

Received 11 November 2019 Accepted 14 November 2019

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; pyridine; sulfate; transition metals; crystal field theory; coordination chemistry; cobalt complexes.

CCDC references: 1965662; 1965663

Supporting information: this article has supporting information at journals.iucr.org/e

The varied structures of cobalt(II)-pyridine (py)sulfate: $[Co(SO_4)(py)_4]_n$, $[Co_2(SO_4)_2(py)_6]_n$, and $[Co_3(SO_4)_3(py)_{11}]_n$

Ava M. Park,^a Duyen N. K. Pham,^b James A. Golen^b and David R. Manke^{b*}

^aPortsmouth Abbey School, 285 Cory's Lane, Portsmouth, RI, 02871, USA, and ^bUniversity of Massachusetts Dartmouth, 285 Old Westport Rd., North Dartmouth, MA, 02747, USA. *Correspondence e-mail: dmanke@umassd.edu

The solid-state structures of two cobalt–pyridine–sulfate compounds, namely *catena*-poly[[tetrakis(pyridine- κN)cobalt(II)]- μ -sulfato- $\kappa^2 O:O'$], [Co(SO₄)-(C₅H₅N)₄]_n, (**1**), and *catena*-poly[[tetrakis(pyridine- κN)cobalt(II)]- μ -sulfato- $\kappa^3 O.O'.O''$ -[bis(pyridine- κN)cobalt(II)]- μ -sulfato- $\kappa^3 O.O':O''$]_n, [Co₂(SO₄)₂-(C₅H₅N)₆]_n, (**2**), are reported. Compound (**1**) displays a polymeric structure, with infinite chains of Co^{II} cations adopting octahedral N₄O₂ coordination environments that involve four pyridine ligands and two bridging sulfate ions. Compound (**2**) is also polymeric with infinite chains of Co^{II} cations. The first Co center has an octahedral N₄O₂ coordination environment that involves four pyridine ligands. The second Co center has an octahedral N₂O₄ coordination environment that involves two pyridine ligands and two bridging sulfate ions that chelate the Co atom. The structure of (**2**) was refined as a two-component inversion twin.

1. Chemical context

The synthesis of metal-pyrdine-sulfates has been reported since the 19th century, when Jørgensen's chain theory was still the prevailing hypothesis (Reitzenstein, 1894; Howe, 1898). Since that time, the structural understanding of metal complexes has greatly increased, first with the acceptance of Werner's coordination theory (Werner, 1893), with crystal field theory from Bethe in 1929 (Bethe, 1929), and the modifications of theory in the ninety years since. Despite the long history of these compounds, their crystallographic study is rather limited. Before we began a crystallographic examination of metal-pyridine-sulfates in 2018, there were only two examples of such complexes without other ligands or components reported in the literature (Cotton & Reid, 1984; Memon *et al.*, 2006).

Since we began studying the structural chemistry of metalpyridine-sulfates, we have observed many different structural motifs in the complexes. The coordination environment of each compound can usually be predicted with crystal field theory, although the exact nature is dependent upon the number of pyridines bound and the binding mode of the sulfate anion. The sulfate anion can have a number of different coordination modes, including μ -sulfato- κ^2 -O:O, μ -sulfato- κ^2 -O:O' and μ -sulfato- κ^3 -O:O':O". Herein we report two new structures of cobalt-pyridine-sulfates formed by altering the growth conditions and compare these structures with the previously reported structure of a cobalt-pyridinesulfate and the structures of related complexes.

$\{[(C_5H_5N)_4Co](\mu\text{-}SO_4)[(C_5H_5N)_2Co](\mu\text{-}SO_4)\}_n (2)$

2. Structural commentary

The asymmetric unit of the pink crystals of (1) consists of two pyridine molecules and one half of a sulfate anion coordinated to a cobalt atom sitting on an inversion center (Fig. 1a). When grown out, the cobalt ion shows an octahedral coordination environment (Fig. 1b). The equatorial positions of the octahedron are occupied by four pyridine ligands in a squareplanar arrangement. The CoN₄ unit exhibits planarity enforced by symmetry, with cis N-Co-N angles of 86.45 (6) and 93.55 (6)°. To complete the octahedron, the axial positions are occupied by two sulfate ions, with an inversion enforced O-Co-O angle of 180° and cis O-Co-N angles of 88.87 (6) and 91.67 (6) $^{\circ}$. The pyridine rings are rotated from the CoN₄ plane by dihedral angles of 47.30 (10) and 78.33 (9) $^{\circ}$. The 78.33 (9)° angles are constrained by two C-H···O interactions between the ortho hydrogen atoms and the two trans sulfates (Table 1).

The asymmetric unit of the purple crystals of (2) consists of two cobalt atoms, six coordinated pyridines and two sulfate

Figure 1

The molecular structure of compound (1), including (*a*) the asymmetric unit and (*b*) the coordination environment around Co1. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. C-H···O interactions (Table 1) are shown as dashed lines. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, 1 - y, $-\frac{1}{2} + z$; (iii) 1 - x, y, $\frac{3}{2} - z$].

Table 1					
Hydrogen-bond	geometry	(Å,	°)	for	(1).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C6-H6A\cdotsO1^{i}$	0.93	2.51	3.106 (2)	122
$C6-H6A\cdots O2^{i}$	0.93	2.51	3.429 (3)	171
C10−H10A···O1	0.93	2.48	3.046 (2)	120
$C10-H10A\cdots O2^{ii}$	0.93	2.43	3.353 (3)	171

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, y, $-z + \frac{3}{2}$.

anions (Fig. 2*a*). There are two crystallographically unique cobalt atoms, with Co1 (Fig. 2*b*) displaying an octahedral N_4O_2 coordination environment and Co2 (Fig. 2*c*) exhibiting an octahedral N_2O_4 coordination geometry.

Co1 has four pyridine ligands occupying the equatorial positions of an octahedron, with the CoN₄ plane showing a maximum deviation from planarity of 0.018 Å. Two sulfate anions occupy the axial positions to complete the octahedral coordination. The *cis* N-Co-N angles have values ranging from 87.48 (13) to 93.18 (12)°, and the *trans* O-Co-O angle is 173.43 (12)°. The planes of the four pyridine rings are rotated from the equatorial CoN₄ plane by dihedral angles of 58.6 (2), 64.6 (2), 65.6 (2), and 73.1 (2)°. Two of the rings show one C-H···O interaction with an *ortho* hydrogen atom, one ring shows two C-H···O interactions with two *ortho* hydrogen atoms, and the fourth ring shows no C-H···O interactions (Table 2).

The molecular structure of compound (2), including (a) the asymmetric unit, (b) the coordination environment around Co1, and (c) the coordination environment around Co2. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. $C-H\cdots$ O interactions (Table 2) are shown as dashed lines. [Symmetry code: (i) -1 + x, -1 + y, -1 + z].

research communications

Table 2				
Hydrogen-bond geometry	(Å,	°) t	for ((2).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1A \cdots O6$	0.95	2.63	3.563 (6)	167
$C2-H2A\cdots O2^{i}$	0.95	2.52	3.219 (5)	131
$C5-H5A\cdots O4$	0.95	2.42	3.009 (5)	120
C6-H6A···O5	0.95	2.56	3.054 (5)	112
$C6-H6A\cdots O7$	0.95	2.47	3.322 (6)	149
C10-H10A···O4	0.95	2.53	3.010 (5)	112
$C12-H12A\cdots O7^{ii}$	0.95	2.60	3.271 (5)	128
C15-H15A···O5	0.95	2.45	3.017 (5)	118
C16-H16A···O2	0.95	2.19	3.139 (6)	176
C20-H20A···O5	0.95	2.51	3.091 (5)	119
C20-H20A···O6	0.95	2.32	3.272 (5)	175
C25-H25A···O8	0.95	2.55	3.162 (5)	123
C30-H30A···O7	0.95	2.54	3.116 (5)	119

Symmetry codes: (i) x - 1, y - 1, z; (ii) x + 1, y + 1, z.

Co2 is bound by two pyridine ligands and two chelating sulfate anions to give an octahedral coordination environment. The pyridine rings adopt a *cis* configuration, with an N-Co-N angle of 93.63 (13)°. The two sulfate ligands exhibit O-Co-O bite angles of 65.90 (10) and 66.37 (10)°. The other *cis* O-Co-O angles are 86.87 (11), 98.98 (11), and 102.84 (11)°, and the six *cis* N-Co-O angles range from 92.49 (12) to 98.33 (13)°. Each pyridine ring is involved in *ortho* C-H···O interactions (Table 2).

3. Supramolecular features

The Co^{II} atoms in compound (1) are linked together into infinite chains along the [001] direction through sulfate anions with O–S–O bridges (Figs. 3*a*, 4*a*). Between each successive tetrapyridine cobalt unit, there are parallel slipped π - π interactions [inter-centroid distance: 3.637 (1) Å, inter-planar distance: 3.611 (1) Å, slippage: 0.435 (1) Å].

Figure 3

The infinite chains of (a) compound (1) along [001], (b) compound (2) along [111], and (c) the previously reported cobalt–pyridine-sulfate complex $[Co_3(SO_4)_3(C_5H_5N)_{11}]_n$ along [001] (Pham *et al.*, 2019). Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. The π - π interactions in (1) are shown as dashed lines.

Figure 4

The packing of (a) compound (1) along the *c*-axis and (b) compound (2) along the *b*-axis. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

The Co^{II} atoms in compound (2) are linked together into infinite chains along the [111] direction through the sulfate anions (Figs. 3b, 4b). The chain alternates between tetrapyridine cobalt units and dipyridine cobalt units. No π - π interactions are observed in the crystal.

4. Database survey

In a prior publication, we reported the structure of another cobalt-pyridine-sulfate $[Co_3(SO_4)_3(C_5H_5N)_{11})]_n$, which was grown at a lower concentration of cobalt. This structure shows two successive octahedral cobalt atoms with N_4O_2 coordination, where each atom is coordinated to four pyridines and two bridging sulfates. The third cobalt atom in the chain shows N_3O_3 coordination where three pyridines are bound and there are two sulfates bound, one of which is chelating to the cobalt (Pham et al., 2018). Fig. 3 compares the chain structure of this complex with those of compounds (1) and (2). In compound (1), every cobalt atom possesses an octahedral N_4O_2 coordination. This complex is isostructural with the structure observed for the iron and nickel pyridine-sulfate complexes (Roy et al., 2018). This structural motif is also consistent with that observed for the 4-picoline-sulfate structures of iron, cobalt, nickel and cadmium (Pham et al., 2019). In compound (2), the cobalt atoms alternate between N_4O_2 coordination and N₂O₄ coordination. This tetrapyridine/bipyridine alternation is similar to what is observed in the zinc-pyridinesulfate structure, which alternates between octahedral and tetrahedral zinc centers. In the case of cobalt, the bis(pyridine) cobalt center is still octahedral because the two coordinated sulfates both chelate to the cobalt. The end result is an infinite chain of octahedral cobalt atoms, which is true in compound (1) and the previously reported cobalt-pyridine-sulfate complex. The methanesulfato complexes of cobalt (II) have also been reported as octahedral tetrakis(pyridine), $[Co(SO_3CH_3)_2(py)_4],$ and octahedral bis(pyridine), $[Co(SO_3CH_3)_2(py)_2]$, compounds, consistent with the two independent cobalt centers observed in (2) (Johnson et al., 1977).

Table 3Experimental details.

	(1)	(2)
Crystal data		
Chemical formula	$[Co(SO_4)(C_5H_5N)_4]$	$[Co_2(SO_4)_2(C_5H_5N)_6]$
M_r	471.39	784.58
Crystal system, space group	Monoclinic, $C2/c$	Triclinic, P1
Temperature (K)	295	200
a, b, c (Å)	18.6323 (18), 10.0803 (9), 11.9403 (11)	9.5795 (6), 9.7612 (5), 10.7219 (6)
α, β, γ (°)	90, 115.945 (3), 90	98.488 (2), 107.697 (2), 115.948 (2)
$V(\dot{A}^3)$	2016.6 (3)	811.46 (8)
Z	4	1
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.99	1.21
Crystal size (mm)	$0.28 \times 0.13 \times 0.06$	$0.25 \times 0.20 \times 0.02$
Data collection		
Diffractometer	Bruker APEXIII CMOS	Bruker APEXIII photon2
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.667, 0.745	0.661, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20212, 1854, 1572	22679, 6013, 5906
R _{int}	0.071	0.026
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.604	0.610
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.063, 1.02	0.026, 0.072, 1.03
No. of reflections	1854	6013
No. of parameters	139	434
No. of restraints	0	3
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.24, -0.24	0.79, -0.30
Absolute structure	-	Refined as an inversion twin
Absolute structure parameter	-	0.165 (13)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), and publcIF (Westrip, 2010).

5. Synthesis and crystallization

For compound (1), 40 mg of cobalt sulfate heptahydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (100 μ L) in a 20 mL vial. The vial was heated to 338 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.

For compound (2), 48 mg of cobalt sulfate heptahydrate (J. T. Baker) was dissolved in pyridine (2 mL, Fischer Chemical) and distilled water (30 μ L) in a 20 mL vial. The vial was heated to 358 K for 48 h, after which single crystals suitable for X-ray diffraction studies were isolated from the reaction mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All structure solutions were obtained by intrinsic phasing. All non-hydrogen atoms were refined anisotropically (*SHELXL*) by full-matrix least squares on F^2 . Hydrogen atoms were placed in calculated positions and then refined with a riding model with C—H bond lengths of 0.95 Å and with isotropic displacement parameters set to 1.20 U_{eq} of the parent C atom. The structre of (2) was refined as a two-component inversion twin, BASF = 0.165 (13).

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

- Bethe, H. A. (1929). Ann. Phys. 395, 133-208.
- Bruker (2016). *APEX3*, *SAINT*, and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A. & Reid, A. H. Jr (1984). New J. Chem. 8, 203-206.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Howe, J. L. (1898). Science, 8, 945-947.
- Johnson, N. O., Turk, J. T., Bull, W. E. & Mayfield, H. G. (1977). *Inorg. Chim. Acta*, **25**, 235–239.
- Memon, A. A., Afzaal, M., Malik, M. A., Nguyen, C. Q., O'Brien, P. & Raftery, J. (2006). *Dalton Trans.* pp. 4499–4505.
- Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857–861.
- Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568–574.
- Reitzenstein, F. (1894). Justus Liebigs Ann. Chem. 282, 267-280.
- Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Werner, A. (1893). Z. Anorg. Chem. 3, 267–330.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 1888-1891 [https://doi.org/10.1107/S205698901901538X]

The varied structures of cobalt(II)-pyridine (py)-sulfate: $[Co(SO_4)(py)_4]_n$, $[Co_2(SO_4)_2(py)_6]_n$, and $[Co_3(SO_4)_3(py)_{11}]_n$

Ava M. Park, Duyen N. K. Pham, James A. Golen and David R. Manke

Computing details

For both structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b) and *OLEX2* (Dolomanov *et al.*, 2009). Molecular graphics: *SHELXTL* (Sheldrick, 2008) for (1); *SHELXTL* (Sheldrick 2008) for (2). For both structures, software used to prepare material for publication: *SHELXTL* (Sheldrick 2008) and *publCIF* (Westrip, 2010).

catena-Poly[[tetrakis(pyridine- κN)cobalt(II)]- μ -sulfato- $\kappa^2 O:O'$] (1)

Crystal data

 $\begin{bmatrix} \text{Co}(\text{SO}_4)(\text{C}_5\text{H}_5\text{N})_4 \end{bmatrix} \\ M_r = 471.39 \\ \text{Monoclinic, } C2/c \\ a = 18.6323 (18) \text{ Å} \\ b = 10.0803 (9) \text{ Å} \\ c = 11.9403 (11) \text{ Å} \\ \beta = 115.945 (3)^\circ \\ V = 2016.6 (3) \text{ Å}^3 \\ Z = 4 \\ \end{bmatrix}$

Data collection

Bruker APEXIII CMOS diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.667, T_{\max} = 0.745$ 20212 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.063$ S = 1.021854 reflections 139 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites F(000) = 972 $D_x = 1.553 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8333 reflections $\theta = 3.3-25.3^{\circ}$ $\mu = 0.99 \text{ mm}^{-1}$ T = 295 KBLOCK, pink $0.28 \times 0.13 \times 0.06 \text{ mm}$

1854 independent reflections 1572 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 25.4^\circ, \ \theta_{min} = 3.3^\circ$ $h = -22 \rightarrow 22$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0254P)^2 + 2.4084P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0019 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.5000	0.5000	0.5000	0.02070 (13)
01	0.49333 (8)	0.59836 (16)	0.64714 (13)	0.0406 (4)
O2	0.57186 (9)	0.76549 (16)	0.79112 (15)	0.0433 (4)
N1	0.45647 (10)	0.32138 (17)	0.55318 (15)	0.0305 (4)
N2	0.37320 (9)	0.55056 (17)	0.38523 (14)	0.0257 (4)
C1	0.39850 (16)	0.3286 (3)	0.5901 (2)	0.0503 (7)
H1A	0.3780	0.4116	0.5942	0.060*
C2	0.36775 (18)	0.2191 (3)	0.6224 (3)	0.0649 (8)
H2A	0.3265	0.2285	0.6457	0.078*
C3	0.39806 (18)	0.0971 (3)	0.6200 (2)	0.0594 (8)
H3A	0.3780	0.0216	0.6410	0.071*
C4	0.45897 (19)	0.0885 (3)	0.5858 (3)	0.0582 (7)
H4A	0.4823	0.0069	0.5857	0.070*
C5	0.48541 (15)	0.2016 (2)	0.5514 (2)	0.0448 (6)
H5A	0.5257	0.1937	0.5257	0.054*
C6	0.33165 (12)	0.4887 (2)	0.2775 (2)	0.0360 (5)
H6A	0.3577	0.4259	0.2513	0.043*
C7	0.25194 (13)	0.5129 (3)	0.2028 (2)	0.0469 (6)
H7A	0.2255	0.4687	0.1274	0.056*
C8	0.21197 (12)	0.6030 (2)	0.2410 (2)	0.0404 (6)
H8A	0.1584	0.6218	0.1919	0.048*
C9	0.25326 (12)	0.6644 (2)	0.3534 (2)	0.0370 (5)
H9A	0.2276	0.7240	0.3832	0.044*
C10	0.33304 (12)	0.6372 (2)	0.42193 (19)	0.0331 (5)
H10A	0.3605	0.6809	0.4974	0.040*
S1	0.5000	0.68569 (6)	0.7500	0.01886 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Col	0.0187 (2)	0.0246 (2)	0.0198 (2)	0.00353 (15)	0.00935 (15)	-0.00111 (15)	
01	0.0358 (8)	0.0582 (11)	0.0268 (8)	0.0111 (8)	0.0128 (6)	-0.0138 (7)	
O2	0.0303 (8)	0.0391 (9)	0.0562 (10)	-0.0150 (7)	0.0148 (7)	0.0026 (8)	
N1	0.0321 (9)	0.0314 (10)	0.0290 (9)	0.0009 (8)	0.0141 (8)	0.0004 (8)	
N2	0.0212 (8)	0.0300 (9)	0.0261 (9)	0.0040 (7)	0.0105 (7)	0.0013 (7)	
C1	0.0583 (16)	0.0482 (16)	0.0638 (16)	0.0080 (13)	0.0445 (14)	0.0116 (13)	
C2	0.0691 (19)	0.070 (2)	0.079 (2)	-0.0043 (16)	0.0536 (17)	0.0158 (16)	
C3	0.083 (2)	0.0493 (17)	0.0534 (16)	-0.0231 (15)	0.0364 (15)	0.0029 (13)	
C4	0.085 (2)	0.0324 (14)	0.0665 (18)	-0.0050 (13)	0.0420 (16)	-0.0024 (13)	

C5	0.0510 (14)	0.0351 (13)	0.0563 (15)	-0.0006(11)	0.0309 (12)	0.0000 (11)
C6 C7	0.0268 (11) 0.0286 (12)	0.0426 (13) 0.0580 (16)	0.0359 (11) 0.0401 (13)	0.0071 (10) 0.0042 (11)	0.0114 (9) 0.0021 (10)	-0.0080(10) -0.0160(12)
C8	0.0214 (11)	0.0496 (14)	0.0440 (13)	0.0096 (10)	0.0085 (10)	0.0030 (11)
C9	0.0304 (11)	0.0438 (14)	0.0399 (12)	0.0135 (10)	0.0183 (10)	0.0025 (10)
C10	0.0282 (11)	0.0406 (12)	0.0289 (11)	0.0058 (9)	0.0110 (9)	-0.0033 (9)
S1	0.0181 (3)	0.0204 (3)	0.0206 (3)	0.000	0.0108 (3)	0.000

Geometric parameters (Å, °)

Col—Ol ⁱ	2.0679 (13)	C3—C4	1.367 (4)
Co1—O1	2.0679 (13)	С3—НЗА	0.9300
Co1—N1	2.1803 (17)	C4—C5	1.373 (3)
Co1—N1 ⁱ	2.1803 (17)	C4—H4A	0.9300
Co1—N2	2.2105 (15)	С5—Н5А	0.9300
Co1—N2 ⁱ	2.2105 (15)	C6—C7	1.379 (3)
O1—S1	1.4715 (14)	С6—Н6А	0.9300
O2—S1	1.4511 (14)	C7—C8	1.373 (3)
N1—C5	1.327 (3)	С7—Н7А	0.9300
N1—C1	1.335 (3)	C8—C9	1.368 (3)
N2—C6	1.331 (3)	C8—H8A	0.9300
N2	1.342 (2)	C9—C10	1.375 (3)
C1—C2	1.373 (4)	С9—Н9А	0.9300
C1—H1A	0.9300	C10—H10A	0.9300
C2—C3	1.359 (4)	S1—O2 ⁱⁱ	1.4511 (14)
C2—H2A	0.9300	S1—O1 ⁱⁱ	1.4715 (14)
Ol ⁱ —Col—Ol	180.0	С2—С3—Н3А	121.0
Ol ⁱ —Col—Nl	91.13 (6)	С4—С3—Н3А	121.0
O1—Co1—N1	88.87 (6)	C3—C4—C5	119.3 (3)
Ol ⁱ —Col—Nl ⁱ	88.87 (6)	C3—C4—H4A	120.3
O1—Co1—N1 ⁱ	91.13 (6)	C5—C4—H4A	120.3
N1—Co1—N1 ⁱ	180.0	N1—C5—C4	123.3 (2)
Ol ⁱ —Col—N2	91.66 (6)	N1—C5—H5A	118.3
O1—Co1—N2	88.34 (6)	C4—C5—H5A	118.3
N1—Co1—N2	86.45 (6)	N2—C6—C7	123.24 (19)
N1 ⁱ —Co1—N2	93.55 (6)	N2—C6—H6A	118.4
Ol ⁱ —Col—N2 ⁱ	88.33 (6)	С7—С6—Н6А	118.4
O1—Co1—N2 ⁱ	91.67 (6)	C8—C7—C6	119.3 (2)
N1—Co1—N2 ⁱ	93.55 (6)	С8—С7—Н7А	120.3
N1 ⁱ —Co1—N2 ⁱ	86.45 (6)	С6—С7—Н7А	120.3
N2—Co1—N2 ⁱ	180.0	C9—C8—C7	118.1 (2)
S1—O1—Co1	168.95 (11)	С9—С8—Н8А	120.9
C5—N1—C1	116.6 (2)	С7—С8—Н8А	120.9
C5—N1—Co1	122.80 (14)	C8—C9—C10	119.39 (19)
C1—N1—Co1	120.61 (16)	С8—С9—Н9А	120.3
C6—N2—C10	116.66 (17)	С10—С9—Н9А	120.3
C6—N2—Co1	120.20 (13)	N2—C10—C9	123.22 (19)

C10—N2—Co1	123.03 (13)	N2—C10—H10A	118.4
N1—C1—C2	123.1 (2)	C9—C10—H10A	118.4
N1—C1—H1A	118.5	O2—S1—O2 ^{ii}	112.67 (14)
C2—C1—H1A	118.5	O2—S1—O1	110.03 (9)
C3—C2—C1	119.5 (2)	O2 ^{ii} —S1—O1	108.71 (8)
C3—C2—H2A	120.2	O2—S1—O1 ^{ii}	108.71 (8)
C1—C2—H2A	120.2	O2 ^{ii} —S1—O1 ^{ii}	110.03 (9)
C2—C3—C4	118.1 (2)	O1—S1—O1 ^{ii}	106.52 (14)
C5—N1—C1—C2 Co1—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C1—N1—C5—C4 Co1—N1—C5—C4 C3—C4—C5—N1 C10—N2—C6—C7 Co1—N2—C6—C7	-1.5 (4) 178.7 (2) 1.5 (5) 0.4 (5) -2.1 (4) -0.3 (4) 179.4 (2) 2.2 (4) 2.1 (3) 178.36 (19)	$\begin{array}{c} N2 - C6 - C7 - C8 \\ C6 - C7 - C8 - C9 \\ C7 - C8 - C9 - C10 \\ C6 - N2 - C10 - C9 \\ Co1 - N2 - C10 - C9 \\ C8 - C9 - C10 - N2 \\ Co1 - O1 - S1 - O2 \\ Co1 - O1 - S1 - O2^{ii} \\ Co1 - O1 - S1 - O1^{ii} \end{array}$	-1.4 (4) -0.7 (4) 1.9 (3) -0.8 (3) -176.96 (16) -1.2 (3) -16.8 (5) 107.0 (5) -134.5 (5)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C6—H6A···O1 ⁱ	0.93	2.51	3.106 (2)	122
C6—H6A····O2 ⁱ	0.93	2.51	3.429 (3)	171
C10—H10A…O1	0.93	2.48	3.046 (2)	120
C10—H10A····O2 ⁱⁱ	0.93	2.43	3.353 (3)	171

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*, -*z*+3/2.

(2)

Crystal data	
$[Co(SO_4)_2(C_5H_6N)_6]$	Z = 1
$M_r = 784.58$	F(000) = 402
Triclinic, P1	$D_{\rm x} = 1.606 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.5795 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.7612 (5) Å	Cell parameters from 9920 reflections
c = 10.7219 (6) Å	$\theta = 2.6 - 25.7^{\circ}$
$\alpha = 98.488 \ (2)^{\circ}$	$\mu = 1.21 \text{ mm}^{-1}$
$\beta = 107.697 \ (2)^{\circ}$	T = 200 K
$\gamma = 115.948 \ (2)^{\circ}$	PLATE, purple
V = 811.46 (8) Å ³	$0.25 \times 0.20 \times 0.02 \text{ mm}$
Data collection	
Bruker APEXIII photon2	$T_{\min} = 0.661, T_{\max} = 0.745$
diffractometer	22679 measured reflections
φ and ω scans	6013 independent reflections
Absorption correction: multi-scan	5906 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2016)	$R_{\rm int} = 0.026$

$\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$	<i>k</i> =
$h = -11 \rightarrow 11$	<i>l</i> =

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.072$ S = 1.036013 reflections 434 parameters 3 restraints $x = -11 \rightarrow 11$ $= -13 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0524P)^2 + 0.1142P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.79 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.165 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component inversion twin. BASF 0.16482

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Col	0.84425 (5)	0.55261 (5)	0.61510 (4)	0.01356 (12)
Co2	0.24785 (6)	0.13866 (6)	0.10725 (5)	0.01665 (13)
S1	1.17468 (11)	0.89862 (10)	0.89114 (9)	0.01596 (19)
S2	0.51931 (11)	0.19943 (10)	0.33225 (9)	0.0164 (2)
01	1.1869 (4)	0.8903 (3)	1.0308 (3)	0.0257 (6)
O2	1.3166 (4)	0.9028 (4)	0.8658 (4)	0.0307 (7)
O3	1.1721 (4)	1.0501 (3)	0.8887 (3)	0.0241 (6)
O4	1.0118 (3)	0.7597 (3)	0.7855 (3)	0.0244 (6)
O5	0.6576 (4)	0.3553 (3)	0.4393 (3)	0.0217 (6)
O6	0.5406 (4)	0.0691 (4)	0.3655 (3)	0.0301 (7)
07	0.3509 (3)	0.1777 (3)	0.3224 (3)	0.0223 (6)
08	0.5184 (4)	0.2064 (4)	0.1943 (3)	0.0230 (6)
N1	0.7283 (4)	0.4360 (4)	0.7445 (4)	0.0204 (7)
N2	0.6741 (4)	0.6487 (4)	0.5820 (4)	0.0215 (7)
N3	0.9613 (4)	0.6672 (4)	0.4849 (3)	0.0200 (7)
N4	1.0052 (4)	0.4460 (4)	0.6447 (3)	0.0176 (7)
N5	0.3110 (5)	0.3784 (4)	0.1165 (4)	0.0246 (7)
N6	0.0033 (4)	0.0704 (4)	0.0989 (4)	0.0229 (7)
C1	0.6334 (6)	0.2757 (5)	0.7094 (5)	0.0272 (9)
H1A	0.6163	0.2109	0.6247	0.033*
C2	0.5587 (6)	0.1993 (6)	0.7905 (5)	0.0336 (10)
H2A	0.4927	0.0850	0.7619	0.040*
C3	0.5820 (6)	0.2929 (7)	0.9138 (5)	0.0369 (11)
H3A	0.5347	0.2447	0.9728	0.044*
C4	0.6773 (6)	0.4601 (7)	0.9487 (5)	0.0370 (11)

H4A	0.6929	0.5281	1.0310	0.044*
C5	0.7486 (6)	0.5257 (5)	0.8629 (4)	0.0286 (9)
H5A	0.8152	0.6397	0.8889	0.034*
C6	0.5027 (6)	0.5482 (6)	0.5237 (5)	0.0306 (10)
H6A	0.4581	0.4352	0.4991	0.037*
C7	0.3906 (7)	0.6036 (7)	0.4988 (6)	0.0488 (15)
H7A	0.2711	0.5296	0.4589	0.059*
C8	0.4526 (8)	0.7670 (8)	0.5321 (7)	0.0532 (16)
H8A	0.3771	0.8074	0.5150	0.064*
C9	0.6240 (8)	0.8687 (7)	0.5899 (6)	0.0464 (14)
H9A	0.6701	0.9819	0.6137	0.056*
C10	0.7326 (6)	0.8065 (6)	0.6143 (5)	0.0296 (10)
H10A	0.8524	0.8793	0.6554	0.036*
C11	1.0601 (5)	0.8273 (5)	0.5168 (4)	0.0246 (9)
H11A	1 0821	0.8958	0.6019	0.030*
C12	1 1313 (6)	0.8974 (6)	0.4317(5)	0.0316 (10)
H12A	1 1984	1 0113	0.4572	0.038*
C13	1 1031 (6)	0.7992(7)	0.3097 (5)	0.0355(11)
U13 H13A	1.1051 (0)	0.7552 (7)	0.3097 (3)	0.0333 (11)
C14	1.1490	0.6355 (6)	0.2491 0.2778 (5)	0.045
	0.0873	0.0555 (0)	0.2778 (3)	0.0334 (11)
C15	0.9875	0.5049	0.1955 0.2658(5)	0.042°
	0.9303 (3)	0.3741(3)	0.3038 (3)	0.0277(9)
ПIЗА C1(0.8070	0.4004	0.3410	0.033
	1.1720 (6)	0.5345 (6)	0.7278 (6)	0.0349 (11)
HI6A	1.2212	0.64/1	0.7689	0.042*
	1.2/63 (6)	0.4698 (7)	0./568 (6)	0.0461 (14)
HI7A	1.3939	0.53/1	0.8169	0.055*
C18	1.2079 (7)	0.3067 (7)	0.6978 (6)	0.0444 (13)
H18A	1.2760	0.2588	0.7180	0.053*
C19	1.0382 (7)	0.2158 (6)	0.6090 (6)	0.0429 (13)
H19A	0.9879	0.1040	0.5632	0.051*
C20	0.9411 (6)	0.2882 (5)	0.5866 (5)	0.0295 (10)
H20A	0.8230	0.2227	0.5272	0.035*
C21	0.1897 (7)	0.4092 (6)	0.0510 (6)	0.0390 (11)
H21A	0.0781	0.3207	-0.0062	0.047*
C22	0.2193 (8)	0.5635 (7)	0.0626 (7)	0.0458 (13)
H22A	0.1299	0.5798	0.0139	0.055*
C23	0.3786 (8)	0.6921 (6)	0.1451 (6)	0.0475 (15)
H23A	0.4017	0.7994	0.1571	0.057*
C24	0.5055 (8)	0.6619 (6)	0.2107 (6)	0.0456 (13)
H24A	0.6186	0.7487	0.2666	0.055*
C25	0.4666 (6)	0.5049 (5)	0.1944 (5)	0.0337 (10)
H25A	0.5548	0.4861	0.2408	0.040*
C26	-0.1383 (6)	-0.0208 (6)	-0.0188 (5)	0.0321 (10)
H26A	-0.1291	-0.0677	-0.0979	0.039*
C27	-0.2969 (6)	-0.0497 (6)	-0.0301 (5)	0.0384 (11)
H27A	-0.3944	-0.1150	-0.1154	0.046*
C28	-0.3120 (6)	0.0175 (6)	0.0842 (6)	0.0368 (11)

H28A	-0.4192	0.0019	0.0782	0.044*
C29	-0.1684 (7)	0.1076 (7)	0.2070 (6)	0.0441 (13)
H29A	-0.1751	0.1530	0.2882	0.053*
C30	-0.0132 (6)	0.1308 (6)	0.2096 (5)	0.0338 (10)
H30A	0.0855	0.1927	0.2945	0.041*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0131 (2)	0.0118 (2)	0.0131 (2)	0.00517 (18)	0.00466 (18)	0.00285 (17)
Co2	0.0152 (2)	0.0145 (2)	0.0156 (2)	0.00629 (19)	0.00422 (19)	0.00207 (18)
S 1	0.0135 (4)	0.0128 (4)	0.0152 (4)	0.0041 (3)	0.0040 (3)	0.0009 (3)
S2	0.0148 (4)	0.0132 (4)	0.0148 (4)	0.0049 (4)	0.0032 (4)	0.0021 (4)
01	0.0351 (17)	0.0227 (15)	0.0163 (14)	0.0150 (13)	0.0074 (13)	0.0052 (12)
O2	0.0177 (14)	0.0232 (15)	0.0453 (19)	0.0067 (12)	0.0157 (14)	0.0028 (14)
O3	0.0320 (16)	0.0164 (14)	0.0256 (15)	0.0124 (13)	0.0133 (13)	0.0082 (12)
O4	0.0158 (13)	0.0201 (14)	0.0213 (15)	0.0030 (12)	0.0036 (12)	-0.0055 (11)
05	0.0182 (14)	0.0174 (14)	0.0173 (14)	0.0036 (11)	0.0036 (12)	0.0004 (11)
O6	0.0295 (16)	0.0180 (15)	0.0332 (18)	0.0114 (13)	0.0037 (14)	0.0064 (13)
O7	0.0165 (14)	0.0273 (15)	0.0192 (14)	0.0085 (12)	0.0073 (11)	0.0066 (12)
08	0.0239 (14)	0.0275 (15)	0.0170 (14)	0.0131 (13)	0.0092 (12)	0.0045 (12)
N1	0.0187 (16)	0.0204 (17)	0.0201 (17)	0.0082 (14)	0.0082 (14)	0.0073 (14)
N2	0.0273 (18)	0.0250 (18)	0.0211 (17)	0.0173 (15)	0.0134 (15)	0.0102 (14)
N3	0.0195 (16)	0.0214 (17)	0.0191 (17)	0.0099 (14)	0.0084 (14)	0.0073 (14)
N4	0.0171 (16)	0.0174 (16)	0.0188 (17)	0.0083 (13)	0.0093 (14)	0.0052 (13)
N5	0.0304 (19)	0.0205 (18)	0.0229 (18)	0.0129 (16)	0.0116 (15)	0.0061 (15)
N6	0.0189 (17)	0.0236 (17)	0.0243 (18)	0.0103 (14)	0.0092 (14)	0.0038 (14)
C1	0.031 (2)	0.026 (2)	0.033 (2)	0.0157 (19)	0.0180 (19)	0.0152 (19)
C2	0.031 (2)	0.028 (2)	0.040 (3)	0.0087 (19)	0.018 (2)	0.020 (2)
C3	0.029 (2)	0.052 (3)	0.034 (3)	0.016 (2)	0.020 (2)	0.026 (2)
C4	0.034 (3)	0.047 (3)	0.023 (2)	0.014 (2)	0.015 (2)	0.008 (2)
C5	0.029 (2)	0.029 (2)	0.020 (2)	0.0102 (19)	0.0091 (18)	0.0037 (18)
C6	0.023 (2)	0.029 (2)	0.036 (3)	0.0144 (19)	0.0078 (19)	0.0027 (19)
C7	0.024 (2)	0.052 (3)	0.055 (4)	0.024 (2)	0.001 (2)	-0.004 (3)
C8	0.046 (3)	0.056 (4)	0.061 (4)	0.043 (3)	0.005 (3)	0.007 (3)
C9	0.053 (3)	0.039 (3)	0.058 (4)	0.037 (3)	0.017 (3)	0.012 (3)
C10	0.036 (2)	0.028 (2)	0.029 (2)	0.022 (2)	0.010 (2)	0.0090 (19)
C11	0.031 (2)	0.022 (2)	0.026 (2)	0.0147 (18)	0.0138 (18)	0.0113 (17)
C12	0.033 (2)	0.032 (2)	0.041 (3)	0.018 (2)	0.022 (2)	0.023 (2)
C13	0.032 (2)	0.049 (3)	0.032 (3)	0.019 (2)	0.020 (2)	0.025 (2)
C14	0.030 (2)	0.043 (3)	0.025 (2)	0.012 (2)	0.015 (2)	0.006 (2)
C15	0.025 (2)	0.026 (2)	0.029 (2)	0.0082 (18)	0.0159 (19)	0.0061 (18)
C16	0.023 (2)	0.026 (2)	0.047 (3)	0.0133 (19)	0.008 (2)	-0.001 (2)
C17	0.024 (2)	0.043 (3)	0.055 (3)	0.021 (2)	0.000 (2)	-0.001 (3)
C18	0.042 (3)	0.045 (3)	0.060 (4)	0.035 (3)	0.018 (3)	0.017 (3)
C19	0.038 (3)	0.028 (2)	0.064 (4)	0.022 (2)	0.016 (3)	0.013 (2)
C20	0.024 (2)	0.024 (2)	0.037 (2)	0.0139 (18)	0.0080 (19)	0.0077 (19)
C21	0.035 (3)	0.036 (3)	0.051 (3)	0.020 (2)	0.017 (2)	0.024 (2)

C22	0.057 (3)	0.048 (3)	0.069 (4)	0.041 (3)	0.041 (3)	0.037 (3)
C23	0.079 (4)	0.030 (3)	0.058 (4)	0.035 (3)	0.045 (3)	0.023 (3)
C24	0.055 (3)	0.025 (2)	0.045 (3)	0.011 (2)	0.020 (3)	0.010 (2)
C25	0.038 (3)	0.021 (2)	0.032 (2)	0.011 (2)	0.010 (2)	0.0063 (19)
C26	0.024 (2)	0.035 (2)	0.030(2)	0.013 (2)	0.0077 (19)	0.004 (2)
C27	0.020 (2)	0.041 (3)	0.039 (3)	0.012 (2)	0.003 (2)	0.004 (2)
C28	0.023 (2)	0.044 (3)	0.051 (3)	0.020 (2)	0.019 (2)	0.020 (2)
C29	0.038 (3)	0.060 (3)	0.046 (3)	0.031 (3)	0.025 (2)	0.013 (3)
C30	0.021 (2)	0.044 (3)	0.030 (2)	0.017 (2)	0.0062 (18)	0.004 (2)

Geometric parameters (Å, °)

<u>Co1–O4</u>	2.070 (3)	C6—C7	1.376 (7)
Co105	2.080 (3)	С6—Н6А	0.9500
Col—N2	2.179 (3)	C7—C8	1.377 (9)
Co1—N1	2.180 (3)	C7—H7A	0.9500
Col—N4	2.183 (3)	C8—C9	1.356 (9)
Co1—N3	2.185 (3)	C8—H8A	0.9500
$C_0 2$ —N6	2.104 (3)	C9—C10	1.398 (6)
Co2—O7	2.113 (3)	С9—Н9А	0.9500
Co2—N5	2.123 (3)	C10—H10A	0.9500
Co2—O3 ⁱ	2.141 (3)	C11—C12	1.385 (6)
Co2—O1 ⁱ	2.185 (3)	C11—H11A	0.9500
Co2—O8	2.208 (3)	C12—C13	1.375 (7)
Co2—S1 ⁱ	2.7061 (11)	C12—H12A	0.9500
Co2—S2	2.7107 (10)	C13—C14	1.370 (7)
S1—O2	1.450 (3)	C13—H13A	0.9500
S1—O4	1.476 (3)	C14—C15	1.378 (7)
S1—O1	1.483 (3)	C14—H14A	0.9500
S1—O3	1.493 (3)	C15—H15A	0.9500
S1—Co2 ⁱⁱ	2.7062 (11)	C16—C17	1.384 (7)
S2—O6	1.451 (3)	C16—H16A	0.9500
S2—O5	1.477 (3)	C17—C18	1.379 (8)
S2—O8	1.488 (3)	C17—H17A	0.9500
S2—O7	1.500 (3)	C18—C19	1.372 (8)
O1—Co2 ⁱⁱ	2.185 (3)	C18—H18A	0.9500
O3—Co2 ⁱⁱ	2.141 (3)	C19—C20	1.383 (6)
N1—C5	1.337 (6)	C19—H19A	0.9500
N1—C1	1.337 (6)	C20—H20A	0.9500
N2—C10	1.333 (6)	C21—C22	1.383 (7)
N2—C6	1.355 (6)	C21—H21A	0.9500
N3—C15	1.340 (5)	C22—C23	1.364 (9)
N3—C11	1.344 (5)	C22—H22A	0.9500
N4—C16	1.339 (6)	C23—C24	1.383 (9)
N4—C20	1.340 (6)	С23—Н23А	0.9500
N5—C25	1.331 (6)	C24—C25	1.379 (7)
N5—C21	1.344 (6)	C24—H24A	0.9500
N6—C30	1.331 (6)	C25—H25A	0.9500

N6—C26	1.340 (6)	C26—C27	1.381 (7)
C1—C2	1.388 (6)	C26—H26A	0.9500
C1—H1A	0.9500	C27—C28	1.380 (8)
C2—C3	1.384 (8)	C27—H27A	0.9500
C2—H2A	0.9500	C28—C29	1.378 (8)
C3—C4	1.395 (8)	C28—H28A	0.9500
C3—H3A	0.9500	C29—C30	1.393 (7)
C4—C5	1.378 (7)	C29—H29A	0.9500
C4—H4A	0.9500	C30—H30A	0.9500
C5—H5A	0.9500		0.9200
	0.9500		
O4—Co1—O5	173.43 (12)	C2—C1—H1A	118.3
O4—Co1—N2	85.60 (13)	C3—C2—C1	118.7 (4)
O5—Co1—N2	87.84 (12)	C3—C2—H2A	120.6
04—Co1—N1	89.17 (13)	C1—C2—H2A	120.6
05—Co1—N1	90.86 (12)	C2—C3—C4	117.9 (4)
N2-Co1-N1	87.48 (13)	C2—C3—H3A	121.0
04—Co1—N4	96 45 (12)	C4-C3-H3A	121.0
05-Co1-N4	90.12 (12)	C_{5} C_{4} C_{3}	121.0 1194(5)
N_2 —Co1—N4	177 57 (14)	$C_{2} = C_{4} = H_{4}$	120.3
N1—Co1—N4	91.24(12)	$C_3 - C_4 - H_{4A}$	120.3
Ω_{1}^{\prime} Col N3	91.24(12)	$N_1 C_5 C_4$	120.3 122.0(4)
$O_{2} = CO_{1} = N_{3}$	88 85 (12)	N1 = C5 = C4 N1 = C5 = H5A	122.9 (4)
$N_2 C_{21} N_2^2$	00.05(12)	$NI - C_{3} - II_{5} A$	110.5
$N_2 = Co_1 = N_3$	95.16(12) 170.27(14)	C4—C5—H5A	110.5
NI = CoI = N3	1/9.2/(14)	$N_2 = C_0 = C_7$	122.5 (5)
N4 = Co1 = N3	88.08 (12)	$N_2 - C_0 - H_0 A$	118.8
$N_{0} = C_{0} = C_{0}$	92.49 (12)	C/-CO-HbA	118.8
$N_0 - C_0 - N_5$	93.63 (13)		119.6 (5)
$0/-c_{02}$	98.33 (13)	C_{0} C_{-} H/A	120.2
$N6-C02-O3^{1}$	96.90 (13)	C8—C/—H/A	120.2
0^{7} —Co2—O3 ¹	162.62 (11)	C9—C8—C7	118.4 (5)
N5—Co2—O3 ¹	95.64 (12)	C9—C8—H8A	120.8
N6—Co2—O1 ¹	93.88 (13)	С7—С8—Н8А	120.8
O7—Co2—O1 ¹	98.98 (11)	C8—C9—C10	119.8 (5)
$N5-Co2-O1^{1}$	160.79 (12)	С8—С9—Н9А	120.1
$O3^{i}$ — $Co2$ — $O1^{i}$	65.90 (10)	С10—С9—Н9А	120.1
N6—Co2—O8	158.65 (12)	N2—C10—C9	122.3 (5)
O7—Co2—O8	66.37 (10)	N2	118.8
N5—Co2—O8	92.48 (13)	C9—C10—H10A	118.8
O3 ⁱ —Co2—O8	102.84 (11)	N3—C11—C12	123.2 (4)
O1 ⁱ —Co2—O8	86.87 (11)	N3—C11—H11A	118.4
N6—Co2—S1 ⁱ	101.38 (10)	C12—C11—H11A	118.4
O7—Co2—S1 ⁱ	130.13 (8)	C13—C12—C11	118.9 (4)
N5—Co2—S1 ⁱ	127.73 (10)	C13—C12—H12A	120.6
$O3^{i}$ — $Co2$ — $S1^{i}$	33.37 (7)	C11—C12—H12A	120.6
O1 ⁱ —Co2—S1 ⁱ	33.18 (8)	C14—C13—C12	118.5 (4)
O8—Co2—S1 ⁱ	90.91 (8)	C14—C13—H13A	120.8
N6—Co2—S2	125.39 (10)	C12—C13—H13A	120.8

O7—Co2—S2	33.41 (8)	C13—C14—C15	119.6 (5)
N5—Co2—S2	99.84 (10)	C13—C14—H14A	120.2
O3 ⁱ —Co2—S2	133.35 (8)	C15—C14—H14A	120.2
Ol ⁱ —Co2—S2	90.12 (8)	N3—C15—C14	123.0 (4)
O8—Co2—S2	33.27 (7)	N3—C15—H15A	118.5
S1 ⁱ —Co2—S2	110.52 (3)	С14—С15—Н15А	118.5
02-\$1-04	110.31 (18)	N4—C16—C17	123.2 (4)
02 - 101	112 58 (19)	N4—C16—H16A	118.4
04 - 101	109 17 (18)	C17—C16—H16A	118.4
02-51-03	111.06 (18)	C18 - C17 - C16	110.1 119.4(5)
04 S1 03	100.08 (18)	C_{18} C_{17} H_{17A}	120.3
$01 \ S1 \ 03$	109.03(16) 104.45(16)	$C_{16} = C_{17} = H_{17A}$	120.3
01 - 51 - 05	104.43(10) 117.42(14)	$C_{10} = C_{17} = M_{17} \times C_{10} = C_{17} \times C$	120.3
$02 - 51 - 02^{2}$	117.43(14) 122.24(12)	C19 - C18 - C17	117.9 (4)
$04 - 51 - 02^{2}$	132.24(12)	C19—C18—H18A	121.1
$01 - S1 - Co2^n$	53.72 (11)	C1/C18H18A	121.1
03—S1—Co2 ⁿ	52.05 (12)	C18—C19—C20	119.5 (5)
06—S2—O5	110.02 (17)	С18—С19—Н19А	120.2
O6—S2—O8	112.20 (18)	С20—С19—Н19А	120.2
O5—S2—O8	109.12 (17)	N4—C20—C19	123.2 (4)
O6—S2—O7	111.68 (18)	N4—C20—H20A	118.4
O5—S2—O7	108.93 (17)	C19—C20—H20A	118.4
O8—S2—O7	104.72 (17)	N5—C21—C22	123.3 (5)
O6—S2—Co2	120.94 (13)	N5-C21-H21A	118.4
O5—S2—Co2	128.99 (12)	C22—C21—H21A	118.4
O8—S2—Co2	54.46 (11)	C23—C22—C21	119.1 (5)
O7—S2—Co2	50.87 (11)	C23—C22—H22A	120.5
S1—O1—Co2 ⁱⁱ	93.10 (14)	C21—C22—H22A	120.5
S1—O3—Co2 ⁱⁱ	94.57 (14)	C22—C23—C24	118.2 (4)
S1-04-Co1	159.38 (19)	C22—C23—H23A	120.9
\$2	169 67 (19)	C24—C23—H23A	120.9
\$2-07-Co2	95 72 (15)	C_{25} C_{24} C_{23}	1195(5)
S208Co2	92 27 (14)	$C_{25} = C_{24} = H_{24A}$	120.3
$S_2 = 0.0 = 0.02$	117.6(A)	$C_{23} = C_{24} = H_{24} \Lambda$	120.3
$C_5 = N_1 = C_1$	117.0(4) 110.0(3)	$N_{2} = C_{2} = C_{2} = C_{2}$	120.3 123.0(5)
C_{1} N1 C_{2}	117.7(3)	$N_{3} = C_{23} = C_{24}$	123.0 (3)
C1 = N1 = C01	122.0(3)	N_{3} C_{23} H_{25} N_{3}	110.5
C10 - N2 - C6	117.5 (4)	C24—C25—H25A	118.5
C10-N2-C01	122.1 (3)	$N_0 - C_{20} - C_{27}$	122.9 (5)
C6—N2—Col	120.6 (3)	N6—C26—H26A	118.5
C15—N3—C11	116.8 (4)	С27—С26—Н26А	118.5
C15—N3—Co1	119.0 (3)	C28—C27—C26	119.1 (4)
C11—N3—Co1	124.2 (3)	С28—С27—Н27А	120.4
C16—N4—C20	116.7 (4)	С26—С27—Н27А	120.4
C16—N4—Co1	121.3 (3)	C29—C28—C27	118.7 (4)
C20—N4—Co1	121.9 (3)	C29—C28—H28A	120.7
C25—N5—C21	117.0 (4)	C27—C28—H28A	120.7
C25—N5—Co2	122.4 (3)	C28—C29—C30	118.5 (5)
C21—N5—Co2	120.4 (3)	С28—С29—Н29А	120.7
C30—N6—C26	117.5 (4)	С30—С29—Н29А	120.7

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30—N6—Co2	119.9 (3)	N6-C30-C29	123.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26—N6—Co2	122.3 (3)	N6-C30-H30A	118.4
$\begin{split} \text{N1} &= \text{C1} &= \text{H1A} & \text{I18.3} \\ & \text{O2} &= \text{S1} &= \text{O1} &= \text{Co2}^{\text{ii}} & \text{I08.27} (16) & \text{Co1} &= \text{N2} &= \text{C10} &= \text{C9} & \text{I78.3} (4) \\ \text{O4} &= \text{S1} &= \text{O1} &= \text{Co2}^{\text{ii}} & -128.88 (15) & \text{C8} &= \text{C9} &= \text{C10} &= \text{N2} & 0.4 (9) \\ \text{O3} &= \text{S1} &= \text{O1} &= \text{Co2}^{\text{ii}} & -12.33 (17) & \text{C15} &= \text{N3} &= \text{C11} &= \text{C12} & 1.7 (6) \\ \text{O2} &= \text{S1} &= \text{O3} &= \text{Co2}^{\text{ii}} & -129.00 (18) & \text{Co1} &= \text{N3} &= \text{C11} &= \text{C12} & -179.2 (3) \\ \text{O4} &= \text{S1} &= \text{O3} &= \text{Co2}^{\text{ii}} & 129.22 (15) & \text{N3} &= \text{C11} &= \text{C12} &= \text{C13} & -1.4 (7) \\ \text{O1} &= \text{S1} &= \text{O3} &= \text{Co2}^{\text{ii}} & 12.61 (17) & \text{C11} &= \text{C12} &= \text{C13} &= \text{C14} & -0.4 (7) \\ \text{O2} &= \text{S1} &= \text{O4} &= \text{Co1} & 1.7 (7) & \text{C12} &= \text{C13} &= \text{C14} &= -0.3 (6) \\ \text{O3} &= \text{S1} &= \text{O4} &= \text{Co1} & 122.5 (6) & \text{C11} &= \text{N3} &= \text{C15} &= \text{C14} &= -0.3 (6) \\ \text{O3} &= \text{S1} &= \text{O4} &= \text{Co1} & 124.0 (6) & \text{Co1} &= \text{N3} &= \text{C15} &= \text{C14} &= -179.5 (4) \\ \text{Co2}^{\text{ii}} &= \text{S1} &= \text{O4} &= \text{Co1} & 179.6 (5) & \text{C13} &= \text{C14} &= \text{C17} &= -12.8 \\ \text{O6} &= \text{S2} &= \text{O5} &= \text{Co1} & -43.6 (11) & \text{C20} &= \text{N4} &= \text{C16} &= \text{C17} &= -12.8 \\ \text{O8} &= \text{S2} &= \text{O5} &= \text{Co1} & 79.2 (11) & \text{N4} &= \text{C16} &= \text{C17} &= -12.8 \\ \text{O8} &= \text{S2} &= \text{O5} &= \text{Co1} & 79.2 (11) & \text{N4} &= \text{C16} &= \text{C17} &= -178.5 (4) \\ \text{Co2} &= \text{S2} &= \text{O5} &= \text{Co1} & 79.2 (11) & \text{N4} &= \text{C16} &= \text{C17} &= -178.6 \\ \text{O7} &= \text{S2} &= \text{O7} &= \text{Co2} &= -112.94 (17) & \text{C17} &= \text{C18} &= \text{C19} &= -20.8 \\ \text{O8} &= \text{S2} &= \text{O7} &= \text{Co2} &= 123.34 (15) & \text{C16} &= \text{N4} &= \text{C20} &= -19 &= 0.0 (7) \\ \text{O8} &= \text{S2} &= \text{O7} &= \text{Co2} &= -124.80 (14) & \text{C25} &= \text{N5} &= \text{C21} &= \text{C22} &= -0.8 (8) \\ \text{O7} &= \text{S2} &= \text{O8} &= \text{Co2} &= -124.80 (14) & \text{C25} &= \text{N5} &= \text{C21} &= \text{C22} &= -0.8 (8) \\ \text{O7} &= \text{S2} &= \text{O8} &= \text{Co2} &= -124.80 (14) & \text{C25} &= \text{N5} &= \text{C21} &= \text{C22} &= -0.5 (8) \\ \text{Co1} &= \text{N1} &= \text{C1} &= \text{C2} &= -23 &= -0.5 (8) \\ \text{C1} &= \text{C1} &= \text{C2} &= -\text{C2} &= -23 &= -0.5 (8) \\ \text{C1} &= C1$	N1—C1—C2	123.4 (4)	С29—С30—Н30А	118.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C1—H1A	118.3		
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—S1—O1—Co2 ⁱⁱ	108.27 (16)	Co1—N2—C10—C9	178.3 (4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O4—S1—O1—Co2 ⁱⁱ	-128.88 (15)	C8—C9—C10—N2	0.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S1—O1—Co2 ⁱⁱ	-12.33 (17)	C15—N3—C11—C12	1.7 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—S1—O3—Co2 ⁱⁱ	-109.00 (18)	Co1—N3—C11—C12	-179.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—S1—O3—Co2 ⁱⁱ	129.22 (15)	N3—C11—C12—C13	-1.4 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—S1—O3—Co2 ⁱⁱ	12.61 (17)	C11—C12—C13—C14	-0.4 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—S1—O4—Co1	1.7 (7)	C12—C13—C14—C15	1.6 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—S1—O4—Co1	-122.5 (6)	C11—N3—C15—C14	-0.3 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—S1—O4—Co1	124.0 (6)	Co1—N3—C15—C14	-179.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2 ⁱⁱ —S1—O4—Co1	179.6 (5)	C13—C14—C15—N3	-1.4 (7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O6—S2—O5—Co1	-43.6 (11)	C20-N4-C16-C17	-1.2 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O8—S2—O5—Co1	-167.1 (11)	Co1—N4—C16—C17	175.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O7—S2—O5—Co1	79.2 (11)	N4-C16-C17-C18	0.4 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2—S2—O5—Co1	133.7 (10)	C16—C17—C18—C19	1.7 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—S2—O7—Co2	-112.94 (17)	C17—C18—C19—C20	-2.8(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—S2—O7—Co2	125.34 (15)	C16—N4—C20—C19	0.0 (7)
O6-S2-O8-Co2113.01 (16) $C18-C19-C20-N4$ 2.0 (8) $O5-S2-O8-Co2$ $-124.80 (14)$ $C25-N5-C21-C22$ $-0.8 (8)$ $O7-S2-O8-Co2$ $-8.31 (17)$ $Co2-N5-C21-C22$ $174.2 (4)$ $C5-N1-C1-C2$ $-1.2 (6)$ $N5-C21-C22-C23$ $-0.5 (8)$ $Co1-N1-C1-C2$ $180.0 (3)$ $C21-C22-C23-C24$ $1.8 (8)$ $N1-C1-C2-C3$ $0.4 (7)$ $C22-C23-C24-C25$ $-1.9 (8)$ $C1-C2-C3-C4$ $1.2 (7)$ $C21-N5-C25-C24$ $0.7 (7)$ $C2-C3-C4-C5$ $-2.1 (7)$ $Co2-N5-C25-C24$ $-174.2 (4)$	O8—S2—O7—Co2	8.72 (18)	Co1—N4—C20—C19	-176.7 (4)
O5-S2-O8-Co2 $-124.80(14)$ $C25-N5-C21-C22$ $-0.8(8)$ $O7-S2-O8-Co2$ $-8.31(17)$ $Co2-N5-C21-C22$ $174.2(4)$ $C5-N1-C1-C2$ $-1.2(6)$ $N5-C21-C22-C23$ $-0.5(8)$ $Co1-N1-C1-C2$ $180.0(3)$ $C21-C22-C23-C24$ $1.8(8)$ $N1-C1-C2-C3$ $0.4(7)$ $C22-C23-C24-C25$ $-1.9(8)$ $C1-C2-C3-C4$ $1.2(7)$ $C21-N5-C25-C24$ $0.7(7)$ $C2-C3-C4-C5$ $-2.1(7)$ $Co2-N5-C25-C24$ $-174.2(4)$	O6—S2—O8—Co2	113.01 (16)	C18—C19—C20—N4	2.0 (8)
O7-S2-O8-Co2 $-8.31(17)$ $Co2-N5-C21-C22$ $174.2(4)$ $C5-N1-C1-C2$ $-1.2(6)$ $N5-C21-C22-C23$ $-0.5(8)$ $Co1-N1-C1-C2$ $180.0(3)$ $C21-C22-C23-C24$ $1.8(8)$ $N1-C1-C2-C3$ $0.4(7)$ $C22-C23-C24-C25$ $-1.9(8)$ $C1-C2-C3-C4$ $1.2(7)$ $C21-N5-C25-C24$ $0.7(7)$ $C2-C3-C4-C5$ $-2.1(7)$ $Co2-N5-C25-C24$ $-174.2(4)$	O5—S2—O8—Co2	-124.80 (14)	C25—N5—C21—C22	-0.8 (8)
C5-N1-C1-C2 -1.2 (6)N5-C21-C22-C23 -0.5 (8)Co1-N1-C1-C2180.0 (3)C21-C22-C23-C241.8 (8)N1-C1-C2-C30.4 (7)C22-C23-C24-C25 -1.9 (8)C1-C2-C3-C41.2 (7)C21-N5-C25-C240.7 (7)C2-C3-C4-C5 -2.1 (7)Co2-N5-C25-C24 -174.2 (4)C1-N1-C5C4 -2.1 (7)C02-N5-C25-C24 -174.2 (4)	O7—S2—O8—Co2	-8.31 (17)	Co2—N5—C21—C22	174.2 (4)
Co1—N1—C1—C2180.0 (3)C21—C22—C23—C241.8 (8)N1—C1—C2—C3 0.4 (7)C22—C23—C24—C25 -1.9 (8)C1—C2—C3—C4 1.2 (7)C21—N5—C25—C24 0.7 (7)C2—C3—C4—C5 -2.1 (7)Co2—N5—C25—C24 -174.2 (4)C1—N1—C5 -2.1 (7)Co2—N5—C25—C24 -174.2 (4)	C5—N1—C1—C2	-1.2 (6)	N5-C21-C22-C23	-0.5 (8)
N1—C1—C2—C3 0.4 (7) $C22$ —C23—C24—C25 -1.9 (8)C1—C2—C3—C4 1.2 (7) $C21$ —N5—C25—C24 0.7 (7)C2—C3—C4—C5 -2.1 (7) $Co2$ —N5—C25—C24 -174.2 (4)C1—N1—C5—C14 0.2 (7) 0.22 —C24—C25 0.24	Co1—N1—C1—C2	180.0 (3)	C21—C22—C23—C24	1.8 (8)
C1—C2—C3—C41.2 (7)C21—N5—C25—C24 $0.7 (7)$ C2—C3—C4—C5 $-2.1 (7)$ Co2—N5—C25—C24 $-174.2 (4)$ C1—N1—C5—C4 $0.2 (7)$ $0.2 (7)$ $0.2 (7)$	N1—C1—C2—C3	0.4 (7)	C22—C23—C24—C25	-1.9 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3—C4	1.2 (7)	C21—N5—C25—C24	0.7 (7)
$C1 \rightarrow V1 \rightarrow C2 \rightarrow C24 \rightarrow C25 \rightarrow V5 \rightarrow C(2)$	C2—C3—C4—C5	-2.1 (7)	Co2—N5—C25—C24	-174.2 (4)
$U_1 - N_1 - U_2 - U_4$ $U_2 (/)$ $U_2 - U_2 - U_2 - U_2 - U_2 - U_2$	C1—N1—C5—C4	0.3 (7)	C23—C24—C25—N5	0.6 (8)
Co1—N1—C5—C4 179.2 (4) C30—N6—C26—C27 2.0 (7)	Co1—N1—C5—C4	179.2 (4)	C30—N6—C26—C27	2.0(7)
C3—C4—C5—N1 1.3 (7) Co2—N6—C26—C27 -171.6 (4)	C3—C4—C5—N1	1.3 (7)	Co2—N6—C26—C27	-171.6 (4)
C10—N2—C6—C7 -0.5 (7) N6—C26—C27—C28 -0.1 (8)	C10—N2—C6—C7	-0.5 (7)	N6-C26-C27-C28	-0.1 (8)
Co1-N2-C6-C7 -178.9 (4) $C26-C27-C28-C29$ -1.8 (8)	Co1—N2—C6—C7	-178.9 (4)	C26—C27—C28—C29	-1.8(8)
N2—C6—C7—C8 0.8 (9) C27—C28—C29—C30 1.8 (8)	N2—C6—C7—C8	0.8 (9)	C27—C28—C29—C30	1.8 (8)
C6—C7—C8—C9 -0.5 (10) C26—N6—C30—C29 -2.1 (7)	C6—C7—C8—C9	-0.5 (10)	C26—N6—C30—C29	-2.1(7)
C7—C8—C9—C10 –0.1 (10) Co2—N6—C30—C29 171.7 (4)	C7—C8—C9—C10	-0.1 (10)	Co2—N6—C30—C29	171.7 (4)
C6—N2—C10—C9 -0.1 (7) C28—C29—C30—N6 0.2 (8)	C6—N2—C10—C9	-0.1 (7)	C28—C29—C30—N6	0.2 (8)

Symmetry codes: (i) *x*-1, *y*-1, *z*-1; (ii) *x*+1, *y*+1, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
C1—H1A····O6	0.95	2.63	3.563 (6)	167	
C2—H2A····O2 ⁱⁱⁱ	0.95	2.52	3.219 (5)	131	
C5—H5A····O4	0.95	2.42	3.009 (5)	120	

С6—Н6А…О5	0.95	2.56	3.054 (5)	112	
С6—Н6А…О7	0.95	2.47	3.322 (6)	149	
C10—H10A…O4	0.95	2.53	3.010 (5)	112	
C12—H12A····O7 ^{iv}	0.95	2.60	3.271 (5)	128	
C15—H15A…O5	0.95	2.45	3.017 (5)	118	
C16—H16A···O2	0.95	2.19	3.139 (6)	176	
C20—H20A…O5	0.95	2.51	3.091 (5)	119	
C20—H20A···O6	0.95	2.32	3.272 (5)	175	
C25—H25A···O8	0.95	2.55	3.162 (5)	123	
С30—Н30А…О7	0.95	2.54	3.116 (5)	119	

Symmetry codes: (iii) *x*-1, *y*-1, *z*; (iv) *x*+1, *y*+1, *z*.