450 (14)	-0.106820	-0.051735	0.0430 (8)	
1120A 1120A	0.244033	-0.176113	-0.084430	0.072*	
H20D	0.261037	-0.022769	-0.001241	0.072*	
П20С С21	0.201889	-0.033708	-0.091241	0.072°	
	0.37019(14)	-0.0344(4)	-0.08014(11)	0.0370 (10)	
	0.302302	0.019321	-0.102073	0.080*	
п21В Ц21С	0.300/30	-0.110001	-0.090/28	0.080 [~]	
ri210	0.409/21	0.1159 (2)	-0.000849	0.000^{-1}	
U22	0.40009 (11)	-0.1138(2)	0.09240(/)	0.02/3(3)	
п22A С22	0.399249	-0.023411	0.12(12(0)	0.033*	
U23	0.3/436(13)	-0.1700 (4)	0.12613 (9)	0.0441 (8)	
H23A	0.333258	-0.15/8/5	0.120958	0.066*	

H23B	0.386026	-0.127742	0.151045	0.066*
H23C	0.382642	-0.259877	0.128444	0.066*
C24	0.47118 (13)	-0.1346 (4)	0.09959 (10)	0.0496 (9)
H24A	0.491544	-0.102417	0.076679	0.074*
H24B	0.479369	-0.224221	0.102951	0.074*
H24C	0.483845	-0.089261	0.123716	0.074*
C25	0.34322 (9)	0.2981 (2)	0.23117 (7)	0.0181 (4)
C26	0.35429 (10)	0.3743 (2)	0.19848 (7)	0.0199 (4)
C27	0.36167 (11)	0.5027 (2)	0.20599 (7)	0.0259 (5)
H27A	0.369503	0.557474	0.184521	0.031*
C28	0.35777(12)	0.5514(2)	0.24417(8)	0.0295 (5)
H28A	0.363051	0.638639	0.248684	0.035*
C29	0.34625(11)	0.030039 0.4730(2)	0.27547 (8)	0.022 0.0273(5)
H29A	0.343127	0.507456	0.301423	0.0275 (5)
C30	0.33900(10)	0.3437(2)	0.301123	0.022
C31	0.35900(10) 0.35890(11)	0.3497(2) 0.3194(2)	0.27000(7) 0.15686(7)	0.0212(4)
H31A	0.326026	0.3194(2) 0.260526	0.152359	0.0231 (3)
C22	0.320020 0.41402(12)	0.200520	0.152559 0.15205(8)	0.028°
U32	0.41402(12) 0.416355	0.2433 (3)	0.13303 (8)	0.0344 (0)
пэ2А 1122D	0.410333	0.1/9008	0.174031	0.052*
H32B	0.447060	0.299081	0.155769	0.052*
H32C	0.413903	0.202580	0.1268//	0.052*
033	0.35514 (13)	0.4191 (2)	0.12401 (8)	0.0314 (6)
H33A	0.3214/5	0.4/1960	0.127758	0.04/*
H33B	0.351866	0.3/8012	0.097895	0.047*
H33C	0.389656	0.471204	0.125346	0.047*
C34	0.32933 (11)	0.2598 (2)	0.30559 (7)	0.0270 (5)
H34A	0.321392	0.173134	0.295437	0.032*
C35	0.27772 (13)	0.3025 (3)	0.32878 (9)	0.0392 (7)
H35A	0.243589	0.302799	0.311015	0.059*
H35B	0.284572	0.387325	0.339163	0.059*
H35C	0.271911	0.244849	0.351025	0.059*
C36	0.38329 (14)	0.2545 (3)	0.33275 (9)	0.0412 (7)
H36A	0.415176	0.221621	0.317693	0.062*
H36B	0.376530	0.199468	0.355507	0.062*
H36C	0.392678	0.339039	0.342406	0.062*
C37	0.33968 (11)	-0.0723 (2)	0.27244 (8)	0.0242 (5)
C38	0.30635 (12)	-0.1100 (2)	0.30395 (8)	0.0290 (5)
C39	0.33523 (16)	-0.1341 (3)	0.34042 (9)	0.0471 (8)
H39A	0.314020	-0.157803	0.362860	0.057*
C40	0.39399 (17)	-0.1242 (3)	0.34430 (11)	0.0591 (11)
H40A	0.412792	-0.139637	0.369374	0.071*
C41	0.42525 (15)	-0.0920 (3)	0.31199 (11)	0.0507 (9)
H41A	0.465699	-0.087238	0.315048	0.061*
C42	0.39955 (12)	-0.0660 (2)	0.27489 (9)	0.0343 (6)
C43	0.24237 (12)	-0.1318 (2)	0.29975 (8)	0.0302 (6)
H43A	0.229910	-0.109187	0.271861	0.036*
C44	0.20934 (17)	-0.0495 (4)	0.32799 (11)	0.0567 (9)
H44A	0.218863	0.038782	0.323421	0.085*

H44B	0.219665	-0.071998	0.355632	0.085*	
H44C	0.168213	-0.062118	0.323107	0.085*	
C45	0.22876 (14)	-0.2708 (3)	0.30595 (10)	0.0425 (7)	
H45A	0.249024	-0.321265	0.286510	0.064*	
H45B	0.187490	-0.284262	0.302278	0.064*	
H45C	0.241064	-0.295838	0.333011	0.064*	
C46	0.43517 (12)	-0.0380(2)	0.23901 (10)	0.0384 (7)	
H46A	0.407885	-0.018698	0.216239	0.046*	0.879 (6)
H46B	0.419015	0.028504	0.220861	0.046*	0.121 (6)
C47A	0.47333 (15)	0.0771 (3)	0.24513 (13)	0.0456 (10)	0.879 (6)
H47A	0.449611	0.150298	0.250796	0.068*	0.879 (6)
H47B	0.494513	0.092490	0.220909	0.068*	0.879 (6)
H47C	0.500346	0.062332	0.267608	0.068*	0.879 (6)
C48A	0.4709 (2)	-0.1503 (4)	0.22652 (15)	0.0563 (12)	0.879 (6)
H48A	0.445744	-0.222125	0.220990	0.084*	0.879 (6)
H48B	0.498479	-0.171761	0.248099	0.084*	0.879 (6)
H48C	0.491452	-0.129025	0.202459	0.084*	0.879 (6)
C47B	0.4921 (6)	-0.004(3)	0.2600 (8)	0.0456 (10)	0.121 (6)
H47D	0.485387	0.056385	0.281429	0.068*	0.121 (6)
H47E	0.517573	0.033975	0.240704	0.068*	0.121 (6)
H47F	0.509973	-0.079572	0.271277	0.068*	0.121 (6)
C48B	0.4407 (15)	-0.1670 (16)	0.2197 (10)	0.0563 (12)	0.121 (6)
H48D	0.404101	-0.190405	0.206717	0.084*	0.121 (6)
H48E	0.451078	-0.229054	0.240283	0.084*	0.121 (6)
H48F	0.470388	-0.164233	0.199873	0.084*	0.121 (6)
C49	0.05436 (9)	-0.3542 (2)	0.06837 (7)	0.0173 (4)	
C50	0.07807 (9)	-0.3385 (2)	0.03096 (7)	0.0188 (4)	
C51	0.08245 (10)	-0.4440 (2)	0.00685 (7)	0.0221 (5)	
H51A	0.098632	-0.436287	-0.018625	0.027*	
C52	0.06351 (10)	-0.5603(2)	0.01950 (7)	0.0247 (5)	
H52A	0.066756	-0.631541	0.002718	0.030*	
C53	0.03996 (10)	-0.5723 (2)	0.05648 (7)	0.0241 (5)	
H53A	0.027024	-0.652320	0.064815	0.029*	
C54	0.03473 (9)	-0.4696 (2)	0.08188 (7)	0.0197 (4)	
C55	0.09369 (10)	-0.2085 (2)	0.01617 (7)	0.0212 (4)	
H55A	0.109703	-0.159638	0.039417	0.025*	
C56	0.13787 (11)	-0.2079(3)	-0.01627 (8)	0.0313 (6)	
H56A	0.170977	-0.258446	-0.007578	0.047*	
H56B	0.150160	-0.121489	-0.021151	0.047*	
H56C	0.120854	-0.243198	-0.040892	0.047*	
C57	0.03877 (11)	-0.1430(2)	0.00102 (8)	0.0294 (5)	
H57A	0.011304	-0.140367	0.022410	0.044*	
H57B	0.022173	-0.189466	-0.021774	0.044*	
H57C	0.047745	-0.057267	-0.007266	0.044*	
C58	0.00699 (11)	-0.4858 (2)	0.12172 (7)	0.0260 (5)	
H58A	0.010071	-0.403990	0.136218	0.031*	
C59	-0.05638(13)	-0.5171 (3)	0.11623 (10)	0.0445 (7)	
H59A	-0.075631	-0.450622	0.100700	0.067*	
/					

H59B	-0.073516	-0.523716	0.142396	0.067*
H59C	-0.060728	-0.597104	0.102049	0.067*
C60	0.03792 (15)	-0.5845 (3)	0.14730 (9)	0.0459 (8)
H60A	0.078558	-0.562892	0.150145	0.069*
H60B	0.033802	-0.666761	0.134490	0.069*
H60C	0.021272	-0.587219	0.173697	0.069*
C61	-0.00403(9)	-0.1868(2)	0.17102 (7)	0.0190 (4)
C62	-0.00188(10)	-0.2613(2)	0.20546 (7)	0.0244 (5)
C63	-0.05394(12)	-0.3024(3)	0.21908 (8)	0.0324 (6)
H63A	-0.054265	-0.355201	0 241895	0.039*
C64	-0.10539(12)	-0.2691(3)	0 20049 (8)	0.0355 (6)
H64A	-0.140382	-0.298664	0.210554	0.043*
C65	-0.10568(11)	-0.1927(3)	0.16726 (8)	0.045
U65 A	-0.141150	-0.160203	0.15/20(8)	0.036*
II05A C66	0.141130 0.05492(10)	0.109203 0.1404(2)	0.154014 0.15150 (7)	0.030
C00	-0.03485(10)	-0.1494(2)	0.13139(7)	0.0224(3)
07	0.05420 (11)	-0.2904 (3)	0.22732 (8)	0.0302 (6)
H6/A	0.082275	-0.312903	0.2066/6	0.036*
C68	0.07755 (17)	-0.1752 (4)	0.24915 (11)	0.0607 (10)
H68A	0.079783	-0.105043	0.230402	0.091*
H68B	0.115802	-0.193621	0.260471	0.091*
H68C	0.052119	-0.152853	0.270647	0.091*
C69	0.05114 (15)	-0.4018 (3)	0.25585 (10)	0.0514 (9)
H69A	0.037031	-0.475715	0.241205	0.077*
H69B	0.025090	-0.381868	0.277214	0.077*
H69C	0.089345	-0.419170	0.267412	0.077*
C70	-0.05634 (11)	-0.0629 (2)	0.11569 (7)	0.0257 (5)
H70A	-0.016147	-0.052738	0.107013	0.031*
C71	-0.09102 (14)	-0.1184 (3)	0.08078 (8)	0.0409 (7)
H71A	-0.075503	-0.200865	0.074078	0.061*
H71B	-0.088917	-0.062655	0.057653	0.061*
H71C	-0.130983	-0.127515	0.088128	0.061*
C72	-0.07845 (17)	0.0672 (3)	0.12657 (10)	0.0525 (9)
H72A	-0.053461	0.103669	0.147551	0.079*
H72B	-0.117383	0.059910	0.136202	0.079*
H72C	-0.078686	0.121267	0.102952	0.079*
C73	0.25778 (11)	-0.2619(2)	0.18182 (8)	0.0272(5)
H73A	0.263511	-0.345980	0 170877	0.041*
H73B	0.239879	-0.268570	0.207721	0.041*
H73C	0.294793	-0.219504	0.185220	0.041*
C74	0.23787(11)	-0.2793(2)	0.06745 (8)	0.041
	0.25787 (11)	-0.2793(2)	0.00743(0)	0.0270(3)
1174A 1174D	0.239497	-0.313447	0.044102	0.041*
П/4Д	0.190001	-0.312447	0.004383	0.041*
П/4U	0.20010	-0.314088	0.091370	0.041*
U/5	0.11132 (11)	0.1241 (2)	0.04977(8)	0.0299 (6)
H/SA	0.10//20	0.133813	0.020/44	0.045*
H75B	0.102512	0.204044	0.062629	0.045*
H75C	0.084557	0.059678	0.058404	0.045*
C76	0.20148 (13)	0.3414 (2)	0.10225 (8)	0.0320 (6)

H76A	0.223493	0.408173	0.115746	0.048*
H76B	0.163821	0.373748	0.093691	0.048*
H76C	0.221872	0.312691	0.078909	0.048*
C77	0.10100 (11)	0.1178 (3)	0.17943 (8)	0.0293 (5)
H77A	0.073545	0.070603	0.194968	0.044*
H77B	0.087151	0.122754	0.151573	0.044*
H77C	0.105163	0.202673	0.190388	0.044*
C78	0.19089 (16)	0.4513 (3)	0.22041 (11)	0.0472 (8)
H78A	0.169256	0.445689	0.244852	0.057*
H78B	0.171403	0.508764	0.201636	0.057*
H78C	0.229450	0.482716	0.226892	0.057*
H79	0.1921 (14)	-0.231 (3)	0.1539 (10)	0.045 (10)*
H80	0.2377 (13)	-0.114 (3)	0.0501 (9)	0.036 (9)*
H81	0.1898 (13)	0.088 (3)	0.0420 (9)	0.037 (9)*
H82	0.1952 (14)	0.267 (3)	0.1521 (10)	0.044 (10)*
H83	0.1746 (13)	0.075 (3)	0.2013 (9)	0.032 (8)*
H84	0.2103 (15)	0.283 (3)	0.2184 (11)	0.052 (11)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Eu1	0.01357 (5)	0.01276 (4)	0.01492 (5)	0.00006 (4)	0.00238 (3)	0.00046 (4)
P1	0.0142 (2)	0.0120 (2)	0.0169 (3)	-0.00063 (18)	0.0042 (2)	-0.00030 (19)
P2	0.0168 (3)	0.0148 (2)	0.0173 (3)	-0.00023 (19)	-0.0006(2)	0.0004 (2)
P3	0.0133 (2)	0.0182 (2)	0.0163 (3)	-0.00221 (19)	0.0019 (2)	0.0004 (2)
01	0.0163 (7)	0.0174 (7)	0.0181 (7)	-0.0021 (6)	0.0047 (6)	0.0023 (6)
O2	0.0167 (7)	0.0123 (6)	0.0162 (7)	-0.0002(5)	0.0055 (6)	-0.0002 (5)
O3	0.0178 (7)	0.0108 (6)	0.0239 (8)	-0.0004 (5)	0.0063 (6)	-0.0006 (6)
O4	0.0173 (7)	0.0204 (7)	0.0211 (8)	-0.0030 (6)	0.0018 (6)	-0.0035 (6)
O5	0.0188 (8)	0.0183 (7)	0.0188 (8)	-0.0007 (6)	0.0006 (6)	-0.0020 (6)
O6	0.0189 (8)	0.0146 (7)	0.0217 (8)	-0.0010 (6)	-0.0016 (6)	-0.0012 (6)
O7	0.0228 (8)	0.0156 (7)	0.0226 (8)	0.0009 (6)	-0.0024 (6)	0.0022 (6)
08	0.0218 (8)	0.0208 (7)	0.0185 (8)	0.0016 (6)	0.0013 (6)	0.0001 (6)
O9	0.0151 (7)	0.0199 (7)	0.0190 (8)	-0.0029 (6)	0.0019 (6)	0.0017 (6)
O10	0.0162 (7)	0.0186 (7)	0.0182 (7)	0.0005 (6)	0.0009 (6)	-0.0034 (6)
O11	0.0162 (7)	0.0239 (8)	0.0182 (8)	-0.0035 (6)	0.0053 (6)	-0.0019 (6)
O12	0.0181 (8)	0.0198 (7)	0.0245 (8)	-0.0009 (6)	-0.0011 (6)	0.0031 (6)
O13	0.0167 (8)	0.0200 (8)	0.0300 (9)	-0.0020 (6)	-0.0026 (7)	0.0071 (7)
O14	0.0313 (10)	0.0177 (8)	0.0215 (9)	-0.0013 (7)	0.0073 (7)	-0.0020(7)
015	0.0146 (8)	0.0355 (10)	0.0225 (9)	0.0035 (7)	0.0038 (7)	0.0086 (7)
O16	0.0368 (10)	0.0183 (8)	0.0255 (9)	0.0054 (7)	0.0086 (8)	0.0012 (7)
O17	0.0180 (8)	0.0274 (8)	0.0188 (8)	0.0024 (6)	0.0022 (6)	-0.0029 (7)
O18	0.0612 (15)	0.0243 (10)	0.0378 (12)	0.0150 (10)	-0.0127 (10)	-0.0055 (9)
C1	0.0190 (10)	0.0116 (8)	0.0166 (10)	-0.0019 (7)	0.0077 (8)	-0.0022 (7)
C2	0.0259 (11)	0.0146 (9)	0.0170 (10)	-0.0022 (8)	0.0014 (8)	-0.0007 (8)
C3	0.0386 (14)	0.0249 (12)	0.0167 (11)	-0.0049 (10)	0.0005 (10)	0.0013 (9)
C4	0.0427 (15)	0.0290 (12)	0.0172 (11)	-0.0104 (11)	0.0112 (10)	-0.0011 (9)
C5	0.0245 (12)	0.0223 (11)	0.0275 (12)	-0.0048 (9)	0.0125 (10)	-0.0064 (9)

C6	0.0210(11)	0.0111 (9)	0.0226 (11)	-0.0008 (7)	0.0060 (8)	-0.0036 (8)
C7	0.0206 (11)	0.0222 (11)	0.0271 (12)	-0.0007 (9)	-0.0039 (9)	0.0043 (9)
C8A	0.0355 (18)	0.062 (2)	0.0366 (18)	-0.0048 (17)	-0.0148 (14)	0.0057 (17)
C9A	0.0241 (13)	0.0284 (14)	0.0421 (18)	0.0078 (11)	0.0002 (12)	-0.0011 (12)
C8B	0.0355 (18)	0.062 (2)	0.0366 (18)	-0.0048 (17)	-0.0148 (14)	0.0057 (17)
C9B	0.0241 (13)	0.0284 (14)	0.0421 (18)	0.0078 (11)	0.0002 (12)	-0.0011 (12)
C10	0.0153 (10)	0.0167 (10)	0.0331 (13)	-0.0005 (8)	0.0042 (9)	0.0001 (9)
C11	0.0208 (12)	0.0229 (12)	0.062 (2)	0.0043 (10)	0.0076 (12)	-0.0010 (12)
C12	0.0246 (13)	0.0245 (12)	0.0400 (15)	-0.0058 (10)	-0.0034 (11)	-0.0026 (11)
C13	0.0138 (9)	0.0113 (8)	0.0191 (10)	0.0002 (7)	0.0066 (8)	-0.0008 (7)
C14	0.0206 (11)	0.0187 (10)	0.0216 (11)	0.0004 (8)	0.0076 (9)	-0.0029 (8)
C15	0.0270 (12)	0.0211 (11)	0.0294 (13)	-0.0020 (9)	0.0076 (10)	-0.0089 (9)
C16	0.0284 (13)	0.0136 (10)	0.0382 (14)	0.0008 (9)	0.0123 (11)	-0.0049 (9)
C17	0.0278 (12)	0.0155 (10)	0.0313 (13)	0.0039 (9)	0.0090 (10)	0.0046 (9)
C18	0.0186 (10)	0.0171 (10)	0.0245 (11)	0.0019 (8)	0.0055 (9)	0.0007 (8)
C19	0.0294 (13)	0.0273 (12)	0.0197 (11)	0.0047 (10)	0.0048 (10)	-0.0007 (9)
C20	0.0398 (18)	0.061 (2)	0.0421 (18)	-0.0018 (16)	-0.0080 (14)	0.0086 (16)
C21	0.0400 (18)	0.082 (3)	0.051 (2)	0.0091 (17)	0.0118 (15)	0.0387 (19)
C22	0.0336 (14)	0.0235 (11)	0.0252 (12)	0.0064 (10)	-0.0028 (10)	0.0011 (9)
C23	0.0347 (16)	0.070 (2)	0.0283 (15)	-0.0040 (15)	0.0048 (12)	-0.0046 (14)
C24	0.0317 (16)	0.081 (3)	0.0366 (17)	-0.0148 (16)	0.0014 (13)	-0.0016 (17)
C25	0.0175 (10)	0.0150 (9)	0.0217 (11)	-0.0011 (8)	-0.0010 (8)	-0.0023 (8)
C26	0.0192 (11)	0.0198 (10)	0.0207 (11)	-0.0020 (8)	-0.0008 (8)	-0.0009 (8)
C27	0.0312 (12)	0.0191 (11)	0.0272 (12)	-0.0046 (9)	0.0002 (9)	0.0008 (9)
C28	0.0365 (14)	0.0174 (10)	0.0345 (14)	-0.0036 (10)	-0.0009 (11)	-0.0048 (10)
C29	0.0333 (13)	0.0238 (11)	0.0248 (12)	-0.0016 (10)	-0.0005 (10)	-0.0061 (9)
C30	0.0211 (11)	0.0222 (11)	0.0201 (11)	-0.0021 (8)	-0.0018 (9)	-0.0022 (8)
C31	0.0268 (12)	0.0222 (11)	0.0202 (11)	-0.0054 (9)	0.0009 (9)	-0.0003 (9)
C32	0.0379 (15)	0.0369 (15)	0.0289 (14)	0.0030 (12)	0.0073 (12)	-0.0032 (11)
C33	0.0474 (16)	0.0251 (12)	0.0216 (12)	-0.0058 (11)	0.0009 (11)	0.0013 (10)
C34	0.0362 (14)	0.0256 (12)	0.0194 (11)	-0.0023 (10)	0.0016 (10)	-0.0021 (9)
C35	0.0392 (16)	0.0490 (17)	0.0299 (15)	-0.0054 (13)	0.0083 (12)	-0.0018 (13)
C36	0.0455 (18)	0.0522 (18)	0.0254 (14)	0.0048 (14)	-0.0043 (13)	0.0075 (13)
C37	0.0267 (12)	0.0152 (10)	0.0302 (13)	0.0021 (9)	-0.0089 (10)	0.0026 (9)
C38	0.0380 (15)	0.0244 (12)	0.0240 (12)	-0.0003 (10)	-0.0063 (11)	0.0053 (10)
C39	0.065 (2)	0.0445 (18)	0.0308 (16)	-0.0084 (16)	-0.0151 (15)	0.0119 (13)
C40	0.074 (3)	0.049 (2)	0.052 (2)	-0.0071 (18)	-0.039 (2)	0.0150 (17)
C41	0.0404 (18)	0.0379 (16)	0.071 (2)	-0.0009 (14)	-0.0313 (17)	0.0119 (16)
C42	0.0280 (13)	0.0208 (12)	0.0532 (18)	0.0016 (10)	-0.0118 (12)	0.0041 (12)
C43	0.0336 (14)	0.0310 (13)	0.0263 (13)	-0.0006 (11)	0.0031 (11)	0.0075 (10)
C44	0.059 (2)	0.053 (2)	0.059 (2)	0.0018 (17)	0.0218 (19)	-0.0072 (18)
C45	0.0432 (17)	0.0364 (15)	0.0474 (18)	-0.0063 (13)	-0.0043 (14)	0.0105 (14)
C46	0.0205 (12)	0.0287 (13)	0.066 (2)	0.0033 (10)	-0.0020 (13)	-0.0003 (13)
C47A	0.0322 (18)	0.042 (2)	0.062 (3)	-0.0071 (15)	-0.0045 (17)	0.0011 (18)
C48A	0.047 (3)	0.043 (2)	0.078 (3)	0.015 (2)	-0.001 (2)	-0.003 (2)
C47B	0.0322 (18)	0.042 (2)	0.062 (3)	-0.0071 (15)	-0.0045 (17)	0.0011 (18)
C48B	0.047 (3)	0.043 (2)	0.078 (3)	0.015 (2)	-0.001 (2)	-0.003 (2)
C49	0.0127 (9)	0.0192 (10)	0.0200 (10)	0.0015 (7)	-0.0011 (8)	-0.0041 (8)

C50	0.0145 (10)	0.0218 (10)	0.0202 (11)	0.0043 (8)	-0.0001 (8)	0.0005 (8)
C51	0.0205 (11)	0.0263 (11)	0.0195 (11)	0.0064 (9)	0.0000 (9)	-0.0018 (9)
C52	0.0246 (12)	0.0224 (11)	0.0269 (12)	0.0086 (9)	-0.0031 (10)	-0.0057 (9)
C53	0.0254 (12)	0.0170 (10)	0.0297 (13)	0.0021 (9)	-0.0037 (10)	-0.0007 (9)
C54	0.0175 (10)	0.0200 (10)	0.0216 (11)	0.0003 (8)	-0.0017 (8)	0.0004 (8)
C55	0.0197 (11)	0.0232 (11)	0.0210 (11)	0.0020 (8)	0.0027 (9)	0.0021 (9)
C56	0.0287 (13)	0.0358 (14)	0.0300 (14)	0.0047 (11)	0.0096 (11)	0.0085 (11)
C57	0.0265 (13)	0.0261 (12)	0.0357 (14)	0.0059 (10)	0.0036 (11)	0.0077 (10)
C58	0.0300 (12)	0.0224 (11)	0.0259 (11)	-0.0065 (10)	0.0052 (9)	0.0022 (9)
C59	0.0318 (15)	0.0543 (19)	0.0479 (18)	-0.0062 (14)	0.0104 (13)	0.0009 (15)
C60	0.055 (2)	0.0515 (19)	0.0315 (16)	0.0076 (16)	0.0041 (14)	0.0156 (14)
C61	0.0187 (10)	0.0224 (10)	0.0163 (10)	-0.0023 (8)	0.0042 (8)	-0.0009 (8)
C62	0.0238 (12)	0.0322 (12)	0.0177 (11)	0.0007 (10)	0.0052 (9)	0.0026 (9)
C63	0.0327 (14)	0.0415 (15)	0.0236 (13)	-0.0003 (12)	0.0082 (11)	0.0095 (11)
C64	0.0244 (13)	0.0507 (17)	0.0322 (14)	-0.0052 (12)	0.0111 (11)	0.0090 (13)
C65	0.0173 (11)	0.0441 (15)	0.0300 (13)	0.0013 (10)	0.0041 (10)	0.0055 (11)
C66	0.0198 (11)	0.0271 (11)	0.0205 (11)	0.0013 (9)	0.0029 (9)	0.0015 (9)
C67	0.0251 (13)	0.0446 (15)	0.0210 (12)	0.0052 (11)	0.0033 (10)	0.0089 (11)
C68	0.064 (2)	0.066 (2)	0.050(2)	0.006 (2)	-0.0306 (19)	-0.0015 (18)
C69	0.0466 (19)	0.065 (2)	0.0427 (18)	0.0116 (17)	-0.0008 (15)	0.0278 (17)
C70	0.0227 (12)	0.0299 (12)	0.0247 (12)	0.0027 (9)	0.0017 (9)	0.0066 (10)
C71	0.0435 (17)	0.0537 (19)	0.0251 (14)	-0.0082 (14)	-0.0031 (12)	0.0063 (13)
C72	0.082 (3)	0.0376 (17)	0.0381 (18)	0.0191 (17)	0.0035 (17)	0.0054 (14)
C73	0.0319 (13)	0.0217 (11)	0.0276 (13)	-0.0001 (10)	-0.0065 (10)	0.0041 (9)
C74	0.0300 (13)	0.0193 (11)	0.0336 (14)	0.0018 (9)	0.0017 (11)	-0.0076 (10)
C75	0.0218 (12)	0.0299 (13)	0.0377 (15)	0.0060 (10)	-0.0025 (11)	0.0085 (11)
C76	0.0421 (16)	0.0195 (11)	0.0345 (14)	-0.0027 (10)	0.0041 (12)	0.0058 (10)
C77	0.0224 (12)	0.0364 (14)	0.0293 (13)	0.0051 (10)	0.0053 (10)	-0.0097 (11)
C78	0.061 (2)	0.0220 (13)	0.058 (2)	0.0061 (13)	-0.0013 (17)	-0.0063 (13)

Geometric parameters (Å, °)

Eu1—O1	2.3915 (14)	С33—Н33С	0.9800
Eu1—O5	2.3166 (15)	C34—C35	1.528 (4)
Eu1—O9	2.3525 (15)	C34—C36	1.533 (4)
Eu1	2.4374 (16)	C34—H34A	1.0000
Eu1014	2.4933 (16)	C35—H35A	0.9800
Eu1-015	2.4312 (17)	С35—Н35В	0.9800
Eu1016	2.4664 (17)	C35—H35C	0.9800
Eu1—017	2.4665 (16)	C36—H36A	0.9800
P101	1.4963 (16)	C36—H36B	0.9800
P1—O2	1.5991 (15)	C36—H36C	0.9800
P1—O3	1.5935 (16)	C37—C38	1.394 (4)
P1—O4	1.4922 (16)	C37—C42	1.402 (4)
P2—O5	1.4972 (16)	C38—C39	1.401 (4)
P2—O6	1.5938 (16)	C38—C43	1.517 (4)
P2—O7	1.5978 (16)	C39—C40	1.381 (5)
P2—O8	1.4923 (17)	С39—Н39А	0.9500

P3—O9	1.5010 (16)	C40—C41	1.372 (5)
P3—O10	1.6007 (16)	C40—H40A	0.9500
P3—O11	1.5970 (16)	C41—C42	1.391 (4)
P3—O12	1.4855 (17)	C41—H41A	0.9500
O2—C1	1.413 (2)	C42—C46	1.517 (4)
O3—C13	1.413 (2)	C43—C44	1.522 (4)
Q6—C25	1.410 (3)	C43—C45	1.531 (4)
07-037	1402(3)	C43—H43A	1 0000
010-C49	1.102(3)	C44—H44A	0.9800
011-011	1.406 (3)	C44—H44B	0.9800
O_{12}^{12} C_{72}^{73}	1.400(3)		0.9800
013 H70	1.420(3)	C_{44} H_{45} H_{45}	0.9800
014 674	0.01(3)	C45 = H45A	0.9800
014 - 0.04	1.434(3)	С45—П45В	0.9800
014—H80	0.70(3)	C45—H45C	0.9800
015-015	1.414 (3)	C46—C48B	1.527 (4)
015—H81	0.82 (3)	C46—C4/A	1.527 (3)
O16—C76	1.430 (3)	C46—C48A	1.527 (3)
O16—H82	0.82 (3)	C46—C47B	1.530 (4)
O17—C77	1.440 (3)	C46—H46A	1.0000
O17—H83	0.82 (3)	C46—H46B	1.0000
O18—C78	1.383 (3)	C47A—H47A	0.9800
O18—H84	0.82 (4)	C47A—H47B	0.9800
C1—C2	1.395 (3)	C47A—H47C	0.9800
C1—C6	1.401 (3)	C48A—H48A	0.9800
C2—C3	1.398 (3)	C48A—H48B	0.9800
C2—C7	1.518 (3)	C48A—H48C	0.9800
C3—C4	1.381 (4)	C47B—H47D	0.9800
С3—НЗА	0.9500	C47B—H47E	0.9800
C4—C5	1.377 (4)	C47B—H47F	0.9800
C4—H4A	0.9500	C48B—H48D	0.9800
C5—C6	1 395 (3)	C48B—H48E	0.9800
C5—H5A	0.9500	C48B—H48F	0.9800
C6-C10	1 513 (3)	C49-C54	1.394(3)
C7 $C8$	1.515(3)	C_{49} C_{50}	1.394(3)
C7 C8B	1.531(5) 1.532(4)	$C_{50} = C_{50}$	1.399(3)
C7 = C0B	1.532(4)	C50 C55	1.570(3)
C7 = C9B	1.532(4) 1.532(2)	$C_{50} = C_{53}$	1.321(3) 1.388(3)
C7_U7A	1.0000	C51 - C52	1.388 (3)
	1.0000	C51—H51A	0.9500
	1.0000	C52—C53	1.381 (4)
C8A—H8A	0.9800	С52—Н52А	0.9500
C8A—H8B	0.9800	C53—C54	1.396 (3)
C8A—H8C	0.9800	С53—Н53А	0.9500
С9А—Н9А	0.9800	C54—C58	1.516 (3)
С9А—Н9В	0.9800	C55—C56	1.527 (3)
С9А—Н9С	0.9800	C55—C57	1.534 (3)
C8B—H8D	0.9800	С55—Н55А	1.0000
C8B—H8E	0.9800	С56—Н56А	0.9800
C8B—H8F	0.9800	С56—Н56В	0.9800

C9B—H9D	0.9800	С56—Н56С	0.9800
С9В—Н9Е	0.9800	С57—Н57А	0.9800
C9B—H9F	0.9800	С57—Н57В	0.9800
C10—C11	1.535 (3)	С57—Н57С	0.9800
C10—C12	1.537 (3)	C58—C60	1.524 (4)
C10—H10A	1.0000	C58—C59	1.525 (4)
C11—H11A	0.9800	C58—H58A	1.0000
C11—H11B	0.9800	С59—Н59А	0.9800
C11—H11C	0.9800	С59—Н59В	0.9800
C12—H12A	0.9800	С59—Н59С	0.9800
C12—H12B	0.9800	C60—H60A	0.9800
C12—H12C	0.9800	C60—H60B	0.9800
C13—C14	1.392 (3)	С60—Н60С	0.9800
C13—C18	1.396 (3)	C61—C66	1.394 (3)
C14—C15	1.402 (3)	C61—C62	1.401 (3)
C14—C19	1.524 (3)	C62—C63	1.387 (3)
C15—C16	1.376 (4)	C62—C67	1.513 (4)
С15—Н15А	0.9500	C63—C64	1.383 (4)
C16—C17	1.383 (4)	С63—Н63А	0.9500
C16—H16A	0.9500	C64—C65	1.380 (4)
C17—C18	1.401 (3)	C64—H64A	0.9500
С17—Н17А	0.9500	C65—C66	1.396 (3)
C18—C22	1.517 (3)	С65—Н65А	0.9500
C19—C20	1.517 (4)	C66—C70	1.516 (3)
C19—C21	1.527 (4)	C67—C68	1.522 (5)
C19—H19A	1.0000	C67—C69	1.528 (4)
C20—H20A	0.9800	С67—Н67А	1.0000
C20—H20B	0.9800	C68—H68A	0.9800
C20—H20C	0.9800	C68—H68B	0.9800
C21—H21A	0.9800	C68—H68C	0.9800
C21—H21B	0.9800	С69—Н69А	0.9800
C21—H21C	0.9800	С69—Н69В	0.9800
C22—C23	1.498 (4)	С69—Н69С	0.9800
C22—C24	1.533 (4)	C70—C71	1.521 (4)
C22—H22A	1.0000	C70—C72	1.529 (4)
С23—Н23А	0.9800	С70—Н70А	1.0000
С23—Н23В	0.9800	C71—H71A	0.9800
С23—Н23С	0.9800	C71—H71B	0.9800
C24—H24A	0.9800	C71—H71C	0.9800
C24—H24B	0.9800	С72—Н72А	0.9800
C24—H24C	0.9800	С72—Н72В	0.9800
C25—C26	1.397 (3)	С72—Н72С	0.9800
C25—C30	1.397 (3)	С73—Н73А	0.9800
C26—C27	1.401 (3)	С73—Н73В	0.9800
C26—C31	1.521 (3)	С73—Н73С	0.9800
C27—C28	1.388 (4)	C74—H74A	0.9800
С27—Н27А	0.9500	C74—H74B	0.9800
C28—C29	1.376 (4)	C74—H74C	0.9800

C28—H28A	0.9500	С75—Н75А	0.9800
C29—C30	1.400 (3)	С75—Н75В	0.9800
С29—Н29А	0.9500	С75—Н75С	0.9800
C30—C34	1.515 (3)	С76—Н76А	0.9800
C31—C32	1.532 (4)	С76—Н76В	0.9800
C31—C33	1.532 (3)	C76—H76C	0.9800
C31—H31A	1.0000	С77—Н77А	0.9800
C32—H32A	0.9800	С77—Н77В	0.9800
C32—H32B	0.9800	С77—Н77С	0.9800
C32—H32C	0.9800	C78—H78A	0.9800
C33—H33A	0.9800	C78—H78B	0.9800
C33—H33B	0.9800	C78—H78C	0.9800
	0.9000	ere 11/0e	0.9000
O5—Eu1—O9	138.83 (5)	С31—С33—Н33С	109.5
O5—Eu1—O1	79.87 (5)	H33A—C33—H33C	109.5
O9—Eu1—O1	140.28 (5)	H33B—C33—H33C	109.5
O5—Eu1—O15	146.42 (6)	C30—C34—C35	111.5 (2)
O9—Eu1—O15	71.23 (6)	C30—C34—C36	110.4 (2)
O1—Eu1—O15	75.69 (5)	C35—C34—C36	111.0 (2)
O5—Eu1—O13	77.37 (6)	С30—С34—Н34А	107.9
O9—Eu1—O13	73.50 (5)	С35—С34—Н34А	107.9
O1—Eu1—O13	119.54 (5)	С36—С34—Н34А	107.9
O15—Eu1—O13	135.11 (6)	С34—С35—Н35А	109.5
O5—Eu1—O16	82.25 (6)	С34—С35—Н35В	109.5
O9—Eu1—O16	108.35 (6)	H35A—C35—H35B	109.5
O1—Eu1—O16	80.44 (6)	С34—С35—Н35С	109.5
O15—Eu1—O16	71.35 (6)	H35A—C35—H35C	109.5
O13—Eu1—O16	147.71 (6)	H35B—C35—H35C	109.5
O5—Eu1—O17	74.43 (6)	С34—С36—Н36А	109.5
O9—Eu1—O17	72.91 (6)	C34—C36—H36B	109.5
O1—Eu1—O17	142.29 (6)	H36A—C36—H36B	109.5
O15—Eu1—O17	113.10 (6)	С34—С36—Н36С	109.5
O13—Eu1—O17	81.23 (6)	H36A—C36—H36C	109.5
O16—Eu1—O17	69.24 (6)	H36B—C36—H36C	109.5
O5—Eu1—O14	119.42 (6)	C38—C37—C42	123.6 (2)
O9—Eu1—O14	78.32 (6)	C38—C37—O7	118.8 (2)
O1—Eu1—O14	71.84 (5)	C42—C37—O7	117.3 (2)
O15—Eu1—O14	73.96 (6)	C37—C38—C39	116.7 (3)
O13—Eu1—O14	72.45 (6)	C37—C38—C43	123.4 (2)
O16—Eu1—O14	139.83 (6)	C39—C38—C43	119.9 (3)
O17—Eu1—O14	145.44 (6)	C40—C39—C38	121.2 (3)
O5—Eu1—P1	97.10 (4)	С40—С39—Н39А	119.4
O9—Eu1—P1	122.99 (4)	С38—С39—Н39А	119.4
O1—Eu1—P1	17.33 (4)	C41—C40—C39	120.1 (3)
O15—Eu1—P1	60.84 (4)	C41—C40—H40A	120.0
O13—Eu1—P1	122.42 (4)	C39—C40—H40A	120.0
O16—Eu1—P1	84.56 (4)	C40—C41—C42	122.1 (3)
O17—Eu1—P1	153.18 (4)	C40—C41—H41A	119.0

O14—Eu1—P1	60.87 (4)	C42—C41—H41A	119.0
O4—P1—O1	114.89 (9)	C41—C42—C37	116.3 (3)
O4—P1—O3	109.70 (9)	C41—C42—C46	121.1 (3)
O1—P1—O3	112.59 (9)	C37—C42—C46	122.5 (3)
O4—P1—O2	113.71 (9)	C38—C43—C44	112.0 (3)
O1—P1—O2	105.79 (8)	C38—C43—C45	110.2 (2)
O3—P1—O2	99.08 (8)	C44—C43—C45	111.2 (3)
O8—P2—O5	116.23 (9)	C38—C43—H43A	107.8
O8—P2—O6	111.29 (9)	C44—C43—H43A	107.8
O5—P2—O6	110.43 (9)	C45—C43—H43A	107.8
O8—P2—O7	113.19 (9)	C43—C44—H44A	109.5
O5—P2—O7	103.61 (9)	C43—C44—H44B	109.5
O6—P2—O7	100.80 (9)	H44A—C44—H44B	109.5
O12—P3—O9	116.11 (9)	C43—C44—H44C	109.5
O12—P3—O11	113.92 (9)	H44A—C44—H44C	109.5
O9—P3—O11	103.52 (9)	H44B—C44—H44C	109.5
O12—P3—O10	110.71 (9)	C43—C45—H45A	109.5
09—P3—010	110.16 (9)	C43—C45—H45B	109.5
011 - P3 - 010	101.24 (8)	H45A—C45—H45B	109.5
P1-01-Eu1	134.23 (9)	C43 - C45 - H45C	109.5
C1 - O2 - P1	123.95 (13)	H45A - C45 - H45C	109.5
C13 - O3 - P1	124.19(13)	H45B—C45—H45C	109.5
P2-05-Eu1	146.84 (10)	C42—C46—C48B	102.4 (15)
$C_{25} - C_{6} - P_{2}$	128.96 (14)	C42—C46—C47A	112.7 (3)
C37—O7—P2	127.11 (14)	C42—C46—C48A	112.6 (3)
P3-09-Eu1	142.27 (9)	C47A - C46 - C48A	112.0(3) 110.1(3)
C49—O10—P3	124.05 (14)	C42—C46—C47B	100.1 (11)
C61—O11—P3	128.60 (14)	C48B—C46—C47B	108.9 (17)
C73—O13—Eu1	142.50(15)	C42—C46—H46A	107.0
С73—013—Н79	104 (2)	C47A—C46—H46A	107.0
Eu1—013—H79	112 (2)	C48A—C46—H46A	107.0
C74—O14—Eu1	136.77 (15)	C42—C46—H46B	114.6
C74—O14—H80	112 (2)	C48B—C46—H46B	114.6
Eu1-014-H80	111 (2)	C47B—C46—H46B	114.6
C75—O15—Eu1	133.14 (15)	C46—C47A—H47A	109.5
C75—O15—H81	114 (2)	C46—C47A—H47B	109.5
Eu1-015-H81	113 (2)	H47A—C47A—H47B	109.5
C76—O16—Eu1	132.06 (15)	C46—C47A—H47C	109.5
C76—O16—H82	108 (2)	H47A—C47A—H47C	109.5
Eu1—016—H82	116 (2)	H47B—C47A—H47C	109.5
C77—O17—Eu1	123.54 (14)	C46—C48A—H48A	109.5
С77—О17—Н83	112 (2)	C46—C48A—H48B	109.5
Eu1—017—H83	114 (2)	H48A—C48A—H48B	109.5
C78—O18—H84	112 (3)	C46—C48A—H48C	109.5
C2—C1—C6	123.4 (2)	H48A—C48A—H48C	109.5
C2-C1-O2	118.23 (19)	H48B—C48A—H48C	109.5
C6—C1—O2	118.16 (19)	C46—C47B—H47D	109.5
C1—C2—C3	117.0 (2)	C46—C47B—H47E	109.5

C1 $C2$ $C7$	120.26 (10)		100 5
$C_1 = C_2 = C_7$	120.30(19) 122.4(2)	H4/D - C4/B - H4/E	109.5
$C_{3} = C_{2} = C_{7}$	122.4(2)	C40 - C47B - H47F	109.5
C4 - C3 - C2	121.1 (2)	H4/D - C4/B - H4/F	109.5
C4 - C3 - H3A	119.5	H4/E - C4/B - H4/F	109.5
C2—C3—H3A	119.5	C46—C48B—H48D	109.5
C5—C4—C3	120.2 (2)	C46—C48B—H48E	109.5
C5—C4—H4A	119.9	H48D—C48B—H48E	109.5
C3—C4—H4A	119.9	C46—C48B—H48F	109.5
C4—C5—C6	121.6 (2)	H48D—C48B—H48F	109.5
C4—C5—H5A	119.2	H48E—C48B—H48F	109.5
С6—С5—Н5А	119.2	C54—C49—C50	122.8 (2)
C5—C6—C1	116.6 (2)	C54—C49—O10	119.42 (19)
C5—C6—C10	119.8 (2)	C50—C49—O10	117.56 (19)
C1—C6—C10	123.5 (2)	C51—C50—C49	117.7 (2)
C2—C7—C8A	114.2 (2)	C51—C50—C55	121.6 (2)
C2—C7—C8B	107.8 (17)	C49—C50—C55	120.6 (2)
С2—С7—С9В	104.7 (13)	C52—C51—C50	120.9 (2)
C8B—C7—C9B	113 (2)	С52—С51—Н51А	119.5
С2—С7—С9А	108.89 (19)	С50—С51—Н51А	119.5
C8A—C7—C9A	110.2 (2)	C53—C52—C51	120.0 (2)
С2—С7—Н7А	107.8	С53—С52—Н52А	120.0
С8А—С7—Н7А	107.8	С51—С52—Н52А	120.0
С9А—С7—Н7А	107.8	C52—C53—C54	121.4 (2)
С2—С7—Н7В	110.3	С52—С53—Н53А	119.3
C8B—C7—H7B	110.3	С54—С53—Н53А	119.3
C9B—C7—H7B	110.3	C49—C54—C53	117.2 (2)
C7 - C8A - H8A	109 5	C49 - C54 - C58	1229(2)
C7-C8A-H8B	109.5	C_{53} C_{54} C_{58}	1199(2)
H8A—C8A—H8B	109.5	C_{50} C_{55} C_{56}	119.9(2) 1144(2)
C7 - C8A - H8C	109.5	C_{50} C_{55} C_{57}	108 37 (19)
H8A - C8A - H8C	109.5	$C_{56} = C_{55} = C_{57}$	100.57(17)
HSB CSA HSC	109.5	C50 C55 H55A	108.0
C7 C9A H9A	109.5	C56 C55 H55A	108.0
C7 = C9A = H9R	109.5	C57 C55 H55A	108.0
C = C A = H A	109.5	C55 C56 H56A	100.0
$H_{A} - C_{A} - H_{B}$	109.5	C55 C56 U56D	109.5
	109.5		109.5
H9A—C9A—H9C	109.5	H30A-C30-H30B	109.5
H9B—C9A—H9C	109.5	C55—C56—H56C	109.5
C/-C8B-H8D	109.5	H56A-C56-H56C	109.5
C/—C8B—H8E	109.5	Н56В—С56—Н56С	109.5
H8D—C8B—H8E	109.5	С55—С57—Н57А	109.5
C7—C8B—H8F	109.5	С55—С57—Н57В	109.5
H8D—C8B—H8F	109.5	Н57А—С57—Н57В	109.5
H8E—C8B—H8F	109.5	С55—С57—Н57С	109.5
C7—C9B—H9D	109.5	H57A—C57—H57C	109.5
С7—С9В—Н9Е	109.5	H57B—C57—H57C	109.5
H9D—C9B—H9E	109.5	C54—C58—C60	111.4 (2)
C7—C9B—H9F	109.5	C54—C58—C59	111.3 (2)

H9D—C9B—H9F	109.5	C60—C58—C59	111.0 (2)
H9E—C9B—H9F	109.5	C54—C58—H58A	107.7
C6C10C11	111.7 (2)	C60—C58—H58A	107.7
C6-C10-C12	110.65 (19)	С59—С58—Н58А	107.7
C11—C10—C12	110.1 (2)	С58—С59—Н59А	109.5
C6C10H10A	108.1	С58—С59—Н59В	109.5
C11—C10—H10A	108.1	Н59А—С59—Н59В	109.5
C12-C10-H10A	108.1	С58—С59—Н59С	109.5
C10-C11-H11A	109.5	Н59А—С59—Н59С	109.5
C10-C11-H11B	109.5	H59B—C59—H59C	109.5
H11A—C11—H11B	109.5	С58—С60—Н60А	109.5
C10—C11—H11C	109.5	C58—C60—H60B	109.5
H11A—C11—H11C	109.5	H60A—C60—H60B	109.5
H11B—C11—H11C	109.5	С58—С60—Н60С	109.5
C10—C12—H12A	109.5	H60A—C60—H60C	109.5
C10-C12-H12B	109.5	H60B—C60—H60C	109.5
H12A—C12—H12B	109.5	C66—C61—C62	123.6 (2)
C10—C12—H12C	109.5	C66—C61—O11	117.44 (19)
H12A—C12—H12C	109.5	C62—C61—O11	118.8 (2)
H12B—C12—H12C	109.5	C63—C62—C61	116.4 (2)
C14—C13—C18	123.79 (19)	C63—C62—C67	122.2 (2)
C14—C13—O3	119.33 (19)	C61—C62—C67	121.4 (2)
C18—C13—O3	116.71 (19)	C64—C63—C62	122.1 (2)
C13—C14—C15	116.3 (2)	С64—С63—Н63А	119.0
C13—C14—C19	122.8 (2)	С62—С63—Н63А	119.0
C15—C14—C19	120.8 (2)	C65—C64—C63	119.7 (2)
C16—C15—C14	122.0 (2)	С65—С64—Н64А	120.1
C16—C15—H15A	119.0	С63—С64—Н64А	120.1
C14—C15—H15A	119.0	C64—C65—C66	121.3 (2)
C15—C16—C17	119.8 (2)	С64—С65—Н65А	119.4
C15—C16—H16A	120.1	С66—С65—Н65А	119.4
C17—C16—H16A	120.1	C61—C66—C65	117.0 (2)
C16—C17—C18	121.2 (2)	C61—C66—C70	122.8 (2)
C16—C17—H17A	119.4	C65—C66—C70	120.2 (2)
C18—C17—H17A	119.4	C62—C67—C68	111.0 (2)
C13—C18—C17	116.9 (2)	C62—C67—C69	113.9 (2)
C13—C18—C22	122.3 (2)	C68—C67—C69	110.4 (3)
C17—C18—C22	120.8 (2)	С62—С67—Н67А	107.0
C20—C19—C14	112.7 (2)	С68—С67—Н67А	107.0
C20—C19—C21	110.2 (3)	С69—С67—Н67А	107.0
C14—C19—C21	110.7 (2)	С67—С68—Н68А	109.5
C20—C19—H19A	107.7	С67—С68—Н68В	109.5
C14—C19—H19A	107.7	H68A—C68—H68B	109.5
C21—C19—H19A	107.7	С67—С68—Н68С	109.5
C19—C20—H20A	109.5	H68A—C68—H68C	109.5
C19—C20—H20B	109.5	H68B—C68—H68C	109.5
H20A—C20—H20B	109.5	С67—С69—Н69А	109.5
С19—С20—Н20С	109.5	C67—C69—H69B	109.5

H20A—C20—H20C	109.5	H69A—C69—H69B	109.5
H20B-C20-H20C	109.5	С67—С69—Н69С	109.5
C19—C21—H21A	109.5	H69A—C69—H69C	109.5
C19—C21—H21B	109.5	H69B—C69—H69C	109.5
H21A—C21—H21B	109.5	C66—C70—C71	111.8 (2)
C19—C21—H21C	109.5	C66—C70—C72	111.1 (2)
H21A—C21—H21C	109.5	C71—C70—C72	111.1 (2)
H21B—C21—H21C	109.5	С66—С70—Н70А	107.5
C23—C22—C18	112.3 (2)	C71—C70—H70A	107.5
C_{23} C_{22} C_{24}	110.5 (2)	C72—C70—H70A	107.5
$C_{18} - C_{22} - C_{24}$	110.0(2)	C70-C71-H71A	109.5
C^{23} C^{22} H^{22}	107.6	C70-C71-H71B	109.5
$C_{18} - C_{22} - H_{22A}$	107.6	H71A-C71-H71B	109.5
C_{24} C_{22} H_{22A}	107.6	C70-C71-H71C	109.5
$C_{22} = C_{23} = H_{23} A$	107.0	H71A-C71-H71C	109.5
$C_{22} = C_{23} = H_{23}R$	109.5	H71B-C71-H71C	109.5
$H_{23}A = C_{23} = H_{23}B$	109.5	C70_C72_H72A	109.5
C_{22} C_{23} H_{23} H_{23} C_{23} H_{23} C_{23} H_{23} H_{23} H_{23} C_{23} H_{23} H	109.5	C70 C72 H72R	109.5
$H_{23} = C_{23} = H_{23} C_{23}$	109.5	H72A $C72$ $H72B$	109.5
H23R C23 H23C	109.5	11/2A - C/2 - 11/2B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$H_{72} \wedge C_{72} H_{72} C_{72}$	109.5
C_{22} C_{24} H_{24} H	109.5	H72B C72 H72C	109.5
$H_{24} = C_{24} = H_{24} = H_{24}$	109.5	013 073 $H73$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	O13 - C73 - H73R	109.5
$H_{24A} = C_{24} = H_{24C}$	109.5	H73 A C73 H73B	109.5
$H_{24R} = C_{24} = H_{24C}$	109.5	013 $C73$ $H73C$	109.5
C_{26} C_{25} C_{30}	109.5 123.4(2)	H73A C73 H73C	109.5
$C_{20} = C_{23} = C_{30}$	123.4(2) 117 54 (19)	H73B_C73_H73C	109.5
$C_{20} = C_{23} = 00$	117.34(19) 118.8(2)	014 C74 H74A	109.5
C_{25} C_{25} C_{26} C_{27}	116.0(2)	O14 - C74 - H74R	109.5
$C_{23} = C_{20} = C_{27}$	110.9(2) 121.1(2)	H74A C74 H74B	109.5
$C_{23} - C_{20} - C_{31}$	121.1(2) 122.0(2)	014 C74 H74C	109.5
$C_2^{-1} = C_2^{-1} = C_2^{-1}$	122.0(2) 121.3(2)	$H_{74A} = C_{74} + H_{74C}$	109.5
$C_{28} = C_{27} = C_{20}$	121.3(2)	H74P C74 H74C	109.5
$C_{26} = C_{27} = H_{27A}$	119.3	015 C75 H75A	109.5
$C_{20} = C_{27} = H_{27} A$	119.5	015 C75 H75P	109.5
$C_{29} = C_{28} = C_{27}$	119.9 (2)	U15	109.5
C_{23} C_{28} H_{28A}	120.1	015 C75 H75C	109.5
C_2^{-1}	120.1 121.6(2)	H75A C75 H75C	109.5
$C_{28} = C_{29} = C_{30}$	121.0(2)	H75B C75 H75C	109.5
$C_{20} = C_{20} = H_{20A}$	119.2	016 C76 H76A	109.5
$C_{30} - C_{29} - H_{29}A$	119.2	010 - C76 - H76P	109.5
$C_{23} = C_{30} = C_{29}$	110.9(2)		109.5
$C_{23} = C_{30} = C_{34}$	123.1(2)	$\Pi/0A - C/0 - \Pi/0B$	109.5
$C_{29} = C_{30} = C_{34}$	119.9 (2)	$H_{16} = C_{16} = H_{16} C_{16}$	109.5
C_{20} C_{31} C_{32}	111.3(2)	H/0A - U/0 - H/0U	109.5
(20 - (31 - (33)))	112.9 (2)	$\Pi/0D - U/0 - H/0U$	109.5
$C_{2} = C_{2} = C_{2}$	109.5 (2)	OI/-C//-H//A	109.5
C26-C31-H31A	107.6	OT / - C / / - H / / B	109.5

C32—C31—H31A	107.6	H77A—C77—H77B	109.5
C33—C31—H31A	107.6	O17—C77—H77C	109.5
C31—C32—H32A	109.5	H77A—C77—H77C	109.5
C31—C32—H32B	109.5	H77B—C77—H77C	109.5
H32A—C32—H32B	109.5	O18—C78—H78A	109.5
C31—C32—H32C	109.5	O18—C78—H78B	109.5
H32A—C32—H32C	109.5	H78A—C78—H78B	109.5
$H_{32B} - C_{32} - H_{32C}$	109.5	018 - C78 - H78C	109.5
C31—C33—H33A	109.5	H78A - C78 - H78C	109.5
C31—C33—H33B	109.5	H78B_C78_H78C	109.5
H33A_C33_H33B	109.5		109.5
1155/ 055 11550	107.5		
04—P1—01—Fu1	2.86 (16)	$C^{26} - C^{25} - C^{30} - C^{29}$	0.2(4)
$O_3 = P_1 = O_1 = F_{11}$	-123.68(11)	06-025-030-029	1737(2)
$O_2 P_1 O_1 E_{u1}$	129.00 (11)	C_{25}^{-1} C_{25}^{-1} C_{25}^{-1} C_{25}^{-1} C_{25}^{-1} C_{25}^{-1} C_{25}^{-1} C_{25}^{-1}	-1775(2)
$O_2 = 11 = O_1 = Eu_1$	-67.23(18)	$06 C^{25} C^{30} C^{34}$	-40(3)
01 1 - 02 - 01	165 77 (16)	C_{2}^{0} C_{2}^{0} C_{3}^{0} C_{3}^{0} C_{3}^{0}	-0.0(3)
01 - F1 - 02 - C1	103.77(10)	$C_{28} = C_{29} = C_{30} = C_{23}$	-0.9(4)
03-PI-02-CI	49.00 (17)	$C_{28} = C_{29} = C_{30} = C_{34}$	1/0.9(2)
$Eur - Pr - O_2 - Cr$	-168.45(13)	$C_{25} = C_{26} = C_{31} = C_{32}$	-/1.5(3)
04-PI-03-CI3	-46.38 (18)	$C_2/-C_26-C_{31}-C_{32}$	107.5 (3)
01—P1—03—C13	82.90 (18)	$C_{25} = C_{26} = C_{31} = C_{33}$	164.7 (2)
02—P1—O3—C13	-165.70 (16)	C2/-C26-C31-C33	-16.3(3)
Eul—P1—O3—C13	53.75 (18)	C25—C30—C34—C35	-126.2 (3)
O8—P2—O5—Eu1	-19.6 (2)	C29—C30—C34—C35	56.2 (3)
O6—P2—O5—Eu1	-147.60 (15)	C25—C30—C34—C36	110.0 (3)
O7—P2—O5—Eu1	105.20 (17)	C29—C30—C34—C36	-67.7 (3)
O8—P2—O6—C25	-32.1 (2)	P2	92.1 (2)
O5—P2—O6—C25	98.58 (19)	P2—O7—C37—C42	-94.4 (2)
O7—P2—O6—C25	-152.36 (18)	C42—C37—C38—C39	4.4 (4)
O8—P2—O7—C37	-66.8 (2)	O7—C37—C38—C39	177.5 (2)
O5—P2—O7—C37	166.42 (19)	C42—C37—C38—C43	-172.3 (2)
O6—P2—O7—C37	52.1 (2)	O7—C37—C38—C43	0.8 (4)
O12—P3—O9—Eu1	-26.26 (19)	C37—C38—C39—C40	-1.7 (5)
O11—P3—O9—Eu1	99.35 (15)	C43—C38—C39—C40	175.1 (3)
O10—P3—O9—Eu1	-153.09 (13)	C38—C39—C40—C41	-1.0(5)
O12—P3—O10—C49	-25.88 (19)	C39—C40—C41—C42	1.3 (5)
O9—P3—O10—C49	103.91 (17)	C40—C41—C42—C37	1.1 (5)
O11—P3—O10—C49	-147.02(16)	C40—C41—C42—C46	-176.4(3)
O12—P3—O11—C61	-71.7 (2)	C38—C37—C42—C41	-4.1 (4)
09-P3-011-C61	161 31 (18)	07-C37-C42-C41	-1773(2)
010 - P3 - 011 - C61	47 2 (2)	$C_{38} - C_{37} - C_{42} - C_{46}$	173 4 (2)
$P_1 = O_2 = C_1 = C_2$	92.3 (2)	07-C37-C42-C46	0.2(3)
$P_1 = O_2 = C_1 = C_6$	-93.2(2)	C_{37} C_{38} C_{43} C_{44}	-1219(3)
C6-C1-C2-C3	38(3)	C39 - C38 - C43 - C44	615(4)
$0^{2}-0^{1}-0^{2}-0^{3}$	178 07 (18)	C_{37} C_{38} C_{43} C_{45}	113 8 (3)
$C_{1} = C_{2} = C_{3}$	-17050(10)	C_{30} C_{38} C_{43} C_{45}	-628(3)
0^{2} 0^{1} 0^{2} 0^{2} 0^{2} 0^{2}	28(2)	$C_{41} C_{42} C_{43} C_{43} C_{43}$	02.0(3) 02.2(14)
$C_1 = C_2 = C_1$	-15(2)	$C_{41} = C_{42} = C_{40} = C$	-94.1(14)
$U_1 - U_2 - U_3 - U_4$	-1.5 (3)	$C_{3} = C_{42} = C_{40} = C_$	-04.1 (14)

C7—C2—C3—C4	172.7 (2)	C41—C42—C46—C47A	-60.2 (4)
C2—C3—C4—C5	-0.8 (4)	C37—C42—C46—C47A	122.4 (3)
C3—C4—C5—C6	0.8 (4)	C41—C42—C46—C48A	65.1 (4)
C4-C5-C6-C1	1.3 (3)	C37—C42—C46—C48A	-112.3(3)
C4—C5—C6—C10	-176.4 (2)	C41—C42—C46—C47B	-18.9 (11)
C2—C1—C6—C5	-3.7 (3)	C37—C42—C46—C47B	163.8 (11)
O2—C1—C6—C5	-178.02 (18)	P3—O10—C49—C54	87.5 (2)
C2-C1-C6-C10	173.9 (2)	P3—O10—C49—C50	-97.3(2)
O2—C1—C6—C10	-0.4 (3)	C54—C49—C50—C51	-0.7(3)
C1—C2—C7—C8A	-159.8(2)	O10-C49-C50-C51	-175.72 (19)
C3-C2-C7-C8A	26.2 (3)	C54—C49—C50—C55	174.3 (2)
C1-C2-C7-C8B	-123.2(19)	010-C49-C50-C55	-0.7(3)
$C_{3}-C_{2}-C_{7}-C_{8B}$	62 8 (19)	C49-C50-C51-C52	0.5(3)
$C_1 - C_2 - C_7 - C_9B$	115.7(15)	$C_{55} - C_{50} - C_{51} - C_{52}$	-1745(2)
C_{3} C_{2} C_{7} C_{9B}	-58.3(15)	C_{50} C_{51} C_{52} C_{53}	0.0(4)
$C_1 - C_2 - C_7 - C_9 A$	76 6 (3)	$C_{51} - C_{52} - C_{53} - C_{54}$	-0.2(4)
C_{3} C_{2} C_{7} C_{9A}	-974(3)	C_{50} C_{49} C_{54} C_{53}	0.2(4)
$C_{5} = C_{2} = C_{7} = C_{7} = C_{7}$	-60.3(3)	010 C40 C54 C53	175 44 (10)
$C_{1} = C_{0} = C_{10} = C_{11}$	1221(2)	$C_{10} - C_{49} - C_{54} - C_{53}$	-177.6(2)
$C_{1} = C_{0} = C_{10} = C_{11}$	122.1(2)	C_{30} C_{49} C_{54} C_{58}	-2.7(2)
$C_{1} = C_{1} = C_{10} = C_{12}$	02.0(3)	$C_{10} - C_{49} - C_{54} - C_{58}$	-2.7(3)
C1 = C0 = C10 = C12	-114.9(2)	C_{52} C_{53} C_{54} C_{58}	-0.1(3)
P1 = 03 = C13 = C14	33.9(2)	$C_{2} = C_{3} = C_{3} = C_{3}$	1/8.1(2)
P1 = 03 = C13 = C18	-100.6(2)	$C_{31} = C_{30} = C_{35} = C_{36}$	-26.9(3)
C18 - C13 - C14 - C15	3.2 (3)	C49—C50—C55—C56	158.3 (2)
03-C13-C14-C15	178.32 (19)	C51—C50—C55—C57	96.2 (3)
C18—C13—C14—C19	-173.7(2)	C49—C50—C55—C57	-/8.6 (3)
O3—C13—C14—C19	1.4 (3)	C49—C54—C58—C60	-124.1 (3)
C13—C14—C15—C16	-1.0 (3)	C53—C54—C58—C60	57.8 (3)
C19—C14—C15—C16	175.9 (2)	C49—C54—C58—C59	111.5 (3)
C14—C15—C16—C17	-0.9 (4)	C53—C54—C58—C59	-66.6(3)
C15—C16—C17—C18	0.7 (4)	P3—O11—C61—C66	-96.0 (2)
C14—C13—C18—C17	-3.4 (3)	P3—O11—C61—C62	89.1 (2)
O3—C13—C18—C17	-178.59 (19)	C66—C61—C62—C63	2.7 (4)
C14—C13—C18—C22	175.2 (2)	O11—C61—C62—C63	177.3 (2)
O3—C13—C18—C22	-0.1 (3)	C66—C61—C62—C67	-174.9 (2)
C16—C17—C18—C13	1.3 (3)	O11—C61—C62—C67	-0.4 (3)
C16—C17—C18—C22	-177.3 (2)	C61—C62—C63—C64	-1.8 (4)
C13—C14—C19—C20	-130.5 (3)	C67—C62—C63—C64	175.8 (3)
C15-C14-C19-C20	52.8 (3)	C62—C63—C64—C65	0.1 (5)
C13—C14—C19—C21	105.6 (3)	C63—C64—C65—C66	0.8 (5)
C15-C14-C19-C21	-71.1 (3)	C62—C61—C66—C65	-1.8 (4)
C13—C18—C22—C23	118.8 (3)	O11—C61—C66—C65	-176.5 (2)
C17—C18—C22—C23	-62.7 (3)	C62—C61—C66—C70	176.5 (2)
C13—C18—C22—C24	-116.8 (3)	O11—C61—C66—C70	1.9 (3)
C17—C18—C22—C24	61.7 (3)	C64—C65—C66—C61	0.0 (4)
P2	-98.9 (2)	C64—C65—C66—C70	-178.4 (3)
P2	87.2 (2)	C63—C62—C67—C68	-105.5 (3)
C30—C25—C26—C27	0.4 (3)	C61—C62—C67—C68	72.0 (3)

O6—C25—C26—C27	-173.2 (2)	C63—C62—C67—C69	19.9 (4)
C30-C25-C26-C31	179.5 (2)	C61—C62—C67—C69	-162.6 (3)
O6-C25-C26-C31	5.9 (3)	C61—C66—C70—C71	127.1 (3)
C25—C26—C27—C28	-0.4 (4)	C65—C66—C70—C71	-54.5 (3)
C31—C26—C27—C28	-179.5 (2)	C61—C66—C70—C72	-108.0 (3)
C26—C27—C28—C29	-0.2 (4)	C65—C66—C70—C72	70.3 (3)
C27—C28—C29—C30	0.9 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O13—H79…O12	0.81 (3)	1.83 (3)	2.632 (2)	171 (3)
O14—H80…O4	0.76(3)	2.27 (3)	2.941 (2)	148 (3)
O15—H81…O4	0.82 (3)	1.79 (3)	2.583 (2)	160 (3)
O16—H82…O18	0.82 (3)	1.86 (3)	2.684 (3)	178 (4)
O17—H83····O8	0.82 (3)	1.99 (3)	2.783 (2)	165 (3)
O18—H84…O8	0.82 (4)	1.94 (4)	2.723 (3)	160 (4)