

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 12 November 2019
Accepted 21 November 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; benzimidazol-2one; hydrogen bond; $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) interaction; π-stacking; Hirshfeld surface.

CCDC reference: 1967468

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$

Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one

Asmaa Saber, ${ }^{\text {a }}$ Mohamed Srhir, ${ }^{\text {a** }}$ Tuncer Hökelek, ${ }^{\text {b }}$ Joel T. Mague, ${ }^{\text {c }}$ Noureddine Hamou Ahabchane, ${ }^{\text {a }}$ Nada Kheira Sebbar ${ }^{\mathrm{d}, a}$ and El Mokhtar Essassi ${ }^{\text {a }}$

${ }^{\text {a Laboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP }}$ 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, ${ }^{\text {b }}$ Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, and
${ }^{d}$ Laboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco. *Correspondence e-mail: mohamedsrhir2018@gmail.com

In the title molecule, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$, the dihydrobenzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, $\mathrm{C}-\mathrm{H}_{\text {Mthy }} \cdots \pi$ (ring) interactions and $\mathrm{C}-\mathrm{H}_{\text {Prop }} \cdots \mathrm{O}_{\text {Dhyr }}$ (Mthy $=$ methyl, Prop $=$ prop-2-yn-1-yl and Dhyr $=$ dihydro $)$ hydrogen bonds form corrugated layers parallel to $(10 \overline{1})$, which are associated through additional $\mathrm{C}-\mathrm{H}_{\mathrm{Bnz}} \cdots \mathrm{O}_{\mathrm{Dhyr}}(\mathrm{Bnz}=$ benzene $)$ hydrogen bonds and head-to-tail, slipped, $\pi-$ stacking [centroid-to-centroid distance $=3.7712(7) \AA$ A interactions between dihydrobenzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from $\mathrm{H} \cdots \mathrm{H}(44.1 \%), \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}(33.5 \%)$ and $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ (13.4%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that in the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond energies are 46.8 and 32.5 (for $\mathrm{C}-\mathrm{H}_{\text {Prop }} \cdots \mathrm{O}_{\text {Dhyr }}$) and 20.2 (for $\mathrm{C}-\mathrm{H}_{\mathrm{Bnz}} \cdots \mathrm{O}_{\text {Dhyr }}$) $\mathrm{kJ} \mathrm{mol}^{-1}$. Density functional theory (DFT) optimized structures at the B3LYP/ 6-311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Benzimidazole is an aromatic heterocyclic organic compound that plays an important role in medicinal chemistry and pharmacology. The most prominent benzimidazole moiety present in nature is N-ribosyl-dimethylbenzimidazole and it serves as the axial ligand for cobalt in vitamin B12 (Walia et al., 2011). Benzimidazole derivatives possess many biological activities such as anti-microbial, anti-fungal, anti-histaminic, anti-inflammatory, anti-viral, anti-oxidant, anti-cancer and anti-ulcerative (Farukh \& Mubashira, 2009; Ayhan-Kılcıgil et al., 2007; Soderlind et al., 1999; Luo et al., 2011; NavarreteVázquez et al., 2011). They are considered to be an important moiety for the development of molecules of pharmaceutical interest (Mondieig et al., 2013; Lakhrissi et al., 2008). As a continuation of our research on the development of N substituted benzimidazole derivatives and the evaluation of their potential pharmacological activities (Saber et al., 2018a,b, 2020; Ouzidan et al., 2011), we have studied the
alkylation reaction of iodomethane with 1-(prop-2-ynyl)-1 H -benzoimidazol- $2(3 H)$-one in the presence of tetra- n-butylammonium bromide as catalyst and potassium carbonate as base, to give the title compound, I in good yield. We report herein on its synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis and the intermolecular interaction energies and the density functional theory (DFT) computational calculations carried out at the B3LYP/6-311 G(d,p) level for comparison with the experimentally determined molecular structure in the solid state.

2. Structural commentary

In the title compound, the dihydrobenzimidazol-2-one moiety is planar to within 0.0160 (8) \AA (r.m.s. deviation $=0.0082$) with atom C7 deviating the most from the mean plane and a prop-2-yn-1-yl substituent rotated well out of this plane as shown by the $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$ torsion angle of $62.16(13)^{\circ}$ (Fig. 1).

3. Supramolecular features

In the crystal, inversion dimers are formed by pairs of C $\mathrm{H}_{\text {Mthy }} \cdots C g 1^{\mathrm{i}}$ interactions [Mthy = methyl; symmetry code: (i) $-x, 1-y, 1-z ; C g 1$ is the centroid of the benzene $(A ; \mathrm{C} 1-$ C6), ring]; which are connected along the b-axis direction by $\mathrm{C}-\mathrm{H}_{\mathrm{Bnz}} \cdots \mathrm{O}_{\text {Dhyr }}$ hydrogen bonds $(\mathrm{Bnz}=$ benzene and Dhyr $=$ dihydro) and along the a-axis direction at $c a 90^{\circ}$ to this and

Figure 1
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots \cdot A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {ix }}$	1.005 (15)	2.566 (15)	3.4885 (15)	152.6 (11)
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{Cg} 1^{\mathrm{v}}$	1.004 (16)	2.626 (15)	3.5413 (13)	151.1 (12)
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 1^{\text {vi }}$	0.978 (15)	2.347 (15)	3.3198 (14)	172.9 (12)
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 1^{\text {vii }}$	1.010 (15)	2.181 (15)	3.1569 (15)	162.1 (12)

Symmetry codes: (v) $-x,-y+1,-z+1$; (vi) $\quad-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (vii)
$-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2} ;$ (ix) $x, y-1, z$.
parallel to $(10 \overline{1})$ by inversion-related $\mathrm{C}-\mathrm{H}_{\text {Prop }} \cdots \mathrm{O}_{\text {Dhyr }}$ hydrogen bonds (Table 1). The resulting corrugated layers are parallel to $(10 \overline{1})$ and are connected in pairs by slipped, head-to-tail π-stacking interactions between the dihydro-benzimidazol-2-one moieties, $\left[C g 2 \cdots C g 1^{\mathrm{ii}}=3.7712\right.$ (7) \AA, dihedral angle $=0.96(6)^{\circ}$; symmetry code: (ii) $1-x, 1-y, 1-z$; $C g 1$ and $C g 2$ are the centroids of rings A and $B(\mathrm{~N} 1 / \mathrm{N} 2 / \mathrm{C} 1 / \mathrm{C} 6 /$ C 7) and $\mathrm{C}-\mathrm{H}_{\text {Prop }} \cdots \mathrm{O}_{\text {Dhyr }}$ (Prop = prop-2-yn-1-yl) hydrogen bonds (Table 1, Figs. 2 and 3).

Figure 2
A partial packing diagram viewed along the a-axis direction with $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) and π-stacking interactions shown, respectively, by black, green and orange dashed lines.

Figure 3
A partial packing diagram viewed along the b-axis direction with intermolecular interactions depicted as in Fig. 2.

Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over $d_{\text {norm }}$ in the range -0.3997 to 1.3219 a.u.

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman \& Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In

Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range -0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree-Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Table 2
Selected interatomic distances (\AA).

$\mathrm{O} 1 \cdots \mathrm{H} 9 A$	$2.491(14)$	$\mathrm{C} 11 \cdots \mathrm{O}^{\text {vii }}$	$3.1569(15)$
$\mathrm{O} 1 \cdots \mathrm{H} 3^{\mathrm{i}}$	$2.566(15)$	$\mathrm{C} 2 \cdots \mathrm{H} 8 A^{\text {iv }}$	$2.82(2)$
$\mathrm{O} 1 \cdots \mathrm{H} 8 B$	$2.516(19)$	$\mathrm{C} 3 \cdots \mathrm{H} 8 C^{\mathrm{v}}$	$2.859(15)$
$\mathrm{O} 1 \cdots \mathrm{H} 9 B^{\text {ii }}$	$2.346(14)$	$\mathrm{C} 3 \cdots \mathrm{H} 8 A^{\text {iv }}$	$2.92(2)$
$\mathrm{O} 1 \cdots \mathrm{H} 11^{\text {iii }}$	$2.181(15)$	$\mathrm{C} 4 \cdots \mathrm{H} 8 C^{\mathrm{v}}$	$2.810(15)$
$\mathrm{C} 2 \cdots \mathrm{C} 10$	$3.3889(16)$	$\mathrm{C} 5 \cdots \mathrm{H} 8 C^{\mathrm{v}}$	$2.935(15)$
$\mathrm{C} 3 \cdots \mathrm{C} 8^{\text {iv }}$	$3.5335(17)$	$\mathrm{C} 8 \cdots \mathrm{H} 5$	$2.983(14)$
$\mathrm{C} 4 \cdots \mathrm{C}^{\mathrm{v}}$	$3.4947(17)$	$\mathrm{C} 9 \cdots \mathrm{H} 2$	$2.975(14)$
$\mathrm{C} 4 \cdots \mathrm{C}^{\text {iv }}$	$3.5437(16)$	$\mathrm{C} 10 \cdots \mathrm{H} 4^{\text {viii }}$	$2.976(15)$
$\mathrm{C} 5 \cdots \mathrm{C}^{\text {v }}$	$3.5884(17)$	$\mathrm{C} 11 \cdots \mathrm{H} 5^{\text {iv }}$	$2.865(15)$
$\mathrm{C} 6 \cdots \mathrm{C}^{\text {iv }}$	$3.5349(14)$	$\mathrm{C} 11 \cdots \mathrm{H} 4^{\text {viii }}$	$2.705(15)$
$\mathrm{C} 9 \cdots 1^{\text {vi }}$	$3.3198(14)$		

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (iv) $-x+1,-y+1,-z+1$; (v) $-x,-y+1,-z+1$; (vi) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (vii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (viii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
the HS plotted over $d_{\text {norm }}$ (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The brightred spots appearing near O1 and the hydrogen atom H11 indicate their roles as the donors and/or acceptors, respectively; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogenbond acceptors). The shape-index of the HS is a tool to visualize
$\pi-\pi$ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no $\pi-\pi$ interactions. Fig. 6 clearly suggests that there are $\pi-\pi$ interactions in (I).

Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $\mathrm{H} \cdots \mathrm{H},(c) \mathrm{H} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{H}$, (d) $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H},(e) \mathrm{C} \cdots \mathrm{C}$, (f) $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ and $(g) \mathrm{N} \cdots \mathrm{C} /$ $\mathrm{C} \cdots \mathrm{N}$ interactions. The d_{i} and d_{e} values are the closest internal and external distances (in \AA) from given points on the Hirshfeld surface contacts.

The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$, $\mathrm{C} \cdots \mathrm{C}, \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ and $\mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}$ contacts (McKinnon et al., 2007) are illustrated in Fig. 7b-g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is $\mathrm{H} \cdots \mathrm{H}$ contributing 44.1% to the overall crystal packing, which is reflected in Fig. $7 b$ as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at $d_{\mathrm{e}}=d_{\mathrm{i}}=1.22 \AA$. The presence of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions gives rise to pairs of characteristic wings in the fingerprint plot delineated into $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ contacts, Fig. $7 c$. , contributing 33.5% to the HS (Table 2); these are viewed as pairs of spikes with the tips at $d_{\text {e }}$ $+d_{\mathrm{i}}=2.56 \AA$. The pair of wings in Fig. $7 d$ has a symmetrical distribution of points with the edges at $d_{\mathrm{e}}+d_{\mathrm{i}}=2.09 \AA$ arising from the $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ contacts (13.4% contribution). The $\mathrm{C} \cdots \mathrm{C}$ contacts, Fig. 7e, have an arrow-shaped distribution of points with the tip at $d_{\mathrm{e}}=d_{\mathrm{i}}=1.75 \AA$. The $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{N}$ contacts, contributing 2.9% to the overall crystal packing, are depicted in Fig. $7 f$ as widely scattered points. Finally, the $\mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}$ interactions, contributing 2.4% to the overall crystal packing, are shown in Fig. $7 g$ as tiny characteristic wings with the tips at $d_{\mathrm{e}}+d_{\mathrm{i}}=3.45 \AA$.

The Hirshfeld surface representations with the function $d_{\text {norm }}$ plotted onto the surface are shown for the $\mathrm{H} \cdots \mathrm{H}$, $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ interactions in Fig. $8 a-c$, respectively.

Figure 8
The Hirshfeld surface representations with the function $d_{\text {norm }}$ plotted onto the surface for (a) $\mathrm{H} \cdots \mathrm{H}$, (b) $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and (c) $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ interactions.

The Hirshfeld surface analysis confirms the importance of H -atom contacts in establishing the packing. The large number of $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

5. Interaction energy calculations

The intermolecular interaction energies were calculated using the CE-B3LYP/6-31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where a cluster of molecules is generated by applying crystallographic symmetry operations with respect to a selected central molecule within the default radius of $3.8 \AA$ (Turner et al., 2014). The total intermolecular energy $\left(E_{\mathrm{tot}}\right)$ is the sum of electrostatic $\left(E_{\text {ele }}\right)$, polarization $\left(E_{\mathrm{pol}}\right)$, dispersion $\left(E_{\mathrm{dis}}\right)$ and exchange-repulsion ($E_{\text {rep }}$) energies (Turner et al., 2015) with scale factors of 1.057, $0.740,0.871$ and 0.618 , respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in $\mathrm{kJ} \mathrm{mol}^{-1}$) were calculated to be $-17.4\left(E_{\text {ele }}\right),-3.5\left(E_{\mathrm{pol}}\right),-62.6\left(E_{\mathrm{dis}}\right), 46.5$ ($E_{\text {rep }}$) and -46.8 $\left(E_{\text {tot }}\right)$ for $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 1,-12.4\left(E_{\text {ele }}\right),-1.9$ $\left(E_{\mathrm{pol}}\right),-41.6\left(E_{\mathrm{dis}}\right), 29.6\left(E_{\mathrm{rep}}\right)$ and $-32.5\left(E_{\mathrm{tot}}\right)$ for C9$\mathrm{H} 9 B \cdots \mathrm{O} 1$ and $-13.7\left(E_{\text {ele }}\right),-3.7\left(E_{\mathrm{pol}}\right),-15.5\left(E_{\mathrm{dis}}\right), 17.0$ $\left(E_{\text {rep }}\right)$ and $-20.2\left(E_{\text {tot }}\right)$ for $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$.

6. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6-311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and

Table 3
Comparison of the selected (X-ray and DFT) geometric data ($\AA,{ }^{\circ}$).

Bonds/angles	X-ray	B3LYP/6-311 G(d,p)
O1-C7	$1.2281(13)$	1.24660
N1-C7	$1.3735(14)$	1.39764
N1-C6	$1.3874(15)$	1.40100
N1-C8	$1.4526(14)$	1.45375
N2-C7	$1.3807(14)$	1.40268
N2-C1	$1.3910(13)$	1.40222
N2-C9	$1.4545(14)$	1.46036
C7-N1-C6	$110.19(9)$	110.10303
C7-N1-C8	$124.14(10)$	122.94288
C6-N1-C8	$125.66(10)$	126.95366
C7-N2-C1	$110.16(9)$	110.18664
C7-N2-C9	$123.55(9)$	122.02491
C1-N2-C9	$126.00(9)$	126.78733
C2-C1-N2	$131.64(10)$	132.00719

experimental results are in good agreement (Table 3). The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. $E_{\text {HOMO }}$ and $E_{\text {LUMO }}$ clarify the inevitable charge-exchange collaboration inside the studied material and are given in Table 4 along with the electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ). The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The

Figure 9
The energy band gap of the title compound.

Table 4
Calculated energies for the title compound.

Molecular Energy (a.u.) (eV)	
Total Energy $T E(\mathrm{eV})$	-16594.1662
$E_{\text {HOMO }}(\mathrm{eV})$	-5.8885
$E_{\text {LUMO }}(\mathrm{eV})$	-0.4770
Energy gap, $\Delta E(\mathrm{eV})$	5.4115
Dipole moment, $\mu($ Debye $)$	2.8313
Ionization potential, $I(\mathrm{eV})$	5.8885
Electron affinity, A	2.6040
Electro negativity, χ	0.31828
Hardness, η	2.7058
Electrophilicity index, ω	1.8719
Softness, σ	0.3696
Fraction of electron transferred, ΔN	0.7054

HOMO and LUMO are localized in the plane extending from the whole 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one ring. The energy band gap [$\Delta E=E_{\mathrm{LUMO}}-$ $\left.E_{\text {HOMO }}\right]$ of the molecule is about 5.4115 eV , and the frontier molecular orbital energies, $E_{\text {HOMO }}$ and $E_{\text {LUMO }}$ are -5.8885 and -0.4770 eV , respectively.

7. Database survey

The syntheses of several N -substituted benzimidazol-2-one analogues have been reported (Saber et al., 2018a,b; 2020; Belaziz et al., 2012; Bouayad et al., 2015; Belaziz et al., 2013). In a search of the Cambridge Crystallographic Database (CSD; Version 5.40, update of September 2019; Groom et al., 2016) using benzimidazol-2-one with an exocyclic carbon atom bound to each nitrogen generated 94 hits. In these, the bicyclic ring system is either planar, has a slight twist end-to-end, or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape.

II

III

IV

The closest examples to the title compound, I, are II (HISFUN; Saber et al., 2018b), III (URAQAG; Ouzidan et al.,

2011a) and IV (AGAXOX; Kandri Rodi et al., 2013). In the title compound, the $\mathrm{C}-\mathrm{N}$ bonds to the exocyclic groups are 1.4526 (14) and 1.4545 (19) \AA while in II-IV the corresponding distances range from 1.445 (3) to 1.4632 (11) \AA, and so are quite comparable. The exocyclic groups in \mathbf{I} are in an anti-arrangement with the prop-2-yn-1-yl group rotated by $62.16(13)^{\circ}$ out of the plane of the bicyclic moiety (as measured by the $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$ torsion angle). In the other three, these substituents are also anti and in II the corresponding torsion angle is $73.46(18)^{\circ}$ while in III they are 82.58 (15) and $74.31(14)^{\circ}$. In IV the torsion angles are 106.0 (3) and 113.4 (3) ${ }^{\circ}$ indicating a rotation in the opposite direction from the first three.

8. Synthesis and crystallization

To a mixture of 1-(prop-2-ynyl)-1H-benzimidazol-2(3H)-one (3.61 mmol), iodomethane $(6.73 \mathrm{mmol})$ and potassium carbonate (6.24 mmol) in DMF (15 ml) was added a catalytic amount of tetra- n-butylammonium bromide (0.37 mmol). The mixture was stirred for 24 h . The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colorless crystals (yield: in 82%).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. Hydrogen atoms were located in a difference Fourier map and refined freely.

Funding information

The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. \& Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607-611.

Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
Belaziz, D., Kandri Rodi, Y., Essassi, E. M. \& El Ammari, L. (2012). Acta Cryst. E68, o1276.
Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. \& El Ammari, L. (2013). Acta Cryst. E69, o122.
Bouayad, K., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Saadi, M. \& El Ammari, L. (2015). Acta Cryst. E71, o735-o736.
Brandenburg, K. \& Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
Farukh, A. \& Mubashira, A. (2009). Eur. J. Med. Chem. 44, 834-844.
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.

Table 5
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
$M_{\text {r }}$	186.21
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	150
$a, b, c(\AA)$	7.1507 (3), 8.8177 (4), 15.4602 (7)
β (${ }^{\circ}$)	97.914 (2)
$V\left({ }^{3}{ }^{3}\right)$	965.52 (7)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.68
Crystal size (mm)	$0.32 \times 0.31 \times 0.12$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.83, 0.92
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	6896, 1812, 1679
$R_{\text {int }}$	0.030
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.610
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.033, 0.086, 1.06
No. of reflections	1812
No. of parameters	168
H -atom treatment	All H -atom parameters refined $0.18,-0.19$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$	0.18, -0.19

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), DIAMOND (Brandenburg \& Putz, 2012) and SHELXTL (Sheldrick, 2008).

Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. \& Iversen, B. B. (2015). IUCrJ, 2, 563-574.

Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. \& Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
Kandri Rodi, Y., Misbahi, K., El-Ghayoury, A., Zorina, L., Essassi, E. M. \& El Ammari, L. (2013). Acta Cryst. E69, o1159.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. \& Martin, P. (2008). Carbohydr. Res. 343, 421-433.
Luo, Y., Yao, J. P., Yang, L., Feng, C. L., Tang, W., Wang, G. F., Zuo, J. P. \& Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 7883.

Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). IUCrJ, 4, 575-587.

McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. \& Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51-61.
Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. \& Castillo, R. (2011). Bioorg. Med. Chem. 11, 187-190.
Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. \& Essassi, E. M. (2011). Acta Cryst. E67, o362o363.
Ouzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. \& El Ammari, L. (2011a). Acta Cryst. E67, o1091.

Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. \& Essassi, E. M. (2018b). Acta Cryst. E74, 1842-1846.
Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. \& Essassi, E. M. (2018a). Acta Cryst. E74, 1746-1750.

Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Filali Baba, Y., Urrutigoîty, M. \& Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. \& Lown, J. W. (1999). Anticancer Drug. Des. 14, 19-36.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.

Spackman, M. A., McKinnon, J. J. \& Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.
Turner, M. J., Grabowsky, S., Jayatilaka, D. \& Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.

Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. \& Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.

Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. \& Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.

Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. \& Lamba, H. S. (2011). Int. J. Res. Pharm. Chem. 1, 565-574.

supporting information

Acta Cryst. (2019). E75, 1940-1946 [https://doi.org/10.1107/S2056989019015779]
Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one

Asmaa Saber, Mohamed Srhir, Tuncer Hökelek, Joel T. Mague, Noureddine Hamou Ahabchane, Nada Kheira Sebbbar and El Mokhtar Essassi

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg \& Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Methyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$

$M_{r}=186.21$
Monoclinic, $P 2_{1} / n$
$a=7.1507$ (3) \AA
$b=8.8177$ (4) \AA
$c=15.4602(7) \AA$
$\beta=97.914$ (2) ${ }^{\circ}$
$V=965.52(7) \AA^{3}$
$Z=4$

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC I μ S micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.086$
$S=1.06$
1812 reflections
168 parameters
0 restraints
$F(000)=392$
$D_{\mathrm{x}}=1.281 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 5848 reflections
$\theta=5.8-70.1^{\circ}$
$\mu=0.68 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, colourless
$0.32 \times 0.31 \times 0.12 \mathrm{~mm}$
$T_{\text {min }}=0.83, T_{\text {max }}=0.92$
6896 measured reflections
1812 independent reflections
1679 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=70.1^{\circ}, \theta_{\text {min }}=5.8^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 9$
$l=-18 \rightarrow 18$

Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0402 P)^{2}+0.2239 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.18 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Extinction correction: SHELXL2018 (Sheldrick, 2015b), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$ Extinction coefficient: 0.0100 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
O1	$0.31019(11)$	$0.82725(9)$	$0.64517(6)$	$0.0345(2)$
N1	$0.24854(12)$	$0.64929(11)$	$0.53316(6)$	$0.0280(2)$
N2	$0.36075(12)$	$0.56773(10)$	$0.66470(6)$	$0.0250(2)$
C1	$0.33940(14)$	$0.44082(11)$	$0.61080(7)$	$0.0235(2)$
C2	$0.37638(15)$	$0.28918(12)$	$0.62754(8)$	$0.0289(3)$
H2	$0.426(2)$	$0.2543(16)$	$0.6872(10)$	$0.039(4)^{*}$
C3	$0.34025(16)$	$0.18941(14)$	$0.55731(8)$	$0.0353(3)$
H3	$0.364(2)$	$0.0783(17)$	$0.5684(10)$	$0.043(4)^{*}$
C4	$0.27117(17)$	$0.24106(15)$	$0.47421(8)$	$0.0378(3)$
H4	$0.246(2)$	$0.1678(17)$	$0.4255(10)$	$0.046(4)^{*}$
C5	$0.23359(16)$	$0.39392(15)$	$0.45751(7)$	$0.0339(3)$
H5	$0.190(2)$	$0.4305(16)$	$0.3992(10)$	$0.042(4)^{*}$
C6	$0.26803(14)$	$0.49324(12)$	$0.52720(7)$	$0.0255(3)$
C7	$0.30715(14)$	$0.69684(12)$	$0.61712(7)$	$0.0260(2)$
C8	$0.17860(17)$	$0.75002(16)$	$0.46162(8)$	$0.0381(3)$
H8A	$0.255(3)$	$0.747(2)$	$0.4146(13)$	$0.076(6)^{*}$
H8B	$0.176(3)$	$0.854(2)$	$0.4867(13)$	$0.072(5)^{*}$
H8C	$0.044(2)$	$0.7264(17)$	$0.4370(10)$	$0.047(4)^{*}$
C9	$0.44506(16)$	$0.56993(13)$	$0.75585(7)$	$0.0283(3)$
H9A	$0.4344(19)$	$0.6753(16)$	$0.7764(9)$	$0.033(3)^{*}$
H9B	$0.376(2)$	$0.5012(16)$	$0.7898(9)$	$0.038(3)^{*}$
C10	$0.64427(15)$	$0.52362(12)$	$0.76752(7)$	$0.0281(3)$
C11	$0.80385(17)$	$0.48197(14)$	$0.77883(8)$	$0.0342(3)$
H11	$0.938(2)$	$0.4443(17)$	$0.7926(10)$	$0.050(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0298(4)$	$0.0254(4)$	$0.0471(5)$	$0.0006(3)$	$0.0015(3)$	$-0.0012(3)$
N1	$0.0239(4)$	$0.0309(5)$	$0.0277(5)$	$-0.0020(3)$	$-0.0012(4)$	$0.0074(4)$
N2	$0.0254(5)$	$0.0249(5)$	$0.0236(4)$	$0.0005(3)$	$-0.0007(3)$	$-0.0007(3)$
C1	$0.0196(5)$	$0.0264(5)$	$0.0244(5)$	$-0.0023(4)$	$0.0028(4)$	$-0.0014(4)$

C2	$0.0249(5)$	$0.0281(6)$	$0.0337(6)$	$-0.0008(4)$	$0.0041(4)$	$0.0011(4)$
C3	$0.0298(6)$	$0.0300(6)$	$0.0469(7)$	$-0.0021(4)$	$0.0088(5)$	$-0.0072(5)$
C4	$0.0339(6)$	$0.0427(7)$	$0.0384(6)$	$-0.0083(5)$	$0.0107(5)$	$-0.0158(5)$
C5	$0.0286(6)$	$0.0486(7)$	$0.0248(6)$	$-0.0089(5)$	$0.0048(4)$	$-0.0032(5)$
C6	$0.0207(5)$	$0.0307(6)$	$0.0254(5)$	$-0.0046(4)$	$0.0037(4)$	$0.0014(4)$
C7	$0.0189(5)$	$0.0261(5)$	$0.0328(6)$	$-0.0007(4)$	$0.0025(4)$	$0.0025(4)$
C8	$0.0294(6)$	$0.0450(7)$	$0.0380(7)$	$-0.0013(5)$	$-0.0019(5)$	$0.0189(6)$
C9	$0.0296(6)$	$0.0332(6)$	$0.0218(5)$	$0.0004(4)$	$0.0019(4)$	$-0.0014(4)$
C10	$0.0333(6)$	$0.0293(5)$	$0.0206(5)$	$-0.0018(4)$	$-0.0004(4)$	$0.0014(4)$
C11	$0.0330(6)$	$0.0381(6)$	$0.0298(6)$	$0.0022(5)$	$-0.0016(4)$	$0.0030(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C7	1.2281 (13)	C4-C5	1.3915 (19)
N1-C7	1.3735 (14)	C4-H4	0.989 (16)
N1-C6	1.3874 (15)	C5-C6	1.3839 (16)
N1-C8	1.4526 (14)	C5-H5	0.967 (15)
N2-C7	1.3807 (14)	C8-H8A	0.97 (2)
N2-C1	1.3910 (13)	С8-H8B	0.99 (2)
N2-C9	1.4545 (14)	C8-H8C	1.004 (16)
C1-C2	1.3805 (15)	C9-C10	1.4689 (16)
C1-C6	1.4011 (14)	C9-H9A	0.988 (14)
C2-C3	1.3937 (17)	C9-H9B	0.978 (15)
C2-H2	0.991 (15)	C10-C11	1.1885 (17)
C3-C4	1.3883 (19)	C11-H11	1.009 (16)
C3-H3	1.005 (15)		
O1 \cdots H9A	2.491 (14)	C11 \cdots O1 ${ }^{\text {vii }}$	3.1569 (15)
$\mathrm{O} 1 \cdots \mathrm{H} 3^{\mathrm{i}}$	2.566 (15)	C2 \cdots H8 ${ }^{\text {iv }}$	2.82 (2)
O1…Н8B	2.516 (19)	C3 $\cdots{ }^{\text {H }}$ 8 ${ }^{\text {v }}$	2.859 (15)
O1 $\cdots \mathrm{H}_{9}{ }^{\text {ii }}$	2.346 (14)	C3 \cdots H8 ${ }^{\text {iv }}$	2.92 (2)
$\mathrm{O} 1 \cdots \mathrm{H} 11^{\text {iii }}$	2.181 (15)	C4 $\cdots{ }^{\text {H }}$	2.810 (15)
C2 \cdots C10	3.3889 (16)	C5 $\cdots{ }^{\text {H }}$ 8 ${ }^{\text {v }}$	2.935 (15)
$\mathrm{C} 3 \cdots \mathrm{C} 8^{\text {iv }}$	3.5335 (17)	C8...H5	2.983 (14)
$\mathrm{C} 4 \cdots \mathrm{C} 8^{\text {v }}$	3.4947 (17)	C9...H2	2.975 (14)
$\mathrm{C} 4 \cdots \mathrm{C} 7^{\text {iv }}$	3.5437 (16)	$\mathrm{C} 10 \cdots \mathrm{H} 4{ }^{\text {viii }}$	2.976 (15)
C5 \cdots C $8^{\text {v }}$	3.5884 (17)	C11 \cdots H5 ${ }^{\text {iv }}$	2.865 (15)
C6 ${ }^{\text {C }} 6^{\text {iv }}$	3.5349 (14)	$\mathrm{C} 11 \cdots \mathrm{H} 4^{\text {viii }}$	2.705 (15)
C9 $\cdots \mathrm{O}^{\text {vi }}$	3.3198 (14)		
C7-N1-C6	110.19 (9)	C5-C6-N1	132.12 (10)
C7-N1-C8	124.14 (10)	C5-C6-C1	120.83 (11)
C6-N1-C8	125.66 (10)	N1-C6-C1	107.04 (9)
C7-N2-C1	110.16 (9)	O1-C7-N1	127.43 (10)
C7-N2-C9	123.55 (9)	O1-C7-N2	126.43 (10)
C1-N2-C9	126.00 (9)	N1-C7-N2	106.14 (9)
C2-C1-N2	131.64 (10)	N1-C8-H8A	112.7 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	121.90 (10)	N1-C8-H8B	106.7 (11)

N2-C1-C6	106.45 (9)	H8A-C8-H8B	111.1 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	117.07 (11)	N1-C8-H8C	111.9 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7 (8)	H8A-C8-H8C	108.5 (15)
C3-C2-H2	122.3 (8)	H8B-C8-H8C	105.7 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.20 (11)	N2-C9-C10	112.38 (9)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.5 (9)	N2-C9-H9A	106.5 (8)
C2-C3-H3	118.3 (9)	C10-C9-H9A	109.8 (8)
C3-C4-C5	121.63 (11)	N2-C9-H9B	109.9 (8)
C3-C4-H4	119.6 (9)	C10-C9-H9B	108.2 (8)
C5-C4-H4	118.8 (9)	H9A-C9-H9B	110.1 (11)
C6-C5-C4	117.35 (11)	C11-C10-C9	177.63 (12)
C6-C5-H5	120.9 (8)	C10-C11-H11	176.1 (9)
C4-C5-H5	121.7 (8)		
C7-N2-C1-C2	178.91 (11)	C2-C1-C6-C5	-0.69 (15)
C9-N2-C1-C2	4.89 (17)	N2-C1-C6-C5	178.96 (9)
C7-N2-C1-C6	-0.69 (11)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	-179.67 (9)
C9-N2-C1-C6	-174.72 (9)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	-0.02 (11)
N2- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.33 (10)	C6-N1-C7-O1	179.51 (10)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.23 (15)	C8-N1-C7-O1	0.13 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.37 (16)	C6-N1-C7-N2	-1.13 (11)
C2-C3-C4-C5	-0.54 (18)	C8-N1-C7-N2	179.49 (9)
C3-C4-C5-C6	0.08 (17)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 1$	-179.51 (10)
C4-C5-C6-N1	179.20 (11)	C9-N2-C7-O1	-5.31 (16)
C4-C5-C6-C1	0.52 (15)	C1-N2-C7-N1	1.12 (11)
C7-N1-C6-C5	-178.10 (11)	C9-N2-C7-N1	175.32 (9)
C8-N1-C6-C5	1.27 (18)	C7-N2-C9-C10	-111.11 (11)
C7-N1-C6-C1	0.72 (11)	C1-N2-C9-C10	62.16 (13)
C8-N1-C6-C1	-179.91 (9)		

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (iii) $-x+3 / 2, y+1 / 2,-z+3 / 2$; (iv) $-x+1,-y+1,-z+1$; (v) $-x,-y+1,-z+1$; (vi) $-x+1 / 2, y-1 / 2$, $-z+3 / 2$; (vii) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (viii) $x+1 / 2,-y+1 / 2, z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1^{\text {ix }}$	$1.005(15)$	$2.566(15)$	$3.4885(15)$	$152.6(11)$
$\mathrm{C} 8 — \mathrm{H} 8 C \cdots C g 1^{\text {v }}$	$1.004(16)$	$2.626(15)$	$3.5413(13)$	$151.1(12)$
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots \mathrm{O}^{\text {vi }}$	$0.978(15)$	$2.347(15)$	$3.3198(14)$	$172.9(12)$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O}^{\text {vii }}$	$1.010(15)$	$2.181(15)$	$3.1569(15)$	$162.1(12)$

Symmetry codes: (v) $-x,-y+1,-z+1$; (vi) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (vii) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (ix) $x, y-1, z$.

