

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 11 September 2019
Accepted 28 October 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; azobenzene; orthosubstitution; thiols; transmetallation; Hirshfeld surface analysis.

CCDC references: 1961741; 1961741

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structure of (\boldsymbol{E})-1,2-bis[2(methylsulfanyl)phenyl]diazene

Jonas Hoffmann, ${ }^{\text {a,b }}$ Thomas J. Kuczmera, ${ }^{\text {a,b }}$ Enno Lork ${ }^{\mathrm{c}}$ and Anne Staubitz ${ }^{\mathrm{a}, \mathrm{b} *}$

${ }^{\text {a }}$ Institute for Organic and Analytic Chemistry, University Bremen, Leobener Strasse 7, 28359 Bremen, Germany, ${ }^{\mathbf{b}}$ MAPEX, Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, 28359 Bremen, Germany, and ${ }^{\text {c Institute for }}$ Inorganic Chemistry and Crystallography, University of Bremen, Leobener Strasse 7, 28359 Bremen, Germany.
*Correspondence e-mail: staubitz@uni-bremen.de

The title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$, was obtained by transmetallation of $2,2^{\prime}$ bis(trimethylstannyl)azobenzene with methyl lithium, and subsequent quenching with dimethyl disulfide. The asymmetric unit comprises two halfmolecules, the other halves being completed by inversion symmetry at the midpoint of the azo group. The two molecules show only slight differences with respect to $\mathrm{N}=\mathrm{N}, \mathrm{S}-\mathrm{N}$ and aromatic $\mathrm{C}=\mathrm{C}$ bonds or angles. Hirshfeld surface analysis reveals that except for one weak $\mathrm{H} \cdots \mathrm{S}$ interaction, intermolecular interactions are dominated by van der Waals forces only.

1. Chemical context

The molecular switch azobenzene can undergo isomerization from its thermodynamically stable trans form to the metastable cis form using external stimuli such as light, temperature or pressure. Azobenzenes are common motifs in dyes because of their high thermal and photochemical stability (Yesodha et al., 2004; Lagrasta et al., 1997). We recently presented methods to substitute azobenzenes in the ortho, meta and para-positions with trimethyltin as a novel functionalization method, giving rise to a dual tin-lithium exchange (Strüben et al., 2014, 2015; Hoffmann et al., 2019). In particular, we described the effect on the diortho-substitution on azobenzenes with trimethyl-tetrels and the resulting effects on the switching properties (Hoffmann et al., 2019). In this context, we present here a novel diortho-substituted azobenzene, $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NS}\right)_{2}$, (I), bearing two methylsulfide groups.

2. Structural commentary

The asymmetric unit of the title compound consists of two half-molecules (Ia and Ib), the other halves being completed by application of inversion symmetry. The midpoints of the $\mathrm{N}=\mathrm{N}$ bonds are located on inversion centres, resulting in a

Figure 1
Molecular structures (Ia left, $\mathbf{I b}$ right) of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $x, 1-y,-z$; (ii) $1-x, 1-y, 1-z$.]
trans-configuration for the central $\mathrm{N}=\mathrm{N}$ bonds (Fig. 1). As indicated by the $\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{N} 1 A-\mathrm{N} 1 A^{\mathrm{i}}$ and $\mathrm{C} 6 B-\mathrm{C} 1 B-$ $\mathrm{N} 1 B-\mathrm{N} 1 B^{\text {ii }}$ [symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x$, $1-y, 1-z]$ torsion angles of $13.2(2)$ and $-5.3(2)^{\circ}$, respectively, in both molecules the phenyl rings are twisted slightly with respect to the azo unit. A weak distortion is also found for the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$ torsion angles of $-3.06(16)^{\circ}$ for Ia and $-2.06(15)^{\circ}$ for $\mathbf{I b}$. The $\mathrm{N}=\mathrm{N}$ bond lengths differ marginally $[1.255$ (2) \AA for $\mathbf{I a}, 1.264$ (2) \AA for Ib], as do comparable $\mathrm{C}-\mathrm{C}$ bonds. For example, the $\mathrm{C} 1-\mathrm{C} 2$ bond in Ia is at $1.408(2) \AA$ slightly shorter than Ib $[1.415$ (2) \AA] . In comparison, this bond is longer than all other $\mathrm{C}-\mathrm{C}$ distances in the ring because of repulsion of the nitrogen and the sulfur atoms attached to C 1 and C 2 , respectively. In both molecules, the $\mathrm{S} \cdots \mathrm{N}$ distances [2.8625 (13) \AA for $\mathbf{I a}, 2.8761$ (11) \AA for Ib] are too long to be considered as attractive interactions. Fig. 2 represents an overlay plot of the two molecules, showing there are only slight conformational differences.

3. Supramolecular features and Hirshfeld surface analysis

The packing of $\mathbf{I a}$ and $\mathbf{I b}$ in the crystal is shown in Fig. 3. Despite the presence of phenyl rings and a parallel arrange-

Figure 2
Overlay presentation of molecules $\mathbf{I a}$ and $\mathbf{I b}$.

Figure 3
Crystal packing in a view along the b axis. To distinguish the different molecules, all sulfur atoms within the unit cell are labelled.
ment of the molecules, only weak offset $\pi-\pi$ interactions are observed; the shortest centroid-to-centroid distance is $C g 2 \cdots C g 2(1-x, 1-y,-z)=3.7525$ (8) Å with a slippage of $1.422 \AA$. To further investigate the intermolecular interactions, Hirshfeld surfaces (Hirshfeld, 1977) and fingerprint plots were generated for both molecules using CrystalExplorer17.5

Figure 4
Hirshfeld surface of Ia mapped with $d_{\text {norm }}$ (top) and shape index (bottom), displaying no significant intermolecular interactions.

Figure 5
Hirshfeld surface of Ib mapped with $d_{\text {norm }}$ (top) and shape index (bottom) with indication of an $\mathrm{S} \cdots \mathrm{H}$ interaction.
(McKinnon et al., 2004). Hirshfeld surface analysis depicts intermolecular interactions by different colors, representing short or long contacts and further the relative strength of the interaction. The generated Hirshfeld surfaces mapped over $d_{\text {norm }}$ and the shape index are shown in Fig. 4 for $\mathbf{I a}$ and in Fig. 5 for Ib. Whereas in Ia a significant intermolecular interaction is not apparent, characteristic red spots near S1B and H5B indicate weak $\mathrm{S} \cdots \mathrm{H}$ interactions in $\mathbf{I b}$. The respective supramolecular arrangement is shown in Fig. 6. The sulfur atom $\mathrm{S} 1 B$ interacts with a phenyl proton $(\mathrm{H} 4 B)$ of another molecule of Ib (S $\cdots \mathrm{H}$ distance $=2.811 \AA$). The two-dimensional fingerprint plots for molecule Ib for quantification of the contributions of each type of non-covalent interaction to the Hirshfeld surface (McKinnon et al., 2007) are given in Fig. 7. The packing is dominated by $\mathrm{H} \cdots \mathrm{H}$ contacts, representing van der Waals interactions (44.5% contribution to the surface), followed by $\mathrm{C} \cdots \mathrm{H}$ and $\mathrm{S} \cdots \mathrm{H}$ interactions, which contribute with 24.0% and 18.1%, respectively. The contri-

Figure 6
Hirshfeld surface of Ib mapped with $d_{\text {norm }}$ (left) and shape index (right), together with the interaction of a neighbouring molecule.

Figure 7
Two-dimensional fingerprint plots for $\mathbf{I b}$, delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{H}$, $\mathrm{S} \cdots \mathrm{H}, \mathrm{N} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{C}$ interactions.
butions of the $\mathrm{N} \cdots \mathrm{H}(8.6 \%)$ and $\mathrm{C} \cdots \mathrm{C}(4.8 \%)$ interactions are less significant.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.4.0; update August 2019; Groom et al., 2016) revealed no azobenzene-based structures that contain methyl thioethers. However, some general ortho-substituted azobenzenes have been deposited (Yamamura et al., 2008; Kano et al., 2001; Hoffmann et al., 2019). Additionally, some diortho-substituted thioazoxybenzenes were reported previously (SzczygelskaTao et al., 1999; Kertmen et al., 2013). For the structure of an azobenzene compound with an inversion centre at the $\mathrm{N}=\mathrm{N}$ bond, see: Bohle et al. (2007).

5. Synthesis and crystallization

The synthesis of $2,2^{\prime}$-bis(trimethylstannyl)azobenzene was recently described (Hoffmann et al., 2019). For further details of a similar transmetallation of a stannylated azobenzene, see: Strüben et al. (2015). Dimethyl disulfide (99\%) was purchased from Acros Organics and was used without further purification. Methyl lithium (1.88 M in diethyl ether, titrated against 2,2'-bipyridine) was purchased from Acros Organics. THF was purchased from VWR and was dried and degassed with a solvent purification system by Inert Technology.

$\mathbf{2 , 2} \mathbf{2}^{\prime}$-bis(Methylthio)azobenzene

In an inert reaction tube, 2,2-bis(trimethylstannyl)azostannyl)azobenzene ($200 \mathrm{mg}, 0.39 \mathrm{mmol}$) was dissolved under Schlenk conditions in THF (12.5 ml) and cooled to 195 K . Then MeLi ($1.88 M$ in diethyl ether, $0.63 \mathrm{ml}, 1.18 \mathrm{mmol}$) was added within 5 min and after 1.5 h at this temperature, dimethyl disulfide ($0.35 \mathrm{ml}, 3.94 \mathrm{mmol}$) was added in one ration. The reaction mixture was warmed to 298 K over 14 h and the solvent was removed under reduced pressure. The obtained orange solid was purified in a silica column (Merck, $0.015-0.40 \mathrm{~mm}$) with a gradient of eluents from n-pentane to

Table 1
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$
M_{r}	274.39
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	$13.0656(5), 12.1787(4), 8.3471(3)$
$\beta\left({ }^{\circ}\right)$	$96.154(1)$
$V\left(\mathrm{~A}^{3}\right)$	$1320.55(8)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.39
Crystal size (mm)	$0.21 \times 0.18 \times 0.17$
Data collection	
Diffractometer	Bruker D8 Venture CMOS
Absorption correction	Multi-scan $(S A D A B S ;$ Krause et
	$a l ., 2015)$
$T_{\text {min }}, T_{\text {max }}$	$0.580,0.746$
No. of measured, independent and	$21000,3292,2842$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.065
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.668
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.034,0.089,1.04$
No. of reflections	3292
No. of parameters	165
H-atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.44,-0.38$

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
dichloromethane giving dark-orange crystals (31 mg , 0.11 mmol ; yield 29%). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a saturated n-heptane solution.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76\left(d d,{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=\right.$ $1.4 \mathrm{~Hz}, 2 \mathrm{H}, H 6), 7.40\left(t d,{ }^{3} J=8.0,7.3 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 2 \mathrm{H}, H 4\right)$, $7.32\left(d d,{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 2 \mathrm{H}, H 3\right), 7.20\left(t d,{ }^{3} J=8.1\right.$, $\left.7.3 \mathrm{~Hz},{ }^{4} J=1.1 \mathrm{~Hz}, 2 \mathrm{H}, H 5\right), 2.53(s, 6 \mathrm{H}, H 7) \mathrm{ppm}$.
${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.08(\mathrm{C} 1), 141.00$ (C2), 131.56 (C4), 124.81 (C3), 124.75 (C5), 118.02 (C6), 15.02 (C7) ppm.

HRMS (EI, 70 eV , MAT95, direct): m / z : calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}{ }^{+} 274.05929$ found 274.05944.

MS (EI): $m / z 273.9$ (5\%) $[M]^{+}, 258.9$ (100%) $\left[M-\mathrm{CH}_{3}\right]^{+}$, 243.9 (5\%) [$\left.M-\mathrm{C}_{2} \mathrm{H}_{6}\right]^{+}, 107.9$ (13%) $\left[M-\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}\right]^{+}$.

IR (ATR): $v=3059(w), 2986(w), 2961(w), 2918(w), 2852$ (w), 1575 (m), 1561 (w), 1457 (m), $1433(s), 1298(w), 1249(w)$, 1217 (m), 1162 (m), 1065 (s), 1035 (m), 951 (m), 863 (w), 803 (w), $761(s), 726(s), 674(s) \mathrm{cm}^{-1}$.
M.p.: 429 K
$\boldsymbol{R}_{\boldsymbol{f}}$ (n-pentane: dichloromethane 3:1): 0.55.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned geometrically and refined using a riding model: $\mathrm{C}-\mathrm{H}=0.95-$ $0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}-$ methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})(\mathrm{C}-$ phenyl).

Funding information

The authors would like to thank Special Research Area 677 'Function by Switching' of the Deutsche Forschungsgemeinschaft (DFG), Project C14, for financial support. This research has been supported by the Institutional Strategy of the University of Bremen, funded by the German Excellence Initiative.

References

Bohle, D. S., Dorans, K. S. \& Fotie, J. (2007). Acta Cryst. E63, o889o890.
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.
Hoffmann, J., Kuczmera, T. J., Lork, E. \& Staubitz, A. (2019). Molecules, 24, 303.
Kano, N., Komatsu, F. \& Kawashima, T. (2001). Chem. Lett. 30, 338339.

Kertmen, A., Szczygelska-Tao, J. \& Chojnacki, J. (2013). Tetrahedron, 69, 10662-10668.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lagrasta, C., Bellobono, I. R. \& Bonardi, M. (1997). J. Photochem. Photobiol. Chem. 110, 201-205.
McKinnon, J. J., Jayatilaka, D. \& Spackmann, M. A. (2007). Chem. Commun. pp. 3814-3816.
McKinnon, J. J., Spackman, M. A. \& Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Strüben, J., Gates, P. J. \& Staubitz, A. (2014). J. Org. Chem. 79, 17191728.

Strüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Sönnichsen, F. D. \& Staubitz, A. (2015). Chem. Eur. J. 21, 1116511173.

Szczygelska-Tao, J., Biernat, J. F., Kravtsov, V. C. \& Simonov, Y. A. (1999). Tetrahedron, 55, 8433-8442.

Yamamura, M., Kano, N., Kawashima, T., Matsumoto, T., Harada, J. \& Ogawa, K. (2008). J. Org. Chem. 73, 8244-8249.
Yesodha, S. K., Sadashiva Pillai, C. K. \& Tsutsumi, N. (2004). Prog. Polym. Sci. 29, 45-74.

supporting information

Acta Cryst. (2019). E75, 1808-1811 [https://doi.org/10.1107/S2056989019014592]

Synthesis and crystal structure of (E)-1,2-bis[2-(methylsulfanyl)phenyl]diazene

Jonas Hoffmann, Thomas J. Kuczmera, Enno Lork and Anne Staubitz

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-1,2-Bis[2-(methylsulfanyl)phenyl]diazene

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$
$M_{r}=274.39$
Monoclinic, $P 2_{1} / c$
$a=13.0656$ (5) \AA
$b=12.1787$ (4) \AA
$c=8.3471$ (3) \AA
$\beta=96.154(1)^{\circ}$
$V=1320.55(8) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Venture CMOS diffractometer
Radiation source: microfocus sealed X-ray tube, Incoatec $\mathrm{I} \mu \mathrm{s}$
Mirror optics monochromator
Detector resolution: 7.9 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.089$
$S=1.03$
3292 reflections
165 parameters
0 restraints
Primary atom site location: dual
$F(000)=576$
$D_{\mathrm{x}}=1.380 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9874 reflections
$\theta=2.3-28.3^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, dark orange
$0.21 \times 0.18 \times 0.17 \mathrm{~mm}$
$T_{\text {min }}=0.580, T_{\text {max }}=0.746$
21000 measured reflections
3292 independent reflections
2842 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-17 \rightarrow 17$
$k=-16 \rightarrow 16$
$l=-11 \rightarrow 10$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0401 P)^{2}+0.6716 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.44 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1A	$0.03738(3)$	$0.22038(3)$	$0.07109(4)$	$0.01750(10)$
N1A	$0.00557(9)$	$0.45111(10)$	$0.02308(14)$	$0.0144(2)$
C1A	$0.09596(10)$	$0.43239(11)$	$0.13020(16)$	$0.0133(3)$
C2A	$0.12139(10)$	$0.32133(11)$	$0.15962(16)$	$0.0136(3)$
C3A	$0.21227(10)$	$0.29785(12)$	$0.25937(17)$	$0.0163(3)$
H3A	0.232873	0.223733	0.278065	0.020^{*}
C4A	$0.27191(10)$	$0.38209(12)$	$0.33050(17)$	$0.0175(3)$
H4A	0.333363	0.364884	0.397179	0.021^{*}
C5A	$0.24372(10)$	$0.49160(12)$	$0.30637(17)$	$0.0170(3)$
H5A	0.284385	0.548538	0.358432	0.020^{*}
C6A	$0.15556(10)$	$0.51642(12)$	$0.20540(16)$	$0.0153(3)$
H6A	0.135717	0.590824	0.187411	0.018^{*}
C7A	$0.09736(12)$	$0.09607(12)$	$0.15119(19)$	$0.0212(3)$
H7AA	0.108296	0.100874	0.268985	0.032^{*}
H7AB	0.163749	0.086347	0.108405	0.032^{*}
H7AC	0.052690	0.033332	0.119805	0.032^{*}
S1B	$0.68646(3)$	$0.36826(3)$	$0.29648(4)$	$0.01522(10)$
N1B	$0.53057(8)$	$0.47643(9)$	$0.45728(13)$	$0.0111(2)$
C1B	$0.54712(9)$	$0.53356(10)$	$0.31394(15)$	$0.0107(2)$
C2B	$0.62096(9)$	$0.48706(11)$	$0.22188(15)$	$0.0109(2)$
C3B	$0.63884(10)$	$0.53770(11)$	$0.07713(16)$	$0.0135(3)$
H3B	0.688084	0.507481	0.013715	0.016^{*}
C4B	$0.58521(10)$	$0.63170(11)$	$0.02550(16)$	$0.0149(3)$
H4B	0.597271	0.664586	-0.073966	0.018^{*}
C5B	$0.51371(10)$	$0.67861(11)$	$0.11794(16)$	$0.0141(3)$
H5B	0.478373	0.743923	0.082900	0.017^{*}
C6B	$0.49478(10)$	$0.62917(11)$	$0.26090(16)$	$0.0121(3)$
H6B	0.445749	0.660464	0.323699	0.015^{*}
C7B	$0.77056(12)$	$0.33890(13)$	$0.1449(2)$	$0.0230(3)$
H7BA	0.729477	0.327171	0.041043	0.035^{*}
H7BB	0.810613	0.272618	0.174984	0.035^{*}
H7BC	0.817418	0.400922	0.136102	0.035^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.01446(17)$	$0.01894(19)$	$0.01851(19)$	$-0.00155(13)$	$-0.00094(13)$	$-0.00187(13)$
N1A	$0.0110(5)$	$0.0196(6)$	$0.0125(5)$	$0.0009(4)$	$0.0008(4)$	$-0.0003(4)$
C1A	$0.0098(6)$	$0.0203(7)$	$0.0100(6)$	$-0.0002(5)$	$0.0022(5)$	$0.0005(5)$

C2A	$0.0102(6)$	$0.0199(7)$	$0.0111(6)$	$-0.0010(5)$	$0.0032(5)$	$-0.0020(5)$
C3A	$0.0129(6)$	$0.0205(7)$	$0.0155(7)$	$0.0018(5)$	$0.0011(5)$	$0.0019(5)$
C4A	$0.0112(6)$	$0.0267(7)$	$0.0139(6)$	$0.0008(5)$	$-0.0013(5)$	$0.0017(6)$
C5A	$0.0136(6)$	$0.0250(7)$	$0.0124(6)$	$-0.0033(5)$	$0.0013(5)$	$-0.0021(5)$
C6A	$0.0141(6)$	$0.0194(7)$	$0.0128(6)$	$-0.0005(5)$	$0.0029(5)$	$0.0000(5)$
C7A	$0.0238(7)$	$0.0182(7)$	$0.0215(7)$	$-0.0003(6)$	$0.0026(6)$	$0.0015(6)$
S1B	$0.01542(17)$	$0.01406(17)$	$0.01718(18)$	$0.00275(12)$	$0.00642(13)$	$0.00248(12)$
N1B	$0.0103(5)$	$0.0140(5)$	$0.0090(5)$	$-0.0019(4)$	$0.0012(4)$	$-0.0012(4)$
C1B	$0.0097(5)$	$0.0135(6)$	$0.0088(6)$	$-0.0028(5)$	$0.0008(5)$	$-0.0014(5)$
C2B	$0.0096(5)$	$0.0112(6)$	$0.0115(6)$	$-0.0013(5)$	$0.0001(5)$	$-0.0013(5)$
C3B	$0.0124(6)$	$0.0176(6)$	$0.0111(6)$	$-0.0014(5)$	$0.0042(5)$	$-0.0018(5)$
C4B	$0.0160(6)$	$0.0180(7)$	$0.0108(6)$	$-0.0030(5)$	$0.0020(5)$	$0.0019(5)$
C5B	$0.0142(6)$	$0.0146(6)$	$0.0130(6)$	$0.0002(5)$	$0.0000(5)$	$0.0011(5)$
C6B	$0.0109(6)$	$0.0148(6)$	$0.0106(6)$	$-0.0011(5)$	$0.0011(5)$	$-0.0020(5)$
C7B	$0.0229(7)$	$0.0210(7)$	$0.0276(8)$	$0.0061(6)$	$0.0144(6)$	$0.0013(6)$

Geometric parameters ($A,{ }^{\circ}$)

S1A-C2A	1.7574 (14)	S1B-C2B	1.7605 (13)
S1A-C7A	1.8002 (15)	S1B-C7B	1.7983 (15)
N1A-N1A ${ }^{\text {i }}$	1.255 (2)	N1B-N1B ${ }^{\text {ii }}$	1.264 (2)
N1A-C1A	1.4211 (17)	N1B-C1B	1.4205 (16)
C1A-C2A	1.4080 (19)	C1B-C2B	1.4145 (18)
C1A-C6A	1.3940 (19)	C1B-C6B	1.3981 (18)
C2A-C3A	1.4046 (18)	C2B-C3B	1.3983 (18)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	0.9500	C3B-H3B	0.9500
C3A-C4A	1.383 (2)	C3B-C4B	1.3866 (19)
C4A-H4A	0.9500	C4B-H4B	0.9500
C4A-C5A	1.393 (2)	C4B-C5B	1.3961 (19)
C5A-H5A	0.9500	C5B-H5B	0.9500
C5A-C6A	1.3857 (19)	C5B-C6B	1.3824 (19)
C6A-H6A	0.9500	C6B-H6B	0.9500
C7A-H7AA	0.9800	C7B-H7BA	0.9800
C7A-H7AB	0.9800	C7B-H7BB	0.9800
C7A-H7AC	0.9800	C7B-H7BC	0.9800
C2A-S1A-C7A	101.82 (7)	C2B-S1B-C7B	103.00 (7)
N1A ${ }^{\text {i }}$ - N1A-C1A	113.98 (14)	N1B ${ }^{\text {ii }}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	114.53 (14)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	115.37 (12)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	115.83 (11)
C6A-C1A-N1A	123.50 (13)	$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	124.14 (11)
C6A-C1A-C2A	121.11 (12)	C6B-C1B-C2B	120.02 (12)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	118.27 (10)	C1B-C2B-S1B	118.09 (10)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	123.84 (11)	C3B-C2B-S1B	123.24 (10)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	117.89 (12)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	118.67 (12)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	119.8	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	119.8
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	120.33 (13)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	120.46 (12)
C4A-C3A-H3A	119.8	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	119.8
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	119.3	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B}$	119.6

C3A-C4A-C5A	121.35 (13)
C5A-C4A-H4A	119.3
C4A-C5A-H5A	120.4
C6A-C5A-C4A	119.12 (13)
C6A-C5A-H5A	120.4
C1A-C6A-H6A	119.9
C5A-C6A-C1A	120.10 (13)
C5A-C6A-H6A	119.9
S1A-C7A-H7AA	109.5
S1A-C7A-H7AB	109.5
S1A-C7A-H7AC	109.5
H7AA-C7A-H7AB	109.5
H7AA-C7A-H7AC	109.5
H7AB-C7A-H7AC	109.5
$\mathrm{S} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-177.02 (11)
N1A ${ }^{\text {- }}$ N1A- $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	-168.19 (14)
N1A ${ }^{\text {i }}$-N1A-C1A-C6A	13.2 (2)
N1A-C1A-C2A-S1A	-3.06 (16)
N1A-C1A-C2A-C3A	177.45 (12)
N1A-C1A-C6A-C5A	-178.94 (12)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	2.4 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	2.5 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	0.3 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	-1.8(2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	0.4 (2)
C6A-C1A-C2A-S1A	175.63 (10)
C6A-C1A-C2A-C3A	-3.86 (19)
C7A-S1A-C2A-C1A	-176.89 (11)
C7A-S1A-C2A-C3A	2.57 (13)

C3B-C4B-C5B	$120.79(12)$
C5B-C4B-H4B	119.6
C4B-C5B-H5B	120.3
C6B-C5B-C4B	$119.42(13)$
C6B-C5B-H5B	120.3
C1B-C6B-H6B	119.7
C5B-C6B-C1B	119.7
C5B-C6B-H6B	109.5
S1B-C7B-H7BA	109.5
S1B-C7B-H7BB	109.5
S1B-C7B-H7BC	109.5
H7BA-C7B-H7BB	109.5
H7BA-C7B-H7BC	109.5
H7BB-C7B-H7BC	$-179.51(10)$
	$175.48(13)$
S1B-C2B-C3B-C4B	$-5.3(2)$
N1B-N1B-C1B-C2B	$-2.06(15)$
N1B-N1B-C1B-C6B	$178.30(11)$
N1B-C1B-C2B-S1B	$-178.56(12)$
N1B-C1B-C2B-C3B	$0.11(19)$
N1B-C1B-C6B-C5B	$0.61(19)$
C1B-C2B-C3B-C4B	$1.1(2)$
C2B-C1B-C6B-C5B	$-1.4(2)$
C2B-C3B-C4B-C5B	$0.54(19)$
C3B-C4B-C5B-C6B	$178.71(10)$
C4B-C5B-C6B-C1B	$-0.94(18)$
C6B-C1B-C2B-S1B	$-179.91(10)$
C6B-C1B-C2B-C3B	$-0.28(13)$
C7B-S1B-C2B-C1B	
C7B-S1B-C2B-C3B	

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$.

