CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 October 2019
Accepted 24 October 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure, discrete complex; chromium(III); pyridinium; hydrogen bonding.

CCDC reference: 1962530
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of pyridinium tetraisothiocyanatodipyridinechromium(III) pyridine monosolvate

Tristan Neumann,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany. *Correspondence e-mail: t.neumann@ac.uni-kiel.de

In the crystal structure of the title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left[\mathrm{Cr}(\mathrm{NCS})_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$-$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, the $\mathrm{Cr}^{\mathrm{III}}$ ions are octahedrally coordinated by four N -bonding thiocyanate anions and two pyridine ligands into discrete negatively charged complexes, with the $\mathrm{Cr}^{\mathrm{III}}$ ion, as well as the two pyridine ligands, located on crystallographic mirror planes. The mean planes of the two pyridine ligands are rotated with respect to each other by 90°. Charge balance is achieved by one protonated pyridine molecule that is hydrogen bonded to one additional pyridine solvent molecule, with both located on crystallographic mirror planes and again rotated by exactly 90°. The pyridinium H atom was refined as disordered between both pyridine N atoms in a 70:30 ratio, leading to a linear $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. In the crystal, discrete complexes are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into chains that are connected by additional $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding via the pyridinium cations and solvent molecules into layers and finally into a three-dimensional network.

1. Chemical context

Coordination compounds with paramagnetic transition metals are of great interest because of their diverse magnetic properties (Cirera et al., 2009; Giannopoulos et al., 2014; Glaser, 2011; Yuan et al., 2007). Those in which the metal cations are linked by small-sized ligands that can mediate magnetic exchange are of special importance because co-operative magnetic phenomena can be expected. Prominent examples for this class of ligands are azides, oxalates and cyanides (Wang et al., 2005, 2008; Zhang et al., 2012; Manson et al., 2005; Ding et al., 2012). In this context also, thiocyanate ligands are useful because they show a large variety of coordination modes, with the $\mu-1,3$-bridging mode as the most important (Jochim et al., 2018; Mautner et al., 2016, 2017; Shurdha et al., 2013; Mekuimemba et al., 2018; Wöhlert et al., 2014a; Werner et al., 2015). It is noted that these compounds are frequently difficult to prepare because terminal N -coordination is usually preferred for $3 d$ metal cations. Nevertheless, in recent years, an increasing number of bridging compounds have been reported, which might be traced back to the fact that several of them were prepared by thermal decomposition of precursors that contain terminal anionic ligands (Näther et al., 2013). In this context, we and others have reported on several new thiocyanate coordination polymers based on transition-metal thiocyanates, in which the metal cations are linked by bridging anionic ligands into chains (Rams et al., 2017; Baran et al., 2019; Wöhlert et al., 2013, 2014b; Mautner et al., 2018). Most of these compounds contain $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ or $\mathrm{Cu}^{\mathrm{II}}$ cations, whereas no bridging compounds are reported with chromium.

There is only one compound in which alternating $\mathrm{Cr}^{\mathrm{III}}$ and K^{+} cations are bridged by $\mu-1,3$-coordinating thiocyanate anions into chains in which each cation is octahedrally sourrounded by two bridging thiocyanate anions and four pyridine ligands (Kitanovski et al., 2007). Therefore, we decided to investigated if similar compounds are available with chromium. Hence, CrCl_{2} was reacted with $\mathrm{NH}_{4} \mathrm{NCS}$ to prepare $\mathrm{Cr}(\mathrm{NCS})_{2}$ in situ, which is similar to the procedure we frequently use for the synthesis of thiocyanate coordination polymers with other metal cations. Initially, pyridine was selected as the N -donor ligand, because most of our compounds are based on pyridine derivatives as co-ligands. In this reaction, crystals were obtained that were identified by single-crystal X-ray diffraction. This proved that a discrete cationic complex had formed.

2. Structural commentary

The asymmetric unit of the title compound consists of one half of the cation, namely a $\mathrm{Cr}^{\mathrm{II}}$ ion, two pyridine ligands which lie on a crystallographic mirror plane and two isothiocyanate anions that occupy general positions, as well as one pyridinium cation and a pyridine molecule that are also located on a crystallographic mirror plane (Fig. 1). The $\mathrm{Cr}^{\mathrm{III}}$ ion is sixfold coordinated by four N-bonding isothiocyanate anions and two pyridine ligands, within a slightly distorted octahedral geometry (Figs. 1 and 2). The $\mathrm{Cr}-\mathrm{N}$ bond lengths (Table 1) to the pyridine ligands (N 11 and N 21) are slightly longer than that to the isothiocyanate anions (N1 and N 2). The distortion of the octahedron is also obvious from the mean quadratic

Figure 1
The molecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The pyridinium N -bound H atom is disordered over two sets of sites.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cr} 1-\mathrm{N} 2^{\mathrm{i}}$	$1.980(5)$	$\mathrm{Cr} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.991(5)$
$\mathrm{Cr} 1-\mathrm{N} 2$	$1.980(5)$	$\mathrm{Cr} 1-\mathrm{N} 21$	$2.080(6)$
$\mathrm{Cr} 1-\mathrm{N} 1$	$1.991(5)$	$\mathrm{Cr} 1-\mathrm{N} 11$	$2.102(6)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 2$	$88.4(3)$	$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 21$	$90.39(18)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 1$	$91.33(18)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 21$	$90.40(18)$
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 1$	$178.9(2)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 11$	$88.98(18)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 1^{\mathrm{i}}$	$178.9(2)$	$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 11$	$88.98(18)$
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 1^{\mathrm{i}}$	$91.33(18)$	$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 11$	$90.00(18)$
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 1^{\mathrm{i}}$	$88.9(3)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 11$	$90.00(18)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 21$	$90.62(18)$	$\mathrm{N} 21-\mathrm{Cr} 1-\mathrm{N} 11$	$179.4(3)$
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 21$	$90.62(18)$		

Symmetry code: (i) $-x+1, y, z$.
elongation of 1.0015 and the octahedral angle variance of 0.9447° calculated according to Robinson et al. (1971). The four isothiocyanate anions are located in the basal plane of the octahedron, whereas the pyridine ligands are in apical positions with the pyridine ring planes rotated by 90° (Fig. 2). Charge balance is achieved by a pyridinium cation that is hydrogen bonded to a pyridine solvent molecule via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding, forming pyridinium-pyridine dimers (Fig. 3). Several models were tested, but in the final refinement, a split model was used, in which the pyridinium H atom is disordered over two sites in a ratio of 70:30. Presumably, because of sterical reasons, the pyridine-ring planes are perpendicular to each other (Fig. 3).

Figure 3
View of the pyridinium-pyridine dimer, with $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding shown as dashed lines. The pyridinium N -bound H atom is disordered over two sets of sites.

Figure 2
View of the coordination sphere of the $\mathrm{Cr}^{\text {III }}$ ion.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12 $\cdots \mathrm{S}^{1 i}{ }^{\text {ii }}$	0.93	2.93	3.647 (6)	135
C32-H32 . S $\mathrm{S}^{\text {iiii }}$	0.93	3.01	3.719 (8)	134
C32-H32 . S $2^{\text {iv }}$	0.93	3.01	3.719 (8)	134
C35-H35 . . S2 ${ }^{\text {v }}$	0.93	2.90	3.494 (7)	123
C35-H35 . S2 ${ }^{\text {vi }}$	0.93	2.90	3.494 (7)	123
N31-H31 $A \cdots$ N41	0.86	1.82	2.684 (11)	179
$\mathrm{N} 41-\mathrm{H} 41 A \cdots \mathrm{~N} 31$	0.86	1.82	2.684 (11)	180

Symmetry codes: (ii) $x, y+1, z$; (iii) $-x,-y+2, z-\frac{1}{2}$; (iv) $x,-y+2, z-\frac{1}{2}$; (v) $x, y, z-1$; (vi) $-x, y, z-1$.

3. Supramolecular features

In the crystal, discrete complexes and pyridinium cations are arranged in alternating layers parallel to the $b c$ plane (Fig. 4, bottom). The discrete complexes are linked by pairs of C $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds between the thiocyanate S atoms of one complex and two H atoms of one of the pyridine ligands of a neighbouring complex into chains, that elongate along the crystallographic b axis (Fig. 4, top). The bond lengths and angles of these hydrogen bonds show that this is only a very weak interaction (Table 2). These chains are further linked by additional very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions between the thiocyanate S atoms that are not involved in chain formation

Figure 4
View of a chain (top) and the crystal structure of the title compound viewed along the crystallographic b-axis and with the intermolecular hydrogen bonding shown as dashed lines.
and one H atom of the pyridinium-pyridine dimers (Fig. 4, bottom, and Table 2). Finally, further $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions link all building blocks into a three-dimensional network. It is noted that both the discrete complexes, as well as the pyridi-nium-pyridine dimers, point in the same direction along the crystallographic c axis, clearly showing the presence of a polar structure (Fig. 4, bottom).

4. Database survey

There are four structures published in the CSD (Version 5.4, Update 1, February 2019; Groom et al., 2016) that consist of chromium(II) and thiocyanate anions. In all of them, the $\mathrm{Cr}^{\mathrm{II}}$ cations are square-planar coordinated by two isothiocyanate anions and two co-ligands (Jubb et al., 1989, 1991; Shurdha et al., 2012, 2013). With chromium(III) there are two structures in which the cations are octahedrally coordinated by only two terminal isothiocyanate anions and by two 4,4'-dimethyl-2, 2^{\prime} pyridine ligands and the positive charge is neutralized by iodide or triiodide anions (Walter \& Elliott, 2001). In most of the reported structures with $\mathrm{Cr}^{\mathrm{III}}$, the cations are surrounded by four or six isothiocyanate anions and the positive charges are neutralized by protonated solvent or ligand molecules. There is also one discrete complex with pyridine as co-ligand, in which the $\mathrm{Cr}^{\text {III }}$ cations are coordinated by three isothiocyanate anions and three pyridine ligands (Malecki, 2016). A similar structure is also known with 4-methylpyridine (Kitanovski et al., 2007). Finally, there is one structure reported that is comparable to that of the title compound with 4-methylpyridine, in which the $\mathrm{Cr}^{\mathrm{III}}$ cations are coordinated by two 4-methylpyridine ligands and four N-terminal thiocyanate anions. Charge balance is achieved by one 4-methylpyridinium cation that is hydrogen bonded to one 4-methylpyridine solvent molecule (Young et al., 2011). In contrast to the title compound, the $\mathrm{N}-\mathrm{H}$ distances are not symmetrical $(\mathrm{N}-\mathrm{H}=$ $1.16 \AA$ and $\mathrm{N} \cdots \mathrm{H}=1.5 \AA$), but the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond distance is comparable $(2.686 \AA$) to that in the title compound (2.684 £).

5. Synthesis and crystallization

$\mathrm{CrCl}_{2}(0.5 \mathrm{mmol}, 66.5 \mathrm{mg})$ was reacted with $\mathrm{NH}_{4} \mathrm{NCS}$ ($1.0 \mathrm{mmol}, 76.1 \mathrm{mg}$) in 2.0 ml pyridine. The precipitate was filtered off and the filtrate was stored at room temperature. After a few days, crystals of the title compound suitable for single-crystal x-ray diffraction were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were positioned with idealized geometry and refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ using a riding model. The pyridinium H atom was located in a difference map and was initially freely refined. In this case, it is located nearly in the middle between both pyridine N atoms, leading to very long $\mathrm{N}-\mathrm{H}$ bonds of 1.32 (16) and 1.35 (16) \AA, an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle close to linearity and a relatively large
isotropic displacement parameter. For such $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, both symmetric and asymmetric hydrogen bonds were determined by neutron diffraction, but the symmetric bonds are usually observed at shorter $\mathrm{N} \cdots \mathrm{N}$ distances (Rozière et al., 1980, 1982). Therefore, the pyridinium H atom was placed at an ideal distance and the displacement parameter was refined. In this case, there is a strong indication that the H atom is disordered and therefore a split model was used with the site-occupation factor for each H atom in a ratio of 70:30, which leads to similar isotropic displacement parameters that are lower than that obtained by the refinement of a symmetrical hydrogen bond. In the final refinement, both H atoms were placed in ideal positions and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ using a riding model.

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA 720/5-2).

References

Baran, S., Hoser, A., Rams, M., Ostrovsky, S., Neumann, T., Näther, C. \& Tomkowicz, Z. (2019). J. Phys. Chem. Solids, 130, 290-297.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Cirera, J., Ruiz, E., Alvarez, S., Neese, F. \& Kortus, J. (2009). Chem. Eur. J. 15, 4078-4087.
Ding, M., Wang, B., Wang, Z., Zhang, J., Fuhr, O., Fenske, D. \& Gao, S. (2012). Chem. Eur. J. 18, 915-924.

Giannopoulos, D. P., Thuijs, A., Wernsdorfer, W., Pilkington, M., Christou, G. \& Stamatatos, T. C. (2014). Chem. Commun. 50, 779781.

Glaser, T. (2011). Chem. Commun. 47, 116-130.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. \& Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.
Jubb, J., Larkworthy, L. F., Leonard, G. A., Povey, D. C. \& Tucker, B. J. (1989). J. Chem. Soc. Dalton Trans. pp. 1631-1633.

Jubb, J., Larkworthy, L. F., Oliver, L. F., Povey, D. C. \& Smith, G. W. (1991). J. Chem. Soc. Dalton Trans. pp. 2045-2050.

Kitanovski, N., Golobič, A. \& Čeh, B. (2007). Croat. Chem. Acta, 80, 127-134.
Malecki, J. G. (2016). CSD Communication, CCDC 767462. CCDC, Cambridge, England.
Manson, J. L., Lancaster, T., Chapon, L. C., Blundell, S. J., Schlueter, J. A., Brooks, M. L., Pratt, F. L., Nygren, C. L. \& Qualls, J. S. (2005). Inorg. Chem. 44, 989-995.
Mautner, F. A., Berger, C., Fischer, R. C. \& Massoud, S. S. (2016). Inorg. Chim. Acta, 439, 69-76.
Mautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. \& Massoud, S. S. (2017). Polyhedron, 124, 237-242.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.
Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. \& Triki, S. (2018). Inorg. Chem. 57, 2184-2192.

Table 3
Experimental details.
Crystal data
Chemic
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
a, b, c (\AA)
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter
$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left[\mathrm{Cr}(\mathrm{NCS})_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot-$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
601.73
Orthorhombic, $\mathrm{Pmc}_{1}{ }_{1}$
293
$10.1068(5), 8.8168(6), 16.2628(9)$
$1449.17(15)$
2
Mo K α
0.71
$0.12 \times 0.07 \times 0.02$

Stoe IPDS1
Numerical $(X-S H A P E$ and
$\quad X-R E D 32 ;$ Stoe \& Cie, 2008)
$0.786,0.966$
$12253,3153,2452$
0.062
0.639

$0.043,0.106,1.02$
3153
193
1
H-atom parameters constrained
$0.30,-0.42$
Flack x determined using 925
quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013)
$-0.027(19)$

Computer programs: X-AREA (Stoe \& Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. \& Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 24534-24544.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567570.

Rozière, J., Belin, C. \& Lehman, M. S. (1982). J. Chem. Soc. Chem. Comтии. pp. 388-389.
Rozière, J., Williams, J. M., Grech, E., Malarski, Z. \& Sobcyzk, L. (1980). J. Chem. Phys. 72, 6117-6122.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shurdha, E., Lapidus, S. H., Stephens, P. W., Moore, C. E., Rheingold, A. L. \& Miller, J. S. (2012). Inorg. Chem. 51, 9655-9665.

Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. \& Miller, J. S. (2013). Inorg. Chem. 52, 1058310594.

Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Walter, B. J. \& Elliott, C. M. (2001). Inorg. Chem. 40, 5924-5927.
Wang, X.-Y., Wang, L., Wang, Z.-M., Su, G. \& Gao, S. (2005). Chem. Mater. 17, 6369-6380.
Wang, X.-Y., Wang, Z.-M. \& Gao, S. (2008). Chem. Commun. pp. 281294.

Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.

research communications

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. \& Näther, C. (2013). Inorg. Chem. 52, 12947-12957.
Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. \& Näther, C. (2014a). Cryst. Growth Des. 14, 1902-1913.
Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. \& Näther, C. (2014b). Inorg. Chem. 53, 8298-8310.

Young, J. L., Harris, J. D., Benjamin, J. A., Fitch, J. E., Nogales, D. F., Walker, J. R., Frost, B. J., Thurber, A. \& Punnoose, A. (2011). Inorg. Chim. Acta, 377, 14-19.
Yuan, M., Zhao, F., Zhang, W., Pan, F., Wang, Z.-M. \& Gao, S. (2007). Chem. Eur. J. 13, 2937-2952.
Zhang, X.-M., Wang, Y.-Q., Li, X.-B. \& Gao, E.-Q. (2012). Dalton Trans. 41, 2026-2033.

supporting information

Acta Cryst. (2019). E75, 1875-1879 [https://doi.org/10.1107/S2056989019014488]

Crystal structure of pyridinium tetraisothiocyanatodipyridinechromium(III) pyridine monosolvate

Tristan Neumann, Inke Jess and Christian Näther

Computing details

Data collection: X - $A R E A$ (Stoe \& Cie, 2008); cell refinement: $X-A R E A$ (Stoe $\& \mathrm{Cie}, 2008$); data reduction: X - $A R E A$ (Stoe \& Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:
SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Pyridinium tetraisothiocyanatobis(pyridine)chromium(III) pyridine monosolvate

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)\left[\mathrm{Cr}(\mathrm{NCS})_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
$M_{r}=601.73$
Orthorhombic, $P m c 2_{1}$
$a=10.1068(5) \AA$
$b=8.8168$ (6) \AA
$c=16.2628(9) \AA$
$V=1449.17$ (15) \AA^{3}
$Z=2$
$F(000)=618$
$D_{\mathrm{x}}=1.379 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12253 reflections
$\theta=2.6-28.1^{\circ}$
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, green
$0.12 \times 0.07 \times 0.02 \mathrm{~mm}$

Data collection

Stoe IPDS1
diffractometer
Phi scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.786, T_{\text {max }}=0.966$
12253 measured reflections
3153 independent reflections
2452 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 12$
$k=-11 \rightarrow 11$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.106$
$S=1.02$
3153 reflections
193 parameters
1 restraint
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0503 P)^{2}+0.4808 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.42$ e \AA^{-3}
Absolute structure: Flack x determined using 925 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter: - 0.027 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cr1	0.500000	0.64497 (13)	0.99944 (7)	0.0350 (3)	
N1	0.6380 (5)	0.5526 (5)	0.9278 (3)	0.0456 (11)	
C1	0.7030 (6)	0.4870 (6)	0.8803 (3)	0.0409 (12)	
S1	0.7901 (2)	0.39515 (18)	0.81396 (11)	0.0671 (5)	
N2	0.3635 (5)	0.7405 (5)	1.0697 (3)	0.0453 (11)	
C2	0.2924 (6)	0.8219 (6)	1.1063 (3)	0.0410 (12)	
S2	0.1955 (2)	0.9312 (2)	1.15735 (11)	0.0689 (5)	
N11	0.500000	0.8403 (7)	0.9254 (4)	0.0378 (13)	
C11	0.6137 (6)	0.9059 (6)	0.9028 (3)	0.0446 (13)	
H11	0.693081	0.859637	0.917262	0.053*	
C12	0.6175 (7)	1.0412 (6)	0.8584 (4)	0.0522 (14)	
H12	0.697858	1.084674	0.843515	0.063*	
C13	0.500000	1.1087 (10)	0.8372 (5)	0.054 (2)	
H13	0.499999	1.200033	0.808600	0.065*	
N21	0.500000	0.4529 (7)	1.0738 (4)	0.0380 (14)	
C21	0.500000	0.4633 (10)	1.1565 (5)	0.051 (2)	
H21	0.500000	0.558953	1.180637	0.061*	
C22	0.500000	0.3371 (11)	1.2067 (6)	0.065 (3)	
H22	0.500000	0.348073	1.263584	0.078*	
C23	0.500000	0.1953 (12)	1.1719 (6)	0.068 (3)	
H23	0.500000	0.109435	1.205088	0.082*	
C24	0.500000	0.1805 (10)	1.0868 (6)	0.059 (2)	
H24	0.500000	0.085445	1.061946	0.070*	
C25	0.500000	0.3110 (9)	1.0405 (5)	0.0441 (18)	
H25	0.500000	0.301981	0.983543	0.053*	
N31	0.000000	1.0017 (9)	0.4322 (5)	0.061 (2)	
H31A	0.000000	0.920955	0.461881	0.073*	0.3
C31	0.000000	0.9933 (10)	0.3502 (6)	0.057 (2)	
H31	0.000000	0.898380	0.325264	0.068*	
C32	0.000000	1.1428 (12)	0.4678 (6)	0.062 (2)	
H32	0.000000	1.150849	0.524812	0.075*	
C33	0.000000	1.2701 (11)	0.4217 (6)	0.060 (2)	
H33	0.000000	1.364655	0.447130	0.072*	
C34	0.000000	1.2604 (10)	0.3374 (5)	0.051 (2)	
H34	0.000000	1.347438	0.305068	0.061*	
C35	0.000000	1.1195 (10)	0.3021 (5)	0.051 (2)	
H35	0.000000	1.109984	0.245176	0.062*	
N41	0.000000	0.7526 (8)	0.5271 (5)	0.0557 (19)	
H41A	0.000000	0.832178	0.496530	0.067*	0.7

C 41	$0.1138(8)$	$0.6919(8)$	$0.5505(5)$	$0.0686(19)$
H 41	0.192859	0.735531	0.533295	0.082^{*}
C 42	$0.1165(8)$	$0.5636(8)$	$0.6004(5)$	$0.071(2)$
H42	0.196943	0.522486	0.617040	0.085^{*}
C43	0.000000	$0.4985(10)$	$0.6248(5)$	$0.057(2)$
H43	0.000001	0.411685	0.657268	0.069^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	$0.0346(6)$	$0.0369(5)$	$0.0333(5)$	0.000	0.000	$-0.0032(5)$
N 1	$0.048(3)$	$0.049(3)$	$0.039(2)$	$0.001(2)$	$0.000(2)$	$0.001(2)$
C1	$0.040(3)$	$0.037(3)$	$0.045(3)$	$-0.001(2)$	$0.006(3)$	$-0.001(2)$
S1	$0.0761(13)$	$0.0503(8)$	$0.0749(11)$	$-0.0015(8)$	$0.0372(9)$	$-0.0093(8)$
N 2	$0.045(3)$	$0.047(3)$	$0.044(3)$	$0.002(2)$	$0.006(2)$	$-0.003(2)$
C2	$0.040(3)$	$0.045(3)$	$0.038(3)$	$0.001(2)$	$-0.003(2)$	$0.001(2)$
S2	$0.0684(12)$	$0.0846(12)$	$0.0537(9)$	$0.0326(9)$	$0.0046(9)$	$-0.0143(8)$
N11	$0.036(4)$	$0.040(3)$	$0.037(3)$	0.000	0.000	$-0.001(3)$
C11	$0.041(3)$	$0.046(3)$	$0.047(3)$	$-0.003(2)$	$0.001(2)$	$0.004(2)$
C12	$0.059(4)$	$0.045(3)$	$0.052(3)$	$-0.007(3)$	$0.010(3)$	$0.005(3)$
C13	$0.071(6)$	$0.045(4)$	$0.046(5)$	0.000	0.000	$0.006(4)$
N21	$0.040(4)$	$0.035(3)$	$0.039(3)$	0.000	0.000	$-0.004(2)$
C21	$0.064(6)$	$0.054(5)$	$0.035(4)$	0.000	0.000	$-0.001(3)$
C22	$0.090(8)$	$0.064(6)$	$0.042(4)$	0.000	0.000	$0.007(4)$
C23	$0.096(8)$	$0.059(6)$	$0.050(5)$	0.000	0.000	$0.022(5)$
C24	$0.074(7)$	$0.047(5)$	$0.055(5)$	0.000	0.000	$0.007(4)$
C25	$0.051(5)$	$0.042(4)$	$0.039(4)$	0.000	0.000	$0.001(3)$
N31	$0.051(5)$	$0.055(4)$	$0.075(5)$	0.000	0.000	$0.020(4)$
C31	$0.059(6)$	$0.045(4)$	$0.066(6)$	0.000	0.000	$-0.005(4)$
C32	$0.066(6)$	$0.076(6)$	$0.045(4)$	0.000	0.000	$0.003(5)$
C33	$0.073(7)$	$0.051(5)$	$0.055(5)$	0.000	0.000	$-0.010(4)$
C34	$0.054(5)$	$0.053(5)$	$0.045(4)$	0.000	0.000	$-0.001(4)$
C35	$0.052(5)$	$0.059(5)$	$0.043(4)$	0.000	0.000	$-0.009(4)$
N41	$0.054(5)$	$0.050(4)$	$0.063(5)$	0.000	0.000	$0.014(3)$
C41	$0.051(4)$	$0.064(4)$	$0.091(5)$	$0.000(3)$	$0.004(4)$	$0.017(4)$
C42	$0.056(5)$	$0.071(4)$	$0.086(5)$	$0.016(3)$	$-0.002(4)$	$0.018(4)$
C43	$0.079(7)$	$0.045(4)$	$0.047(5)$	0.000	0.000	$0.009(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cr} 1-\mathrm{N} 2^{\mathrm{i}}$	$1.980(5)$	$\mathrm{C} 23-\mathrm{H} 23$	0.9300
$\mathrm{Cr} 1-\mathrm{N} 2$	$1.980(5)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.375(11)$
$\mathrm{Cr} 1-\mathrm{N} 1$	$1.991(5)$	$\mathrm{C} 24-\mathrm{H} 24$	0.9300
$\mathrm{Cr} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.991(5)$	$\mathrm{C} 25-\mathrm{H} 25$	0.9300
$\mathrm{Cr} 1-\mathrm{N} 21$	$2.080(6)$	$\mathrm{N} 31-\mathrm{C} 31$	$1.336(13)$
$\mathrm{Cr} 1-\mathrm{N} 11$	$2.102(6)$	$\mathrm{N} 31-\mathrm{C} 32$	$1.372(13)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.168(7)$	$\mathrm{N} 31-\mathrm{H} 31 \mathrm{~A}$	0.8600
$\mathrm{C} 1-\mathrm{S} 1$	$1.610(6)$	$\mathrm{C} 31-\mathrm{C} 35$	$1.360(13)$

N2-C2	1.177 (7)
C2-S2	1.605 (6)
N11-C11	1.338 (7)
N11-C11 ${ }^{\text {i }}$	1.338 (7)
C11-C12	1.395 (7)
C11-H11	0.9300
C12-C13	1.373 (8)
C12-H12	0.9300
C13-H13	0.9300
N21-C21	1.349 (10)
N21-C25	1.363 (10)
$\mathrm{C} 21-\mathrm{C} 22$	1.379 (12)
$\mathrm{C} 21-\mathrm{H} 21$	0.9300
C22-C23	1.373 (15)
C22-H22	0.9300
C23-C24	1.390 (13)
$\mathrm{N} 2 \mathrm{i}-\mathrm{Cr} 1-\mathrm{N} 2$	88.4 (3)
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 1$	91.33 (18)
N2-Cr1-N1	178.9 (2)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cr} 1-\mathrm{N} 1^{\mathrm{i}}$	178.9 (2)
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 1^{1}$	91.33 (18)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 1^{\text {i }}$	88.9 (3)
N2 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 21$	90.62 (18)
$\mathrm{N} 2-\mathrm{Cr} 1-\mathrm{N} 21$	90.62 (18)
N1-Cr1-N21	90.39 (18)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 21$	90.40 (18)
N2 ${ }^{\text {i }}$ - $\mathrm{Cr} 1-\mathrm{N} 11$	88.98 (18)
N2-Cr1-N11	88.98 (18)
N1-Cr1-N11	90.00 (18)
$\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 11$	90.00 (18)
N21-Cr1-N11	179.4 (3)
C1-N1-Cr1	169.7 (5)
N1-C1-S1	178.9 (6)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cr} 1$	167.6 (5)
N2-C2-S2	179.1 (5)
C11-N11-C11 ${ }^{\text {i }}$	118.4 (7)
C11-N11-Cr1	120.8 (3)
C11-N11-Cr1	120.7 (3)
N11-C11-C12	122.4 (6)
N11-C11-H11	118.8
C12-C11-H11	118.8
C13-C12-C11	118.5 (6)
C13-C12-H12	120.8
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.8
C12-C13-C12	119.8 (8)
C12- ${ }^{\text {C }} 13-\mathrm{H} 13$	120.1
C12-C13-H13	120.1

C31-H31	0.9300
C32-C33	1.350 (13)
C32-H32	0.9300
C33-C34	1.375 (12)
C33-H33	0.9300
C34-C35	1.368 (11)
C34-H34	0.9300
C35-H35	0.9300
N41-C41	1.324 (8)
N41-C41 ${ }^{\text {ii }}$	1.324 (8)
N41-H41A	0.8600
C41-C42	1.393 (9)
C41-H41	0.9300
C42-C43	1.369 (9)
C42-H42	0.9300
C43-H43	0.9300
C22-C23-C24	119.8 (9)
C22-C23-H23	120.1
C24- $\mathrm{C} 23-\mathrm{H} 23$	120.1
C25-C24-C23	117.8 (9)
C25-C24-H24	121.1
C23-C24-H24	121.1
N21-C25-C24	123.5 (7)
N21-C25-H25	118.3
C24-C25-H25	118.3
C31-N31-C32	118.1 (8)
C31-N31-H31A	120.9
C32-N31-H31A	120.9
N31-C31-C35	121.9 (8)
N31-C31-H31	119.0
C35-C31-H31	119.0
C33-C32-N31	121.4 (9)
C33-C32-H32	119.3
N31-C32-H32	119.3
C32-C33-C34	120.1 (9)
C32-C33-H33	119.9
C34-C33-H33	119.9
C35-C34-C33	118.3 (8)
C35-C34-H34	120.8
C33-C34-H34	120.8
C31-C35-C34	120.1 (8)
C31-C35-H35	119.9
C34-C35-H35	119.9
$\mathrm{C} 41-\mathrm{N} 41-\mathrm{C} 41^{\text {ii }}$	120.6 (8)
C41-N41-H41A	119.7
C41ii- $\mathrm{N} 41-\mathrm{H} 41 \mathrm{~A}$	119.7
N41-C41-C42	120.9 (7)

$\mathrm{C} 21-\mathrm{N} 21-\mathrm{C} 25$	$117.3(7)$	$\mathrm{N} 41-\mathrm{C} 41-\mathrm{H} 41$	119.6
$\mathrm{C} 21-\mathrm{N} 21-\mathrm{Cr} 1$	$121.6(5)$	$\mathrm{C} 42-\mathrm{C} 41-\mathrm{H} 41$	119.6
$\mathrm{C} 25-\mathrm{N} 21-\mathrm{Cr} 1$	$121.1(5)$	$\mathrm{C} 43-\mathrm{C} 42-\mathrm{C} 41$	$119.5(7)$
$\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22$	$122.4(8)$	$\mathrm{C} 43-\mathrm{C} 42-\mathrm{H} 42$	120.3
$\mathrm{~N} 21-\mathrm{C} 21-\mathrm{H} 21$	118.8	$\mathrm{C} 41-\mathrm{C} 42-\mathrm{H} 42$	120.3
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21$	118.8	$\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 42^{\mathrm{ii}}$	$118.7(8)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 21$	$119.4(8)$	$\mathrm{C} 42-\mathrm{C} 43-\mathrm{H} 43$	120.6
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	120.3		120.6
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	120.3		$\mathrm{C} 43-\mathrm{H} 43$

Symmetry codes: (i) $-x+1, y, z$; (ii) $-x, y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12 ${ }^{\text {- }}{ }^{1}{ }^{\text {iii }}$	0.93	2.93	3.647 (6)	135
C32-H32 ${ }^{\text {c }} \mathrm{S}^{\text {iv }}$	0.93	3.01	3.719 (8)	134
C32-H32 ${ }^{\text {c }}$ S2 ${ }^{\text {v }}$	0.93	3.01	3.719 (8)	134
C35-H35 ${ }^{\text {c }} \mathrm{S}^{\text {vi }}$	0.93	2.90	3.494 (7)	123
C35-H35 ${ }^{\text {S }}{ }^{\text {2ii }}$	0.93	2.90	3.494 (7)	123
$\mathrm{N} 31-\mathrm{H} 31 A \cdots \mathrm{~N} 41$	0.86	1.82	2.684 (11)	179
$\mathrm{N} 41-\mathrm{H} 41 A \cdots \mathrm{~N} 31$	0.86	1.82	2.684 (11)	180

Symmetry codes: (iii) $x, y+1, z$; (iv) $-x,-y+2, z-1 / 2$; (v) $x,-y+2, z-1 / 2$; (vi) $x, y, z-1$; (vii) $-x, y, z-1$.

