CRYSTALOGRAPHIC COMMUNICATIONS

Received 17 October 2019
Accepted 30 October 2019

Edited by J. Jasinski, Keene State College, USA

Keywords: coordination polymer; lanthanide; 2aminoterephthalic acid; oxalic acid; crystal structure.

CCDC reference: 1962371
Supporting information: this article has supporting information at journals.iucr.org/e

Organically pillared layer framework of [$\mathrm{Eu}\left(\mathrm{NH}_{2}-\mathrm{BDC}\right)(\mathrm{ox})\left(\mathrm{H}_{3} \mathrm{O}\right)$]

Supaphorn Thammakan, ${ }^{\text {a }}$ Kitt Panyarat ${ }^{\text {a }}$ and Apinpus Rujiwatra ${ }^{\text {a,b }}{ }^{\text {w }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and ${ }^{\mathbf{b}}$ Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. *Correspondence e-mail: apinpus.rujiwatra@cmu.ac.th

The non-porous three-dimensional structure of poly[$\left(\mu_{5}-2\right.$-aminobenzene-1,4dicarboxylato) (μ_{6}-oxalato)(oxomium) europium(III)], $\left[\mathrm{Eu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{H}_{3} \mathrm{O}\right)\right]_{n}$ or $\left[\mathrm{Eu}^{\text {III }}\left(\mathrm{NH}_{2}-\mathrm{BDC}\right)(\mathrm{ox})\left(\mathrm{H}_{3} \mathrm{O}\right)\right]_{n} \quad\left(\mathrm{NH}_{2}-\mathrm{BDC}^{2-}=2\right.$-aminoterephthalate and $\mathrm{ox}^{2-}=$ oxalate) is constructed from two-dimensional layers of $\mathrm{Eu}^{\text {III }}$-carboxylate-oxalate, which are connected by $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ pillars. The basic structural unit of the layer is an edge-sharing dimer of TPRS - $\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{9}\right\}$, which is assembled through the ox^{2-} moiety. The intralayer void is partially occupied by $T P R-\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{6}\right\}$ motifs. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and strong, classical intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, as well as weak $\pi-\pi$ stacking interactions, affix the organic pillars within the framework. The two-dimensional layer can be simplified to a uninodal 4 -connected sql/Shubnikov tetragonal plane net with point symbol $\left\{4^{4} .6^{2}\right\}$.

1. Chemical context

Lanthanide coordination polymers (LnCPs) have emerged as authentic multifunctional materials finding potential in various applications, e.g. magnetism, optics, luminescence and in heterogeneous catalysis (Roy et al., 2014). In the crystal engineering of LnCPs, the judicious choice of organic ligands is critical. Among the widely employed dicarboxylates, 1,4-benzenedicarboxylic acid $\left(\mathrm{H}_{2} \mathrm{BDC}\right)$ tends to provide three-dimensional frameworks with permanent porosity. To enhance interactions with guest species, additional functional groups can be introduced onto the phenyl ring of BDC^{2-}, e.g. 2-amino-1,4-benzenediarboxylic acid $\left(\mathrm{NH}_{2}-\mathrm{H}_{2} \mathrm{BDC}\right)$ in NH_{2} -MIL-53(Al) enhanced the carbon dioxide capture capacity (Stavitski et al., 2011; Flaig et al., 2017; Wang et al., 2012). The smallest dicarboxylic acid, i.e. oxalic acid $\left(\mathrm{H}_{2} \mathrm{Ox}\right)$, on the other hand, may not facilitate the porous framework (Zhang et al., 2016; Xiahou et al., 2013) and its presence as a secondary ligand in the fabrication may lead to diversity in the framework structures.

Herein, $\mathrm{NH}_{2}-\mathrm{H}_{2} \mathrm{BDC}$ and $\mathrm{H}_{2} \mathrm{ox}$ were employed as mixed linkers in the synthesis of a new three-dimensional framework of europium, i.e. $\left[\mathrm{Eu}\left(\mathrm{NH}_{2}-\mathrm{BDC}\right)(\mathrm{ox})\left(\mathrm{H}_{3} \mathrm{O}\right)\right](\mathbf{I})$. The crystal
structure of \mathbf{I}, which exhibits site disorder at both the $\mathrm{Eu}^{\mathrm{III}}$ ion and the amino group, is reported. Weak intermolecular interactions and the framework topology are also described.

2. Structural commentary

[$\left.\mathrm{Eu}\left(\mathrm{NH}_{2}-\mathrm{BDC}\right)(\mathrm{ox})\left(\mathrm{H}_{3} \mathrm{O}\right)\right]$ crystallizes in the monoclinic space group $P 2_{1} / c$. Its asymmetric unit comprises one $\mathrm{Eu}^{\text {III }}$ ion, which is disordered over two crystallographic sites with an occupying ratio of $0.86(\mathrm{Eu} 1 A): 0.14(\mathrm{Eu} 1 B)$ and whole molecules of $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$, ox ${ }^{2-}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$(Fig. 1). Eu1 A is ninefold coordinated to nine O atoms from one chelating $\mathrm{NH}_{2}--\mathrm{BDC}^{2-}$, two monodentate $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$, two chelating ox^{2-} and one monodentate ox^{2-} groups, all of which delineate into a distorted tricapped trigonal-prismatic geometry, i.e. $T P R S-\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{9}\right\}$. $\mathrm{Eu} 1 B$, on the other hand, adopts a sixfold
coordination of trigonal anti-prismatic geometry, i.e. $T P R$ $\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{6}\right\}$, which is completed by six O atoms from two monodentate $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$, three monodentate ox^{2-} and one $\mathrm{H}_{3} \mathrm{O}^{+}$moieties. Noticeably, the three monodentate ox^{2-} moieties form one trigonal face whereas the two monodentate $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ and the ligated $\mathrm{H}_{3} \mathrm{O}^{+}$moieties outline the other. The $\mathrm{Eu}^{\mathrm{III}}-\mathrm{O}$ bond distances ranging between 2.375 (2) and 2.562 (2) \AA, are consistent with the values observed for other Eu ${ }^{\text {III }}$ coordination frameworks, e.g. $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{2^{-}}$ $\left[\mathrm{Eu}_{6}\left(\mu_{3}-\mathrm{OH}\right)_{8}\left(\mathrm{BDC}-\mathrm{NH}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ (Yi et al., 2016) and $\left[\mathrm{Eu}_{2}(\mathrm{ATPA})_{3}(\mathrm{DEF})_{2}\right]_{n}$ where ATPA ${ }^{2-}=2$-aminoterepthalate and DEF = diethylformamide (Kariem et al., 2016). In addition to the disorder at the $\mathrm{Eu}^{\mathrm{III}}$ positions, there is an additional disorder at the amino group of $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$, which distributes over three crystallographic sites with site occupancies of 0.26 (N1), 0.44 (N2) and $0.31(\mathrm{~N} 3)$, respectively.
(a)

(b)

(c)

Figure 1
Views of (a) an extended asymmetric unit of \mathbf{I} drawn using 60% probability ellipsoids and the coordination environments about (b) Eu1 A and (c) Eu1B. [Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (iv) $x, \frac{3}{2}-y,-\frac{1}{2}+z ;$ (v) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (vi) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (vii) $1-x$, $1-y, 1-z$; (viii) $1-x, \frac{3}{2}-y, \frac{1}{2}+z$.]
(a)

Figure 2
Depictions of coordination modes adopted by $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ and ox ${ }^{2-}$; (a) with (b) without Eu1B.

As a result of the disorder of the $\mathrm{Eu}^{\text {III }}$ ion, the modes of coordinations for both $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ and ox^{2-} are diverse. If all of the possible sites of $\mathrm{Eu}^{\text {III }}$ are concurrently included, the $\mu_{5}-\eta^{1}: \eta^{1}: \eta^{2}: \eta^{2}$ mode can be assigned to $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ as it connects three $\operatorname{Eu} 1 A$ and two $\operatorname{Eu} 1 B$ moieties together (Fig. 2). In a similar fashion, three $\operatorname{Eu} 1 A$ and three $\operatorname{Eu} 1 B$ moieties may be simultaneously linked by $o x^{2-}$ using the $\mu_{6}-\eta^{2}: \eta^{2}: \eta^{2}: \eta^{2}$ mode for coordination. It is worth noting that the

Figure 3
The three-dimensional framework structure of \mathbf{I}.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9 W-\mathrm{H} 9 W A \cdots \mathrm{O} 2{ }^{\text {i }}$	1.11 (5)	1.81 (5)	2.904 (4)	171 (5)
O9W-H9WB $\cdots{ }^{\text {O }} 5^{\text {ii }}$	1.10 (5)	1.87 (5)	2.943 (4)	163 (4)
C6-H6 . O 3	0.93	2.47	2.781 (6)	100
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2$	0.86	2.03	2.736 (16)	139

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x+1,-y+\frac{3}{2}, z+\frac{1}{2}$.
$\mu_{5}-\eta^{1}: \eta^{1}: \eta^{2}: \eta^{2}$ mode of $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ and the $\mu_{6}-\eta^{2}: \eta^{2}: \eta^{2}: \eta^{2}$ mode of ox^{2-} are unprecedented. If only the dominating $\mathrm{Eu} 1 A$ is regarded, the adopted coordination modes would be $\mu_{3}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{1}$ and $\mu_{3}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{2}$ for $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ and ox^{2-}, respectively. Likewise, there are only sixteen structures containing ox ${ }^{2-}$ with a $\mu_{3}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{2}$ mode and only two LnCPs comprising $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ with a $\mu_{3}-\eta^{1}: \eta^{1}: \eta^{1}: \eta^{1}$ mode, i.e. $\left[\mathrm{Yb}_{2}(\mathrm{OH})(\operatorname{atpt})_{2.5}(\mathrm{phen})_{2}\right]_{n} \cdot 1.75 n \mathrm{H}_{2} \mathrm{O}$ where atpt ${ }^{2-}=$ 2-aminoterephthalate and phen $=1,10$-phenanthroline $(\mathrm{Liu}$ et al., 2004), and $\left\{\left[\mathrm{Ho}_{2}\left(\mu_{3}-\mathrm{ATA}\right)_{2}\left(\mu_{4}\right.\right.\right.$-ATA $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{DMF}$-$\left.0.5 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ where $\mathrm{ATA}^{2-}=2$-aminoterephthalate (Almáši et al., 2014).

3. Supramolecular features

The structure of I features a three-dimensional framework, which can be regarded as being built up of two-dimensional layers of $\mathrm{Eu}^{\text {III }}$-carboxylate-oxalate connected by the $\mathrm{NH}_{2}-$ BDC^{2-} organic pillars (Fig. 3). The basic building motif of the layer is the edge-sharing dimer of $T P R S-\left\{\mathrm{Eu}^{\mathrm{II}} \mathrm{O}_{9}\right\}$ (Fig. 4), which is fused together through two O 8 atoms from two ox^{2-} groups and two $\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ bridges of two $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$.

Figure 4
Polyhedral and space-filling representations of the $\mathrm{Eu}^{\mathrm{III}}$-oxalatecarboxylate layers (a) with $T P R$ - $\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{6}\right\}$ motifs and (b) without $T P R$ $\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{6}\right\}$ motif.

Each $\left\{\mathrm{Eu}_{2}{ }^{\mathrm{III}} \mathrm{O}_{16}\right\}$ dimer of $\mathrm{Eu} 1 A$ is tied to the other four equivalent dimers through four ox^{2-} linkers in the $b c$ plane. The as-described arrangement of these $\left\{\mathrm{Eu}_{2}{ }^{\mathrm{III}} \mathrm{O}_{16}\right\}$ dimers creates voids characterized as the twelve-membered rings, in which the partially occupied $T P R-\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{6}\right\}$ motifs of $\mathrm{Eu} 1 B$ are situated. Each of the $T P R-\left\{\mathrm{Eu}^{\mathrm{II}} \mathrm{O}_{6}\right\}$ motifs are affixed within the layer through four O atoms from four surrounding ox^{2-} groups and an O 4 atom from $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$. These layers are further connected by the $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ organic pillars along the a-axis direction providing the non-porous threedimensional framework. The roles of ox ${ }^{2-}$ and $\mathrm{NH}_{2}-\mathrm{BCD}^{2-}$ in the framework of \mathbf{I} are, therefore, to create the layer framework and to tether the layers, respectively.

The $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ pillar is apparently organized through intramolecular hydrogen-bonding interactions from both strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1), and through the face-to-face antiparallel displaced $\pi-\pi$ interactions (Banerjee et al., 2019) established between the phenyl rings of two adjacent $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ pillars (Fig. 5). In addition to the intramolecular hydrogen-bonding interactions, two H atoms from the $\mathrm{H}_{3} \mathrm{O}^{+}$molecule are also involved in providing additional strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bonding interactions.

(b)

Figure 5
Views of (a) the hydrogen-bonding interactions and (b) the $\pi-\pi$ interactions.

Figure 6
The simplified two- and three-dimensional topologies of \mathbf{I}.

4. Topology

The topology of the two-dimensional layer of \mathbf{I} was analysed using TOPOS software (Blatov, 2004). If only the dominating motif, i.e. the edge-sharing dimer of $\operatorname{Eu} 1 A$, is taken as a node, which is connected to the other equivalent dimer via the ox ${ }^{2-}$ linker, the two-dimensional layer of Eu1 can be simplified to a uninodal 4-connected sql/Shubnikov tetragonal plane net with a point symbol $\left\{4^{4} .6^{2}\right\}$ (Blatov et al., 2014) (Fig. 6). The inclusion of the partially occupied $T P R-\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{6}\right\}$ motifs results in unknown topology. This is also the case for the three-dimensional framework with or without the $T P R-\left\{\mathrm{Eu}^{\mathrm{III}} \mathrm{O}_{6}\right\}$ motifs.

5. Photoluminescent property

A room temperature photoluminescent spectrum of \mathbf{I} was collected (Jasco FB-8500 spectrofluorometer, $\lambda_{\text {excitation }}=$ 337 nm). It exhibits none of the characteristic $f-f$ emission of $\mathrm{Eu}^{\text {III }}$. Even the broad emission characteristic of the ligandcentered $\pi-\pi$ emission was not observed. This may be attributed to a proton-induced fluorescence-quenching mechanism facilitated by the presence of $\mathrm{H}_{3} \mathrm{O}^{+}$in close proximity to the phenyl ring of $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ (Tobita \& Shizuka, 1980; Shizuka \& Tobita, 1982). The quenching consequently hinders the sensitization, which is important according to the antenna model (Einkauf et al., 2017).

6. Database survey

Based on a survey of the Cambridge Structural Database (version 5.40, Nov 2018 with the update of May 2019; Groom et al., 2016), no LnCP containing both $\mathrm{NH}_{2}-\mathrm{BDC}^{2-}$ and ox^{2-}

Table 2
Experimental details.

Crystal data	
Chemical formula	[$\left.\mathrm{Eu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{3} \mathrm{O}\right)\right]$
$M_{\text {r }}$	436.32
Crystal system, space group	Monoclinic, $P 2{ }_{1} / \mathrm{c}$
Temperature (K)	293
$a, b, c(\AA)$	$\begin{aligned} & 11.8348 \text { (3), } 11.3208 \text { (3), } \\ & 10.6531 \text { (3) } \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	110.275 (3)
$V\left(\AA^{3}\right)$	1338.86 (7)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.73
Crystal size (mm)	$0.2 \times 0.05 \times 0.05$
Data collection	
Diffractometer	Rigaku OD SuperNova, single source at offset/far, HyPix3000
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
$T_{\text {min }}, T_{\text {max }}$	0.753, 0.789
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	15479, 2882, 2458
$R_{\text {int }}$	0.050
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.647
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.028, 0.067, 1.09
No. of reflections	2882
No. of parameters	222
No. of restraints	4
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.61, -0.54

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015b), SHELXL (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).
has previously been reported. However, there are three closely relevant structures which have similar unit-cell parameters, i.e. catena-[(μ-tetracyanoborate)tetraaquabis(nitrato)lanthanum] (Zottnick et al., 2017), catena-[hemikis(piperazinedium)(μ-benzene-1,2,4,5-tetracarboxylato)diaquapraseodymium(III)] (Liang et al., 2017) and η^{5}-indenyl)dichloro-tris(tetrahydrofuran- O) gadolinium tetrahydrofuran solvate (Fuxing et al., 1992).

7. Synthesis and crystallization

To synthesize I, 2-aminoterephthalic acid ($0.2 \mathrm{mmol}, 0.0332 \mathrm{~g}$), oxalic acid $(0.2 \mathrm{mmol}, 0.0180 \mathrm{~g})$ and 1,4-diazabicyclo[2.2.2]octane ($0.4 \mathrm{mmol}, 0.0448 \mathrm{~g}$) were dissolved in 8.0 mL of DMF/ $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~m}: 7 \mathrm{~mL})$ to prepare solution A. Separately, solution B was prepared by dissolving $\mathrm{Eu}_{2} \mathrm{O}_{3}(0.1 \mathrm{mmol}, 0.0180 \mathrm{~g})$ in 1.0 mL of concentrated HNO_{3} aqueous solution, which was then adjusted to pH 7 using a 10 M NaOH aqueous solution. Solution \mathbf{B} was then gradually introduced into solution \mathbf{A}, and the mixture was then transferred to a 22 mL Teflon-lined stainless-steel autoclave. The reaction was carried out under an autogenous pressure generated at 393 K for 7 days. Yellow crystals of I were then recovered by filtration. FT-IR of I $\left(\mathrm{KBr} ; \mathrm{cm}^{-1}\right): 3361,2987,1617,1313,1053,798$.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The Eu ${ }^{\text {III }}$ ion was refined as being disordered over two crystallographic sites resulting in refined occupancies of $0.855(\mathrm{Eu} 1 A)$ and $0.145(\mathrm{Eu} 1 B)$. The disorder of the amino group over three crystallographic sites could be clearly seen in the electron-density map and was refined using the SUMP command providing occupancies of 0.259 (N1), $0.440(\mathrm{~N} 2)$ and $0.305(\mathrm{~N} 3)$. EADP constraints were necessary to make the anisotropic refinements of the disordered N atoms stable. The three H atoms on the ligated $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{O} 9 W)$ were evident in the electron-density map and therefore assigned as such. The SADI restraint was nonetheless applied on the refinements of the three $\mathrm{O}-\mathrm{H}$ bonds. H atoms could be positioned from the electron-density maps and were refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$. Bond restraints o $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ were applied in the refunements.

Funding information

Funding for this research was co-provided by: Chiang Mai University and Thailand Research Fund (grant No. RSA6280003 to Apinpus Rujiwatra); Science Achievement Scholarship of Thailand (to Supaphorn Thammakan).

References

Almáši, M., Zeleňák, V., Galdun, L. \& Kuchár, J. (2014). Inorg. Chem. Comтии. 39, 39-42.
Banerjee, A., Saha, A. \& Saha, B. K. (2019). Cryst. Growth Des. 19, 2245-2252.
Blatov, V. A. (2004). TOPOS. Samara State University, Russia.
Blatov, V. A., Shevchenko, A. P. \& Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Einkauf, J. D., Clark, J. M., Paulive, A., Tanner, G. P. \& de Lill, D. T. (2017). Inorg. Chem. 56, 5544-5552.

Flaig, R. W., Popp, T. M. O., Fracaroli, A. M., Kapustin, E. A., Kalmutzki, M. J., Altamimi, R. M., Fathieh, F., Reimer, J. A. \& Yaghi, O. M. (2017). J. Am. Chem. Soc. 139, 12125-12128.
Fuxing, G., Gecheng, W., Zhongsheng, J. \& Wenqi, C. (1992). J. Organomet. Chem. 438, 289-295.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kariem, M., Yawer, M., Sharma, S. \& Sheikh, H. N. (2016). Chemistry Select, 1, 4489-4501.
Liang, X.-Q. \& Fan, Z.-L. (2017). Chinese J. Struc. Chem, 36, 977984.

Liu, C.-B., Sun, C.-Y., Jin, L.-P. \& Lu, S.-Z. (2004). New J. Chem. 28, 1019-1026.
Rigaku OD (2018). CrysAlis PRO. Rigaku Cooperation, Oxford, England.
Roy, S., Charkraborty, A. \& Maji, T.-K. (2014). Chem. Rev. 273-274, 139-164.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shizuka, H. \& Tobita, S. (1982). J. Am. Chem. Soc. 104, 6919-6927.
Stavitski, E., Pidko, E. A., Couck, S., Remy, T., Hensen, E. J. M., Weckhuysen, B. M., Denayer, J., Gascon, J. \& Kapteijn, F. (2011). Langmuir, 27, 3970-3976.
Tobita, S. \& Shizuka, H. (1980). Chem. Phys. Lett. 75, 140-144.
Wang, F., Tan, Y. X., Yang, H., Kang, Y. \& Zhang, J. (2012). Chem. Commип. 48, 4842-4844.

Xiahou, Z.-J., Wang, Y.-L., Liu, Q.-Y., Li, L. \& Zhou, L.-J. (2013). J. Coord. Chem. 66, 2910-2918.
Yi, P., Huang, H., Peng, Y., Liu, D. \& Zhong, C. (2016). RSC Adv. 6, 111934-111941.

Zhang, X. T., Fan, L.-M., Fan, W.-L., Li, B., Liu, G. Z., Liu, X.-Z. \& Zhao, X. (2016). Cryst. Growth \& Des. 16, 3993-4004.
Zottnick, S. H., Finze, M. \& Müller-Buschbaum, K. (2017). Chem. Commun. 53, 5193-5195.

supporting information

Acta Cryst. (2019). E75, 1833-1838 [https://doi.org/10.1107/S2056989019014713]

Organically pillared layer framework of $\left[\mathrm{Eu}\left(\mathrm{NH}_{2}-\mathrm{BDC}\right)(\mathbf{o x})\left(\mathrm{H}_{3} \mathrm{O}\right)\right]$

Supaphorn Thammakan, Kitt Panyarat and Apinpus Rujiwatra

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(μ_{6}-oxalato)(oxomium)(μ_{5}-2-aminobenzene-1,4-dicarboxylato)europium(III)]

Crystal data

$\left[\mathrm{Eu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{3} \mathrm{O}\right)\right]$
$M_{r}=436.32$
Monoclinic, $P 2_{1} / c$
$a=11.8348$ (3) \AA
$b=11.3208$ (3) \AA
$c=10.6531(3) \AA$
$\beta=110.275$ (3) ${ }^{\circ}$
$V=1338.86(7) \AA^{3}$
$Z=4$

Data collection

Rigaku OD SuperNova, single source at
offset/far, HyPix3000
diffractometer
Radiation source: micro-focus sealed X-ray tube ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
$T_{\min }=0.753, T_{\text {max }}=0.789$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.067$
$S=1.09$
2882 reflections
222 parameters
4 restraints
$F(000)=832$
$D_{\mathrm{x}}=2.165 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9488 reflections
$\theta=1.8-27.3^{\circ}$
$\mu=4.73 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, clear light yellow
$0.2 \times 0.05 \times 0.05 \mathrm{~mm}$

15479 measured reflections
2882 independent reflections
2458 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-14 \rightarrow 15$
$k=-11 \rightarrow 14$
$l=-13 \rightarrow 13$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0305 P)^{2}+0.0276 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.61 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Eu1A	0.07429 (2)	0.61284 (2)	0.15674 (2)	0.01311 (9)	0.8558 (8)
O6	0.0486 (2)	0.7311 (2)	0.3456 (2)	0.0298 (6)	
O8	-0.0221 (2)	0.89620 (19)	0.4069 (3)	0.0248 (6)	
O5	-0.0175 (2)	0.8135 (2)	0.0928 (2)	0.0314 (6)	
O2	0.1449 (2)	0.4078 (2)	-0.1090 (3)	0.0315 (7)	
O7	-0.0772 (2)	0.9814 (2)	0.1603 (2)	0.0298 (6)	
O4	0.7236 (2)	0.1331 (2)	0.1432 (3)	0.0356 (7)	
O1	0.2130 (2)	0.5301 (3)	0.0649 (3)	0.0385 (7)	
O3	0.7668 (2)	0.2640 (2)	0.3050 (3)	0.0366 (7)	
C10	0.0008 (3)	0.8307 (3)	0.3236 (4)	0.0212 (8)	
C1	0.2274 (3)	0.4463 (4)	-0.0068 (4)	0.0278 (9)	
C9	-0.0344 (3)	0.8795 (3)	0.1784 (4)	0.0229 (9)	
C8	0.6941 (3)	0.2224 (4)	0.1960 (4)	0.0290 (9)	
C2	0.3499 (3)	0.3911 (3)	0.0360 (4)	0.0319 (10)	
C5	0.5750 (3)	0.2802 (4)	0.1344 (4)	0.0353 (10)	
C6	0.5557 (4)	0.3900 (4)	0.1808 (5)	0.0502 (14)	
H6	0.619345	0.426877	0.246414	0.060*	
C3	0.3677 (4)	0.2839 (4)	-0.0150 (5)	0.0513 (13)	
C7	0.4454 (4)	0.4470 (4)	0.1332 (5)	0.0480 (12)	
C4	0.4805 (4)	0.2271 (4)	0.0321 (5)	0.0528 (13)	
N2	0.4834 (8)	0.1125 (8)	-0.0128 (12)	0.066 (3)	0.439 (6)
H2A	0.512716	0.113790	-0.078500	0.080*	0.439 (6)
H2B	0.531521	0.063870	0.047841	0.080*	0.439 (6)
N3	0.4511 (10)	0.5604 (13)	0.1717 (14)	0.066 (3)	0.312 (6)
H3A	0.407927	0.583997	0.230300	0.080*	0.312 (6)
H3B	0.527520	0.590092	0.221251	0.080*	0.312 (6)
N1	0.2993 (12)	0.2381 (15)	-0.1365 (15)	0.066 (3)	0.261 (6)
H1A	0.286630	0.164575	-0.125872	0.080*	0.261 (6)
H1B	0.231669	0.274954	-0.165662	0.080*	0.261 (6)
Eu1B	0.82330 (16)	0.39654 (13)	0.47691 (17)	0.0427 (7)	0.1442 (8)
O9W	0.8080 (3)	0.5707 (3)	0.3580 (3)	0.0593 (9)	
H9WA	0.816 (5)	0.581 (4)	0.258 (4)	0.089*	
H9WB	0.881 (4)	0.620 (4)	0.433 (5)	0.089*	
H9WC	0.725 (4)	0.578 (6)	0.383 (7)	0.15 (3)*	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Eu1A	$0.01489(13)$	$0.00998(14)$	$0.01356(13)$	$-0.00037(7)$	$0.00379(9)$	$-0.00035(8)$

O6	$0.0446(16)$	$0.0207(15)$	$0.0244(14)$	$0.0096(12)$	$0.0121(12)$	$0.0042(12)$
O8	$0.0355(15)$	$0.0197(15)$	$0.0206(15)$	$0.0018(11)$	$0.0114(13)$	$-0.0022(11)$
O5	$0.0494(17)$	$0.0224(16)$	$0.0230(14)$	$0.0099(13)$	$0.0133(13)$	$0.0000(12)$
O2	$0.0215(14)$	$0.0420(19)$	$0.0291(16)$	$-0.0002(12)$	$0.0064(12)$	$-0.0073(13)$
O7	$0.0425(16)$	$0.0182(15)$	$0.0244(14)$	$0.0085(12)$	$0.0060(12)$	$0.0020(12)$
O4	$0.0320(16)$	$0.0368(18)$	$0.0329(17)$	$0.0101(12)$	$0.0045(13)$	$-0.0070(13)$
O1	$0.0243(14)$	$0.048(2)$	$0.0420(17)$	$0.0037(13)$	$0.0095(13)$	$-0.0161(15)$
O3	$0.0306(15)$	$0.0333(18)$	$0.0357(17)$	$0.0088(13)$	$-0.0014(13)$	$-0.0089(14)$
C10	$0.0242(19)$	$0.014(2)$	$0.026(2)$	$-0.0034(16)$	$0.0088(16)$	$-0.0023(17)$
C1	$0.025(2)$	$0.030(2)$	$0.029(2)$	$-0.0008(18)$	$0.0107(18)$	$-0.0008(19)$
C9	$0.026(2)$	$0.021(2)$	$0.017(2)$	$0.0012(16)$	$0.0008(17)$	$0.0012(16)$
C8	$0.028(2)$	$0.027(2)$	$0.028(2)$	$0.0023(18)$	$0.0054(18)$	$-0.0028(19)$
C2	$0.025(2)$	$0.033(3)$	$0.035(2)$	$0.0063(17)$	$0.0074(19)$	$-0.0015(19)$
C5	$0.030(2)$	$0.035(3)$	$0.036(2)$	$0.0084(18)$	$0.005(2)$	$-0.004(2)$
C6	$0.031(3)$	$0.044(3)$	$0.056(3)$	$0.013(2)$	$-0.010(2)$	$-0.020(2)$
C3	$0.031(2)$	$0.048(3)$	$0.058(3)$	$0.009(2)$	$-0.006(2)$	$-0.017(3)$
C7	$0.035(2)$	$0.046(3)$	$0.052(3)$	$0.015(2)$	$0.001(2)$	$-0.016(3)$
C4	$0.042(3)$	$0.053(3)$	$0.049(3)$	$0.018(2)$	$-0.003(2)$	$-0.019(3)$
N2	$0.033(4)$	$0.064(5)$	$0.081(6)$	$0.026(3)$	$-0.007(4)$	$-0.040(4)$
N3	$0.033(4)$	$0.064(5)$	$0.081(6)$	$0.026(3)$	$-0.007(4)$	$-0.040(4)$
N1	$0.033(4)$	$0.064(5)$	$0.081(6)$	$0.026(3)$	$-0.007(4)$	$-0.040(4)$
Eu1B	$0.0590(12)$	$0.0319(11)$	$0.0319(10)$	$-0.0013(7)$	$0.0090(8)$	$-0.0028(7)$
O9W	$0.076(3)$	$0.056(2)$	$0.044(2)$	$-0.014(2)$	$0.0174(19)$	$0.0008(19)$

Geometric parameters ($\AA,{ }^{\circ}$)

Eu1A-Eu1A ${ }^{\text {i }}$	4.0868 (4)	O4-C8	1.264 (4)
Eu1A-O6	2.521 (2)	O4-Eu1B ${ }^{\text {vii }}$	2.468 (3)
Eu1A-O8 ${ }^{\text {ii }}$	2.562 (2)	O1-C1	1.266 (4)
Eu1A-O8 ${ }^{\text {iii }}$	2.508 (3)	O3-C8	1.272 (4)
Eu1A-O5	2.508 (2)	O3-Eu1B	2.281 (3)
Eu1A-O2 ${ }^{\text {i }}$	2.476 (2)	C10-C9	1.558 (5)
Eu1A-07ii	2.444 (3)	C1-C2	1.497 (5)
Eu1A-O4 ${ }^{\text {iv }}$	2.604 (3)	C8-C5	1.484 (5)
Eu1A-O1	2.375 (2)	C2-C3	1.375 (5)
Eu1A-O3 ${ }^{\text {iv }}$	2.470 (3)	C2-C7	1.393 (6)
O6-C10	1.247 (4)	C5-C6	1.386 (6)
O6-Eu1B ${ }^{\text {v }}$	2.445 (3)	C5-C4	1.398 (6)
$\mathrm{O} 8-\mathrm{C} 10$	1.256 (4)	C6-C7	1.386 (6)
O5-C9	1.247 (4)	C3-C4	1.408 (6)
O5-Eu1B ${ }^{\text {iv }}$	2.811 (3)	C3-N1	1.368 (14)
$\mathrm{O} 2-\mathrm{C} 1$	1.261 (4)	C7-N3	1.343 (13)
O7-C9	1.247 (4)	$\mathrm{C} 4-\mathrm{N} 2$	1.387 (8)
O7-Eu1B ${ }^{\text {vi }}$	2.349 (3)	Eu1B-O9W	2.317 (4)
O6-Eu1A-Eu1A ${ }^{\text {i }}$	147.91 (6)	Eu1B ${ }^{\text {vi}}-\mathrm{O} 7-\mathrm{Eu} 1 \mathrm{~A}^{\text {ix }}$	99.74 (10)
O6-Eu1A-O8 ${ }^{\text {ii }}$	129.40 (8)	C8-O4-Eu1A ${ }^{\text {x }}$	91.4 (2)
O6-Eu1A-O4 $4^{\text {iv }}$	68.33 (9)	C8-O4-Eu1B ${ }^{\text {vii }}$	134.7 (3)

O8 ${ }^{\text {iii }}$-Eu1A-Eu1A ${ }^{\text {i }}$	36.75 (5)
O8 $8^{\text {ii }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{Eu} 1 \mathrm{~A}^{\text {i }}$	35.85 (6)
O8iii-Eu1A-O6	137.05 (8)
O8 ${ }^{\text {iii }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 8^{\text {ii }}$	72.60 (9)
O8ii-Eu1A-O4 ${ }^{\text {iv }}$	111.70 (8)
O8 ${ }^{\text {iii }}$-Eu1A-O4 $4^{\text {iv }}$	145.39 (9)
O5-Eu1A-Eu1A ${ }^{\text {i }}$	108.73 (6)
O5-Eu1A-O6	64.84 (8)
O5-Eu1A-O8 $8^{\text {iii }}$	75.76 (8)
O5-Eu1A-O8 ${ }^{\text {ii }}$	138.85 (8)
O5-Eu1A-O4 ${ }^{\text {iv }}$	109.32 (8)
O2 ${ }^{\text {i }}$-Eu1A-Eu1A ${ }^{\text {i }}$	69.48 (6)
O2 ${ }^{\text {i }}$-Eu1A-O6	78.84 (8)
O 2 i-Eu1A-O8 $8^{\text {iii }}$	73.70 (9)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 8^{\text {ii }}$	73.49 (8)
O2-Eu1A-O5	72.87 (8)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 4^{\text {iv }}$	140.91 (9)
O7ii-Eu1A-Eu1A ${ }^{\text {i }}$	98.87 (6)
O7ii-Eu1A-O6	70.07 (9)
O7ii-Eu1A-O8 ${ }^{\text {ii }}$	64.12 (8)
O7ii-Eu1A-O8 ${ }^{\text {iii }}$	134.20 (8)
O7ii-Eu1A-O5	130.79 (9)
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 2^{\text {i }}$	80.22 (9)
O7ii-Eu1A-O4 ${ }^{\text {iv }}$	69.26 (8)
O7ii-Eu1A-O3 ${ }^{\text {iv }}$	119.41 (9)
O4 ${ }^{\text {iv }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{Eu} 1 \mathrm{~A}^{\mathrm{i}}$	137.47 (6)
O1-Eu1A-Eu1A ${ }^{\text {i }}$	65.16 (6)
O1-Eu1A-O6	146.09 (8)
O1-Eu1A-O8 $8^{\text {ii }}$	69.59 (9)
O1-Eu1A-O8 ${ }^{\text {iii }}$	70.84 (8)
O1-Eu1A-O5	122.76 (9)
$\mathrm{O} 1-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O}^{\text {i }}$	134.63 (9)
O1-Eu1A-O7 ${ }^{\text {ii }}$	105.55 (9)
O1-Eu1A-O4 ${ }^{\text {iv }}$	78.60 (9)
$\mathrm{O} 1-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 3^{\text {iv }}$	75.28 (9)
O3 ${ }^{\text {iv }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{Eu} 1 \mathrm{~A}^{\mathrm{i}}$	130.96 (7)
O3 ${ }^{\text {iv }}$-Eu1A-O6	78.21 (9)
O3 ${ }^{\text {iv }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 8^{\text {iii }}$	104.11 (8)
O3 ${ }^{\text {iv }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 8^{\text {ii }}$	143.79 (9)
O3 ${ }^{\text {iv }}$-Eu1A-O5	69.54 (8)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 2{ }^{\text {i }}$	141.55 (9)
O3 ${ }^{\text {iv }}-\mathrm{Eu} 1 \mathrm{~A}-\mathrm{O} 4{ }^{\text {iv }}$	51.17 (8)
C10-O6-Eu1A	120.2 (2)
C10-O6-Eu1B ${ }^{\text {v }}$	143.1 (2)
C10-O8-Eu1A ${ }^{\text {viii }}$	126.6 (2)
C10-O8-Eu1A ${ }^{\text {ix }}$	118.0 (2)
C9-O5-Eu1A	120.6 (2)
C9-O5-Eu1B ${ }^{\text {iv }}$	110.2 (2)

Eu1B ${ }^{\text {vii-_O4-Eu1 }}{ }^{\text {x }}$	92.50 (9)
C1-O1-Eu1A	143.2 (2)
C8-O3-Eu1A ${ }^{\text {a }}$	97.5 (2)
C8-O3-Eu1B	153.3 (3)
Eu1B-O3-Eu1A ${ }^{\text {x }}$	109.19 (11)
O6-C10-O8	126.6 (3)
O6-C10-C9	117.1 (3)
O8-C10-C9	116.3 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.6 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.8 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.6 (3)
O5-C9-C10	117.2 (3)
O7-C9-O5	126.9 (4)
O7-C9-C10	115.9 (3)
O4-C8-Eu1A ${ }^{\text {x }}$	63.02 (19)
O4-C8-O3	119.9 (3)
O4-C8-C5	121.5 (3)
O3-C8-Eu1A ${ }^{\text {x }}$	56.94 (18)
O3-C8-C5	118.6 (4)
C5-C8-Eu1A ${ }^{\text {}}$	174.2 (3)
C3-C2-C1	120.9 (4)
C3-C2-C7	119.9 (4)
C7-C2-C1	119.1 (4)
C6-C5-C8	119.1 (4)
C6-C5-C4	118.5 (4)
C4-C5-C8	122.4 (4)
C5-C6-C7	122.5 (4)
C2-C3-C4	121.2 (4)
N1-C3-C2	125.9 (7)
N1-C3-C4	109.9 (7)
C6-C7-C2	118.6 (4)
N3-C7-C2	127.1 (6)
N3-C7-C6	113.1 (6)
C5-C4-C3	119.0 (4)
N2-C4-C5	124.2 (5)
N2-C4-C3	116.0 (5)
$\mathrm{O} 6^{\mathrm{v}}-\mathrm{Eu} 1 \mathrm{~B}-\mathrm{O}^{\mathrm{x}}$	70.24 (9)
O6 ${ }^{\text {v }}$-Eu1B-O4 ${ }^{\text {xi }}$	71.76 (10)
O7xii-Eu1B-O6 ${ }^{\text {v }}$	72.95 (10)
O7xii-Eu1B-O5 ${ }^{\text {x }}$	101.31 (10)
O7xii-Eu1B-O4 ${ }^{\text {xi }}$	73.14 (10)
O4 $4^{\text {xi }}$-Eu1B-O5 ${ }^{\text {x }}$	141.46 (10)
O3-Eu1B-O6 ${ }^{\text {v }}$	99.37 (11)
O3-Eu1B-O5 ${ }^{\text {x }}$	66.84 (9)
O3-Eu1B-O7 ${ }^{\text {xii }}$	167.83 (13)
O3-Eu1B-O4 $4^{\text {xi }}$	114.01 (12)
O3-Eu1B-O9W	100.09 (12)
O9W-Eu1B-O6 ${ }^{\text {v }}$	146.74 (13)

$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Eu} 1 \mathrm{~A}^{\text {i }}$	130.7 (2)	O9W-Eu1B-O5 ${ }^{\text {x }}$	93.23 (12)
C9-O7-Eu1A ${ }^{\text {ix }}$	123.2 (2)	O9W-Eu1B-O7 ${ }^{\text {xii }}$	82.84 (12)
C9-O7-Eu1B ${ }^{\text {vi }}$	137.1 (2)	O9W-Eu1B-O4 ${ }^{\text {xi }}$	122.82 (13)

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $x,-y+3 / 2, z-1 / 2$; (iv) $-x+1, y+1 / 2,-z+1 / 2$; (v) $-x+1,-y+1,-z+1$; (vi) $x-1,-y+3 / 2, z-1 / 2$; (vii) $x,-y+1 / 2, z-1 / 2$; (viii) $x,-y+3 / 2, z+1 / 2$; (ix) $-x, y+1 / 2,-z+1 / 2$; (x) $-x+1, y-1 / 2,-z+1 / 2$; (xi) $x,-y+1 / 2, z+1 / 2$; (xii) $x+1,-y+3 / 2, z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9 W — \mathrm{H} 9 W A \cdots \mathrm{O} 2^{\text {xiii }}$	$1.11(5)$	$1.81(5)$	$2.904(4)$	$171(5)$
$\mathrm{O} 9 W — \mathrm{H} 9 W B \cdots \mathrm{O} 5^{\text {xii }}$	$1.10(5)$	$1.87(5)$	$2.943(4)$	$163(4)$
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{O} 3$	0.93	2.47	$2.781(6)$	100
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 2$	0.86	2.03	$2.736(16)$	139

Symmetry codes: (xii) $x+1,-y+3 / 2, z+1 / 2$; (xiii) $-x+1,-y+1,-z$.

