CRYSTALLOGRAPHIC COMMUNICATIONS

Received 29 October 2019
Accepted 6 November 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; 4-chloro-2-nitrobenzoic acid; $4(1 \mathrm{H})$-quinolinone; 4-hydroxyquinoline; hydrogen bond; keto-enol tautomerization; Hirshfeld surface.

CCDC reference: 1963942

Supporting information: this article has supporting information at journals.iucr.org/e

open $\begin{aligned} & \text { access }\end{aligned}$

Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid-quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate

Kazuma Gotoh and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. *Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

The title compound, $\mathrm{C}_{9} \mathrm{H}_{7.5} \mathrm{NO} \cdot \mathrm{C}_{7} \mathrm{H}_{3.5} \mathrm{ClNO}_{4}$, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto-enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid-quinolin- $4(1 \mathrm{H})$-one $(1 / 1), \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}$, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}^{+} . \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$. In the compound, the acid and base molecules are held together by a short hydrogen bond $[\mathrm{O} \cdots \mathrm{O}=2.4393(15) \AA$], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid-base units are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the $a b$ plane via $\pi-\pi$ interactions [centroid-centroid distances $=3.5504$ (8)3.9010 (11) Å]. The layers are further linked by another $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and $d_{\text {norm }}$ were generated to visualize the intermolecular interactions.

1. Chemical context

In our previous study on $D-\mathrm{H} \cdots A$ hydrogen bonding ($D=\mathrm{N}$, O , or $\mathrm{C}, A=\mathrm{N}, \mathrm{O}$ or Cl) in chloro- and nitro-substituted benzoic acid-pyridine derivative systems, we have shown that several compounds, namely, three compounds of quinoline with 3-chloro-2-nitrobenzoic acid, 4-chloro-2-nitrobenzoic acid and 5-chloro-2-nitrobenzoic acid (Gotoh \& Ishida, 2009), two compounds of phthalazine with 3-chloro-2-nitrobenzoic acid and 4-chloro-2-nitorbenzoic acid (Gotoh \& Ishida, 2011), and 3-chloro-2-nitrobenzoic acid-isoquinoline (Gotoh \& Ishida, 2015), have a short double-well O $\cdot \mathrm{H} \cdots \mathrm{N}$ hydrogen bond between the carboxy O atom and the aromatic N atom. Hydroxyquinolines, which have hydrogen-bond acceptor as well as donor groups, appear attractive as a base molecule in the above systems for investigating the hydrogen bonds (Babu \& Chandrasekaran, 2014; Gotoh \& Ishida, 2019). We report here the crystal structure of the title compound, in which there exists another type of short double-well hydrogen bond, namely, an $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the acid and base molecules, accompanied by a keto-enol tautomerization of the base molecule.

$\xlongequal{\|}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 5$	$0.84(3)$	$1.61(2)$	$2.4393(15)$	$172(5)$
O5-H1B \cdots O1	$0.84(2)$	$1.60(2)$	$2.4393(15)$	$173(4)$
N2-H2 O^{i}	$0.89(2)$	$1.86(2)$	$2.7475(18)$	$176(2)$
C3-H3 $^{\text {ii }}$	0.95	2.53	$3.469(2)$	170
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 5^{\mathrm{i}}$	0.95	2.45	$3.208(2)$	137
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 1$	0.95	2.51	$3.121(2)$	123

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $-x+1, y,-z+\frac{3}{2}$.

In the hydrogen-bonded acid-base unit, the benzene ring ($\mathrm{C} 1-\mathrm{C} 6$) of the acid molecule and the quinoline ring system (N2/C8-C16) of the base are slightly inclined to each other by a dihedral angle of $10.27(6)^{\circ}$, while the carboxy group (O1/ $\mathrm{C} 7 / \mathrm{O} 2$) is twisted by 38.66 (18) and 45.93 (18) ${ }^{\circ}$, respectively, with respect to the $\mathrm{C} 1-\mathrm{C} 6$ ring and the $\mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 16$ ring system. The dihedral angle between the C1-C6 ring and the nitro group ($\mathrm{O} 3 / \mathrm{N} 1 / \mathrm{O} 4$) is $50.33(19)^{\circ}$.

3. Supramolecular features

In the crystal of the title compound, the hydrogen-bonded acid-base units are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds ($\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}, \mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 5^{\mathrm{i}}$ and $\mathrm{C} 9-$ H9..OU1; symmetry code as in Table 1), forming a tape structure along the a axis (Fig. 3). The tapes are stacked into a layer parallel to the $a b$ plane via $\pi-\pi$ interactions formed between the acid molecules and between the base molecules (Fig. 4); the centroid-centroid distances are 3.5504 (8), 3.7141 (9), 3.7382 (10) and 3.9010 (11) \AA, respectively, for $C g 1 \cdots C g 1^{\text {iv }}, C g 2 \cdots C g 2^{\text {iv }}, C g 3 \cdots C g 2^{\text {iv }}$ and $C g 3 \cdots C g 3^{\text {iv }}$, where $C g 1, C g 2$ and $C g 3$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 6$ ring of the

Figure 2
A difference-Fourier map of the title compound associated with the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the acid and the base. The map was calculated on the plane of atoms $\mathrm{O} 1, \mathrm{C} 7$ and O 5 from a model containing all atoms apart from the H atom in the hydrogen bond.

Figure 3
A packing diagram of the title compound, showing the hydrogen-bonded tape structure formed via the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). [Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (iii) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$.]
acid molecule, and the $\mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 11 / \mathrm{C} 16$ and $\mathrm{C} 11-\mathrm{C} 16$ rings of the base molecule, respectively [symmetry code: (iv) $-x+\frac{1}{2}$, $\left.y-\frac{1}{2}, z\right]$. The layers are further linked by another $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $\left(\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{ii}}\right.$; Table 1$)$, forming a threedimensional network.

Figure 4
A packing diagram of the title compound, showing hydrogen-bonded acid-base units stacked along the b axis via the $\pi-\pi$ interactions (magenta dashed lines). The $\pi-\pi$ interactions including the centroid of the C11-C16 ring of the base (Cg3) are omitted for clarity. The $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by green dashed lines. [Symmetry codes: (iv) $-x+\frac{1}{2}, y-\frac{1}{2}, z ;(\mathrm{v})-x+\frac{1}{2}, y+\frac{1}{2}, z ;(\mathrm{vi}) x, y+1, z$.]

Figure 5
Hirshfeld surfaces (front and back views) for the title compound mapped over $d_{\text {norm }}$ and shape-index, indicating the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ [arrows (1)], $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ [arrows (2) and (3)] and $\pi-\pi$ [arrows (4) and (5)] interactions.

In order to visualize the intermolecular interactions, Hirshfeld surfaces for the acid and base molecules of the title compound, mapped over shape-index and $d_{\text {norm }}$ (Turner et al., 2017; McKinnon et al., 2004, 2007), were generated (Fig. 5). Intermolecular hydrogen bonds of $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{i}$, $\mathrm{C} 3-$ $\mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{ii}}$ and $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 5^{\mathrm{i}}$ (Table 1) are represented as faint-red spots on the $d_{\text {norm }}$ surfaces [arrows (1)-(3)]. The $\pi-\pi$ interactions between the benzene rings of the acid molecules [$C g 1 \cdots C g 1^{\text {iv }}$] and between the quinoline ring systems of the base molecules $\left[C g 2 \cdots C g 2^{\text {iv }}, C g 3 \cdots C g 2^{\text {iv }}\right.$ and $C g 3 \cdots C g 3^{\text {iv }}$; symmetry code: (iv) $\left.-x+\frac{1}{2}, y-\frac{1}{2}, z\right]$ are indicated by blue and red triangles on the shape-index surfaces [arrows (4) and (5)].

4. Database survey

A search of the Cambridge Structural Database (Version 5.40, last update August 2019; Groom et al., 2016) for organic cocrystals/salts of $4(1 H)$-quinolinone (keto tautomer) showed one structure, namely, 4-amino-1-(2-(hydroxymethyl)-1,3-oxathiolan-5-yl)-2(1H)-pyrimidinone $\quad 4(1 H)$-quinolinone (refcode COWTAK; Bhatt et al., 2009). The structure of the 4(1 H)-quinolinone itself was reported by Nasiri et al. (2006; NICIOZ). The $\mathrm{C}=\mathrm{O}$ bond length in COWTAK is 1.265 (7) \AA and those in NICIOZ are 1.2686 (16) and 1.2742 (15) A. which are shorter than the C10-O5 bond length of 1.2956 (18) \AA in the title compound. No structure was found in the CSD for organic co-crystals/salts of 4-hydroxyquinoline (enol tautomer). A search for organic co-crystals/salts of 4-chloro-2nitrobenzoic acid with base molecules gave eight compounds. Of these compounds, disorder of H atom between the acid O atom and the base N atom was observed in two compounds of 4-chloro-2-nitrobenzoic acid with quinoline (AJIWUM; Gotoh \& Ishida, 2009) and phthalazine (CALKAD; Gotoh \& Ishida, 2011).

5. Synthesis and crystallization

Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation from

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{7} \mathrm{H}_{3.5} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{9} \mathrm{H}_{7.5} \mathrm{NO}$
$M_{\text {r }}$	346.73
Crystal system, space group	Orthorhombic, Pbcn
Temperature (K)	190
$a, b, c(\AA)$	$\begin{aligned} & 12.6336(8), 7.0701(3), \\ & 33.5956(15) \end{aligned}$
$V\left(\AA^{3}\right)$	3000.8 (3)
Z	8
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.29
Crystal size (mm)	$0.35 \times 0.28 \times 0.09$
Data collection	
Diffractometer	Rigaku R-AXIS RAPIDII
Absorption correction	Numerical (NUMABS; Higashi, 1999)
$T_{\text {min }}, T_{\text {max }}$	0.939, 0.975
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	36709, 4380, 3235
$R_{\text {int }}$	0.052
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.704
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.046, 0.136, 1.13
No. of reflections	4380
No. of parameters	227
No. of restraints	2
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.39,-0.42$

Computer programs: PROCESS-AUTO (Rigaku, 2006), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012); Mercury (Macrae et al., 2008), CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).
an acetonitrile solution (130 ml) of 4-hydroxyquinoline $(0.075 \mathrm{~g})$ with 4-chloro-2-nitrobenzoic acid $(0.106 \mathrm{~g})$ in a $1: 1$ molar ratio at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms except one H atom between the two O atoms (O1 and O5) of the acid and base molecules were found in a difference-Fourier map. A broad peak in a difference-Fourier map between atoms O1 and O5
was observed (Fig. 2). Although two distinct peaks were not observed in the map, the H atom between the O atoms was analysed using a model of an H atom disordered over two positions. The occupancies of the two sites were refined to 0.47 (4) and 0.53 (4) for $\mathrm{H} 1 A$ (O1 site) and $\mathrm{H} 1 B$ (O5 site), respectively, with bond restraints of $\mathrm{O}-\mathrm{H}=0.84$ (1) \AA and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. In the final refinement, the occupancies were fixed at 0.5 , and one outlier $(6,8,13)$ was omitted. The N -bound H atom was refined freely [refined distance: $\mathrm{N} 2-\mathrm{H} 2=0.89(2) \AA]$. Other H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Babu, B. \& Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.
Bhatt, P. M., Azim, Y., Thakur, T. S. \& Desiraju, G. R. (2009). Cryst. Growth Des. 9, 951-957.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gotoh, K. \& Ishida, H. (2009). Acta Cryst. C65, o534-o538.
Gotoh, K. \& Ishida, H. (2011). Acta Cryst. C67, o473-o478.
Gotoh, K. \& Ishida, H. (2015). Acta Cryst. E71, 31-34.
Gotoh, K. \& Ishida, H. (2019). Acta Cryst. E75, 1552-1557.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.
McKinnon, J. J., Spackman, M. A. \& Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.
Nasiri, H. R., Bolte, M. \& Schwalbe, H. (2006). Heterocycl. Commun. 12, 319-322.
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia. http://hirshfeldsurface.net.

supporting information

Acta Cryst. (2019). E75, 1853-1856 [https://doi.org/10.1107/S205698901901497X]
Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid-quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate

Kazuma Gotoh and Hiroyuki Ishida

Computing details

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2015).

4-Chloro-2-nitrobenzoic acid-quinolin-4(1H)-one (1/1)-4-hydroxyquinolinium 4-chloro-2-nitrobenzoate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{3.5} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{9} \mathrm{H}_{7.5} \mathrm{NO}$
$M_{r}=346.73$
Orthorhombic, Pbcn
$a=12.6336$ (8) \AA
$b=7.0701$ (3) \AA
$c=33.5956(15) \AA$
$V=3000.8(3) \AA^{3}$
$Z=8$
$F(000)=1424.00$

Data collection

Rigaku R-AXIS RAPIDII diffractometer
Detector resolution: 10.000 pixels mm^{-1}
ω scans
Absorption correction: numerical
(NUMABS; Higashi, 1999)
$T_{\text {min }}=0.939, T_{\text {max }}=0.975$
36709 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.136$
$S=1.13$
4380 reflections
227 parameters

$$
D_{\mathrm{x}}=1.535 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 23445 reflections
$\theta=3.0-30.2^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=190 \mathrm{~K}$
Platelet, colorless
$0.35 \times 0.28 \times 0.09 \mathrm{~mm}$

4380 independent reflections
3235 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-17 \rightarrow 17$
$k=-9 \rightarrow 9$
$l=-47 \rightarrow 47$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0641 P)^{2}+0.6358 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cl1	0.14687 (4)	0.53104 (8)	0.76188 (2)	0.05607 (17)	
O1	0.32791 (10)	0.20128 (19)	0.58896 (3)	0.0439 (3)	
H1A	0.351 (4)	0.185 (8)	0.5658 (6)	0.066*	0.5
O2	0.44512 (9)	0.43255 (18)	0.60030 (3)	0.0423 (3)	
O3	0.52878 (10)	0.26978 (19)	0.67248 (4)	0.0497 (3)	
O4	0.53263 (11)	0.5533 (2)	0.69656 (5)	0.0636 (4)	
O5	0.37717 (9)	0.15689 (18)	0.51938 (3)	0.0376 (3)	
H1B	0.356 (3)	0.177 (7)	0.5427 (6)	0.056*	0.5
N1	0.48587 (11)	0.4153 (2)	0.68364 (4)	0.0404 (3)	
N2	0.11801 (11)	0.1179 (2)	0.44816 (4)	0.0379 (3)	
C1	0.31559 (12)	0.3666 (2)	0.64897 (4)	0.0318 (3)	
C2	0.37014 (12)	0.4213 (2)	0.68293 (4)	0.0333 (3)	
C3	0.32058 (13)	0.4729 (2)	0.71785 (5)	0.0373 (3)	
H3	0.360145	0.511101	0.740510	0.045*	
C4	0.21176 (14)	0.4671 (2)	0.71868 (5)	0.0377 (4)	
C5	0.15375 (13)	0.4103 (2)	0.68590 (5)	0.0389 (4)	
H5	0.078678	0.405323	0.687096	0.047*	
C6	0.20643 (12)	0.3610 (2)	0.65135 (4)	0.0345 (3)	
H6	0.166717	0.322352	0.628754	0.041*	
C7	0.36954 (12)	0.3319 (2)	0.60966 (4)	0.0334 (3)	
C8	0.10616 (13)	0.1492 (2)	0.48692 (5)	0.0381 (3)	
H8	0.036732	0.163593	0.497354	0.046*	
C9	0.19038 (13)	0.1612 (2)	0.51224 (5)	0.0357 (3)	
H9	0.179065	0.181221	0.539873	0.043*	
C10	0.29314 (11)	0.1441 (2)	0.49744 (4)	0.0306 (3)	
C11	0.30605 (12)	0.1122 (2)	0.45544 (4)	0.0306 (3)	
C12	0.40628 (13)	0.0928 (2)	0.43769 (5)	0.0385 (4)	
H12	0.468363	0.099954	0.453575	0.046*	
C13	0.41438 (16)	0.0636 (3)	0.39760 (5)	0.0492 (4)	
H13	0.482176	0.050157	0.385705	0.059*	
C14	0.32353 (17)	0.0534 (3)	0.37403 (5)	0.0533 (5)	
H14	0.330455	0.035088	0.346139	0.064*	
C15	0.22572 (16)	0.0693 (3)	0.39020 (5)	0.0459 (4)	
H15	0.164531	0.059820	0.373885	0.055*	
C16	0.21571 (12)	0.0997 (2)	0.43129 (4)	0.0331 (3)	

H2	$0.0611(18)$	$0.107(3)$	$0.4325(6)$	$0.052(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0601(3)$	$0.0749(3)$	$0.0332(2)$	$0.0104(2)$	$0.01812(19)$	$0.00122(19)$
O1	$0.0488(7)$	$0.0572(7)$	$0.0257(5)$	$-0.0068(6)$	$0.0010(5)$	$-0.0078(5)$
O2	$0.0363(6)$	$0.0585(7)$	$0.0321(5)$	$-0.0033(5)$	$0.0060(5)$	$-0.0043(5)$
O3	$0.0385(7)$	$0.0637(8)$	$0.0468(7)$	$0.0164(6)$	$0.0004(5)$	$0.0024(6)$
O4	$0.0434(8)$	$0.0792(10)$	$0.0681(9)$	$-0.0088(7)$	$-0.0108(7)$	$-0.0217(8)$
O5	$0.0290(5)$	$0.0565(7)$	$0.0273(5)$	$0.0005(5)$	$-0.0025(4)$	$-0.0066(5)$
N1	$0.0338(7)$	$0.0594(8)$	$0.0282(6)$	$0.0038(6)$	$-0.0041(5)$	$-0.0013(6)$
N2	$0.0314(7)$	$0.0430(7)$	$0.0391(7)$	$0.0016(6)$	$-0.0090(6)$	$-0.0023(6)$
C1	$0.0325(7)$	$0.0384(8)$	$0.0245(6)$	$0.0037(6)$	$-0.0003(5)$	$0.0010(6)$
C2	$0.0313(7)$	$0.0415(8)$	$0.0271(7)$	$0.0038(6)$	$-0.0007(5)$	$0.0011(6)$
C3	$0.0424(9)$	$0.0437(8)$	$0.0257(7)$	$0.0029(7)$	$0.0007(6)$	$-0.0008(6)$
C4	$0.0429(9)$	$0.0421(8)$	$0.0281(7)$	$0.0061(7)$	$0.0093(6)$	$0.0020(6)$
C5	$0.0317(8)$	$0.0484(9)$	$0.0366(8)$	$0.0036(7)$	$0.0045(6)$	$0.0062(7)$
C6	$0.0315(8)$	$0.0424(8)$	$0.0297(7)$	$0.0019(6)$	$-0.0004(6)$	$0.0028(6)$
C7	$0.0307(7)$	$0.0447(8)$	$0.0247(6)$	$0.0055(6)$	$-0.0020(5)$	$0.0011(6)$
C8	$0.0294(8)$	$0.0433(8)$	$0.0417(8)$	$0.0011(6)$	$0.0014(6)$	$0.0002(7)$
C9	$0.0323(8)$	$0.0443(8)$	$0.0305(7)$	$0.0008(6)$	$0.0027(6)$	$-0.0010(6)$
C10	$0.0298(7)$	$0.0337(7)$	$0.0282(7)$	$-0.0004(6)$	$-0.0010(5)$	$-0.0004(6)$
C11	$0.0321(7)$	$0.0320(7)$	$0.0277(7)$	$0.0004(6)$	$-0.0008(5)$	$-0.0002(6)$
C12	$0.0345(8)$	$0.0485(9)$	$0.0326(7)$	$0.0000(7)$	$0.0011(6)$	$-0.0042(7)$
C13	$0.0492(10)$	$0.0633(11)$	$0.0350(8)$	$0.0040(9)$	$0.0094(7)$	$-0.0065(8)$
C14	$0.0653(13)$	$0.0669(13)$	$0.0279(8)$	$0.0087(10)$	$0.0002(8)$	$-0.0072(8)$
C15	$0.0550(11)$	$0.0523(10)$	$0.0304(7)$	$0.0077(8)$	$-0.0124(7)$	$-0.0048(7)$
C16	$0.0365(8)$	$0.0318(7)$	$0.0311(7)$	$0.0018(6)$	$-0.0042(6)$	$-0.0016(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 4$	$1.7271(16)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.383(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.270(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	$0.841(10)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{O} 2-\mathrm{C} 7$	$1.2317(19)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.365(2)$
$\mathrm{O} 3-\mathrm{N} 1$	$1.2218(19)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{O} 4-\mathrm{N} 1$	$1.220(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.395(2)$
$\mathrm{O} 5-\mathrm{C} 10$	$1.2956(18)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9500
$\mathrm{O} 5-\mathrm{H} 1 \mathrm{~B}$	$0.841(10)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.438(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.463(2)$	$\mathrm{C} 11-\mathrm{C} 16$	$1.403(2)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.329(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.406(2)$
$\mathrm{N} 2-\mathrm{C} 16$	$1.364(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.366(2)$
$\mathrm{N} 2-\mathrm{H} 2$	$0.90(2)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{C} 1-\mathrm{C} 6$	$1.382(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.396(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.388(2)$	$\mathrm{C} 13-\mathrm{H} 13$	0.9500
$\mathrm{C} 1-\mathrm{C} 7$	$1.506(2)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.355(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.379(2)$	$\mathrm{C} 14-\mathrm{H} 14$	0.9500

C3-C4	1.376 (2)
C3-H3	0.9500
C4-C5	1.382 (2)
C7-O1-H1A	117 (4)
C10-O5-H1B	106 (3)
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{O} 3$	124.57 (15)
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 2$	117.80 (14)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 2$	117.58 (14)
C8-N2- C 16	121.64 (14)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2$	120.1 (14)
C16-N2-H2	118.3 (14)
C6- $\mathrm{C} 1-\mathrm{C} 2$	117.13 (14)
C6- $\mathrm{C} 1-\mathrm{C} 7$	119.84 (13)
C2-C1-C7	122.78 (14)
C3-C2-C1	123.20 (15)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	116.59 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	120.11 (13)
C4-C3-C2	117.59 (15)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.2
C2-C3-H3	121.2
C3-C4-C5	121.49 (15)
C3-C4-Cl1	118.92 (13)
C5-C4-Cl1	119.59 (13)
C4-C5-C6	119.13 (15)
C4-C5-H5	120.4
C6-C5-H5	120.4
C1-C6-C5	121.44 (15)
C1-C6-H6	119.3
C5-C6-H6	119.3
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	126.98 (14)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	118.71 (14)
C6-C1-C2-C3	-1.4 (2)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	172.84 (15)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	174.88 (14)
C7- $12-\mathrm{C} 2-\mathrm{N} 1$	-10.9 (2)
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-50.5 (2)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	127.10 (16)
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	132.98 (17)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	-49.4 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.7 (2)
N1-C2-C3-C4	-175.67 (14)
C2-C3-C4-C5	0.5 (2)
C2-C3-C4-Cl1	-179.91 (13)
C3-C4-C5-C6	-0.9 (3)
C11-C4-C5-C6	179.46 (13)
C2-C1-C6-C5	0.9 (2)

$\mathrm{C} 15-\mathrm{C} 16$	$1.403(2)$
$\mathrm{C} 15-\mathrm{H} 15$	0.9500

$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$114.27(14)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$122.21(15)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{H} 8$	118.9
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	118.9
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.87(14)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	120.1
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	120.1
$\mathrm{O} 5-\mathrm{C} 10-\mathrm{C} 9$	$123.62(14)$
$\mathrm{O} 5-\mathrm{C} 10-\mathrm{C} 11$	$118.44(13)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$117.94(13)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12$	$118.77(14)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 10$	$119.00(13)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$122.23(13)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$120.00(16)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	120.0
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.0
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$120.35(17)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	119.8
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	119.8
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$121.21(16)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	119.4
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	119.4
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$119.31(16)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	120.3
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$	120.3
N2-C16-C15	$120.32(15)$
N2-C16-C11	$119.34(14)$
C15-C16-C11	$120.34(15)$

$\mathrm{C} 16-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$-1.3(3)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.2(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 5$	$178.85(15)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.5(2)$
$\mathrm{O} 5-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	$-179.45(14)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	$0.0(2)$
$\mathrm{O} 5-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.7(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-179.91(15)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.4(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-179.68(16)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$0.2(3)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-1.0(3)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$1.1(3)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 16-\mathrm{C} 15$	$-179.16(16)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 16-\mathrm{C} 11$	$0.7(2)$

$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-173.51(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.2(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$138.07(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	$-36.0(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-39.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$146.07(15)$

$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 2$	$179.37(17)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$-0.5(3)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{N} 2$	$179.85(14)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16-\mathrm{N} 2$	$0.0(2)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$-0.3(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$179.82(15)$

Hydrogen-bond geometry $\left(A,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 5$	$0.84(3)$	$1.61(2)$	$2.4393(15)$	$172(5)$
$\mathrm{O} 5 — \mathrm{H} 1 B \cdots \mathrm{O} 1$	$0.84(2)$	$1.60(2)$	$2.4393(15)$	$173(4)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.89(2)$	$1.86(2)$	$2.7475(18)$	$176(2)$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.95	2.53	$3.469(2)$	170
C8—H8 $\cdots 5^{\mathrm{i}}$	0.95	2.45	$3.208(2)$	137
C9—H9 $\cdots \mathrm{O} 1$	0.95	2.51	$3.121(2)$	123

Symmetry codes: (i) $x-1 / 2,-y+1 / 2,-z+1$; (ii) $-x+1, y,-z+3 / 2$.

