

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 13 September 2019 Accepted 4 October 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; strontium; gallium; arsenic; high-pressure synthesis.

CCDC reference: 1957548

Supporting information: this article has supporting information at journals.iucr.org/e

High-pressure synthesis and crystal structure of SrGa₄As₄

Valentin Weippert and Dirk Johrendt*

Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 München, Germany. *Correspondence e-mail: johrendt@Imu.de

Strontium tetragallate(II,III) tetraarsenide, SrGa₄As₄, was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8 GPa and 1573 K. The compound crystallizes in a new structure type ($P3_221$, Z = 3) as a three-dimensional (3D) framework of corner-sharing SrAs₈ quadratic antiprisms with strontium situated on a twofold rotation axis (Wyckoff position 3*b*). This arrangement is surrounded by a 3D framework which can be described as alternately stacked layers of either condensed Ga^{III}As₄ tetrahedra or honeycomb-like layers built up from distorted ethane-like Ga^{II}₂As₆ units comprising Ga–Ga bonds.

1. Chemical context

The ternary systems A-Tr-As (A = Ca, Sr or Ba; Tr = Ga or In) contain numerous compounds with different crystal structures based on $TrAs_4$ tetrahedra which occur isolated (Kauzlarich & Kuromoto, 1991), as dimers, as chains (Stoyko *et al.*, 2015; He *et al.*, 2012), condensed to ethane-like Tr_2As_6 groups (Mathieu *et al.*, 2008; Goforth *et al.*, 2009; He *et al.*, 2011) or as large supertetrahedral units (Weippert *et al.*, 2019). SrGa₄As₄ is the first high-pressure compound in this system and contains an unprecedented layer-like framework, thus expanding the structural variety of the A-Tr-As family.

2. Structural commentary

 $SrGa_4As_4$ crystallizes in the space group $P3_221$ (No. 154) and constitutes a new structure type. Strontium is coordinated in a quadratic antiprismatic manner by eight As atoms (Fig. 1). The antiprisms are slightly distorted, with their quadratic planes twisted by $\sim 34^{\circ}$ relative to each other instead of 45° for an ideal quadratic antiprism. Sr-As distances range from 3.2665 (4) to 3.4560 (4) Å. The SrAs₈ polyhedra are connected through common corners, each As atom shared by two quadratic antiprisms, building up a three-dimensional (3D) framework. A similar structural motif is known for $RbAg_2SbS_4$, which crystallizes in the space group $P3_121$ (Schimek et al., 1996). The surrounding construct in the two crystal structures differs however. SrGa₄As₄ contains a 3D Ga/ As framework that can be subdivided into two types of layers with an AB stacking sequence along the c axis. The first type is built up from corner- and edge-sharing GaAs₄ tetrahedra forming sheets with triangular voids (Fig. 2). The tetrahedra are distorted, with angles in the range of 100.790 (19)-127.996 (19)°, and have typical Ga-As distances of 2.4384 (5)-2.5470 (5) Å. The second layer type consists of distorted ethane-like Ga2As6 groups with nearly eclipsed conformations. The Ga₂As₆ groups are connected via common

The unit cell of $SrGa_4As_4$, viewed along [110], with the quadratic antiprismatic strontium coordination spheres shown as red polyhedra.

corners, forming a honeycomb-like sheet (Fig. 3). The Ga1A and Ga1B positions of the Ga–Ga dumbbell are disordered and were treated with split positions having an occupancy of 50% each (Fig. 4). The coordination of each of these Ga sites consists of three As atoms and one Ga atom forming trigonal pyramids, showing torsion angles of 114.5 (1)° for As1^{vi}– Ga1A–Ga1Aⁱ–As1^{iv} and 119.3 (1)° for As2^v–Ga1B– Ga1Bⁱ–As2^{vii} (for symmetry codes, see Fig. 4). The Ga–Ga distances range between 2.542 (8) and 2.572 (8) Å and are considered as Ga–Ga bonds, which is consistent with a charge-neutral compound. Ga–As distances between 2.477 (4) and 2.694 (2) Å for Ga1A are near to the covalent radii sum of 2.46 Å (Pauling, 1960). In comparison, the trigonal pyramid around Ga1B is elongated, with Ga–As distances of 2.415 (4)–2.845 (2) Å.

Figure 2

Edge- and corner-sharing $GaAs_4$ tetrahedra forming a layer with triangular voids viewed along [001].

Figure 3

Corner-sharing Ga_2As_6 dumbbells with disordered Ga positions forming a honeycomb-like layer viewed along [001].

3. Synthesis and crystallization

The starting material SrAs was synthesized by heating stoichiometric amounts of Sr (Sigma–Aldrich, 99.95%) and As (Alfa Aesar, 99.99999+%) in alumina crucibles, sealed in silica ampules under an atmosphere of purified argon for 20 h at 1223 K. The title compound was obtained *via* high-pressure synthesis using a modified Walker-type multianvil set-up driven by a 1000 t hydraulic press (Voggenreiter, Mainleus, Germany). A Cr_2O_3 -substituted (6%) MgO octahedron (Ceramic Substrates & Components, Isle of Wight, UK) with an edge length of 18 mm, housing a ZrO₂ sleeve with graphite sleeves (Schunk, Heuchelheim, Germany) for heating and a h-BN crucible (Henze, Kempten, Germany), was compressed with tungsten carbide cubes (Hawedia, Marklkofen, Germany) with an edge length of 11 mm. The starting mate-

Ga₂As₆ groups with disordered Ga positions having an occupancy of 50%. Displacement ellipsoids are drawn at the 95% probability level. [Symmetry codes: (i) -x + 2, -x + y + 1, $-z + \frac{5}{3}$; (ii) y, x, -z + 1; (iii) x, y + 1, z + 1; (iv) y + 1, x + 1, -z + 1; (v) y + 1, x, -z + 1; (vi) -y + 1, x - y + 1 $z + \frac{2}{3}$; (vii) $-y + 1, x - y, z + \frac{2}{3}$; (viii) $-y + 2, x - y + 1, z + \frac{2}{3}$; (ix) -x + 2, $-x + y + 2, -z + \frac{2}{3}$.]

rials SrAs (73.4 mg, 0.452 mmol), Ga (66.5 mg, 0.953 mmol, Alfa Aesar, 99.999%) and As (60.1 mg, 0.802 mmol) were mixed in a glove-box (H₂O, O₂ <1 ppm) and filled into the octahedron assembly. The reaction was carried out at 8 GPa and 1573 K, with a dwell time of 3 h. The temperature was increased and decreased over a period of 1 h. The assembly was opened in a glove-box, revealing crystals with a metallic luster.

The composition of $SrGa_4As_4$ was verified by EDX measurements using a a Carl Zeiss EVO-MA 10 instrument with a Bruker Nano EDX detector. The experimental values [Sr 12 (1) at%, Ga 44 (2) at% and As 45 (1) at%] are in excellent agreement with the expected values (Sr 11.1 at%, Ga 44.4 at% and As 44.4 at%) within the typical error of the method, and confirm the composition obtained from single-crystal X-ray diffraction data.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The Ga1A and Ga1B positions were introduced as half-occupied split positions since one fully occupied position with a prolate ellipsoid caused residual densities in the order of 2.2 e Å⁻³. Upon exclusion of the Ga1A/Ga1B positions, the contour difference map in *PLATON* (Spek, 2009) shows two clearly separated maxima justifying this approach. Structural data were standardized with *STRUCTURE-TIDY* (Gelato & Parthé, 1987).

Acknowledgements

We thank Lucien Eisenburger for assistance with the high pressure synthesis. Funding for this research was provided by Deutsche Forschungsgemeinschaft.

References

- Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). SAINT, APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Goforth, A. M., Hope, H., Condron, C. L., Kauzlarich, S. M., Jensen, N., Klavins, P., MaQuilon, S. & Fisk, Z. (2009). *Chem. Mater.* 21, 4480–4489.
- He, H., Stearrett, R., Nowak, E. R. & Bobev, S. (2011). Eur. J. Inorg. Chem. 2011, 4025–4036.
- He, H., Tyson, C., Saito, M. & Bobev, S. (2012). J. Solid State Chem. 188, 59–65.

Гable	1	
Experi	mental	details

Crystal data	
Chemical formula	SrGa ₄ As ₄
M _r	666.18
Crystal system, space group	Trigonal, P3 ₂ 21
Temperature (K)	293
a, c (Å)	6.3615 (1), 16.5792 (2)
$V(Å^3)$	581.05 (2)
Ζ	3
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	37.42
Crystal size (mm)	$0.10\times0.05\times0.05$
Data collection	
Diffractometer	Bruker APEXII D8 Quest CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.446, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14966, 928, 918
R _{int}	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.657
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.012, 0.025, 1.17
No. of reflections	928
No. of parameters	52
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.51, -0.69
Absolute structure	Flack x determined using 340 quotients $[(I^+) - (I^-)]/$ $[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.024 (11)
-	

Computer programs: SAINT (Bruker, 2016), APEX3 (Bruker, 2016), SUPERFLIP (Palatinus & Chapuis, 2007), EDMA (Palatinus et al., 2012), SHELXL (Sheldrick, 2015), DIAMOND (Brandenburg, 2014) and PLATON (Spek, 2009).

- Kauzlarich, S. M. & Kuromoto, T. Y. (1991). Croat. Chem. Acta, 64, 343–352.
- Mathieu, J., Achey, R., Park, J., Purcell, K. M., Tozer, S. W. & Latturner, S. E. (2008). *Chem. Mater.* **20**, 5675–5681.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Pauling, L. (1960). In The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
- Schimek, G. L., Pennington, W. T., Wood, P. T. & Kolis, J. W. (1996). J. Solid State Chem. 123, 277–284.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoyko, S., Voss, L., He, H. & Bobev, S. (2015). Crystals, 5, 433-446.
- Weippert, V., Haffner, A., Stamatopoulos, A. & Johrendt, D. (2019). J. Am. Chem. Soc. 141, 11245–11252.

supporting information

Acta Cryst. (2019). E75, 1643-1645 [https://doi.org/10.1107/S2056989019013562]

High-pressure synthesis and crystal structure of SrGa₄As₄

Valentin Weippert and Dirk Johrendt

Computing details

Data collection: *SAINT* (Bruker, 2016); cell refinement: *APEX3* (Bruker, 2016); data reduction: *APEX3* (Bruker, 2016); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) and EDMA (Palatinus *et al.*, 2012); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2014); software used to prepare material for publication: *PLATON* (Spek, 2009).

Strontium tetragallate(II,III) tetraarsenide

Crystal data

SrGa₄As₄ $M_r = 666.18$ Trigonal, $P3_221$ a = 6.3615 (1) Å c = 16.5792 (2) Å V = 581.05 (2) Å³ Z = 3F(000) = 882

Data collection

Bruker APEXII D8 Quest CCD	
diffractometer	
Radiation source: I μ S	
Goebel Mirror monochromator	
combined φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Bruker, 2016)	
$T_{\min} = 0.446, T_{\max} = 0.746$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.012$ $wR(F^2) = 0.025$ S = 1.17928 reflections 52 parameters 0 restraints Primary atom site location: iterative $D_x = 5.711 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9912 reflections $\theta = 3.7-30.4^{\circ}$ $\mu = 37.42 \text{ mm}^{-1}$ T = 293 KBlock, black $0.10 \times 0.05 \times 0.05 \text{ mm}$

14966 measured reflections 928 independent reflections 918 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 8$ $l = -21 \rightarrow 21$

Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0102P)^2 + 0.3943P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.51$ e Å⁻³ $\Delta\rho_{min} = -0.69$ e Å⁻³ Absolute structure: Flack *x* determined using 340 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.024 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)	
Sr1	0.52374 (8)	0.000000	0.166667	0.01264 (11)		
GalA	0.8090 (7)	0.9427 (8)	0.8779 (2)	0.0120 (4)	0.5	
Ga1B	0.8516(7)	0.9303 (8)	0.8920 (2)	0.0175 (5)	0.5	
Ga2	0.27470 (8)	0.54448 (7)	0.00800(2)	0.00988 (9)		
As1	0.50915 (7)	0.49019 (6)	0.11634 (2)	0.00817 (8)		
As2	0.86593 (6)	0.17439 (6)	0.00577 (2)	0.00838 (8)		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.01406 (18)	0.0121 (2)	0.0111 (2)	0.00605 (12)	0.00104 (9)	0.00209 (17)
GalA	0.0136 (10)	0.0079 (6)	0.0131 (10)	0.0044 (6)	0.0032 (6)	0.0001 (6)
GalB	0.0184 (13)	0.0080 (7)	0.0206 (13)	0.0025 (7)	0.0107 (9)	-0.0018 (8)
Ga2	0.0105 (2)	0.00988 (18)	0.01119 (18)	0.00654 (16)	-0.00233 (16)	-0.00109 (14)
As1	0.00767 (16)	0.00801 (17)	0.00862 (16)	0.00376 (14)	-0.00032 (13)	0.00041 (12)
As2	0.00712 (16)	0.00890 (17)	0.00970 (17)	0.00444 (14)	0.00033 (13)	0.00055 (13)

Geometric parameters (Å, °)

Sr1—As2	3.2665 (4)	Ga1A—As1 ^{xii}	2.477 (4)	
Sr1—As2 ⁱ	3.2666 (4)	Ga1A—As2 ^{xiii}	2.503 (4)	
Sr1—As1 ⁱ	3.2739 (4)	Ga1A—Ga1B ^{xiv}	2.5444 (13)	
Sr1—As1	3.2739 (4)	Ga1A—Ga1A ^{xiv}	2.572 (8)	
Sr1—As1 ⁱⁱ	3.3048 (4)	Ga1A—As1 ^{xv}	2.694 (2)	
Sr1—As1 ⁱⁱⁱ	3.3048 (4)	Ga1B—As2 ^{xiii}	2.415 (4)	
Sr1—Ga1B ^{iv}	3.312 (4)	Ga1B—As1 ^{xii}	2.515 (4)	
Sr1—Ga1B ^v	3.312 (4)	Ga1B—Ga1B ^{xiv}	2.542 (8)	
Sr1—Ga1A ^{vi}	3.346 (4)	Ga1B—As2 ^{xvi}	2.845 (2)	
Sr1—Ga1A ^{vii}	3.346 (4)	Ga2—As2 ^{viii}	2.4384 (5)	
Sr1—Ga2viii	3.3505 (4)	Ga2—As1	2.4668 (5)	
Sr1—Ga2 ^{ix}	3.3506 (4)	Ga2—As2 ^{xvii}	2.4868 (5)	
Sr1—As2 ^x	3.4560 (4)	Ga2—As1 ^{viii}	2.5470 (5)	
Sr1—As2 ^{xi}	3.4560 (4)	Ga2—Ga2 ^{viii}	2.9844 (8)	
As2—Sr1—As2 ⁱ	120.45 (2)	Ga1A ^{xiv} —Ga1B—As2 ^{xvi}	89.08 (12)	
As2—Sr1—As1 ⁱ	134.533 (8)	As2 ^{xiii} —Ga1B—Sr1 ^{xviii}	142.90 (10)	
As2 ⁱ —Sr1—As1 ⁱ	78.453 (9)	As1 ^{xii} —Ga1B—Sr1 ^{xviii}	67.51 (9)	
As2—Sr1—As1	78.453 (9)	Ga1B ^{xiv} —Ga1B—Sr1 ^{xviii}	67.43 (7)	
As2 ⁱ —Sr1—As1	134.533 (8)	Ga1Axiv—Ga1B—Sr1xviii	72.45 (15)	

As1 ⁱ —Sr1—As1	119.39 (2)	As2 ^{xvi} —Ga1B—Sr1 ^{xviii}	63.55 (6)
As2—Sr1—As1 ⁱⁱ	79.285 (11)	As2 ^{xiii} —Ga1B—Sr1 ^{xv}	67.96 (9)
As2 ⁱ —Sr1—As1 ⁱⁱ	74.128 (11)	As1 ^{xii} —Ga1B—Sr1 ^{xv}	137.34 (9)
As1 ⁱ —Sr1—As1 ⁱⁱ	66.217 (5)	Ga1B ^{xiv} —Ga1B—Sr1 ^{xv}	68.95 (7)
As1—Sr1—As1 ⁱⁱ	150.471 (11)	Ga1A ^{xiv} —Ga1B—Sr1 ^{xv}	64.32 (16)
As2—Sr1—As1 ⁱⁱⁱ	74.128 (11)	As2 ^{xvi} —Ga1B—Sr1 ^{xv}	119.38 (13)
As2 ⁱ —Sr1—As1 ⁱⁱⁱ	79.284 (11)	Sr1 ^{xviii} —Ga1B—Sr1 ^{xv}	136.38 (13)
As1 ⁱ —Sr1—As1 ⁱⁱⁱ	150.470 (11)	As2 ^{xiii} —Ga1B—Sr1 ^{xix}	100.06 (10)
As1—Sr1—As1 ⁱⁱⁱ	66.217 (5)	As1 ^{xii} —Ga1B—Sr1 ^{xix}	39.58 (5)
As1 ⁱⁱ —Sr1—As1 ⁱⁱⁱ	124.89 (2)	Ga1B ^{xiv} —Ga1B—Sr1 ^{xix}	118.30 (16)
As2—Sr1—Ga1B ^{iv}	51.25 (5)	Ga1A ^{xiv} —Ga1B—Sr1 ^{xix}	125.48 (7)
As2 ⁱ —Sr1—Ga1B ^{iv}	73.07 (5)	As2 ^{xvi} —Ga1B—Sr1 ^{xix}	138.21 (12)
As1 ⁱ —Sr1—Ga1B ^{iv}	109.71 (7)	Sr1 ^{xviii} —Ga1B—Sr1 ^{xix}	101.86 (10)
As1—Sr1—Ga1B ^{iv}	126.49 (6)	Sr1 ^{xv} —Ga1B—Sr1 ^{xix}	98.42 (5)
As1 ⁱⁱ —Sr1—Ga1B ^{iv}	44.67 (7)	As2 ^{xiii} —Ga1B—Sr1 ^{xiii}	30.22 (6)
As1 ⁱⁱⁱ —Sr1—Ga1B ^{iv}	81.77 (7)	As1 ^{xii} —Ga1B—Sr1 ^{xiii}	86.93 (10)
As2—Sr1—Ga1B ^v	73.07 (5)	Ga1B ^{xiv} —Ga1B—Sr1 ^{xiii}	155.24 (14)
As2 ⁱ —Sr1—Ga1B ^v	51.25 (5)	Ga1A ^{xiv} —Ga1B—Sr1 ^{xiii}	146.47 (15)
As1 ⁱ —Sr1—Ga1B ^v	126.49 (6)	As2 ^{xvi} —Ga1B—Sr1 ^{xiii}	80.65 (8)
As1—Sr1—Ga1B ^v	109.71 (7)	Sr1 ^{xviii} —Ga1B—Sr1 ^{xiii}	128.07 (9)
As1 ⁱⁱ —Sr1—Ga1B ^v	81.77 (7)	Sr1 ^{xv} —Ga1B—Sr1 ^{xiii}	93.16 (8)
As1 ⁱⁱⁱ —Sr1—Ga1B ^v	44.67 (7)	Sr1 ^{xix} —Ga1B—Sr1 ^{xiii}	80.08 (6)
Ga1B ^{iv} —Sr1—Ga1B ^v	45.14 (14)	As2 ^{viii} —Ga2—As1	127.996 (19)
As2—Sr1—Ga1A ^{vi}	111.75 (6)	As2 ^{viii} —Ga2—As2 ^{xvii}	101.790 (19)
As2 ⁱ —Sr1—Ga1A ^{vi}	123.12 (5)	As1—Ga2—As2 ^{xvii}	107.308 (18)
As1 ⁱ —Sr1—Ga1A ^{vi}	48.02 (5)	As2 ^{viii} —Ga2—As1 ^{viii}	112.107 (18)
As1—Sr1—Ga1A ^{vi}	74.76 (5)	As1—Ga2—As1 ^{viii}	100.790 (19)
As1 ⁱⁱ —Sr1—Ga1A ^{vi}	95.97 (6)	As2 ^{xvii} —Ga2—As1 ^{viii}	104.987 (18)
As1 ⁱⁱⁱ —Sr1—Ga1A ^{vi}	138.60 (6)	As2 ^{viii} —Ga2—Ga2 ^{viii}	160.190 (16)
Ga1B ^{iv} —Sr1—Ga1A ^{vi}	135.24 (5)	As1—Ga2—Ga2 ^{viii}	54.718 (14)
Ga1B ^v —Sr1—Ga1A ^{vi}	174.30 (10)	As2 ^{xvii} —Ga2—Ga2 ^{viii}	94.821 (13)
As2—Sr1—Ga1A ^{vii}	123.12 (5)	As1 ^{viii} —Ga2—Ga2 ^{viii}	52.245 (14)
As2 ⁱ —Sr1—Ga1A ^{vii}	111.75 (6)	As2 ^{viii} —Ga2—Sr1 ^{xx}	66.554 (14)
As1 ⁱ —Sr1—Ga1A ^{vii}	74.76 (5)	As1—Ga2—Sr1 ^{xx}	164.526 (19)
As1—Sr1—Ga1A ^{vii}	48.02 (5)	As2 ^{xvii} —Ga2—Sr1 ^{xx}	70.850 (14)
As1 ⁱⁱ —Sr1—Ga1A ^{vii}	138.60 (6)	As1 ^{viii} —Ga2—Sr1 ^{xx}	65.805 (12)
As1 ⁱⁱⁱ —Sr1—Ga1A ^{vii}	95.97 (7)	Ga2 ^{viii} —Ga2—Sr1 ^{xx}	109.825 (18)
Ga1B ^{iv} —Sr1—Ga1A ^{vii}	174.30 (10)	As2 ^{viii} —Ga2—Sr1 ^{xxi}	65.922 (13)
Ga1B ^v —Sr1—Ga1A ^{vii}	135.23 (5)	As1—Ga2—Sr1 ^{xxi}	62.098 (13)
Ga1A ^{vi} —Sr1—Ga1A ^{vii}	45.20 (14)	As2 ^{xvii} —Ga2—Sr1 ^{xxi}	126.697 (18)
As2—Sr1—Ga2 ^{viii}	43.223 (9)	As1 ^{viii} —Ga2—Sr1 ^{xxi}	128.043 (18)
As2 ⁱ —Sr1—Ga2 ^{viii}	161.548 (17)	Ga2 ^{viii} —Ga2—Sr1 ^{xxi}	112.066 (16)
As1 ⁱ —Sr1—Ga2 ^{viii}	118.760 (14)	Sr1 ^{xx} —Ga2—Sr1 ^{xxi}	131.844 (12)
As1—Sr1—Ga2 ^{viii}	45.205 (10)	As2 ^{viii} —Ga2—Sr1 ^{xvii}	94.008 (14)
As1 ⁱⁱ —Sr1—Ga2 ^{viiii}	105.550 (10)	As1—Ga2—Sr1 ^{xvii}	87.434 (14)
As1 ⁱⁱⁱ —Sr1—Ga2 ^{viii}	86.374 (9)	As2 ^{xvii} —Ga2—Sr1 ^{xvii}	33.956 (10)
Ga1B ^{iv} —Sr1—Ga2 ^{viii}	93.55 (5)	As1 ^{viii} —Ga2—Sr1 ^{xvii}	137.041 (15)
Ga1B ^v —Sr1—Ga2 ^{viii}	110.30 (5)	Ga2 ^{viii} —Ga2—Sr1 ^{xvii}	105.802 (10)

Ga1A ^{vi} —Sr1—Ga2 ^{viii}	75.33 (5)	Sr1 ^{xx} —Ga2—Sr1 ^{xvii}	97.358 (11)
Ga1A ^{vii} —Sr1—Ga2 ^{viii}	81.05 (6)	Sr1 ^{xxi} —Ga2—Sr1 ^{xvii}	93.202 (9)
As2—Sr1—Ga2 ^{ix}	161.548 (17)	As2 ^{viii} —Ga2—Sr1	154.513 (14)
As2 ⁱ —Sr1—Ga2 ^{ix}	43.223 (9)	As1—Ga2—Sr1	29.480 (10)
As1 ⁱ —Sr1—Ga2 ^{ix}	45.205 (10)	As2 ^{xvii} —Ga2—Sr1	84.221 (13)
As1—Sr1—Ga2 ^{ix}	118.759 (14)	As1 ^{viii} —Ga2—Sr1	89.655 (14)
As1 ⁱⁱ —Sr1—Ga2 ^{ix}	86.374 (9)	Ga2 ^{viii} —Ga2—Sr1	37.413 (11)
As1 ⁱⁱⁱ —Sr1—Ga2 ^{ix}	105.549 (10)	Sr1 ^{xx} —Ga2—Sr1	137.673 (13)
Ga1B ^{iv} —Sr1—Ga2 ^{ix}	110.30 (5)	Sr1 ^{xxi} —Ga2—Sr1	90.483 (9)
Ga1B ^v —Sr1—Ga2 ^{ix}	93.55 (5)	Sr1 ^{xvii} —Ga2—Sr1	77.087 (5)
Ga1A ^{vi} —Sr1—Ga2 ^{ix}	81.05 (6)	As2 ^{viii} —Ga2—Sr1 ^{xxii}	123.013 (14)
Ga1A ^{vii} —Sr1—Ga2 ^{ix}	75.33 (5)	As1—Ga2—Sr1 ^{xxii}	78.871 (13)
Ga2 ^{viii} —Sr1—Ga2 ^{ix}	154.42 (2)	As2 ^{xvii} —Ga2—Sr1 ^{xxii}	117.500 (15)
As2—Sr1—As2 ^x	69.230 (6)	As1 ^{viii} —Ga2—Sr1 ^{xxii}	22.713 (10)
As2 ⁱ —Sr1—As2 ^x	150.543 (8)	Ga2 ^{viii} —Ga2—Sr1 ^{xxii}	37.772 (10)
As1 ⁱ —Sr1—As2 ^x	76.839 (11)	Sr1 ^{xx} —Ga2—Sr1 ^{xxii}	88.357 (8)
As1—Sr1—As2 ^x	72.738 (10)	Sr1 ^{xxi} —Ga2—Sr1 ^{xxii}	111.288 (14)
As1 ⁱⁱ —Sr1—As2 ^x	81.367 (9)	Sr1 ^{xvii} —Ga2—Sr1 ^{xxii}	141.184 (8)
As1 ⁱⁱⁱ —Sr1—As2 ^x	129.115 (8)	Sr1—Ga2—Sr1 ^{xxii}	73.220 (6)
Ga1B ^{iv} —Sr1—As2 ^x	100.60 (6)	Ga2—As1—Ga1A ^{xii}	114.64 (6)
Ga1B ^v —Sr1—As2 ^x	140.87 (6)	Ga2—As1—Ga1B ^{xii}	105.91 (6)
Ga1A ^{vi} —Sr1—As2 ^x	43.14 (7)	Ga1A ^{xii} —As1—Ga1B ^{xii}	9.02 (9)
Ga1A ^{vii} —Sr1—As2 ^x	76.71 (7)	Ga2—As1—Ga2 ^{viii}	73.038 (18)
Ga2 ^{viii} —Sr1—As2 ^x	42.823 (9)	Ga1A ^{xii} —As1—Ga2 ^{viii}	96.32 (10)
Ga2 ^{ix} —Sr1—As2 ^x	120.222 (14)	Ga1B ^{xii} —As1—Ga2 ^{viii}	96.14 (9)
As2—Sr1—As2 ^{xi}	150.543 (8)	Ga2—As1—Ga1A ^{vii}	98.03 (9)
As2 ⁱ —Sr1—As2 ^{xi}	69.230 (6)	Ga1A ^{xii} —As1—Ga1A ^{vii}	141.90 (4)
As1 ⁱ —Sr1—As2 ^{xi}	72.738 (10)	Ga1B ^{xii} —As1—Ga1A ^{vii}	147.27 (17)
As1—Sr1—As2 ^{xi}	76.839 (11)	Ga2 ^{viii} —As1—Ga1A ^{vii}	112.22 (9)
As1 ⁱⁱ —Sr1—As2 ^{xi}	129.114 (8)	Ga2—As1—Sr1	128.755 (16)
As1 ⁱⁱⁱ —Sr1—As2 ^{xi}	81.366 (9)	Ga1A ^{xii} —As1—Sr1	102.71 (6)
Ga1B ^{iv} —Sr1—As2 ^{xi}	140.87 (6)	Ga1B ^{xii} —As1—Sr1	111.12 (6)
Ga1B ^v —Sr1—As2 ^{xi}	100.60 (6)	Ga2 ^{viii} —As1—Sr1	68.989 (12)
Ga1A ^{vi} —Sr1—As2 ^{xi}	76.71 (7)	Ga1A ^{vii} —As1—Sr1	67.39 (9)
Ga1A ^{vii} —Sr1—As2 ^{xi}	43.14 (7)	Ga2—As1—Sr1 ^{xxi}	76.628 (13)
Ga2 ^{viii} —Sr1—As2 ^{xi}	120.222 (14)	Ga1A ^{xii} —As1—Sr1 ^{xxi}	73.33 (8)
Ga2 ^{ix} —Sr1—As2 ^{xi}	42.823 (9)	Ga1B ^{xii} —As1—Sr1 ^{xxi}	67.82 (8)
As2 ^x —Sr1—As2 ^{xi}	117.382 (19)	Ga2 ^{viii} —As1—Sr1 ^{xxi}	139.977 (16)
As1 ^{xii} —Ga1A—As2 ^{xiii}	114.84 (16)	Ga1Avii—As1—Sr1xxi	97.23 (9)
As1 ^{xii} —Ga1A—Ga1B ^{xiv}	119.2 (2)	Sr1—As1—Sr1 ^{xxi}	150.472 (11)
As2 ^{xiii} —Ga1A—Ga1B ^{xiv}	121.43 (16)	Ga2—As1—Sr1 ^{xvii}	65.908 (13)
As1 ^{xii} —Ga1A—Ga1A ^{xiv}	127.04 (14)	Ga1A ^{xii} —As1—Sr1 ^{xvii}	161.16 (10)
As2 ^{xiii} —Ga1A—Ga1A ^{xiv}	112.61 (17)	Ga1B ^{xii} —As1—Sr1 ^{xvii}	156.82 (8)
Ga1B ^{xiv} —Ga1A—Ga1A ^{xiv}	8.82 (9)	Ga2 ^{viii} —As1—Sr1 ^{xvii}	101.547 (13)
As1 ^{xii} —Ga1A—As1 ^{xv}	87.94 (10)	Ga1A ^{vii} —As1—Sr1 ^{xvii}	32.12 (9)
As2 ^{xiii} —Ga1A—As1 ^{xv}	107.20 (13)	Sr1—As1—Sr1 ^{xvii}	89.333 (9)
Ga1B ^{xiv} —Ga1A—As1 ^{xv}	95.81 (13)	Sr1 ^{xxi} —As1—Sr1 ^{xvii}	89.018 (12)
Ga1A ^{xiv} —Ga1A—As1 ^{xv}	99.49 (15)	Ga1B ^{xxiii} —As2—Ga2 ^{viii}	109.16 (6)
· · · · · ·	× · · /		- (-)

As1 ^{xii} —Ga1A—Sr1 ^{xv}	151.81 (10)	Ga1B ^{xxiii} —As2—Ga2 ^{xxiv}	107.80 (10)
As2 ^{xiii} —Ga1A—Sr1 ^{xv}	70.77 (10)	Ga2viii—As2—Ga2xxiv	111.741 (17)
Ga1B ^{xiv} —Ga1A—Sr1 ^{xv}	72.42 (16)	Ga1B ^{xxiii} —As2—Ga1A ^{xxiii}	8.97 (10)
Ga1A ^{xiv} —Ga1A—Sr1 ^{xv}	67.40 (7)	Ga2 ^{viii} —As2—Ga1A ^{xxiii}	100.47 (6)
As1 ^{xv} —Ga1A—Sr1 ^{xv}	64.59 (7)	Ga2xxiv—As2—Ga1Axxiii	110.18 (10)
As1 ^{xii} —Ga1A—Sr1 ^{xviii}	64.22 (9)	Ga1B ^{xxiii} —As2—Ga1B ^{iv}	88.49 (12)
As2 ^{xiii} —Ga1A—Sr1 ^{xviii}	128.43 (8)	Ga2 ^{viii} —As2—Ga1B ^{iv}	133.38 (9)
Ga1B ^{xiv} —Ga1A—Sr1 ^{xviii}	63.92 (16)	Ga2xxiv—As2—Ga1Biv	102.40 (9)
Ga1A ^{xiv} —Ga1A—Sr1 ^{xviii}	68.55 (7)	Ga1A ^{xxiii} —As2—Ga1B ^{iv}	96.31 (10)
As1 ^{xv} —Ga1A—Sr1 ^{xviii}	123.83 (13)	Ga1B ^{xxiii} —As2—Sr1	127.93 (10)
Sr1 ^{xv} —Ga1A—Sr1 ^{xviii}	135.95 (13)	Ga2 ^{viii} —As2—Sr1	70.223 (14)
As1 ^{xii} —Ga1A—Sr1 ^{xix}	44.97 (5)	Ga2xxiv—As2—Sr1	120.879 (15)
As2 ^{xiii} —Ga1A—Sr1 ^{xix}	105.82 (11)	Ga1A ^{xxiii} —As2—Sr1	128.03 (10)
Ga1B ^{xiv} —Ga1A—Sr1 ^{xix}	127.80 (7)	Ga1B ^{iv} —As2—Sr1	65.20 (9)
Ga1A ^{xiv} —Ga1A—Sr1 ^{xix}	135.48 (17)	Ga1B ^{xxiii} —As2—Sr1 ^{xxii}	71.67 (8)
As1 ^{xv} —Ga1A—Sr1 ^{xix}	46.51 (6)	Ga2 ^{viii} —As2—Sr1 ^{xxii}	73.974 (13)
Sr1 ^{xv} —Ga1A—Sr1 ^{xix}	107.02 (6)	Ga2 ^{xxiv} —As2—Sr1 ^{xxii}	66.325 (12)
Sr1 ^{xviii} —Ga1A—Sr1 ^{xix}	104.00 (10)	Ga1A ^{xxiii} —As2—Sr1 ^{xxii}	66.09 (8)
As1 ^{xii} —Ga1A—Sr1 ^{xiii}	85.55 (10)	Ga1B ^{iv} —As2—Sr1 ^{xxii}	151.44 (9)
As2 ^{xiii} —Ga1A—Sr1 ^{xiii}	29.68 (6)	Sr1—As2—Sr1 ^{xxii}	143.341 (12)
Ga1B ^{xiv} —Ga1A—Sr1 ^{xiii}	149.64 (10)	Ga1B ^{xxiii} —As2—Sr1 ^{xxv}	21.56 (6)
Ga1A ^{xiv} —Ga1A—Sr1 ^{xiii}	140.99 (16)	Ga2 ^{viii} —As2—Sr1 ^{xxv}	128.411 (14)
As1 ^{xv} —Ga1A—Sr1 ^{xiii}	102.85 (10)	Ga2xxiv—As2—Sr1xxv	103.930 (14)
Sr1 ^{xv} —Ga1A—Sr1 ^{xiii}	94.16 (9)	Ga1A ^{xxiii} —As2—Sr1 ^{xxv}	30.44 (6)
Sr1 ^{xviii} —Ga1A—Sr1 ^{xiii}	120.80 (7)	Ga1B ^{iv} —As2—Sr1 ^{xxv}	68.27 (8)
Sr1 ^{xix} —Ga1A—Sr1 ^{xiii}	81.80 (6)	Sr1—As2—Sr1 ^{xxv}	120.158 (9)
As2 ^{xiii} —Ga1B—As1 ^{xii}	116.66 (16)	Sr1 ^{xxii} —As2—Sr1 ^{xxv}	88.418 (8)
As2 ^{xiii} —Ga1B—Ga1B ^{xiv}	125.23 (17)	Ga1B ^{xxiii} —As2—Sr1 ^{xxvi}	139.37 (9)
As1 ^{xii} —Ga1B—Ga1B ^{xiv}	117.83 (16)	Ga2 ^{viii} —As2—Sr1 ^{xxvi}	97.627 (13)
As2 ^{xiii} —Ga1B—Ga1A ^{xiv}	116.7 (2)	Ga2 ^{xxiv} —As2—Sr1 ^{xxvi}	32.041 (11)
As1 ^{xii} —Ga1B—Ga1A ^{xiv}	126.56 (18)	Ga1A ^{xxiii} —As2—Sr1 ^{xxvi}	142.22 (10)
Ga1B ^{xiv} —Ga1B—Ga1A ^{xiv}	8.90 (9)	Ga1B ^{iv} —As2—Sr1 ^{xxvi}	94.88 (8)
As2 ^{xiii} —Ga1B—As2 ^{xvi}	80.20 (9)	Sr1—As2—Sr1 ^{xxvi}	89.306 (7)
As1 ^{xii} —Ga1B—As2 ^{xvi}	102.75 (11)	Sr1 ^{xxii} —As2—Sr1 ^{xxvi}	87.812 (8)
Ga1B ^{xiv} —Ga1B—As2 ^{xvi}	93.10 (15)	Sr1 ^{xxv} —As2—Sr1 ^{xxvi}	130.398 (9)

Symmetry codes: (i) x-y, -y, -z+1/3; (ii) x, y-1, z; (iii) x-y+1, -y+1, -z+1/3; (iv) y, x-1, -z+1; (v) -x+y+1, -x+1, z-2/3; (vi) y-1, x-1, -z+1; (vi) -x+y, -x+1, z-2/3; (vii) y, x, -z; (ix) -x+y, -x, z+1/3; (x) y, x-1, -z; (xi) -x+y+1, -x+1, z+1/3; (xii) y, x, -z+1; (xii) x, y+1, z+z, (xiv) -x+2, -x+y+1, -z+5/3; (xv) -y+1, x-y+1, z+2/3; (xvi) y+1, x, -z+1; (xvi) x-1, y, z; (xviii) -y+1, x-y, z+2/3; (xix) -y, x-y, z-1/3; (xxi) x, y+1, z; (xxi) -y+1, x-y-1, z-1/3; (xxii) x, y-1, z-1/3; (xxii) x, y+1, z; (xxii) -y+1, x-y-1, z-1/3; (xxii) x, y-1, z-1/3; (xxi) x, y+1, z; (xxii) -y+1, z-y-1, z-1/3; (xxii) x, y-1, z-1/3; (xxi) x, y+1, z; (xxi) -y+1, z-y-1, z-1/3; (xxi) x, y+1, z; (xxi) -y+1, z-y-1, z-1/3; (xxi) x+1, y+1, z.