

Crystal structures and Hirshfeld surface analyses of (*E*)-*N*'-benzylidene-2-oxo-2*H*-chromene-3-carbohydrazide and the disordered hemi-DMSO solvate of (*E*)-2-oxo-*N*'-(3,4,5-trimethoxybenzylidene)-2*H*-chromene-3-carbohydrazide: lattice energy and intermolecular interaction energy calculations for the former. Corrigendum

Ligia R. Gomes,^{a,b} John Nicolson Low,^c* James L. Wardell,^c Camila Capelini,^{d,e} José Daniel Figueroa Villar,^e Vitoria R.F. Câmara,^{d,f} Edson F. da Silva^d and Samir A. Carvalho^d

^aREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007, Porto, Portugal, ^bFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150, Porto, Portugal, ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, ^dInstituto de Tecnologia em Fármacos – Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, ^eGrupo de Química Medicinal, Departamento de Química, Instituto Militar de Engenharia, Praća General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil, and ^fEscola de Ciéncia e Tecnologia – ECT, Universidade do Grande Rio – Unigranrio, 25071-202 Duque de Caxias, RJ, Brazil. *Correspondence e-mail: jnlow111@gmail.com

In the paper by Gomes *et al.* [*Acta Cryst.* (2019), E**75**, 1403–1410], there was an error and omission in the author and affiliation list.

In the paper by Gomes *et al.* (2019), one author was omitted (*i.e.* José Daniel Figueroa Villar) and the name and affiliations of another author (*i.e.*Camila Capelini) have been corrected. The complete and correct author list is given above.

References

Gomes, L. R., Low, J. N., Wardell, J. L., Capelini, C., Câmara, V. R. F., da Silva, E. F. & Carvalho, S. A. (2019). *Acta Cryst.* E75, 1403–1410.

supporting information

Acta Cryst. (2019). E75, 1952 [https://doi.org/10.1107/S2056989019014890]

Crystal structures and Hirshfeld surface analyses of (*E*)-*N*'-benzylidene-2oxo-2*H*-chromene-3-carbohydrazide and the disordered hemi-DMSO solvate of (*E*)-2-oxo-*N*'-(3,4,5-trimethoxybenzylidene)-2*H*-chromene-3-carbohydrazide: lattice energy and intermolecular interaction energy calculations for the former. Corrigendum

Ligia R. Gomes, John Nicolson Low, James L. Wardell, Camila Capelini, José Daniel Figueroa Villar, Vitoria R.F. Câmara, Edson F. da Silva and Samir A. Carvalho

(E)-2-Oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide dimethyl sulfoxide hemisolvate (I)

Crystal data

 $C_{20}H_{18}N_2O_6 \cdot 0.5C_2H_6OS$ $M_r = 421.43$ Monoclinic, C2/c a = 33.0258 (7) Å b = 5.4412 (1) Å c = 22.4342 (4) Å $\beta = 107.203$ (2)° V = 3851.07 (13) Å³ Z = 8

Data collection

Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector diffractometer
Radiation source: Rotating Anode, Rigaku FRE+
Confocal mirrors, VHF Varimax monochromator
Detector resolution: 10 pixels mm⁻¹ profile data from ω–scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.086$ S = 1.054381 reflections F(000) = 1768 $D_x = 1.454 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 13857 reflections $\theta = 2.0-31.6^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.40 \times 0.08 \times 0.04 \text{ mm}$

Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) $T_{min} = 0.837$, $T_{max} = 1.000$ 22915 measured reflections 4381 independent reflections 3983 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.5^{\circ}$, $\theta_{min} = 2.6^{\circ}$ $h = -42 \rightarrow 42$ $k = -6 \rightarrow 7$ $l = -26 \rightarrow 29$

298 parameters0 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 2.9167P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta\rho_{\rm max}=0.31~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.30~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.40457 (2)	0.68439 (13)	0.52398 (3)	0.01627 (16)	
O2	0.46021 (2)	0.81610 (14)	0.59671 (4)	0.02005 (17)	
O31	0.53178 (2)	0.20068 (14)	0.57120 (3)	0.01931 (17)	
O343	0.72470 (2)	0.31586 (14)	0.80720 (3)	0.01717 (16)	
O344	0.73938 (2)	0.64983 (14)	0.89856 (3)	0.01614 (16)	
O345	0.67832 (2)	0.95654 (15)	0.90901 (3)	0.02104 (17)	
N32	0.53224 (3)	0.55236 (18)	0.62643 (4)	0.01798 (19)	
H32	0.5171 (5)	0.679 (3)	0.6305 (7)	0.029 (4)*	
N33	0.57200 (3)	0.51012 (17)	0.66718 (4)	0.01668 (18)	
C2	0.44611 (3)	0.65614 (18)	0.55853 (4)	0.01415 (19)	
C3	0.46844 (3)	0.43809 (18)	0.54634 (4)	0.01325 (19)	
C4	0.44791 (3)	0.27552 (19)	0.50194 (4)	0.01369 (19)	
H4	0.462640	0.135045	0.494099	0.016*	
C5	0.38134 (3)	0.14563 (19)	0.42087 (5)	0.0175 (2)	
H5	0.394775	0.003909	0.410755	0.021*	
C4A	0.40442 (3)	0.31084 (18)	0.46651 (4)	0.01345 (19)	
C6	0.33896 (3)	0.1903 (2)	0.39072 (5)	0.0204 (2)	
H6	0.323245	0.077292	0.360352	0.024*	
C7	0.31911 (3)	0.4001 (2)	0.40457 (5)	0.0194 (2)	
H7	0.289997	0.428309	0.383493	0.023*	
C8	0.34135 (3)	0.5677 (2)	0.44868 (5)	0.0173 (2)	
H8	0.328020	0.711508	0.457860	0.021*	
C8A	0.38373 (3)	0.51893 (18)	0.47906 (4)	0.01401 (19)	
C31	0.51385 (3)	0.38442 (19)	0.58215 (4)	0.0144 (2)	
C34	0.58354 (3)	0.6722 (2)	0.70991 (5)	0.0234 (2)	
H34	0.565334	0.807515	0.709773	0.028*	
C341	0.62400 (3)	0.6560 (2)	0.75915 (5)	0.0182 (2)	
C342	0.65468 (3)	0.48341 (19)	0.75655 (4)	0.0154 (2)	
H342	0.649709	0.371929	0.722555	0.018*	
C343	0.69263 (3)	0.47723 (18)	0.80448 (4)	0.01379 (19)	
C344	0.70034 (3)	0.64402 (19)	0.85427 (4)	0.0140 (2)	
C345	0.66880(3)	0.80974 (19)	0.85746 (5)	0.0165 (2)	
C346	0.63073 (3)	0.8169 (2)	0.80957 (5)	0.0207 (2)	
H346	0.609346	0.931306	0.811211	0.025*	
C431	0.71732 (4)	0.1389 (2)	0.75813 (5)	0.0207 (2)	
H43A	0.712251	0.223812	0.718061	0.031*	

H43B	0.692471	0.039486	0.757575	0.031*	
H43C	0.742175	0.032094	0.765084	0.031*	
C441	0.74230 (3)	0.4860 (2)	0.94982 (5)	0.0195 (2)	
H41A	0.736607	0.317514	0.934155	0.029*	
H41B	0.721429	0.533664	0.970960	0.029*	
H41C	0.770842	0.495051	0.979338	0.029*	
C451	0.64624 (3)	1.1251 (2)	0.91407 (5)	0.0196 (2)	
H51A	0.620280	1.034335	0.912316	0.029*	
H51B	0.640421	1.242953	0.879538	0.029*	
H51C	0.656046	1.213390	0.953827	0.029*	
S1S	0.50726 (2)	1.12167 (9)	0.72755 (2)	0.01665 (11)	0.5
O1S	0.4985 (16)	0.8678 (3)	0.7444 (12)	0.026 (2)	0.5
C1S	0.45886 (14)	1.2893 (14)	0.7013 (3)	0.0207 (9)	0.5
H1SA	0.442339	1.228493	0.660195	0.031*	0.5
H1SB	0.465103	1.464184	0.698321	0.031*	0.5
H1SC	0.442536	1.267478	0.730985	0.031*	0.5
C2S	0.52800 (15)	1.2784 (15)	0.7996 (3)	0.0300 (12)	0.5
H2SA	0.510606	1.241255	0.827053	0.045*	0.5
H2SB	0.527643	1.455833	0.791972	0.045*	0.5
H2SC	0.557203	1.224526	0.819443	0.045*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0125 (3)	0.0167 (4)	0.0169 (3)	0.0020 (3)	0.0002 (3)	-0.0032 (3)
O2	0.0179 (4)	0.0181 (4)	0.0202 (4)	0.0021 (3)	-0.0004 (3)	-0.0066 (3)
O31	0.0143 (3)	0.0207 (4)	0.0198 (4)	0.0040 (3)	0.0002 (3)	-0.0052 (3)
O343	0.0150 (3)	0.0195 (4)	0.0151 (3)	0.0036 (3)	0.0015 (3)	-0.0017 (3)
O344	0.0122 (3)	0.0200 (4)	0.0129 (3)	-0.0033 (3)	-0.0014 (3)	0.0018 (3)
O345	0.0171 (4)	0.0253 (4)	0.0179 (4)	0.0004 (3)	0.0008 (3)	-0.0105 (3)
N32	0.0103 (4)	0.0222 (5)	0.0177 (4)	0.0040 (3)	-0.0017 (3)	-0.0063 (3)
N33	0.0104 (4)	0.0231 (5)	0.0144 (4)	0.0001 (3)	0.0003 (3)	-0.0022 (3)
C2	0.0122 (4)	0.0160 (5)	0.0130 (4)	0.0007 (4)	0.0018 (3)	0.0001 (4)
C3	0.0115 (4)	0.0149 (5)	0.0124 (4)	0.0008 (4)	0.0022 (3)	0.0002 (4)
C4	0.0135 (4)	0.0140 (5)	0.0130 (4)	0.0007 (4)	0.0031 (4)	0.0006 (4)
C5	0.0183 (5)	0.0165 (5)	0.0156 (5)	-0.0020 (4)	0.0018 (4)	-0.0006 (4)
C4A	0.0129 (4)	0.0147 (5)	0.0117 (4)	-0.0013 (4)	0.0021 (3)	0.0015 (3)
C6	0.0189 (5)	0.0223 (5)	0.0155 (5)	-0.0060 (4)	-0.0020 (4)	-0.0002 (4)
C7	0.0124 (5)	0.0248 (6)	0.0171 (5)	-0.0022 (4)	-0.0015 (4)	0.0060 (4)
C8	0.0139 (5)	0.0186 (5)	0.0183 (5)	0.0016 (4)	0.0031 (4)	0.0042 (4)
C8A	0.0135 (4)	0.0148 (5)	0.0125 (4)	-0.0021 (4)	0.0020 (4)	0.0008 (4)
C31	0.0119 (4)	0.0179 (5)	0.0123 (4)	0.0003 (4)	0.0019 (3)	-0.0009 (4)
C34	0.0143 (5)	0.0289 (6)	0.0226 (5)	0.0051 (4)	-0.0011 (4)	-0.0099 (4)
C341	0.0131 (5)	0.0229 (5)	0.0163 (5)	-0.0007 (4)	0.0008 (4)	-0.0050 (4)
C342	0.0142 (4)	0.0188 (5)	0.0122 (4)	-0.0016 (4)	0.0024 (4)	-0.0034 (4)
C343	0.0132 (4)	0.0151 (5)	0.0136 (4)	-0.0005 (4)	0.0047 (4)	0.0014 (4)
C344	0.0109 (4)	0.0177 (5)	0.0116 (4)	-0.0032 (4)	0.0007 (3)	0.0010 (4)
C345	0.0157 (5)	0.0191 (5)	0.0137 (5)	-0.0032 (4)	0.0031 (4)	-0.0049 (4)

supporting information

C346	0.0140 (5)	0.0250 (6)	0.0209 (5)	0.0029 (4)	0.0019 (4)	-0.0081 (4)
C431	0.0224 (5)	0.0185 (5)	0.0203 (5)	0.0032 (4)	0.0051 (4)	-0.0037 (4)
C441	0.0193 (5)	0.0220 (5)	0.0145 (5)	-0.0009 (4)	0.0007 (4)	0.0032 (4)
C451	0.0180 (5)	0.0209 (5)	0.0205 (5)	-0.0021 (4)	0.0064 (4)	-0.0075 (4)
S1S	0.0182 (2)	0.0149 (2)	0.0183 (2)	0.00064 (18)	0.00770 (19)	-0.00093 (19)
O1S	0.040 (5)	0.0140 (6)	0.030 (7)	0.0000 (17)	0.020 (7)	-0.0005 (12)
C1S	0.019 (2)	0.0187 (14)	0.0218 (14)	0.003 (2)	0.0018 (17)	0.0027 (10)
C2S	0.033 (3)	0.024 (2)	0.0284 (17)	0.006 (3)	0.001 (2)	-0.0054 (13)

Geometric parameters (Å, °)

O1—C2	1.3702 (12)	C34—C341	1.4629 (14)	
O1—C8A	1.3747 (12)	C34—H34	0.9500	
O2—C2	1.2133 (12)	C341—C342	1.3953 (14)	
O31—C31	1.2234 (13)	C341—C346	1.3955 (14)	
O343—C343	1.3631 (12)	C342—C343	1.3894 (13)	
O343—C431	1.4280 (12)	C342—H342	0.9500	
O344—C344	1.3759 (11)	C343—C344	1.4028 (14)	
O344—C441	1.4356 (12)	C344—C345	1.3955 (14)	
O345—C345	1.3635 (12)	C345—C346	1.3921 (14)	
O345—C451	1.4309 (13)	C346—H346	0.9500	
N32—C31	1.3543 (13)	C431—H43A	0.9800	
N32—N33	1.3793 (11)	C431—H43B	0.9800	
N32—H32	0.870 (16)	C431—H43C	0.9800	
N33—C34	1.2753 (14)	C441—H41A	0.9800	
C2—C3	1.4647 (13)	C441—H41B	0.9800	
C3—C4	1.3547 (14)	C441—H41C	0.9800	
C3—C31	1.5056 (13)	C451—H51A	0.9800	
C4—C4A	1.4340 (13)	C451—H51B	0.9800	
C4—H4	0.9500	C451—H51C	0.9800	
C5—C6	1.3840 (15)	S1S—01S	1.483 (16)	
C5—C4A	1.4057 (14)	S1S—C2S	1.775 (7)	
С5—Н5	0.9500	S1S—C1S	1.782 (5)	
C4A—C8A	1.3935 (14)	C1S—H1SA	0.9800	
C6—C7	1.3965 (16)	C1S—H1SB	0.9800	
С6—Н6	0.9500	C1S—H1SC	0.9800	
С7—С8	1.3856 (15)	C2S—H2SA	0.9800	
С7—Н7	0.9500	C2S—H2SB	0.9800	
C8—C8A	1.3890 (13)	C2S—H2SC	0.9800	
C8—H8	0.9500			
C2	122.80 (8)	C341—C342—H342	120.5	
C343—O343—C431	116.52 (8)	O343—C343—C342	124.14 (9)	
C344—O344—C441	113.00 (8)	O343—C343—C344	115.17 (8)	
C345—O345—C451	116.90 (8)	C342—C343—C344	120.69 (9)	
C31—N32—N33	120.41 (9)	O344—C344—C345	120.16 (9)	
C31—N32—H32	117.6 (10)	O344—C344—C343	120.05 (9)	
N33—N32—H32	121.7 (10)	C345—C344—C343	119.76 (9)	

C34—N33—N32	113.41 (9)	O345—C345—C346	124.54 (9)
O2—C2—O1	115.46 (9)	O345—C345—C344	115.71 (9)
O2—C2—C3	127.12 (9)	C346—C345—C344	119.75 (9)
O1—C2—C3	117.42 (8)	C345—C346—C341	119.92 (10)
C4—C3—C2	119.74 (9)	C345—C346—H346	120.0
C4—C3—C31	117.95 (9)	C341—C346—H346	120.0
C2—C3—C31	122.31 (9)	O343—C431—H43A	109.5
C3—C4—C4A	121.44 (9)	O343—C431—H43B	109.5
C3—C4—H4	119.3	H43A—C431—H43B	109.5
C4A—C4—H4	119.3	O343—C431—H43C	109.5
C6C5C4A	119.72 (10)	H43A—C431—H43C	109.5
C6—C5—H5	120.1	H43B—C431—H43C	109.5
C4A—C5—H5	120.1	O344—C441—H41A	109.5
C8A - C4A - C5	118.30 (9)	O344—C441—H41B	109.5
C8A - C4A - C4	117.88 (9)	H41A—C441—H41B	109.5
C5-C4A-C4	123.81 (9)	0344—C441—H41C	109.5
$C_{5}-C_{6}-C_{7}$	120.56 (10)	H41A—C441—H41C	109.5
C5—C6—H6	119 7	H41B—C441—H41C	109.5
C7—C6—H6	119.7	0345—C451—H51A	109.5
C8-C7-C6	120 80 (9)	0345—C451—H51B	109.5
C8—C7—H7	119.6	H51A—C451—H51B	109.5
C6-C7-H7	119.6	0345—C451—H51C	109.5
C7—C8—C8A	117.99 (10)	H51A—C451—H51C	109.5
C7—C8—H8	121.0	H51B-C451-H51C	109.5
C8A—C8—H8	121.0	018— $$18$ — $C28$	105.5 (10)
01-C8A-C8	116.63 (9)	018 - 518 - 018	109.8 (19)
01—C8A—C4A	120.73 (9)	C_{28} S18 $-C_{18}$	96.99 (18)
C8—C8A—C4A	122.62 (9)	SIS—CIS—HISA	109.5
031—C31—N32	124.05 (9)	S1S—C1S—H1SB	109.5
031—C31—C3	121.09 (9)	H1SA—C1S—H1SB	109.5
N32—C31—C3	114.86 (9)	S1S—C1S—H1SC	109.5
N33—C34—C341	121.94 (10)	H1SA—C1S—H1SC	109.5
N33—C34—H34	119.0	H1SB—C1S—H1SC	109.5
C341—C34—H34	119.0	S1S—C2S—H2SA	109.5
C342—C341—C346	120.85 (9)	S1S—C2S—H2SB	109.5
C_{342} C_{341} C_{34}	121.44 (9)	H2SA—C2S—H2SB	109.5
C346—C341—C34	117.71 (9)	S1S—C2S—H2SC	109.5
C343—C342—C341	118.94 (9)	H2SA—C2S—H2SC	109.5
C343—C342—H342	120.5	H2SB—C2S—H2SC	109.5
	12010		10,10
C31—N32—N33—C34	-173.67(10)	C4—C3—C31—N32	-179.03(9)
C8A - 01 - C2 - 02	-179.61(9)	$C_2 - C_3 - C_3 - N_{32}$	0.25 (14)
C8A = 01 = C2 = C3	-0.32(13)	N32—N33—C34—C341	177.68 (10)
02-C2-C3-C4	179.69 (10)	N33—C34—C341—C342	9.81 (18)
01-C2-C3-C4	0.50 (14)	N33—C34—C341—C346	-169.23(11)
02-C2-C3-C31	0.42 (16)	C346—C341—C342—C343	-1.33 (16)
01 - C2 - C3 - C31	-178.77(8)	C34—C341—C342—C343	179.66 (10)
$C_{2} = C_{3} = C_{4} = C_{4}$	-0.40(14)	C431 - O343 - C343 - C342	-2.19(14)
	0.10(11)	0.01 0.010 0.010 0.012	2·17 (17)

C31—C3—C4—C4A	178.90 (9)	C431—O343—C343—C344	178.22 (9)
C6—C5—C4A—C8A	-1.25 (15)	C341—C342—C343—O343	179.45 (9)
C6—C5—C4A—C4	177.48 (9)	C341—C342—C343—C344	-0.98 (15)
C3—C4—C4A—C8A	0.11 (14)	C441—O344—C344—C345	92.74 (11)
C3—C4—C4A—C5	-178.62 (9)	C441—O344—C344—C343	-89.56 (11)
C4A—C5—C6—C7	1.01 (16)	O343—C343—C344—O344	5.20 (13)
C5—C6—C7—C8	0.00 (16)	C342—C343—C344—O344	-174.41 (9)
C6—C7—C8—C8A	-0.72 (15)	O343—C343—C344—C345	-177.09 (9)
C2-01-C8A-C8	178.49 (9)	C342—C343—C344—C345	3.30 (15)
C2	0.04 (14)	C451—O345—C345—C346	1.34 (15)
C7-C8-C8A-O1	-177.96 (9)	C451—O345—C345—C344	-178.86 (9)
C7—C8—C8A—C4A	0.46 (15)	O344—C344—C345—O345	-5.41 (14)
C5-C4A-C8A-O1	178.88 (9)	C343—C344—C345—O345	176.88 (9)
C4—C4A—C8A—O1	0.08 (14)	O344—C344—C345—C346	174.40 (9)
C5-C4A-C8A-C8	0.52 (15)	C343—C344—C345—C346	-3.31 (15)
C4—C4A—C8A—C8	-178.28 (9)	O345—C345—C346—C341	-179.17 (10)
N33—N32—C31—O31	-7.04 (16)	C344—C345—C346—C341	1.03 (17)
N33—N32—C31—C3	172.52 (8)	C342—C341—C346—C345	1.31 (17)
C4—C3—C31—O31	0.54 (14)	C34—C341—C346—C345	-179.64 (10)
C2—C3—C31—O31	179.82 (9)		

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the O1/C2–C4/C4A/C8A, C4A/C5–C8/C8A and C341–C346 rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N32—H32…O2	0.870 (16)	1.955 (15)	2.6878 (12)	141.0 (14)
C441—H41 <i>C</i> ···O345 ⁱ	0.98	2.58	3.4772 (12)	152
C451—H51A····O1 ⁱⁱ	0.98	2.65	3.4463 (13)	138
C34—H34…O1S	0.95	2.57	3.30 (5)	134
C34—H34…O1 <i>S</i> ⁱⁱ	0.95	2.63	3.34 (5)	133
C34—H34…S1 <i>S</i>	0.95	2.69	3.6158 (12)	166
C431—H43 <i>C</i> ···O343 ⁱⁱⁱ	0.98	2.50	3.2505 (13)	133
C2S—H2SA···N32 ^{iv}	0.98	2.61	3.3000 (6)	127
C4—H4…O31	0.95	2.45	2.7761 (12)	100
C4—H4…O31 ^v	0.95	2.38	3.2415 (12)	150
C5—H5…O31 ^v	0.95	2.59	3.3931 (13)	143
C431—H43 B ···· $Cg3^{vi}$	0.98	2.73	3.5882 (13)	147
C451—H51 <i>B</i> ··· <i>C</i> g3 ^{vi}	0.98	2.95	3.8562 (12)	155
C451—H51 <i>C</i> ··· <i>C</i> g2 ^{vii}	0.98	2.83	3.6883 (13)	147
C31—O31···Cg1 ^{vii}	0	0	3.3971 (6)	90 (1)

Symmetry codes: (i) -x+3/2, -y+3/2, -z+2; (ii) -x+1, y, -z+3/2; (iii) -x+3/2, y-1/2, -z+3/2; (iv) -x+1, y+1, -z+3/2; (v) -x+1, -y, -z+1; (vi) x, y-1, z; (vii) -x+1, -y+1, -z+1.

(E)-N'-Benzylidene-2-oxo-2H-chromene-3-carbohydrazide (II)

Crystal data

$C_{17}H_{12}N_2O_3$	Triclinic, $P\overline{1}$
$M_r = 292.29$	<i>a</i> = 5.6715 (1) Å

b = 7.4164(1) Å $D_{\rm x} = 1.463 {\rm Mg} {\rm m}^{-3}$ c = 15.9819(3) Å Cu *Ka* radiation, $\lambda = 1.54178$ Å $\alpha = 88.369 (1)^{\circ}$ Cell parameters from 8290 reflections $\beta = 84.147 (1)^{\circ}$ $\theta = 6.0 - 70.3^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$ $\gamma = 82.961 \ (2)^{\circ}$ T = 100 K $V = 663.60 (2) \text{ Å}^3$ Z = 2Plate, colourless F(000) = 304 $0.22 \times 0.12 \times 0.05 \text{ mm}$ Data collection Rigaku 007HF equipped with Varimax confocal Absorption correction: multi-scan mirrors and an AFC11 goniometer and HyPix (CrysAlisPro; Rigaku OD, 2019) 6000 detector $T_{\rm min} = 0.930, T_{\rm max} = 1.000$ diffractometer 11641 measured reflections Radiation source: Rotating anode, Rigaku 007 2352 independent reflections 2250 reflections with $I > 2\sigma(I)$ HF Varimax focusing mirrors monochromator $R_{\rm int} = 0.027$ $\theta_{\rm max} = 67.1^\circ, \ \theta_{\rm min} = 5.6^\circ$ Detector resolution: 10 pixels mm⁻¹ profile data from ω -scans $h = -6 \rightarrow 6$ $k = -8 \rightarrow 8$ $l = -19 \rightarrow 19$ Refinement Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.033$ and constrained refinement $wR(F^2) = 0.104$ $w = 1/[\sigma^2(F_0^2) + (0.0858P)^2 + 0.127P]$ S = 0.88where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ 2352 reflections $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$ 203 parameters 0 restraints $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.38486 (11)	0.36429 (9)	0.68964 (4)	0.0233 (2)	
H1	0.276 (3)	0.3194 (18)	0.4545 (9)	0.043 (4)*	
O2	0.19764 (11)	0.41255 (9)	0.57568 (4)	0.0256 (2)	
031	0.77445 (12)	0.11739 (10)	0.43121 (4)	0.0316 (2)	
N32	0.40134 (15)	0.26503 (11)	0.42751 (5)	0.0220 (2)	
N33	0.40966 (14)	0.23814 (10)	0.34233 (5)	0.0227 (2)	
C2	0.37588 (16)	0.34215 (12)	0.60485 (6)	0.0213 (2)	
C3	0.58217 (17)	0.23662 (12)	0.55958 (6)	0.0213 (2)	
C4	0.76971 (17)	0.16687 (12)	0.60074 (6)	0.0223 (2)	
H4	0.9026	0.0993	0.5703	0.027*	
C5	0.96435 (17)	0.12171 (13)	0.73471 (6)	0.0240 (2)	
Н5	1.1005	0.0524	0.7070	0.029*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C4A	0.77384 (17)	0.19200 (12)	0.68915 (6)	0.0217 (2)	
C6	0.95376 (17)	0.15324 (13)	0.81971 (6)	0.0256 (2)	
H6	1.0835	0.1068	0.8504	0.031*	
C7	0.75272 (18)	0.25331 (13)	0.86075 (6)	0.0264 (2)	
H7	0.7472	0.2744	0.9193	0.032*	
C8	0.56165 (18)	0.32215 (13)	0.81749 (6)	0.0251 (2)	
H8	0.4243	0.3888	0.8458	0.030*	
C8A	0.57482 (17)	0.29175 (12)	0.73184 (6)	0.0219 (2)	
C31	0.59517 (17)	0.20132 (12)	0.46715 (6)	0.0232 (2)	
C34	0.22002 (17)	0.29462 (12)	0.30817 (6)	0.0216 (2)	
H34	0.0821	0.3485	0.3413	0.026*	
C341	0.21746 (16)	0.27545 (12)	0.21730 (6)	0.0215 (2)	
C342	0.41939 (17)	0.19665 (13)	0.16727 (6)	0.0238 (2)	
H342	0.5605	0.1523	0.1923	0.029*	
C343	0.41260 (17)	0.18368 (13)	0.08144 (6)	0.0274 (2)	
H343	0.5495	0.1299	0.0478	0.033*	
C344	0.20758 (19)	0.24849 (14)	0.04380 (6)	0.0289 (2)	
H344	0.2048	0.2399	-0.0153	0.035*	
C345	0.00689 (18)	0.32579 (14)	0.09316 (6)	0.0280 (2)	
H345	-0.1337	0.3703	0.0678	0.034*	
C346	0.01167 (17)	0.33801 (13)	0.17960 (6)	0.0249 (2)	
H346	-0.1267	0.3895	0.2132	0.030*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0226 (4)	0.0284 (4)	0.0176 (4)	0.0025 (3)	-0.0017 (3)	-0.0030 (3)
O2	0.0214 (4)	0.0315 (4)	0.0223 (4)	0.0050 (3)	-0.0029 (3)	-0.0030 (3)
O31	0.0276 (4)	0.0432 (4)	0.0196 (4)	0.0139 (3)	-0.0021 (3)	-0.0048 (3)
N32	0.0215 (4)	0.0275 (4)	0.0155 (4)	0.0034 (3)	-0.0008(3)	-0.0034 (3)
N33	0.0251 (4)	0.0257 (4)	0.0165 (4)	0.0002 (3)	-0.0014 (3)	-0.0022 (3)
C2	0.0229 (5)	0.0227 (5)	0.0181 (5)	-0.0016 (4)	-0.0014 (4)	-0.0013 (3)
C3	0.0215 (5)	0.0223 (5)	0.0192 (5)	-0.0002 (4)	-0.0009 (4)	-0.0011 (4)
C4	0.0226 (5)	0.0231 (5)	0.0201 (5)	-0.0001 (4)	0.0005 (4)	-0.0017 (4)
C5	0.0245 (5)	0.0251 (5)	0.0224 (5)	-0.0026 (4)	-0.0024 (4)	-0.0004 (4)
C4A	0.0236 (5)	0.0218 (5)	0.0199 (5)	-0.0032 (4)	-0.0023 (4)	-0.0002 (3)
C6	0.0279 (5)	0.0270 (5)	0.0232 (5)	-0.0045 (4)	-0.0076 (4)	0.0016 (4)
C7	0.0348 (5)	0.0279 (5)	0.0175 (5)	-0.0066 (4)	-0.0037 (4)	-0.0015 (4)
C8	0.0285 (5)	0.0260 (5)	0.0200 (5)	-0.0021 (4)	0.0004 (4)	-0.0029 (4)
C8A	0.0238 (5)	0.0221 (5)	0.0201 (5)	-0.0031 (4)	-0.0031 (4)	-0.0001 (4)
C31	0.0237 (5)	0.0242 (5)	0.0200 (5)	0.0021 (4)	-0.0006 (4)	-0.0009 (4)
C34	0.0204 (5)	0.0227 (5)	0.0208 (5)	0.0009 (3)	-0.0008 (4)	-0.0013 (3)
C341	0.0233 (5)	0.0212 (5)	0.0200 (5)	-0.0025 (4)	-0.0024 (4)	-0.0008 (4)
C342	0.0218 (5)	0.0270 (5)	0.0222 (5)	-0.0007 (4)	-0.0033 (4)	-0.0009 (4)
C343	0.0272 (5)	0.0315 (5)	0.0225 (5)	-0.0025 (4)	0.0022 (4)	-0.0036 (4)
C344	0.0360 (6)	0.0336 (5)	0.0178 (5)	-0.0057 (4)	-0.0040 (4)	-0.0014 (4)
C345	0.0288 (5)	0.0310 (5)	0.0247 (5)	-0.0011 (4)	-0.0089 (4)	0.0005 (4)
C346	0.0236 (5)	0.0262 (5)	0.0239 (5)	0.0013 (4)	-0.0028 (4)	-0.0015 (4)

Geometric parameters (Å, °)

01—C8A	1.3749 (11)	С6—Н6	0.9500
01—C2	1.3765 (11)	C7—C8	1.3820 (14)
O2—C2	1.2103 (11)	С7—Н7	0.9500
O31—C31	1.2237 (12)	C8—C8A	1.3867 (13)
N32—C31	1.3530 (13)	C8—H8	0.9500
N32—N33	1.3768 (11)	C34—C341	1.4649 (13)
N32—H1	0.857 (15)	С34—Н34	0.9500
N33—C34	1.2753 (13)	C341—C346	1.3912 (13)
C2-C3	1.4629 (13)	C341—C342	1.4030 (13)
C3—C4	1.3492 (13)	C342—C343	1.3826 (13)
C3—C31	1.5003 (13)	C342—H342	0.9500
C4—C4A	1 4334 (13)	$C_{343} - C_{344}$	1 3908 (14)
C4—H4	0.9500	C343—H343	0.9500
C5-C6	1 3790 (13)	C_{344} C_{345}	1 3890 (15)
C_{5} C_{4}	1.4036 (13)	C344—H344	0.9500
C5—H5	0.9500	C_{345} C_{346}	1 3903 (13)
C4A - C8A	1 3978 (14)	C345—H345	0.9500
C6-C7	1.3960 (14)	C346—H346	0.9500
0-07	1.5900 (14)	0540-11540	0.9300
C8A—O1—C2	123.10(7)	C8A—C8—H8	120.7
C31—N32—N33	118.22 (8)	O1—C8A—C8	117.65 (8)
C31—N32—H1	121.3 (9)	O1—C8A—C4A	120.69 (8)
N33—N32—H1	120.5 (9)	C8—C8A—C4A	121.66 (9)
C34—N33—N32	116.05 (8)	O31—C31—N32	123.05 (9)
O2—C2—O1	116.32 (8)	O31—C31—C3	120.11 (9)
O2—C2—C3	126.92 (8)	N32—C31—C3	116.83 (8)
O1—C2—C3	116.76 (8)	N33—C34—C341	119.21 (8)
C4—C3—C2	120.21 (9)	N33—C34—H34	120.4
C4—C3—C31	117.51 (8)	C341—C34—H34	120.4
C2—C3—C31	122.28 (8)	C346—C341—C342	119.23 (9)
C3—C4—C4A	121.77 (9)	C346—C341—C34	119.47 (8)
C3—C4—H4	119.1	C342—C341—C34	121.30 (9)
C4A—C4—H4	119.1	C343—C342—C341	119.88 (9)
C6—C5—C4A	119.97 (9)	C343—C342—H342	120.1
С6—С5—Н5	120.0	C341—C342—H342	120.1
C4A—C5—H5	120.0	C342—C343—C344	120.75 (9)
C5—C4A—C8A	118.69 (9)	C342—C343—H343	119.6
C5—C4A—C4	123.84 (9)	C344—C343—H343	119.6
C8A—C4A—C4	117.47 (9)	C345—C344—C343	119.56 (9)
C5—C6—C7	120.12 (9)	C345—C344—H344	120.2
С5—С6—Н6	119.9	C343—C344—H344	120.2
С7—С6—Н6	119.9	C344—C345—C346	120.04 (9)
С8—С7—С6	121.01 (9)	C344—C345—H345	120.0
С8—С7—Н7	119.5	С346—С345—Н345	120.0
С6—С7—Н7	119.5	C341—C346—C345	120.54 (9)
C7—C8—C8A	118.53 (9)	C341—C346—H346	119.7

supporting information

С7—С8—Н8	120.7	С345—С346—Н346	119.7
C31 N32 N33 C34	177 57 (7)	C4 C4A C8A O1	-0.84(14)
$C_{31} - C_{32} - C_{33} - C_{34}$	177.57 (7)	$C_{-} C_{+} C_{+$	-0.11(14)
$C_{8A} = 01 = 02 = 02$	-0.40(13)	$C_{4} = C_{4} + C_{6} + C_{6$	17054(8)
C_{0} C_{1} C_{2} C_{3} C_{4}	170 63 (0)	N_{33} N_{32} C_{31} C_{31}	-1.83(15)
02 - 02 - 03 - 04	-0.27(13)	$N_{33} = N_{32} = C_{31} = C_{31}$	1.83(13)
01 - 02 - 03 - 04	0.27(13)	$n_{33} - n_{32} - c_{31} - c_{31}$	178.00(7)
02 - 02 - 03 - 031	-0.41(10)	$C_4 = C_3 $	-2.44(14)
01 - 02 - 03 - 031	1/9.69 (/)	$C_2 = C_3 = C_3 = 0_3 I_1$	1/7.61 (9)
C2—C3—C4—C4A	0.36 (15)	C4—C3—C31—N32	177.08 (7)
C31—C3—C4—C4A	-179.59 (7)	C2—C3—C31—N32	-2.87 (14)
C6—C5—C4A—C8A	-0.67 (14)	N32—N33—C34—C341	178.28 (7)
C6—C5—C4A—C4	179.70 (8)	N33—C34—C341—C346	-179.53 (8)
C3—C4—C4A—C5	179.82 (8)	N33—C34—C341—C342	-0.13 (14)
C3—C4—C4A—C8A	0.18 (15)	C346—C341—C342—C343	0.63 (14)
C4A—C5—C6—C7	0.70 (14)	C34—C341—C342—C343	-178.78 (8)
C5—C6—C7—C8	0.06 (14)	C341—C342—C343—C344	0.20 (15)
C6—C7—C8—C8A	-0.82 (14)	C342—C343—C344—C345	-0.51 (15)
C2-01-C8A-C8	-179.39 (7)	C343—C344—C345—C346	-0.01 (15)
C2	0.97 (14)	C342—C341—C346—C345	-1.15 (14)
C7—C8—C8A—O1	-178.79 (7)	C34—C341—C346—C345	178.27 (8)
C7—C8—C8A—C4A	0.85 (15)	C344—C345—C346—C341	0.85 (15)
C5-C4A-C8A-O1	179.51 (8)		~ /

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N32—H1…O2	0.857 (15)	2.062 (15)	2.7238 (10)	133.5 (12)
C34—H34…O2 ⁱ	0.95	2.54	3.4417 (11)	159
C4—H4…O31	0.95	2.40	2.7415 (11)	101
C4—H4···O31 ⁱⁱ	0.95	2.28	3.1377 (12)	149
C5—H5…O31 ⁱⁱ	0.95	2.57	3.3456 (12)	139
C346—H346…O1 ⁱ	0.95	2.63	3.5195 (11)	156

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*, -*z*+1.