

Received 4 September 2019 Accepted 31 October 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; siloxide; zirconium; metallocene; organometallic.

CCDC reference: 1962802

Supporting information: this article has supporting information at journals.iucr.org/e





# ( $\mu$ -Di-tert-butylsilanediolato)bis[bis( $\eta^5$ -cyclopentadienyl)methylzirconium]

## David J. Berg,<sup>a</sup>\* Leah Gajecki,<sup>a</sup> Hunter Hill<sup>a</sup> and Brendan Twamley<sup>b</sup>

<sup>a</sup>Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada, and <sup>b</sup>School of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland. \*Correspondence e-mail: djberg@uvic.ca

The reaction of t-Bu<sub>2</sub>Si(OH)<sub>2</sub> with two equivalents of Cp<sub>2</sub>Zr(CH<sub>3</sub>)<sub>2</sub> produces the title t-Bu<sub>2</sub>SiO<sub>2</sub>-siloxide bridged dimer, [Zr<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>)<sub>4</sub>(C<sub>8</sub>H<sub>18</sub>O<sub>2</sub>Si)] or [Cp<sub>2</sub>Zr(CH<sub>3</sub>)]2[ $\mu$ -t-Bu<sub>2</sub>SiO<sub>2</sub>] (**1**), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp<sub>2</sub>Zr(CH<sub>3</sub>)<sub>2</sub> are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The crystal structure of **1** displays typical Zr-CH<sub>3</sub> and Zr-O distances but the Si-O distance [1.628 (2) Å] and O-Si-O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the *t*-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy.

### 1. Chemical context

Zirconocene siloxides have been investigated for their ability to bond reactive metal centers to solid glass supports (Samuel et al., 1994) and as potential precursors to novel inorganic polymers by cyclic siloxane ring-opening polymerization (Thieme et al., 2002). In both of these examples, two diorganosilicon dioxide ( $\mu$ - $R_2$ SiO<sub>2</sub><sup>2-</sup>) ligands span two zirconocene units in a cyclic dimer. In contrast, the structure of the title compound 1, shows only one bridging di-tert-butylsilicon dioxide ligand and each zirconocene unit retains one reactive methyl group. The same product is obtained regardless of whether one or two equivalents of  $Cp_2Zr(CH_3)_2$  are used per equivalent of silanediol at room temperature. At higher temperatures, the NMR of the reaction mixture becomes more complicated but we were unable to cleanly obtain the cyclic equivalent of the compounds mentioned above,  $[Cp_2Zr]_2[\mu$ -t- $Bu_2SiO_2]_2$ . This compound could potentially serve as an olefin polymerization pre-catalyst by methyl abstraction with  $[Ph_3C]^+[B(C_6F_5)_4]^-$  or similar activators (see for *e.g.*, Babushkin et al., 2014). Initial attempts to thermally eliminate methane and form a bridging methylene complex,  $[Cp_2Zr]_2[\mu$ t-Bu<sub>2</sub>SiO<sub>2</sub>][ $\mu$ -CH<sub>2</sub>], led to decomposition.





Figure 1

The molecular structure of 1 with displacement ellipsoids drawn at the 50% probability level; hydrogen atoms omitted for clarity.

#### 2. Structural commentary

The molecular structure of **1** is shown in Fig. 1 and a packing diagram is given in Fig. 2. The cyclopentadienyl groups on Zr1 are both disordered and were modelled over two positions with 50% occupancy each. The diagrams in Figs. 1 and 2 show only one of the two disordered cyclopentadienyl positions.

The Zr1–CH<sub>3</sub> (C11) distance in **1** of 2.307 (3) Å is typical of other zirconocene methyl complexes (range: 2.24–2.39 Å, median: 2.29 Å). The Zr1–O1 and O1–Si1 distances of 1.960 (2) and 1.628 (2) Å, respectively, are typical of other zirconocene siloxides, although the latter distance is at the long end of the observed range (Zr–O range: 1.94–2.01 Å, median: 1.98 Å; Si–O range: 1.56–1.65 Å, median: 1.61 Å). The O1–Si1–O1(1 – x, -y, z) angle is 110.86 (15)°, which is the widest yet observed in an  $R_2$ SiO<sub>2</sub> bridged transition metal dimer (range: 103.7–110.2°). The wider O–Si–O angle and longer Si–O bond likely reflect increased steric crowding



Figure 2

Packing diagram for one disorder partner of 1, viewed down the c axis.

|             | •          |               |        |
|-------------|------------|---------------|--------|
| Zr1-Cp1     | 2.196      | Zr1-Cp2       | 2.202  |
| Zr1-Cp1'    | 2.258      | Zr1-Cp2'      | 2.233  |
| O1-Zr1-C11  | 98.83 (11) | C11–Zr1–Cp1′  | 96.81  |
| O1-Zr1-Cp1  | 108.60     | C11-Zr1-Cp2   | 98.16  |
| O1-Zr1-Cp1' | 109.30     | C11-Zr1-Cp2'  | 106.27 |
| O1-Zr1-Cp2  | 107.31     | Cp1-Zr1-Cp2   | 130.26 |
| O1-Zr1-Cp2' | 110.27     | Cp1'-Zr1-Cp2' | 129.80 |
| C11-Zr1-Cp1 | 109.36     |               |        |
|             |            |               |        |

between the *t*-butyl substituents on Si and the Cp rings on Zr. Other key geometrical data are listed in Table 1.

### 3. Supramolecular features

Assuming that they are not artifacts of disorder, there are some short intermolecular  $\pi - \pi$  contacts between the Cp rings [shortest centroid–centroid separation = 3.862 (8) Å]. Otherwise, there are no exceptional features in the packing of **1**.

#### 4. Database survey

There are 60 structures in the CSD (November 2018 version; Groom et al., 2016) containing zirconocene units bonded to an anionic oxygen atom and a methyl group,  $Cp_2Zr(CH_3)(OX)$ , that were used to compare the  $Zr-CH_3$  distance in 1. Many of these structures contain a bridging oxo  $(O^{2-})$  group bridged to another metal, which is obviously quite different than the siloxide in 1. A smaller subset of this group (19 structures) contain simple alkoxides as the anionic oxygen unit [i.e.  $Cp_2Zr(CH_3)(OR)$ ]. If the comparison is restricted to just the latter structures, the Zr-C bond length range is somewhat narrower from 2.26–2.33 Å with a median of 2.29 Å (Bestgen et al., 2016; Black et al., 2008; Breen & Stephan, 1996; Chapman et al., 2012; Frömel et al., 2013; Gambarotta et al., 1985; Jian et al., 2018; Koch et al., 2000; Mariott & Chen, 2005; Matchett et al., 1988; Normand et al., 2016; Stuhldreier et al., 2000). There are 15 structures containing siloxide ligands bonded to a zirconocene unit in a pseudo-tetrahedral environment used to compare Zr-O and O-Si distances in 1. Of those structures, there are nine that contain simple siloxides that are not part of a polysiloxane cluster or a chelate ring system; using those structures for comparison results in no substantial change in the range or median Si-O or Zr-O bond lengths (Abrahams et al., 1996; Burlakov et al., 2006; Enders et al., 2001; Hofmann et al., 2002; Richers et al., 2017; Samuel et al., 1994; Thieme et al., 2002; Zhang et al., 2009). In addition, there are 14 structures containing the  $O_2Si-t-Bu_2$ unit bridging two transition metals that were used for comparison to the O-Si-O angles in 1. These structures include Ti (six structures: Haoudi-Mazzah et al., 1991; Liu, Schmidt et al., 1992; Liu, Roesky et al., 1992; Liu et al., 1995), Zr (Haoudi-Mazzah et al., 1991), Hf (Liu et al., 1996), V (Gosink et al., 1993), Nb (Gosink et al., 1994), Mo (Gosink et al., 1993), W (Gosink et al., 1994), Re (two structures: Roesky, Mazzah, et al., 1991; Roesky, Hesse et al., 1991).

# Crystal structures with $Cp_2Zr-CH_3$ units for Zr-C distance comparisons:

AQESIZ (Mukherjee et al., 2011); AXIBOA (Boulho et al.2016); BESGOW (Bolig & Chen, 2004); BODMIR (Helmstedt et al., 2008); BUHVAD (Xu et al., 2015); BUYSOD10 (Longato et al., 1985); CADRUU (Hunter et al., 1983); COHTEY (Waymouth et al., 1984); COPRII (Ho et al., 1984); DAGKAX and DAGKIF (Gambarotta et al., 1985); DITHAP (Martin et al., 1985); EHEFUT (Neu et al., 2011); EKEVEX, EKEVIB, EKEVOH, EKEVUN, EKEWAU and EKEWEY (Normand et al., 2016); ESISAA (Zuccaccia et al., 2004); GIPYUZ (Matchett et al., 1988); HEMCOR (Askham et al., 1994); HIKHUF and HIKJAN (Gurubasavaraj et al., 2007); HUVLAL (Fujdala et al., 2003); IGUDOD (Hüerländer et al., 2002); JITVAK and JITVEO (Mandal et al., 2007); JUGCIZ (Boulho et al., 2015); KEXYER (Erker et al., 1990); KODQAV (Koch et al., 2000); KUPQAP (Mariott & Chen, 2005); LEDBEB (Askham et al., 1993); LEPXAH (Mukherjee et al., 2013); MOJHEZ (Black et al., 2008); NAHYOL (Bai et al., 2005); NAPXUY (Pineda et al., 2005); NIMNOM (Johnson et al., 1997); ODOBIU, ODOBOA and ODOBUG (Frömel et al., 2013); OKUFUX (Bestgen et al., 2016); OZUCAO (Kelsen et al., 2011); PEDFUA (Singh et al., 2006); QIZCEI (Yang, Gurubasavaraj et al., 2008); REDTUQ (Cummings et al., 2006); TIWKUG (Yang, Schulz et al., 2008); TOWMUN (Breen & Stephan, 1996); VIBSOO (Waymouth et al., 1990); WAJLOJ (Ruck & Bergman, 2004); WATSOB, WATSUH and WATTAO (Chapman et al., 2012); WAYMER (Liu et al., (2017); WETJEL (Helmstedt et al., 2006); WEWRUO (Jian et al., 2018); WEXWED (Nekoueishahraki et al., 2009); WUPVUA (Gurubasavaraj (2015); XESDEE Stuhldreier et al., 2000); YIMKAG (Ciruelo et al., 1995).

Crystal structures with  $Cp_2Zr$ -O-Si units for Zr-O and O-Si distance comparisons:

EXUBII (Garrison et al., 2004); HECZEU (Samuel et al., 1994); JANYEF (Richers et al., 2017); LEJSEZ (Burlakov et al., 2006); QAMLEW (Wada et al., 2004); REWKIN (Abrahams et al., 1996); ROCWIP (Enders et al., 2001); TUDQEP (Zhang et al., 2009); UGINIH and UGINON; UMOWUO (Lacroix et al., 2003); VAQMEH (Varga et al., 2012); WUSWAI and WUSWEM (Thieme et al., 2002); XIXDIR (Skowronska-Ptasinska et al., 2001).

# Crystal structures with M-O-Si(t-Bu)<sub>2</sub>-O-M units for O-Si-O angle comparisons:

HETRED and HETRON (Gosink *et al.*, 1994); JIYBEY (Roesky, Hesse *et al.*, 1991); KIPGUL (Roesky, Mazzah *et al.*, 1991); NADDAX (Liu *et al.*, 1996); PAHZED (Liu, Schmidt *et al.*, 1992); TAJYOS, TAJYUY and TAJZAF (Haoudi-Mazzah



Figure 3 Reaction scheme.

| Table  | 2      |         |
|--------|--------|---------|
| Experi | mental | details |

| Crystal data                                                               |                                                                                                            |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Chemical formula                                                           | $[Zr_2(CH_3)_2(C_5H_5)_4(C_8H_{18}O_2Si)]$                                                                 |
| M <sub>r</sub>                                                             | 647.18                                                                                                     |
| Crystal system, space group                                                | Orthorhombic, Fdd2                                                                                         |
| Temperature (K)                                                            | 83                                                                                                         |
| a, b, c (Å)                                                                | 21.673 (4), 28.296 (6), 9.7466 (19)                                                                        |
| $V(\text{\AA}^3)$                                                          | 5977 (2)                                                                                                   |
| Ζ                                                                          | 8                                                                                                          |
| Radiation type                                                             | Μο Κα                                                                                                      |
| $\mu \text{ (mm}^{-1})$                                                    | 0.76                                                                                                       |
| Crystal size (mm)                                                          | $0.35 \times 0.27 \times 0.17$                                                                             |
| Data collection                                                            |                                                                                                            |
| Diffractometer                                                             | Bruker P4                                                                                                  |
| Absorption correction                                                      | Multi-scan ( <i>SADABS</i> ; Bruker, 2002)                                                                 |
| $T_{\min}, T_{\max}$                                                       | 0.777, 0.882                                                                                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 18986, 4237, 4172                                                                                          |
| R <sub>int</sub>                                                           | 0.025                                                                                                      |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.705                                                                                                      |
| Refinement                                                                 |                                                                                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.024, 0.055, 1.12                                                                                         |
| No. of reflections                                                         | 4237                                                                                                       |
| No. of parameters                                                          | 253                                                                                                        |
| No. of restraints                                                          | 319                                                                                                        |
| H-atom treatment                                                           | H-atom parameters constrained                                                                              |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.52, -0.53                                                                                                |
| Absolute structure                                                         | Flack x determined using 1892<br>quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$<br>(Parsons <i>et al.</i> , 2013) |
| Absolute structure parameter                                               | -0.001 (16)                                                                                                |

Computer programs: SMART and SAINT (Bruker, 2002), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

*et al.*, 1991); VUMNUM (Liu, Roesky *et al.*, 1992); WAGVIJ and WAGVOP (Gosink *et al.*, 1993); ZEKKAB and ZEKKEF (Liu *et al.*, 1995).

### 5. Synthesis and crystallization

**General.** All solvents were purchased from Sigma–Aldrich Chemicals and dried by distillation from sodium under nitrogen.  $Cp_2Zr(CH_3)_2$  was purchased from Sigma–Aldrich Chemicals and used as received. Di-*t*-butylsilanediol was prepared by the oxidation of *t*-Bu<sub>2</sub>Si(H)Cl (Sigma–Aldrich) with aqueous KMnO<sub>4</sub> following the procedure of Lickiss & Lucas (1996). NMR spectra were recorded on a Bruker AVIII 300 MHz Spectrometer in sealable Teflon-valved tube and were referenced to residual solvent resonances. Elemental analyses were performed by Canadian Microanalytical Ltd.

**Synthesis.** The title compound was prepared (Fig. 3) by adding a toluene solution (5 ml) of di-*t*-butylsilanediol (0.080 g, 0.45 mmol) to a stirred solution of dimethylzirconocene,  $Cp_2Zr(CH_3)_2$  (0.228 g, 0.907 mmol), in toluene (5 ml) in a 50 ml Erlenmyer flask in an inert atmosphere glovebox. After stirring overnight, the solution was concentrated under vacuum, layered with hexane and stored in a 243 K freezer. Large, colourless crystals of **1** deposited within a few days. Yield: 0.196 g (67%). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 300 MHz):  $\delta$  5.905 (*s*, 20H, CpH), 1.091 [*s*, 18H, C(CH<sub>3</sub>)<sub>3</sub>], 0.465 (*s*, 6H, CH<sub>3</sub>);  ${}^{13}C{}^{1}H$  NMR (C<sub>6</sub>D<sub>6</sub>, 125 MHz):  $\delta$  111.32 (CpC), 28.92 (C(CH<sub>3</sub>)<sub>3</sub>), 22.63 (CH<sub>3</sub>); C(CH<sub>3</sub>)<sub>3</sub> not observed. Analysis calculated for C<sub>30</sub>H<sub>44</sub>O<sub>2</sub>SiZr<sub>2</sub> (%): C, 55.68; H, 6.85. Found: C, 55.33; H, 6.71.

### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Both Cp rings were found to be disordered and modelled over two sets of sites with 50% occupancy with restraints (SIMU cards). H atoms were positioned geometrically and refined as riding, with C-H = 0.95– 0.98 Å and  $U_{iso}$ (H =  $1.2U_{eq}$ (C) or  $1.5U_{eq}$ (C-methyl).

### **Funding information**

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.

#### References

- Abrahams, I., Simon, C., Motevalli, M., Shah, S. A. A. & Sullivan, A. C. (1996). J. Organomet. Chem. 521, 301–304.
- Askham, F. R., Carroll, K. M., Alexander, S. J., Rheingold, A. L. & Haggerty, B. S. (1993). Organometallics, 12, 4810–4815.
- Askham, F. R., Carroll, K. M., Briggs, P. M., Rheingold, A. L. & Haggerty, B. S. (1994). Organometallics, 13, 2139–2141.
- Babushkin, D. E., Panchenko, V. N. & Brintzinger, H.-H. (2014). *Angew. Chem. Int. Ed.* **53**, 9645–9649.
- Bai, G., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2005). J. Am. Chem. Soc. 127, 3449–3455.
- Bestgen, S., Schoo, C., Zovko, C., Köppe, R., Kelly, R. P., Lebedkin, S., Kappes, M. M. & Roesky, P. W. (2016). *Chem. Eur. J.* 22, 7115–7126.
- Black, K., Aspinall, H. C., Jones, A. C., Przybylak, K., Bacsa, J., Chalker, P. R., Taylor, S., Zhao, C. Z., Elliott, S. D., Zydor, A. & Heys, P. (2008). J. Mater. Chem. 18, 4561.
- Bolig, A. D. & Chen, E. Y. (2004). J. Am. Chem. Soc. 126, 4897-4906.
- Boulho, C., Zijlstra, H. S. & Harder, S. (2015). Eur. J. Inorg. Chem. pp. 2132–2138.
- Boulho, C., Zijlstra, H. S., Hofmann, A., Budzelaar, P. H. M. & Harder, S. (2016). *Chem. Eur. J.* **22**, 17450–17459.
- Breen, T. L. & Stephan, D. W. (1996). Organometallics, 15, 4509-4514.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2006). *Organometallics*, **25**, 1317–1320.
- Chapman, A. M., Haddow, M. F. & Wass, D. F. (2012). Eur. J. Inorg. Chem. pp. 1546–1554.
- Ciruelo, G., Cuenca, T., Gómez-Sal, P., Martín, A. & Royo, P. (1995). J. Chem. Soc. Dalton Trans. pp. 231–236.
- Cummings, S. A., Radford, R., Erker, G., Kehr, G. & Fröhlich, R. (2006). Organometallics, 25, 839–842.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Enders, M., Fink, J., Maillant, V. & Pritzkow, H. (2001). Z. Anorg. Allg. Chem. 627, 2281.
- Erker, G., Albrecht, M., Werner, S. & Krüger, C. (1990). Z. Naturforsch. Teil B, 45, 1205–1209.
- Frömel, S., Kehr, G., Fröhlich, R., Daniliuc, C. G. & Erker, G. (2013). Dalton Trans. 42, 14531–14536.
- Fujdala, K. L., Oliver, A. G., Hollander, F. J. & Tilley, T. D. (2003). *Inorg. Chem.* 42, 1140–1150.
- Gambarotta, S., Strologo, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1985). *Inorg. Chem.* 24, 654–660.

- Garrison, J. C., Kim, H., Collins, S. & Youngs, W. J. (2004). Acta Cryst. C60, m357–m359.
- Gosink, H.-J., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G., Freire-Erdbrügger, C. & Sheldrick, G. M. (1993). *Chem. Ber.* 126, 279– 283.
- Gosink, H.-J., Roesky, H. W., Schmidt, H.-G., Noltemeyer, M., Irmer, E. & Herbst-Irmer, R. (1994). Organometallics, 13, 3420–3426.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurubasavaraj, P. M. (2015). Private Communication (refcode WUPVUA). CCDC, Cambridge, England.
- Gurubasavaraj, P. M., Roesky, H. W., Sharma, P. M. V., Oswald, R. B., Dolle, V., Herbst-Irmer, R. & Pal, A. (2007). Organometallics, 26, 3346–3351.
- Haoudi-Mazzah, A., Mazzah, A., Schmidt, H.-G., Noltemeyer, M. & Roesky, H. W. (1991). Z. Naturforsch. Teil B, 46, 587–592.
- Helmstedt, U., Lebedkin, S., Höcher, T., Blaurock, S. & Hey-Hawkins, E. (2008). *Inorg. Chem.* 47, 5815–5820.
- Helmstedt, U., Lönnecke, P., Reinhold, J. & Hey-Hawkins, E. (2006). Eur. J. Inorg. Chem. pp. 4922–4930.
- Ho, S. C. H., Straus, D. A., Armantrout, J. A., Schaefer, W. P. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 2210–2211.
- Hofmann, M., Malisch, W., Schumacher, D., Lager, M. & Nieger, M. (2002). Organometallics, 21, 3485–3488.
- Hüerländer, D., Kleigrewe, N., Kehr, G., Erker, G. & Fröhlich, R. (2002). Eur. J. Inorg. Chem. pp. 2633–2642.
- Hunter, W. E., Hrncir, D. C., Bynum, R. V., Penttila, R. A. & Atwood, J. L. (1983). Organometallics, 2, 750–755.
- Jian, Z., Daniliuc, C. G., Kehr, G. & Erker, G. (2018). Chem. Commun. 54, 5724–5727.
- Johnson, M. J. A., Odom, A. L. & Cummins, C. C. (1997). Chem. Commun. pp. 1523–1524.
- Kelsen, V., Vallée, C., Jeanneau, E., Bibal, C., Santini, C. C., Chauvin, Y. & Olivier-Bourbigou, H. (2011). Organometallics, 30, 4284–4291.
- Koch, T., Blaurock, S., Hey-Hawkins, E., Galan-Fereres, M., Plat, D. & Eisen, M. S. (2000). J. Organomet. Chem. 595, 126–133.
- Lacroix, F., Plecnik, C. E., Liu, S., Liu, F., Meyers, E. A. & Shore, S. G. (2003). J. Organomet. Chem. 687, 69–77.
- Lickiss, P. D. & Lucas, R. (1996). J. Organomet. Chem. 521, 229-234.
- Liu, F.-Q., Roesky, H. W., Schmidt, H.-G. & Noltemeyer, M. (1992). Organometallics, 11, 2965–2967.
- Liu, F.-Q., Schmidt, H.-G., Noltemeyer, M., Freire-Erdbrügger, C., Sheldrick, G. M. & Roesky, H. W. (1992). Z. Naturforsch. Teil B, 47, 1085–1090.
- Liu, F.-Q., Usón, I. & Roesky, H. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2453–2458.
- Liu, F.-Q., Uson, I. & Roesky, H. W. (1996). Z. Anorg. Allg. Chem. 622, 819–822.
- Liu, Y.-L., Kehr, G., Daniliuc, C. G. & Erker, G. (2017). Organometallics, **36**, 3407–3414.
- Longato, B., Martin, B. D., Norton, J. R. & Anderson, O. P. (1985). *Inorg. Chem.* 24, 1389–1394.
- Mandal, S. K., Gurubasavaraj, P. M., Roesky, H. W., Schwab, G., Stalke, D., Oswald, R. B. & Dolle, V. (2007). *Inorg. Chem.* 46, 10158–10167.
- Mariott, W. R. & Chen, E. Y. X. (2005). *Macromolecules*, **38**, 6822–6832.
- Martin, B. D., Matchett, S. A., Norton, J. R. & Anderson, O. P. (1985). J. Am. Chem. Soc. 107, 7952–7959.
- Matchett, S. A., Norton, J. P. & Anderson, O. P. (1988). Organometallics, 7, 2228–2230.
- Mukherjee, A., Nembenna, S., Sen, T. K., Sarish, S. P., Ghorai, P. K., Ott, H., Stalke, D., Mandal, S. K. & Roesky, H. W. (2011). *Angew. Chem. Int. Ed.* **50**, 3968–3972.
- Mukherjee, A., Sen, T. K., Mandal, S. K., Maity, B. & Koley, D. (2013). *RSC Adv.* **3**, 1255–1264.
- Nekoueishahraki, B., Jana, A., Roesky, H. W., Mishra, L., Stern, D. & Stalke, D. (2009). *Organometallics*, **28**, 5733–5738.

## research communications

- Neu, R. C., Otten, E., Lough, A. & Stephan, D. W. (2011). *Chem. Sci.* **2**, 170–176.
- Normand, A. T., Daniliuc, C. G., Wibbeling, B., Kehr, G., Le Gendre, P. & Erker, G. (2016). *Chem. Eur. J.* **22**, 4285–4293.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Pineda, L. W., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2005). *Inorg. Chem.* 44, 3537–3540.
- Richers, C. P., Bertke, J. A. & Rauchfuss, T. B. (2017). *Dalton Trans.* **46**, 8756–8762.
- Roesky, H. W., Hesse, D., Bohra, R. & Noltemeyer, M. (1991). *Chem. Ber.* **124**, 1913–1915.
- Roesky, H. W., Mazzah, A., Hesse, D. & Noltemeyer, M. (1991). Chem. Ber. 124, 519–521.
- Ruck, R. T. & Bergman, R. G. (2004). Angew. Chem. Int. Ed. 43, 5375–5377.
- Samuel, E., Harrod, J. F., McGlinchey, M. J., Cabestaing, C. & Robert, F. (1994). *Inorg. Chem.* **33**, 1292–1296.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, S., Jancik, V., Roesky, H. W. & Herbst-Irmer, R. (2006). Inorg. Chem. 45, 949–951.
- Skowronska-Ptasinska, M. D., Duchateau, R., van Santen, R. A. & Yap, G. P. A. (2001). Organometallics, **20**, 3519–3530.

- Stuhldreier, T., Keul, H., Höcker, H. & Englert, U. (2000). Organometallics, 19, 5231–5234.
- Thieme, K., Bourke, S. C., Zheng, J., MacLachlan, M. J., Zamanian, F., Lough, A. J. & Manners, I. (2002). *Can. J. Chem.* 80, 1469– 1480.
- Varga, V., Horáček, M., Bastl, Z., Merna, J., Císařová, I., Sýkora, J. & Pinkas, J. (2012). *Catal. Today*, **179**, 130–139.
- Wada, K., Itayama, N., Watanabe, N., Bundo, M., Kondo, T. & Mitsudo, T. (2004). Organometallics, 23, 5824–5832.
- Waymouth, R. W., Potter, K. S., Schaefer, W. P. & Grubbs, R. H. (1990). *Organometallics*, **9**, 2843–2846.
- Waymouth, R. W., Santarsiero, B. D. & Grubbs, R. H. (1984). J. Am. Chem. Soc. 106, 4050–4051.
- Xu, X., Kehr, G., Daniliuc, C. G. & Erker, G. (2015). Organometallics, 34, 2655–2661.
- Yang, Y., Gurubasavaraj, P. M., Ye, H., Zhang, Z., Roesky, H. W. & Jones, P. G. (2008). J. Organomet. Chem. 693, 1455–1461.
- Yang, Y., Schulz, T., John, M., Yang, Z., Jiménez-Pérez, V. M., Roesky, H. W., Gurubasavaraj, P. M., Stalke, D. & Ye, H. (2008). Organometallics, 27, 769–777.
- Zhang, W., Zhang, S., Sun, X., Nishiura, M., Hou, Z. & Xi, Z. (2009). Angew. Chem. Int. Ed. 48, 7227–7231.
- Zuccaccia, C., Stahl, N. G., Macchioni, A., Chen, M. C., Roberts, J. A. & Marks, T. J. (2004). J. Am. Chem. Soc. **126**, 1448–1464.

# supporting information

Acta Cryst. (2019). E75, 1848-1852 [https://doi.org/10.1107/S2056989019014762]

## ( $\mu$ -Di-tert-butylsilanediolato)bis[bis( $\eta^5$ -cyclopentadienyl)methylzirconium]

## David J. Berg, Leah Gajecki, Hunter Hill and Brendan Twamley

## **Computing details**

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT* (Bruker, 2002); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 $(\mu$ -Di-tert-butylsilanediolato)bis[bis $(\eta^5$ -cyclopentadienyl)methylzirconium]

## Crystal data

| $[Zr_2(CH_3)_2(C_5H_5)_4(C_8H_{18}O_2Si)]$       |
|--------------------------------------------------|
| $M_r = 647.18$                                   |
| Orthorhombic, <i>Fdd</i> 2                       |
| a = 21.673 (4) Å                                 |
| b = 28.296 (6) Å                                 |
| c = 9.7466 (19) Å                                |
| V = 5977 (2) Å <sup>3</sup>                      |
| Z = 8                                            |
| F(000) = 2672                                    |
| Data collection                                  |
| Bruker P4                                        |
| diffractometer                                   |
| Parallel.graphite monochromator                  |
| Detector resolution: 8.3 pixels mm <sup>-1</sup> |
| ωscans                                           |
| Absorption correction: multi-scan                |

(SADABS; Bruker, 2002)  $T_{\min} = 0.777, T_{\max} = 0.882$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.055$ S = 1.124237 reflections 253 parameters 319 restraints Primary atom site location: structure-invariant direct methods  $D_x = 1.438 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5368 reflections  $\theta = 2.4-29.7^{\circ}$  $\mu = 0.76 \text{ mm}^{-1}$ T = 83 KPyramidal, colorless  $0.35 \times 0.27 \times 0.17 \text{ mm}$ 

18986 measured reflections 4237 independent reflections 4172 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.025$  $\theta_{max} = 30.1^{\circ}, \ \theta_{min} = 2.4^{\circ}$  $h = -29 \rightarrow 29$  $k = -39 \rightarrow 39$  $l = -13 \rightarrow 13$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.022P)^2 + 9.9744P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.52$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.53$  e Å<sup>-3</sup> Absolute structure: Flack *x* determined using 1892 quotients  $[(I^+)-(I^-)]/[(I^+)+(I^-)]$  (Parsons *et al.*, 2013) Absolute structure parameter: -0.001 (16)

### Special details

**Experimental**. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of  $\omega$  scans each set at different  $\varphi$  and/or  $2\theta$  angles and each scan (5 s exposure) covering -0.300° degrees in  $\omega$ . The crystal to detector distance was 5.035 cm.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Each Cp was disordered and modelled over two positions with 50% occupancy with restraints (SIMU).

|     | x           | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|-------------|--------------|-----------------------------|-----------|
| C1  | 0.4149 (3)  | 0.1012 (2)  | 0.1240 (7)   | 0.0231 (10)                 | 0.5       |
| H1  | 0.429216    | 0.120919    | 0.051940     | 0.028*                      | 0.5       |
| C2  | 0.4512 (10) | 0.0654 (5)  | 0.197 (2)    | 0.0246 (15)                 | 0.5       |
| H2  | 0.493233    | 0.057360    | 0.181473     | 0.030*                      | 0.5       |
| C3  | 0.4115 (4)  | 0.0457 (2)  | 0.2919 (7)   | 0.0264 (10)                 | 0.5       |
| H3  | 0.422729    | 0.021677    | 0.355079     | 0.032*                      | 0.5       |
| C4  | 0.3518 (6)  | 0.0661 (3)  | 0.2832 (11)  | 0.0264 (14)                 | 0.5       |
| H4  | 0.316544    | 0.057877    | 0.336223     | 0.032*                      | 0.5       |
| C5  | 0.3553 (3)  | 0.1011 (2)  | 0.1793 (7)   | 0.0266 (10)                 | 0.5       |
| Н5  | 0.322527    | 0.121326    | 0.151809     | 0.032*                      | 0.5       |
| C6  | 0.3122 (7)  | 0.0244 (3)  | -0.1688 (15) | 0.0269 (16)                 | 0.5       |
| H6  | 0.334822    | 0.029135    | -0.251210    | 0.032*                      | 0.5       |
| C7  | 0.2998 (5)  | -0.0191 (3) | -0.1095 (13) | 0.0272 (15)                 | 0.5       |
| H7  | 0.313560    | -0.048819   | -0.142771    | 0.033*                      | 0.5       |
| C8  | 0.2638 (4)  | -0.0119 (3) | 0.0073 (12)  | 0.0260 (15)                 | 0.5       |
| H8  | 0.247994    | -0.036139   | 0.064640     | 0.031*                      | 0.5       |
| C9  | 0.2547 (5)  | 0.0358 (3)  | 0.0267 (13)  | 0.0300 (16)                 | 0.5       |
| Н9  | 0.232528    | 0.050052    | 0.099854     | 0.036*                      | 0.5       |
| C10 | 0.2859 (5)  | 0.0607 (4)  | -0.0871 (12) | 0.0306 (15)                 | 0.5       |
| H10 | 0.287840    | 0.093848    | -0.102312    | 0.037*                      | 0.5       |
| C1′ | 0.3957 (4)  | 0.0989 (2)  | 0.1826 (8)   | 0.0294 (10)                 | 0.5       |
| H1′ | 0.389903    | 0.126670    | 0.129223     | 0.035*                      | 0.5       |
| C2′ | 0.4486 (9)  | 0.0729 (4)  | 0.191 (2)    | 0.0235 (15)                 | 0.5       |
| H2′ | 0.486339    | 0.080007    | 0.145464     | 0.028*                      | 0.5       |
| C3′ | 0.4379 (3)  | 0.0332 (2)  | 0.2784 (6)   | 0.0253 (11)                 | 0.5       |
| H3′ | 0.466623    | 0.009067    | 0.300743     | 0.030*                      | 0.5       |
| C4′ | 0.3769 (3)  | 0.0368 (2)  | 0.3251 (7)   | 0.0281 (10)                 | 0.5       |
| H4′ | 0.356658    | 0.015415    | 0.385330     | 0.034*                      | 0.5       |
| C5′ | 0.3514 (6)  | 0.0774 (3)  | 0.2672 (13)  | 0.0280 (15)                 | 0.5       |
| H5′ | 0.310669    | 0.088612    | 0.282472     | 0.034*                      | 0.5       |
| C6′ | 0.3136 (7)  | 0.0370 (4)  | -0.1603 (15) | 0.0280 (17)                 | 0.5       |
| H6′ | 0.337190    | 0.041941    | -0.241098    | 0.034*                      | 0.5       |
| C7′ | 0.2922 (5)  | -0.0066 (4) | -0.1119 (15) | 0.0302 (15)                 | 0.5       |
| H7′ | 0.299610    | -0.036621   | -0.152015    | 0.036*                      | 0.5       |
| C8′ | 0.2570 (5)  | 0.0027 (4)  | 0.0094 (12)  | 0.0303 (16)                 | 0.5       |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H8′  | 0.236792     | -0.019994     | 0.065327     | 0.036*       | 0.5 |
|------|--------------|---------------|--------------|--------------|-----|
| C9′  | 0.2582 (5)   | 0.0507 (3)    | 0.0295 (14)  | 0.0315 (16)  | 0.5 |
| H9′  | 0.237352     | 0.067093      | 0.100873     | 0.038*       | 0.5 |
| C10′ | 0.2943 (5)   | 0.0715 (4)    | -0.0698 (13) | 0.0331 (17)  | 0.5 |
| H10′ | 0.304285     | 0.104167      | -0.075173    | 0.040*       | 0.5 |
| C11  | 0.36287 (17) | -0.04990 (13) | 0.1677 (4)   | 0.0385 (8)   |     |
| H11A | 0.351416     | -0.073878     | 0.099754     | 0.058*       |     |
| H11B | 0.331532     | -0.048788     | 0.240107     | 0.058*       |     |
| H11C | 0.402937     | -0.057999     | 0.207962     | 0.058*       |     |
| C12  | 0.51765 (14) | 0.05586 (10)  | -0.2559 (3)  | 0.0239 (6)   |     |
| C13  | 0.54483 (15) | 0.09254 (10)  | -0.1573 (3)  | 0.0289 (6)   |     |
| H13A | 0.581961     | 0.079605      | -0.113902    | 0.043*       |     |
| H13B | 0.514340     | 0.100272      | -0.086530    | 0.043*       |     |
| H13C | 0.555584     | 0.121209      | -0.208403    | 0.043*       |     |
| C14  | 0.56515 (18) | 0.04516 (12)  | -0.3690 (3)  | 0.0364 (8)   |     |
| H14A | 0.578096     | 0.074766      | -0.412501    | 0.055*       |     |
| H14B | 0.546486     | 0.024413      | -0.437995    | 0.055*       |     |
| H14C | 0.601131     | 0.029476      | -0.328548    | 0.055*       |     |
| C15  | 0.46013 (17) | 0.07800 (10)  | -0.3227 (3)  | 0.0304 (7)   |     |
| H15A | 0.430632     | 0.087027      | -0.251124    | 0.046*       |     |
| H15B | 0.440912     | 0.054981      | -0.384471    | 0.046*       |     |
| H15C | 0.472226     | 0.106096      | -0.374981    | 0.046*       |     |
| 01   | 0.43966 (9)  | 0.01044 (7)   | -0.0586 (2)  | 0.0188 (4)   |     |
| Si1  | 0.500000     | 0.000000      | -0.15337 (9) | 0.01599 (18) |     |
| Zr1  | 0.36931 (2)  | 0.02294 (2)   | 0.06245 (3)  | 0.01769 (7)  |     |
|      |              |               |              |              |     |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-----------|-----------|-----------|--------------|--------------|--------------|
| C1  | 0.027 (2) | 0.019 (2) | 0.024 (2) | -0.0031 (19) | 0.004 (2)    | -0.0088 (19) |
| C2  | 0.026 (2) | 0.025 (3) | 0.022 (2) | -0.001 (3)   | -0.005 (2)   | -0.006 (3)   |
| C3  | 0.033 (2) | 0.028 (2) | 0.019 (2) | -0.003 (2)   | -0.004 (2)   | -0.0031 (18) |
| C4  | 0.031 (2) | 0.027 (3) | 0.021 (3) | -0.007 (3)   | 0.006 (2)    | -0.006 (3)   |
| C5  | 0.028 (2) | 0.023 (2) | 0.029 (2) | 0.000 (2)    | 0.002 (2)    | -0.0147 (19) |
| C6  | 0.023 (2) | 0.032 (4) | 0.025 (2) | 0.004 (3)    | -0.010 (2)   | -0.001 (3)   |
| C7  | 0.021 (3) | 0.031 (4) | 0.029 (2) | 0.001 (2)    | -0.011 (2)   | -0.004 (3)   |
| C8  | 0.016 (2) | 0.027 (4) | 0.034 (2) | -0.001 (2)   | -0.004 (2)   | -0.005 (3)   |
| C9  | 0.016 (2) | 0.036 (4) | 0.037 (2) | 0.003 (3)    | -0.0038 (19) | -0.003 (3)   |
| C10 | 0.022 (3) | 0.035 (4) | 0.035 (3) | 0.003 (2)    | -0.013 (2)   | -0.002 (3)   |
| C1′ | 0.036 (2) | 0.022 (2) | 0.030 (2) | -0.005 (2)   | -0.001 (2)   | -0.005 (2)   |
| C2′ | 0.028 (3) | 0.021 (3) | 0.021 (2) | -0.009 (3)   | 0.001 (2)    | -0.005 (3)   |
| C3′ | 0.027 (2) | 0.029 (2) | 0.020 (2) | 0.002 (2)    | -0.005 (2)   | -0.006 (2)   |
| C4′ | 0.031 (2) | 0.032 (2) | 0.022 (2) | -0.007 (2)   | 0.005 (2)    | -0.004 (2)   |
| C5′ | 0.031 (2) | 0.025 (3) | 0.028 (3) | 0.003 (3)    | 0.003 (2)    | -0.008 (2)   |
| C6′ | 0.021 (2) | 0.036 (4) | 0.027 (3) | 0.000 (3)    | -0.010 (2)   | 0.006 (3)    |
| C7′ | 0.021 (2) | 0.036 (4) | 0.033 (2) | 0.001 (3)    | -0.011 (2)   | -0.001 (3)   |
| C8′ | 0.019 (2) | 0.038 (4) | 0.035 (2) | -0.002 (3)   | -0.005 (2)   | 0.003 (3)    |
| C9′ | 0.018 (2) | 0.037 (4) | 0.039 (3) | 0.005 (3)    | -0.004 (2)   | 0.000 (3)    |

# supporting information

| C10′ | 0.023 (3)    | 0.037 (4)    | 0.040 (3)    | 0.008 (3)    | -0.012 (2)   | 0.003 (3)    |
|------|--------------|--------------|--------------|--------------|--------------|--------------|
| C11  | 0.0400 (19)  | 0.0380 (18)  | 0.0376 (19)  | 0.0013 (14)  | 0.0140 (15)  | 0.0159 (15)  |
| C12  | 0.0353 (15)  | 0.0190 (12)  | 0.0175 (12)  | 0.0011 (11)  | 0.0031 (11)  | 0.0039 (10)  |
| C13  | 0.0398 (16)  | 0.0215 (12)  | 0.0256 (15)  | -0.0065 (11) | -0.0006 (12) | 0.0056 (11)  |
| C14  | 0.053 (2)    | 0.0285 (15)  | 0.0278 (16)  | 0.0030 (15)  | 0.0166 (15)  | 0.0103 (12)  |
| C15  | 0.0468 (19)  | 0.0221 (13)  | 0.0224 (14)  | 0.0047 (13)  | -0.0058 (13) | 0.0029 (11)  |
| 01   | 0.0199 (9)   | 0.0173 (8)   | 0.0193 (9)   | 0.0003 (7)   | -0.0017 (7)  | 0.0000 (7)   |
| Sil  | 0.0220 (4)   | 0.0152 (4)   | 0.0108 (4)   | 0.0005 (3)   | 0.000        | 0.000        |
| Zr1  | 0.01532 (10) | 0.01792 (10) | 0.01984 (11) | 0.00056 (9)  | -0.00167 (9) | -0.00222 (9) |
|      |              |              |              |              |              |              |

Geometric parameters (Å, °)

| С1—Н1   | 0.9500     | C4'—Zr1   | 2.595 (7)  |
|---------|------------|-----------|------------|
| C1—C2   | 1.465 (16) | С5'—Н5'   | 0.9500     |
| C1—C5   | 1.399 (9)  | C5'—Zr1   | 2.550 (12) |
| C1—Zr1  | 2.497 (6)  | Сб'—Нб'   | 0.9500     |
| С2—Н2   | 0.9500     | C6'—C7'   | 1.398 (13) |
| C2—C3   | 1.38 (2)   | C6'—C10'  | 1.381 (14) |
| C2—Zr1  | 2.51 (2)   | C6'—Zr1   | 2.516 (14) |
| С3—Н3   | 0.9500     | С7′—Н7′   | 0.9500     |
| C3—C4   | 1.419 (15) | C7′—C8′   | 1.431 (15) |
| C3—Zr1  | 2.500 (6)  | C7'—Zr1   | 2.525 (13) |
| C4—H4   | 0.9500     | C8′—H8′   | 0.9500     |
| C4—C5   | 1.420 (11) | C8′—C9′   | 1.373 (11) |
| C4—Zr1  | 2.503 (11) | C8′—Zr1   | 2.552 (11) |
| С5—Н5   | 0.9500     | С9′—Н9′   | 0.9500     |
| C5—Zr1  | 2.507 (6)  | C9′—C10′  | 1.376 (15) |
| С6—Н6   | 0.9500     | C9'—Zr1   | 2.553 (11) |
| C6—C7   | 1.385 (13) | C10'—H10' | 0.9500     |
| C6—C10  | 1.421 (13) | C10'—Zr1  | 2.489 (12) |
| C6—Zr1  | 2.572 (14) | C11—H11A  | 0.9800     |
| С7—Н7   | 0.9500     | C11—H11B  | 0.9800     |
| C7—C8   | 1.395 (14) | C11—H11C  | 0.9800     |
| C7—Zr1  | 2.547 (12) | C11—Zr1   | 2.307 (3)  |
| С8—Н8   | 0.9500     | C12—C13   | 1.532 (4)  |
| C8—C9   | 1.376 (10) | C12—C14   | 1.538 (4)  |
| C8—Zr1  | 2.547 (10) | C12—C15   | 1.540 (4)  |
| С9—Н9   | 0.9500     | C12—Si1   | 1.909 (3)  |
| C9—C10  | 1.478 (15) | C13—H13A  | 0.9800     |
| C9—Zr1  | 2.534 (11) | C13—H13B  | 0.9800     |
| C10—H10 | 0.9500     | C13—H13C  | 0.9800     |
| C10—Zr1 | 2.557 (12) | C14—H14A  | 0.9800     |
| C1′—H1′ | 0.9500     | C14—H14B  | 0.9800     |
| C1′—C2′ | 1.364 (19) | C14—H14C  | 0.9800     |
| C1′—C5′ | 1.406 (15) | C15—H15A  | 0.9800     |
| C1′—Zr1 | 2.514 (6)  | C15—H15B  | 0.9800     |
| C2'—H2' | 0.9500     | С15—Н15С  | 0.9800     |
| C2'—C3' | 1.431 (17) | O1—Si1    | 1.628 (2)  |

| C2'—Zr1    | 2.553 (19) | O1—Zr1                                | 1.9599 (19) |
|------------|------------|---------------------------------------|-------------|
| С3'—Н3'    | 0.9500     | Zr1—Cp1                               | 2.196       |
| C3'—C4'    | 1.401 (9)  | Zr1—Cp1′                              | 2.258       |
| C3'—Zr1    | 2.593 (6)  | Zr1—Cp2                               | 2.202       |
| C4'—H4'    | 0.9500     | Zr1—Cp2′                              | 2.233       |
| C4′—C5′    | 1.394 (11) | -                                     |             |
|            | . ,        |                                       |             |
| С2—С1—Н1   | 126.0      | C12—C14—H14B                          | 109.5       |
| C2—C1—Zr1  | 73.5 (8)   | C12—C14—H14C                          | 109.5       |
| С5—С1—Н1   | 126.0      | H14A—C14—H14B                         | 109.5       |
| C5—C1—C2   | 108.0 (10) | H14A—C14—H14C                         | 109.5       |
| C5—C1—Zr1  | 74.2 (3)   | H14B—C14—H14C                         | 109.5       |
| Zr1—C1—H1  | 118.3      | C12—C15—H15A                          | 109.5       |
| С1—С2—Н2   | 127.3      | C12—C15—H15B                          | 109.5       |
| C1—C2—Zr1  | 72.5 (8)   | C12—C15—H15C                          | 109.5       |
| C3—C2—C1   | 105.5 (14) | H15A—C15—H15B                         | 109.5       |
| С3—С2—Н2   | 127.3      | H15A—C15—H15C                         | 109.5       |
| C3—C2—Zr1  | 73.6 (9)   | H15B—C15—H15C                         | 109.5       |
| Zr1—C2—H2  | 118.9      | Sil—Ol—Zrl                            | 177.55 (13) |
| С2—С3—Н3   | 124.3      | C12—Si1—C12 <sup>i</sup>              | 116.86 (18) |
| C2—C3—C4   | 111.4 (9)  | Ol <sup>i</sup> —Sil—Cl2              | 106.64 (11) |
| C2—C3—Zr1  | 74.4 (9)   | O1—Si1—C12 <sup>i</sup>               | 106.64 (11) |
| С4—С3—Н3   | 124.3      | O1—Si1—C12                            | 107.93 (11) |
| C4—C3—Zr1  | 73.6 (5)   | O1 <sup>i</sup> —Si1—C12 <sup>i</sup> | 107.92 (11) |
| Zr1—C3—H3  | 119.3      | O1—Si1—O1 <sup>i</sup>                | 110.86 (15) |
| C3—C4—H4   | 127.0      | C1—Zr1—C2                             | 34.0 (3)    |
| C3—C4—C5   | 106.0 (9)  | C1—Zr1—C3                             | 54.0 (2)    |
| C3—C4—Zr1  | 73.4 (5)   | C1—Zr1—C4                             | 54.6 (3)    |
| C5—C4—H4   | 127.0      | C1—Zr1—C5                             | 32.5 (2)    |
| C5—C4—Zr1  | 73.7 (5)   | C1—Zr1—C6                             | 112.8 (3)   |
| Zr1—C4—H4  | 118.1      | C1—Zr1—C7                             | 143.7 (3)   |
| C1—C5—C4   | 109.0 (8)  | C1—Zr1—C8                             | 138.5 (2)   |
| C1—C5—H5   | 125.5      | C1—Zr1—C9                             | 107.1 (3)   |
| C1—C5—Zr1  | 73.4 (3)   | C1—Zr1—C10                            | 92.6 (3)    |
| С4—С5—Н5   | 125.5      | C2—Zr1—C6                             | 142.1 (5)   |
| C4—C5—Zr1  | 73.4 (5)   | C2—Zr1—C7                             | 169.7 (6)   |
| Zr1—C5—H5  | 119.5      | C2—Zr1—C8                             | 158.4 (6)   |
| С7—С6—Н6   | 125.4      | C2—Zr1—C9                             | 134.1 (5)   |
| C7—C6—C10  | 109.3 (10) | C2—Zr1—C10                            | 126.7 (4)   |
| C7—C6—Zr1  | 73.3 (7)   | C3—Zr1—C2                             | 32.0 (5)    |
| С10—С6—Н6  | 125.4      | C3—Zr1—C4                             | 33.0 (4)    |
| C10—C6—Zr1 | 73.3 (6)   | C3—Zr1—C5                             | 53.9 (2)    |
| Zr1—C6—H6  | 119.7      | C3—Zr1—C6                             | 162.9 (3)   |
| C6—C7—H7   | 125.7      | C3— $Zr1$ — $C7$                      | 157.6 (3)   |
| C6—C7—C8   | 108.6 (8)  | C3—Zr1—C8                             | 128.1 (3)   |
| C6—C7—Zr1  | 75.3 (7)   | C3—Zr1—C9                             | 116.4 (3)   |
| С8—С7—Н7   | 125.7      | C3—Zr1—C10                            | 131.3 (3)   |
| C8—C7—Zr1  | 74.1 (5)   | C4—Zr1—C2                             | 55.0 (6)    |

| Zr1—C7—H7                               | 116.9      | C4—Zr1—C5                                                     | 32.9 (2)             |
|-----------------------------------------|------------|---------------------------------------------------------------|----------------------|
| С7—С8—Н8                                | 125.2      | C4—Zr1—C6                                                     | 132.3 (4)            |
| C7—C8—Zr1                               | 74.1 (5)   | C4—Zr1—C7                                                     | 134.7 (4)            |
| C9—C8—C7                                | 109.6 (8)  | C4—Zr1—C8                                                     | 103.5 (4)            |
| С9—С8—Н8                                | 125.2      | C4— $Zr1$ — $C9$                                              | 84.2 (4)             |
| C9-C8-Zr1                               | 73 8 (6)   | C4-Zr1-C10                                                    | 100.3(4)             |
| Zr1-C8-H8                               | 118 7      | $C_5 - Z_{r1} - C_2$                                          | 550(4)               |
| C8-C9-H9                                | 126.3      | $C_{5}$ $Z_{1}$ $C_{2}$                                       | 109.0(3)             |
| $C_{8} - C_{9} - C_{10}$                | 107 4 (8)  | $C_{5}$ $Z_{11}$ $C_{0}$                                      | 109.0(3)<br>129.7(3) |
| $C_{8}$ $C_{9}$ $Z_{r1}$                | 74.8 (6)   | $C_5 = Z_{11} = C_7$                                          | 129.7(3)             |
| $C_{0}$                                 | 126.2      | $C_{5} = Z_{11} = C_{8}$                                      | 109.2(2)             |
| $C_{10} = C_{9} = H_{9}$                | 120.5      | $C_{5} = Z_{11} = C_{9}$                                      | 79.3(3)              |
| C10 - C9 - Zf1                          | /4.0 (3)   | $C_3 = Z_1 = C_1 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$ | 78.7 (3)             |
| Zf1—C9—H9                               | 117.0      | C/-ZrI-Cb                                                     | 31.4 (3)             |
| C6                                      | 105.0 (8)  | C/ZrI = CI0                                                   | 53.3 (3)             |
| C6—C10—H10                              | 127.5      | C8— $Zr1$ — $C6$                                              | 52.4 (4)             |
| C6—C10—Zr1                              | 74.5 (7)   | C8—Zr1—C7                                                     | 31.8 (3)             |
| С9—С10—Н10                              | 127.5      | C8—Zr1—C10                                                    | 53.6 (3)             |
| C9—C10—Zr1                              | 72.3 (6)   | C9—Zr1—C6                                                     | 53.5 (4)             |
| Zr1C10H10                               | 118.0      | C9—Zr1—C7                                                     | 52.9 (3)             |
| C2'—C1'—H1'                             | 126.1      | C9—Zr1—C8                                                     | 31.4 (2)             |
| C2'—C1'—C5'                             | 107.8 (10) | C9—Zr1—C10                                                    | 33.7 (3)             |
| C2'—C1'—Zr1                             | 75.9 (8)   | C10—Zr1—C6                                                    | 32.2 (3)             |
| С5'—С1'—Н1'                             | 126.1      | C1'—Zr1—C2'                                                   | 31.2 (4)             |
| C5'—C1'—Zr1                             | 75.3 (5)   | C1'—Zr1—C5'                                                   | 32.2 (3)             |
| Zr1—C1′—H1′                             | 114.9      | C1'—Zr1—C6'                                                   | 112.1 (3)            |
| C1'—C2'—H2'                             | 125.6      | C1'—Zr1—C7'                                                   | 138.3 (3)            |
| C1'—C2'—C3'                             | 108.7 (14) | C1'—Zr1—C8'                                                   | 120.2 (3)            |
| C1'—C2'—Zr1                             | 72.8 (9)   | C1'—Zr1—C9'                                                   | 90.6 (3)             |
| C3'—C2'—H2'                             | 125.6      | C2'—Zr1—C9'                                                   | 121.7 (4)            |
| C3'-C2'-Zr1                             | 75.4 (8)   | C5' - Zr1 - C2'                                               | 52.0 (5)             |
| 7r1-C2'-H2'                             | 118.0      | C5' - 7r1 - C8'                                               | 98.6 (4)             |
| C2' - C3' - H3'                         | 126.5      | C5' = Zr1 = C0'                                               | 76.6 (4)             |
| C2' = C3' = 113                         | 72 3 (9)   | C6' = 7r1 = C2'                                               | 131.2(4)             |
| $C_2 = C_3 = Z_1^2$                     | 106.0(10)  | C6' - Zr1 - C2'                                               | 131.2(4)             |
| C4 - C3 - C2                            | 100.9 (10) | C6' - Zr1 - C5'                                               | 120.4(4)             |
| $C_{4} = C_{3} = 115$                   | 74.4(4)    | $C_0 = 211 = C_1$                                             | 52.2(3)              |
| C4 - C3 - ZI1                           | /4.4 (4)   | $C_0 - Z_{\Gamma_1} - C_8$                                    | 55.5 (4)             |
| $2 \text{FI} - \text{C}_3 - \text{H}_3$ | 118.8      | $C_0 = Z_{\Gamma_1} = C_0$                                    | 52.4 (4)             |
| C3' - C4' - H4'                         | 126.2      | C/ $ZrI - C2'$                                                | 163.4 (5)            |
| C3' - C4' - Zrl                         | /4.2 (4)   | C/ $Zr1 - CS'$                                                | 128.7 (4)            |
| C5'—C4'—C3'                             | 107.6 (8)  | C7'—Zr1—C8'                                                   | 32.7 (3)             |
| C5'—C4'—H4'                             | 126.2      | C7'—Zr1—C9'                                                   | 52.6 (3)             |
| C5'—C4'—Zr1                             | 72.5 (6)   | C8′—Zr1—C2′                                                   | 149.9 (5)            |
| Zr1—C4′—H4′                             | 118.9      | C8'—Zr1—C9'                                                   | 31.2 (3)             |
| C1'—C5'—H5'                             | 125.5      | C10'—Zr1—C1'                                                  | 85.3 (3)             |
| C1'—C5'—Zr1                             | 72.5 (6)   | C10'—Zr1—C2'                                                  | 112.8 (4)            |
| C4'—C5'—C1'                             | 108.9 (10) | C10'—Zr1—C5'                                                  | 88.4 (4)             |
| C4'—C5'—H5'                             | 125.5      | C10'—Zr1—C6'                                                  | 32.0 (3)             |
| C4'—C5'—Zr1                             | 76.1 (6)   | C10'—Zr1—C7'                                                  | 53.3 (3)             |

| Zr1 C5' H5'                                         | 117.8                | C10' <b>7r1</b> C8'                           | 520(3)      |
|-----------------------------------------------------|----------------------|-----------------------------------------------|-------------|
| C7'-C6'-H6'                                         | 126.0                | C10' - 211 - C8'                              | 31.6(3)     |
| C7' - C6' - 7r1                                     | 74 3 (7)             | $C_{11} - 7r_{1} - C_{1}$                     | 135 18 (19) |
| $C_{10}^{\prime}$ $C_{6}^{\prime}$ $H_{6}^{\prime}$ | 126.0                | $C_{11} = Z_{11} = C_{11}$                    | 103.10(1)   |
| $C_{10} = C_0 = H_0$                                | 120.0<br>107.9(10)   | $C_{11} = 211 = C_2$<br>$C_{11} = 7r_1 = C_3$ | 81.65 (19)  |
| $C_{10} = C_{0} = C_{10}$                           | 107.9(10)<br>72.0(7) | $C_{11} = Z_{11} = C_{11}$                    | 91.03(19)   |
| $C_{10} - C_{0} - Z_{11}$                           | 12.9(7)              | $C_{11} = Z_{11} = C_{4}$                     | 92.3(2)     |
| 211 - C0 - 110                                      | 116.7                | $C_{11} = 211 = C_{5}$                        | 123.4(2)    |
| $C_0 - C_1 - H_1$                                   | 120.3                | $C_{11} = 211 = C_{0}$                        | 112.0(3)    |
| $C_0 - C_7 - C_8$                                   | 107.1(9)             | $C_{11} = Z_{11} = C_{11}$                    | 30.8(3)     |
| $C_0 - C_7 - Z_{\Gamma_1}$                          | 13.5(7)              | $C_{11}$ $Z_{11}$ $C_{0}$                     | 72.2(2)     |
| $C_8 - C_7 - H_7$                                   | 120.5                | C11 - Zr1 - C10                               | 97.5 (2)    |
| C8 - C7 - Zr1                                       | /4./(6)              | $C_{11}$ $Z_{11}$ $C_{10}$                    | 125.8 (3)   |
| ZrI - C/ - H/'                                      | 117.5                | CII = ZrI = CI'                               | 124.8 (2)   |
| C/ - C8' - H8'                                      | 126.6                | CII = ZrI = C2'                               | 108.6 (4)   |
| C/' - C8' - Zrl                                     | 72.6 (6)             | CII = ZrI = CS'                               | 100.5 (2)   |
| C9'—C8'—C'/'                                        | 106.8 (9)            | C11— $Zr1$ — $C6'$                            | 119.7 (3)   |
| C9'—C8'—H8'                                         | 126.6                | C11—Zr1—C7'                                   | 87.9 (3)    |
| C9'—C8'—Zr1                                         | 74.4 (6)             | C11—Zr1—C8′                                   | 80.3 (3)    |
| Zr1—C8′—H8′                                         | 118.4                | C11—Zr1—C9′                                   | 105.9 (2)   |
| C8'—C9'—H9'                                         | 125.3                | C11—Zr1—C10'                                  | 133.2 (3)   |
| C8'—C9'—C10'                                        | 109.5 (9)            | 01—Zr1—C1                                     | 89.83 (16)  |
| C8'—C9'—Zr1                                         | 74.4 (6)             | 01—Zr1—C2                                     | 81.4 (5)    |
| С10'—С9'—Н9'                                        | 125.3                | O1—Zr1—C3                                     | 107.49 (19) |
| C10'—C9'—Zr1                                        | 71.6 (6)             | O1—Zr1—C4                                     | 136.4 (3)   |
| Zr1—C9'—H9'                                         | 120.5                | O1—Zr1—C5                                     | 121.80 (16) |
| C6'—C10'—H10'                                       | 125.7                | O1—Zr1—C6                                     | 81.3 (3)    |
| C6'—C10'—Zr1                                        | 75.1 (7)             | O1—Zr1—C7                                     | 88.8 (3)    |
| C9'—C10'—C6'                                        | 108.6 (9)            | O1—Zr1—C8                                     | 120.1 (2)   |
| C9'—C10'—H10'                                       | 125.7                | O1—Zr1—C9                                     | 134.9 (3)   |
| C9'—C10'—Zr1                                        | 76.8 (6)             | O1—Zr1—C10                                    | 106.4 (3)   |
| Zr1—C10′—H10′                                       | 114.6                | O1—Zr1—C1′                                    | 104.9 (2)   |
| H11A—C11—H11B                                       | 109.5                | O1—Zr1—C2′                                    | 82.6 (5)    |
| H11A—C11—H11C                                       | 109.5                | O1—Zr1—C5′                                    | 134.3 (3)   |
| H11B—C11—H11C                                       | 109.5                | O1—Zr1—C6′                                    | 83.3 (3)    |
| Zr1—C11—H11A                                        | 109.5                | O1—Zr1—C7′                                    | 92.9 (3)    |
| Zr1—C11—H11B                                        | 109.5                | O1—Zr1—C8′                                    | 125.4 (3)   |
| Zr1—C11—H11C                                        | 109.5                | O1—Zr1—C9′                                    | 135.5 (3)   |
| C13—C12—C14                                         | 109.0 (3)            | O1—Zr1—C10′                                   | 107.2 (3)   |
| C13—C12—C15                                         | 107.5 (2)            | O1—Zr1—C11                                    | 98.83 (11)  |
| C13—C12—Si1                                         | 108.04 (19)          | O1—Zr1—Cp1                                    | 108.60      |
| C14—C12—C15                                         | 108.6 (2)            | O1—Zr1—Cp1′                                   | 109.30      |
| C14—C12—Si1                                         | 110.3 (2)            | O1—Zr1—Cp2                                    | 107.31      |
| C15—C12—Si1                                         | 113.3 (2)            | O1— $Zr1$ — $Cp2'$                            | 110.27      |
| С12—С13—Н13А                                        | 109.5                | $C_11$ — $Z_r1$ — $C_p1$                      | 109.36      |
| C12—C13—H13B                                        | 109.5                | C11— $Zr1$ — $Cp1'$                           | 96.81       |
| C12—C13—H13C                                        | 109.5                | C11— $Zr1$ — $Cp2$                            | 98.16       |
| H13A—C13—H13B                                       | 109.5                | $C_11$ — $Zr_1$ — $Cp_2'$                     | 106.27      |
| H13A - C13 - H13C                                   | 109 5                | Cn1-Zr1-Cn2                                   | 130.26      |
|                                                     |                      | Cr. Lii Cr-                                   |             |

# supporting information

| H13B—C13—H13C   | 109.5      | Cp1'—Zr1—Cp2'    | 129.80     |
|-----------------|------------|------------------|------------|
| C12—C14—H14A    | 109.5      |                  |            |
|                 |            |                  |            |
| C1—C2—C3—C4     | 1.0 (15)   | C6'—C7'—C8'—C9'  | 0.2 (11)   |
| C1—C2—C3—Zr1    | 65.9 (10)  | C6'—C7'—C8'—Zr1  | -66.9 (8)  |
| C2—C1—C5—C4     | -1.0 (10)  | C7'—C6'—C10'—C9' | -3.6 (12)  |
| C2—C1—C5—Zr1    | -66.3 (8)  | C7'—C6'—C10'—Zr1 | 66.6 (8)   |
| C2—C3—C4—C5     | -1.6 (13)  | C7'—C8'—C9'—C10' | -2.4 (11)  |
| C2—C3—C4—Zr1    | 65.4 (10)  | C7'—C8'—C9'—Zr1  | -65.9 (7)  |
| C3—C4—C5—C1     | 1.6 (9)    | C8′—C9′—C10′—C6′ | 3.8 (12)   |
| C3—C4—C5—Zr1    | 66.8 (6)   | C8′—C9′—C10′—Zr1 | -65.2 (7)  |
| C5—C1—C2—C3     | 0.0 (14)   | C10'—C6'—C7'—C8' | 2.1 (12)   |
| C5—C1—C2—Zr1    | 66.7 (6)   | C10'—C6'—C7'—Zr1 | -65.7 (8)  |
| C6—C7—C8—C9     | -2.2 (11)  | Zr1—C1—C2—C3     | -66.7 (10) |
| C6—C7—C8—Zr1    | -68.0 (8)  | Zr1—C1—C5—C4     | 65.2 (6)   |
| C7—C6—C10—C9    | -1.3 (11)  | Zr1—C2—C3—C4     | -64.9 (7)  |
| C7—C6—C10—Zr1   | 65.1 (8)   | Zr1—C3—C4—C5     | -67.0 (6)  |
| C7—C8—C9—C10    | 1.3 (10)   | Zr1—C4—C5—C1     | -65.2 (5)  |
| C7—C8—C9—Zr1    | -66.0 (7)  | Zr1—C6—C7—C8     | 67.2 (7)   |
| C8—C9—C10—C6    | 0.0 (10)   | Zr1—C6—C10—C9    | -66.3 (7)  |
| C8—C9—C10—Zr1   | -67.9 (7)  | Zr1—C7—C8—C9     | 65.8 (7)   |
| C10—C6—C7—C8    | 2.1 (12)   | Zr1—C8—C9—C10    | 67.4 (6)   |
| C10—C6—C7—Zr1   | -65.1 (8)  | Zr1—C9—C10—C6    | 67.9 (7)   |
| C1'—C2'—C3'—C4' | -1.2 (15)  | Zr1—C1′—C2′—C3′  | -67.5 (11) |
| C1'—C2'—C3'—Zr1 | 65.8 (11)  | Zr1—C1′—C5′—C4′  | 68.0 (7)   |
| C2'—C1'—C5'—C4' | -1.7 (14)  | Zr1—C2′—C3′—C4′  | -66.9 (6)  |
| C2'—C1'—C5'—Zr1 | -69.6 (10) | Zr1—C3′—C4′—C5′  | -65.4 (7)  |
| C2'—C3'—C4'—C5' | 0.1 (12)   | Zr1—C4′—C5′—C1′  | -65.6(7)   |
| C2'—C3'—C4'—Zr1 | 65.5 (9)   | Zr1—C6′—C7′—C8′  | 67.7 (7)   |
| C3'—C4'—C5'—C1' | 0.9 (11)   | Zr1—C6'—C10'—C9' | -70.1 (8)  |
| C3'—C4'—C5'—Zr1 | 66.5 (5)   | Zr1—C7′—C8′—C9′  | 67.1 (7)   |
| C5'—C1'—C2'—C3' | 1.7 (16)   | Zr1—C8′—C9′—C10′ | 63.5 (7)   |
| C5'—C1'—C2'—Zr1 | 69.2 (8)   | Zr1—C9′—C10′—C6′ | 69.0 (8)   |

Symmetry code: (i) -x+1, -y, z.