

Received 4 October 2019 Accepted 16 October 2019

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; thiochromene; hydrogen bonding; π – π stacking.

CCDC references: 1950406; 1953121

Supporting information: this article has supporting information at journals.iucr.org/e

Chien Thang Pham, Dinh Hung Mac and Thai Thanh Thu Bui*

Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Ha Noi, Vietnam. *Correspondence e-mail: thaithanhthubui@gmail.com

Two thiochromene compounds containing Br and F atoms, namely 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2*H*-thiochromene ($C_{17}H_{13}BrFNO_3S$, **A**) and 2-(2-bromo-5-fluorophenyl)-7-methoxy-3-nitro-2*H*-thiochromene ($C_{16}H_{11}BrF-NO_3S$, **B**), were prepared *via* the condensation reaction between 2-mercaptobenzaldehyde and nitrostyrene derivatives. In both compounds, the thiochromene plane is almost perpendicular to the phenyl ring. In the structure of **A**, molecules are assembled *via* π - π stacking and C-H···O and C-F··· π interactions. In the crystal packing of **B**, molecules are linked by C-H···F, C-H···O, C-H··· π and π - π interactions.

1. Chemical context

2H-Chromenes (or 2H-benzopyrans) are heterocyclic compounds found in many natural plants. This class of molecules shows a wide variety of biological activities, such as anticancer, anti-inflammation and anti-HIV (Horton et al., 2003). Recently, we have shown that 3-nitro-2H-chromene can act as a selective mTOR/Pi3K inhibitor, which can lead to a new compound to treat breast cancer (Fouqué et al., 2015). Interestingly, we observed that thiochromene derivatives, where the O atom is replaced by an S atom, can increase significantly the biological activity of these compounds. With the goal in mind to synthesize a chemical library of thiochromene compounds (Nguyen et al., 2016), we have now successfully 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2Hprepared thiochromene (A) and 2-(2-bromo-5-fluorophenyl)-7-methoxy-3-nitro-2H-thiochromene (B). Crystal structure determination can help to understand the role of halogenated substituents in the biological activity of these compounds.

2. Structural commentary

Compound (A) crystallizes in the triclinic space group $P\overline{1}$, while compound (B) crystallizes in the space group $P2_1/c$, both with one molecule in the asymmetric unit (Figs. 1 and 2). In both compounds, the conformation of the thiochromene ring

research communications

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$) for **A**.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathrm{H} \cdots $
$C9-H9\cdots O2^{i}$	0.93	2.50	3.419 (7)	168

Symmetry code: (i) -x, -y + 1, -z.

Figure 1

The molecular structure of 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2H-thiochromene (A), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

is similar. In **A**, the thiochromene ring makes an angle of $89.3 (2)^{\circ}$ with phenyl ring C1–C6, while in **B**, this angle is $86.94 (8)^{\circ}$, which indicates that the 2-bromo-5-fluorophenyl ring is roughly perpendicular to the thiochromene plane. Both 2*H*-thiopyran rings have a screw-boat conformation, with

Table 2				
Hydrogen-bond	geometry	(Å,	°) for 1	B.

Cg3 is the centroid of the C10–C15 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C9-H9\cdots O1^{i}$	0.93	2.60	3.418 (3)	148
$C15-H15\cdots F4^{ii}$	0.93	2.54	3.268 (2)	136
$C16-C16B\cdots Cg3^{iii}$	0.96	2.86	3.668 (3)	143

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 2, -y + 1, -z + 2; (iii) -x + 1, -y + 1, -z + 2.

Figure 2

The molecular structure of 2-(2-bromo-5-fluorophenyl)-7-methoxy-3nitro-2H-thiochromene (**B**), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

atom C7 having the largest deviation from the best plane through atoms S1/C7–C11 [puckering parameters Q = 0.388 (4) Å, $\theta = 119.6$ (7)° and $\varphi = 202.2$ (9)° for **A**, and Q =

Figure 3

Packing diagram for **A**, showing C-H···O, C-F·· π , π - π and H···Br interactions [symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y + 2, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z]. Cg3 is the centroid of the C10–C15 ring.

Figure 4

Packing diagram for **B**, showing C-H···O, C-H···F, C-H··· π and π - π interactions [symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 2, -y + 1, -z + 2; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) -x + 1, -y + 1, -z + 1]. Cg2 and Cg3 are the centroids of the C1-C6 and C10-C15 rings, respectively.

0.5111 (18) Å, $\theta = 118.2$ (2)° and $\varphi = 208.1$ (3)° for **B**]. The C–S bond lengths are almost equal [C7–S1 = 1.828 (4) Å and C11–S1 = 1.8307 (19) Å for **A**, and 1.758 (5) and 1.7574 (19) Å for **B**, respectively]. The C11–S1–C7 bond angle is 102.5 (2)° in **A** and 100.47 (9)° in **B**. The N–O bond

lengths in compound **B** [1.232 (2) and 1.221 (2) Å] are slightly longer than those in compound **A** [both 1.219 (5) Å]. The nitro group is situated in the thiochromene plane, as illustrated by the torsion angle O2–N8–C8–C9 of 1.3 (7)° in **A** and 9.5 (3)° in **B**.

Table 3Experimental details.

	Α	В
Crystal data		
Chemical formula	$C_{17}H_{13}BrFNO_3S$	C ₁₆ H ₁₁ BrFNO ₃ S
M _r	410.25	396.23
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	273	273
a, b, c (Å)	7.6695 (12), 10.6867 (18), 12.2767 (19)	7.6231 (4), 17.3484 (8), 11.8345 (6)
α, β, γ (°)	64.686 (4), 80.760 (4), 70.395 (4)	90, 106.016 (2), 90
$V(\dot{A}^3)$	856.7 (2)	1504.35 (13)
Z	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	2.55	2.90
Crystal size (mm)	$0.25 \times 0.2 \times 0.15$	$0.30 \times 0.22 \times 0.11$
Data collection		
Diffractometer	Bruker D8 Quest CMOS	Bruker D8 Quest CMOS
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.621, 0.745	0.599, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12684, 3255, 2291	31660, 3745, 3018
R _{int}	0.037	0.032
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.611	0.669
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.128, 1.04	0.029, 0.070, 1.04
No. of reflections	3255	3745
No. of parameters	218	209
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.53, -0.49	0.52, -0.49

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

3. Supramolecular features

In the crystal of **A**, molecules form inversion dimers *via* C– H···O hydrogen bonds (Table 1 and Fig. 3) and π - π interactions $[Cg3 \cdots Cg3^i = 3.646 (3) \text{ Å}$; symmetry code: (i) -x, -y + 2, -z; Cg3 is the centroid of the C10–C15 ring]. Neighbouring dimers interact through C–F··· π and short Br1···H5ⁱⁱ interactions $[F4 \cdots Cg3^{ii} = 3.328 (4) \text{ Å}$ and Br1···H5ⁱⁱⁱ = 2.96 Å; symmetry codes: (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z].

In the crystal of compound **B**, two molecules form dimers through $C-H\cdots$ F hydrogen bonds (Table 2 and Fig. 4). These dimers form chains running in the *c* direction through $\pi-\pi$ interactions $[Cg2\cdots Cg2^i = 3.8458 (13) \text{ Å}; \text{ symmetry code: (i)} <math>-x + 2, -y + 1, -z + 1; Cg2$ is the centroid of the C1–C6 ring]. Parallel chains interact *via* $C-H\cdots O$ and $C-H\cdots \pi$ interactions.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom *et al.*, 2016) contains seven phenyl-2*H*-thiochromene derivatives, of which three contain halogen atoms [CSD refcodes IFOZIO (Choudhury & Mukherjee, 2013), QAPSAE (Simlandy & Mukherjee, 2017) and WAPCUO (Sangeetha & Sekar, 2017)] and only one structure contains a nitro substituent on the 2*H*-thiochromene ring (NOGDIZ; Le *et al.*, 2019). In all seven structures, the phenyl ring is roughly perpendicular to the thiochromene plane, with dihedral angles between 87.73 and 98.89°. Four of the seven structures display intermolecular interactions between the S atom and a C–H bond. However, in the two structures presented here, this type of interaction has not been observed.

5. Synthesis and crystallization

To a round-bottomed flask was added 2-mercaptobenzaldehyde (1 equiv.), nitrostyrene (1 equiv.) and K_2CO_3 (1 equiv.) in toluene and the reaction mixture was stirred at room temperature for 2 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel (yield 90%). Crystals suitable for single-crystal X-ray diffraction data collection were obtained by slow evaporation from an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms bonded to C atoms were placed at calculated positions, with C-H = 0.93-0.98 Å, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ for Csp^2-H and $U_{iso}(H) = 1.5U_{eq}(C)$ for Csp^3-H . A rotating-group model was applied for methyl-group C17 in **A** and C16 in **B**.

References

- Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choudhury, A. R. & Mukherjee, S. (2013). Adv. Synth. Catal. 355, 1989–1995.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fouqué, A., Delalande, O., Jean, M., Castellano, R., Josselin, E., Malleter, M., Shoji, K. F., Hung, M. D., Rampanarivo, H., Collette, Y., van de Weghe, P. & Legembre, P. (2015). J. Med. Chem. 58, 6559–6573.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). *Chem. Rev.* **103**, 893–930.
- Le, T. T. H., Youhei, C., Le, Q. H., Nguyen, T. B. & Mac, D. H. (2019). Org. Biomol. Chem. 17, 6355–6358.
- Nguyen, T. T. H., Nguyen, T. X., Cao, T. T. T., Dinh, T. H., Nguyen, H. H., Bui, T. T. T., Pham, V. P. & Mac, D. H. (2016). *Synlett*, **28**, 429–432.
- Sangeetha, S. & Sekar, G. (2017). Org. Lett. 19, 1670-1673.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Simlandy, A. K. & Mukherjee, S. (2017). J. Org. Chem. 82, 4851-4858.

Acta Cryst. (2019). E75, 1783-1786 [https://doi.org/10.1107/S2056989019014178]

Crystal structures of 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2*H*-thiochromene and 2-(2-bromo-5-fluorophenyl)-7-methoxy-3-nitro-2*H*-thiochromene

Chien Thang Pham, Dinh Hung Mac and Thai Thanh Thu Bui

Computing details

For both structures, data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

2-(2-Bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2H-thiochromene (A)

Crystal data

 $C_{17}H_{13}BrFNO_3S$ $M_r = 410.25$ Triclinic, $P\overline{1}$ a = 7.6695 (12) Å b = 10.6867 (18) Å c = 12.2767 (19) Å $a = 64.686 (4)^{\circ}$ $\beta = 80.760 (4)^{\circ}$ $\gamma = 70.395 (4)^{\circ}$ $V = 856.7 (2) \text{ Å}^3$

Data collection

Bruker D8 Quest CMOS diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.621, T_{\max} = 0.745$ 12684 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.128$ S = 1.043255 reflections 218 parameters Z = 2 F(000) = 412 $D_x = 1.590 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5933 reflections $\theta = 3.0-25.6^{\circ}$ $\mu = 2.55 \text{ mm}^{-1}$ T = 273 KTriangular-prism, clear light yellow $0.25 \times 0.2 \times 0.15 \text{ mm}$

3255 independent reflections 2291 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 14$

0 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0419P)^2 + 2.0237P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.53 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

		1 1	1 1 1	· · ·	
	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.78831 (7)	0.45042 (7)	0.29672 (6)	0.0676 (2)	
S1	0.34737 (16)	0.76031 (13)	0.17001 (11)	0.0459 (3)	
F4	0.1093 (5)	0.3152 (4)	0.5616 (3)	0.0878 (11)	
01	0.4800 (5)	0.3584 (4)	0.1158 (3)	0.0627 (10)	
N8	0.3239 (6)	0.4388 (5)	0.0863 (4)	0.0514 (10)	
O3	0.1347 (6)	0.9891 (4)	0.2321 (4)	0.0800 (12)	
C6	0.4041 (5)	0.4707 (4)	0.3176 (4)	0.0317 (9)	
C7	0.3916 (5)	0.5738 (5)	0.1873 (4)	0.0344 (10)	
H7	0.5137	0.5464	0.1505	0.041*	
O2	0.2238 (6)	0.4176 (5)	0.0326 (4)	0.0877 (14)	
C1	0.5698 (6)	0.4073 (5)	0.3787 (4)	0.0398 (10)	
C5	0.2496 (6)	0.4375 (5)	0.3831 (4)	0.0430 (11)	
Н5	0.1353	0.4785	0.3463	0.052*	
C8	0.2567 (6)	0.5648 (5)	0.1183 (4)	0.0394 (11)	
C9	0.0857 (6)	0.6514 (5)	0.0895 (4)	0.0441 (11)	
Н9	0.0162	0.6300	0.0480	0.053*	
C10	0.0005 (6)	0.7756 (5)	0.1180 (4)	0.0449 (12)	
C11	0.1047 (6)	0.8283 (5)	0.1624 (4)	0.0440 (11)	
C2	0.5820(7)	0.3155 (5)	0.4989 (5)	0.0540 (13)	
H2	0.6945	0.2760	0.5376	0.065*	
C4	0.2649 (7)	0.3447 (6)	0.5014 (4)	0.0538 (13)	
C12	0.0194 (8)	0.9462 (6)	0.1916 (5)	0.0588 (14)	
C3	0.4268 (8)	0.2827 (6)	0.5611 (5)	0.0593 (14)	
Н3	0.4323	0.2196	0.6420	0.071*	
C15	-0.1906 (7)	0.8446 (6)	0.1038 (5)	0.0612 (15)	
H15	-0.2617	0.8100	0.0751	0.073*	
C13	-0.1723 (9)	1.0141 (6)	0.1749 (6)	0.0758 (19)	
H13	-0.2306	1.0946	0.1932	0.091*	
C14	-0.2721 (8)	0.9611 (7)	0.1315 (5)	0.0757 (19)	
H14	-0.3987	1.0062	0.1209	0.091*	
C16	0.0603 (12)	1.1016 (8)	0.2740 (8)	0.108 (3)	
H16A	-0.0355	1.0799	0.3348	0.129*	
H16B	0.0066	1.1929	0.2080	0.129*	
C17	0.2145 (15)	1.1110 (9)	0.3261 (10)	0.140 (4)	
H17A	0.3043	1.1391	0.2639	0.211*	
H17B	0.2717	1.0182	0.3877	0.211*	
H17C	0.1673	1.1819	0.3604	0.211*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0326 (3)	0.0840 (5)	0.0826 (4)	-0.0170 (3)	-0.0096 (2)	-0.0277 (3)
S 1	0.0434 (6)	0.0424 (7)	0.0506 (7)	-0.0164 (5)	-0.0098(5)	-0.0116 (6)
F4	0.084 (2)	0.116 (3)	0.0506 (19)	-0.054 (2)	0.0178 (17)	-0.0102 (19)
01	0.056 (2)	0.070 (3)	0.071 (3)	-0.014 (2)	-0.0018 (19)	-0.040(2)
N8	0.057 (3)	0.069 (3)	0.045 (2)	-0.029 (2)	0.004 (2)	-0.031 (2)
O3	0.094 (3)	0.049 (2)	0.096 (3)	-0.013 (2)	0.003 (2)	-0.036 (2)
C6	0.031 (2)	0.035 (2)	0.034 (2)	-0.0095 (18)	-0.0047 (17)	-0.0171 (19)
C7	0.029 (2)	0.046 (3)	0.034 (2)	-0.0144 (19)	0.0037 (17)	-0.020 (2)
O2	0.078 (3)	0.129 (4)	0.105 (3)	-0.037 (3)	-0.012 (2)	-0.083 (3)
C1	0.038 (2)	0.034 (2)	0.047 (3)	-0.005 (2)	-0.007 (2)	-0.018 (2)
C5	0.038 (2)	0.052 (3)	0.040 (3)	-0.016 (2)	-0.002 (2)	-0.017 (2)
C8	0.037 (2)	0.058 (3)	0.029 (2)	-0.022 (2)	0.0029 (18)	-0.019 (2)
C9	0.039 (2)	0.064 (3)	0.030 (2)	-0.026 (2)	-0.0020 (19)	-0.011 (2)
C10	0.035 (2)	0.051 (3)	0.034 (3)	-0.013 (2)	-0.0046 (19)	-0.002 (2)
C11	0.043 (3)	0.039 (3)	0.031 (2)	-0.008 (2)	0.0030 (19)	-0.002(2)
C2	0.058 (3)	0.046 (3)	0.050 (3)	-0.004 (3)	-0.023 (3)	-0.013 (2)
C4	0.064 (3)	0.062 (3)	0.040 (3)	-0.030 (3)	0.007 (2)	-0.018 (3)
C12	0.067 (4)	0.039 (3)	0.054 (3)	-0.013 (3)	0.005 (3)	-0.008 (3)
C3	0.083 (4)	0.051 (3)	0.035 (3)	-0.021 (3)	-0.012 (3)	-0.006 (2)
C15	0.043 (3)	0.061 (4)	0.050 (3)	-0.011 (3)	-0.003 (2)	0.002 (3)
C13	0.069 (4)	0.046 (3)	0.069 (4)	0.005 (3)	0.019 (3)	-0.007 (3)
C14	0.048 (3)	0.067 (4)	0.062 (4)	-0.003 (3)	0.006 (3)	0.006 (3)
C16	0.130 (7)	0.070 (5)	0.128 (7)	-0.011 (5)	-0.009 (5)	-0.057 (5)
C17	0.187 (10)	0.072 (5)	0.179 (10)	-0.016 (6)	-0.027 (8)	-0.075 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C1	1.901 (4)	C10—C11	1.400 (7)	
S1—C7	1.828 (4)	C10—C15	1.403 (7)	
S1—C11	1.758 (5)	C11—C12	1.379 (7)	
F4—C4	1.356 (6)	C2—H2	0.9300	
O1—N8	1.219 (5)	C2—C3	1.372 (7)	
N8—O2	1.219 (5)	C4—C3	1.357 (7)	
N8—C8	1.468 (6)	C12—C13	1.408 (8)	
O3—C12	1.360 (7)	С3—Н3	0.9300	
O3—C16	1.418 (8)	C15—H15	0.9300	
C6—C7	1.501 (6)	C15—C14	1.353 (9)	
C6—C1	1.389 (6)	C13—H13	0.9300	
C6—C5	1.381 (6)	C13—C14	1.367 (9)	
С7—Н7	0.9800	C14—H14	0.9300	
С7—С8	1.488 (6)	C16—H16A	0.9700	
C1—C2	1.376 (7)	C16—H16B	0.9700	
С5—Н5	0.9300	C16—C17	1.481 (11)	
C5—C4	1.361 (6)	C17—H17A	0.9600	
С8—С9	1.325 (6)	C17—H17B	0.9600	

С9—Н9	0.9300	C17—H17C	0.9600
C9—C10	1.433 (7)		
C11 S1 C7	102 5 (2)	C^2 C^2 C^1	110 4 (5)
$C_1 = S_1 = C_7$	102.3(2) 117.8(4)	$C_3 = C_2 = C_1$	119.4 (3)
$01 - N_0 - C_0$	117.0 (4)	$C_3 - C_2 - H_2$	120.3
02 - N8 - 01	122.3(3)	F4 - C4 - C3	11/./(5)
02—N8—C8	119.8 (4)	F4-C4-C3	119.2 (5)
C12 - 03 - C16	119.7 (5)	C_{3} $-C_{4}$ $-C_{5}$	123.1 (5)
C1—C6—C7	121.8 (4)	03-012-011	114.8 (5)
C5—C6—C7	121.3 (4)	O3—C12—C13	125.5 (6)
C5—C6—C1	117.0 (4)	C11—C12—C13	119.6 (6)
S1—C7—H7	106.6	С2—С3—Н3	120.9
C6—C7—S1	111.5 (3)	C4—C3—C2	118.2 (5)
С6—С7—Н7	106.6	C4—C3—H3	120.9
C8—C7—S1	111.0 (3)	C10—C15—H15	119.8
C8—C7—C6	114.2 (3)	C14—C15—C10	120.4 (6)
С8—С7—Н7	106.6	C14—C15—H15	119.8
C6C1Br1	119.9 (3)	C12—C13—H13	120.2
C2—C1—Br1	117.9 (3)	C14—C13—C12	119.6 (6)
C2—C1—C6	122.3 (4)	C14—C13—H13	120.2
С6—С5—Н5	120.0	C15—C14—C13	121.4 (6)
C4—C5—C6	119.9 (4)	C15—C14—H14	119.3
C4—C5—H5	120.0	C13—C14—H14	119.3
N8—C8—C7	113.7 (4)	O3—C16—H16A	110.3
C9—C8—N8	118.5 (4)	O3—C16—H16B	110.3
C9—C8—C7	127.7 (4)	O3—C16—C17	107.3 (7)
С8—С9—Н9	117.8	H16A—C16—H16B	108.5
C8—C9—C10	124.5 (4)	С17—С16—Н16А	110.3
С10—С9—Н9	117.8	C17—C16—H16B	110.3
C11—C10—C9	120.9 (4)	С16—С17—Н17А	109.5
$C_{11} - C_{10} - C_{15}$	1190(5)	C16—C17—H17B	109.5
C_{15} C_{10} C	120.1 (5)	C_{16} C_{17} H_{17}	109.5
C10 C11 S1	120.1(3) 122.3(4)	H17A $C17$ $H17B$	109.5
C_{12} C_{11} S_{1}	122.5(4)		109.5
$C_{12} = C_{11} = S_1$	117.3(4) 120.0(5)	H17R C17 H17C	109.5
$C_1 = C_1 $	120.0 (3)	$\Pi / B - CI / - \Pi I / C$	109.5
UI - UZ - HZ	120.3		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H…A
C9—H9…O2 ⁱ	0.93	2.50	3.419 (7)	168

Symmetry code: (i) -x, -y+1, -z.

2-(2-Bromo-5-fluorophenyl)-7-methoxy-3-nitro-2H-thiochromene (B)

Crystal data

C₁₆H₁₁BrFNO₃S $M_r = 396.23$ Monoclinic, $P2_1/c$ a = 7.6231 (4) Å b = 17.3484 (8) Å c = 11.8345 (6) Å $\beta = 106.016$ (2)° V = 1504.35 (13) Å³ Z = 4

Data collection

Bruker D8 Quest CMOS diffractometer φ and ω scans Absorption correction: multi-scan	3745 independent reflections 3018 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 3.0^{\circ}$
(SADABS; Bruker, 2016)	$h = -10 \rightarrow 10$
$T_{\min} = 0.599, \ T_{\max} = 0.746$	$k = -23 \rightarrow 23$
31660 measured reflections	$l = -15 \rightarrow 15$

Refinement

\mathbf{D} -finance \mathbf{L}^2	II-due and site leasting informed from
Refinement on F ²	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.070$	$w = 1/[\sigma^2(F_o^2) + (0.0274P)^2 + 0.9845P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3745 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
209 parameters	$\Delta ho_{ m max} = 0.52 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.49 \text{ e} \text{ Å}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 792

 $\theta = 3.0 - 28.3^{\circ}$

 $\mu = 2.90 \text{ mm}^{-1}$ T = 273 K

Block, yellow

 $0.30 \times 0.22 \times 0.11 \text{ mm}$

 $D_{\rm x} = 1.749 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9945 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	v	7.	$U_{ias}*/U_{aa}$	
Br1	0.57090 (3)	0.36398 (2)	0.38157 (2)	0.04708 (9)	
S 1	0.52686 (6)	0.31114 (3)	0.66185 (4)	0.03212 (11)	
F4	1.0275 (2)	0.57875 (8)	0.73645 (12)	0.0538 (4)	
O3	0.2529 (2)	0.42250 (10)	0.96347 (13)	0.0458 (4)	
O2	1.1678 (2)	0.23148 (10)	0.82659 (17)	0.0550 (4)	
01	1.0798 (2)	0.26267 (11)	0.64265 (15)	0.0545 (4)	
N8	1.0577 (2)	0.26017 (10)	0.74190 (18)	0.0383 (4)	
C6	0.7901 (2)	0.40495 (10)	0.61148 (16)	0.0265 (4)	
C1	0.7106 (3)	0.43164 (11)	0.49777 (16)	0.0306 (4)	
C8	0.8921 (3)	0.29553 (11)	0.75735 (17)	0.0307 (4)	

C7	0.7581 (3)	0.32337 (11)	0.64724 (16)	0.0289 (4)
H7	0.7692	0.2893	0.5835	0.035*
C11	0.5550 (3)	0.34811 (11)	0.80401 (16)	0.0288 (4)
C12	0.4044 (3)	0.37801 (11)	0.83133 (17)	0.0325 (4)
H12	0.2966	0.3854	0.7721	0.039*
C10	0.7218 (3)	0.33978 (11)	0.89180 (17)	0.0311 (4)
C5	0.8972 (3)	0.45668 (11)	0.69165 (16)	0.0300 (4)
Н5	0.9539	0.4411	0.7682	0.036*
C2	0.7313 (3)	0.50680 (13)	0.46588 (18)	0.0375 (5)
H2	0.6742	0.5232	0.3898	0.045*
С9	0.8784 (3)	0.30534 (11)	0.86622 (17)	0.0338 (4)
Н9	0.9746	0.2892	0.9287	0.041*
C4	0.9184 (3)	0.53081 (12)	0.65674 (18)	0.0349 (4)
C14	0.5759 (3)	0.39037 (13)	1.03475 (18)	0.0385 (5)
H14	0.5829	0.4043	1.1118	0.046*
C15	0.7271 (3)	0.36263 (12)	1.00596 (17)	0.0361 (4)
H15	0.8368	0.3589	1.0646	0.043*
C13	0.4121 (3)	0.39734 (12)	0.94672 (18)	0.0347 (4)
C3	0.8361 (3)	0.55789 (12)	0.54603 (19)	0.0386 (5)
Н3	0.8503	0.6088	0.5256	0.046*
C16	0.2464 (4)	0.43592 (16)	1.0811 (2)	0.0534 (6)
H16A	0.1254	0.4515	1.0807	0.080*
H16B	0.3313	0.4759	1.1157	0.080*
H16C	0.2781	0.3894	1.1261	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.05237 (15)	0.05020 (14)	0.03012 (11)	-0.00306 (11)	-0.00293 (9)	-0.00516 (9)
S 1	0.0285 (2)	0.0376 (3)	0.0274 (2)	-0.0057 (2)	0.00289 (18)	-0.00232 (19)
F4	0.0685 (9)	0.0376 (7)	0.0489 (8)	-0.0167 (7)	0.0057 (7)	-0.0092 (6)
O3	0.0422 (9)	0.0591 (10)	0.0385 (8)	0.0009 (7)	0.0153 (7)	-0.0034 (7)
O2	0.0376 (9)	0.0477 (10)	0.0733 (12)	0.0126 (7)	0.0044 (8)	0.0180 (9)
01	0.0390 (9)	0.0724 (12)	0.0530 (10)	0.0034 (8)	0.0143 (8)	-0.0143 (9)
N8	0.0301 (9)	0.0276 (8)	0.0544 (11)	-0.0014 (7)	0.0066 (8)	-0.0011 (8)
C6	0.0260 (9)	0.0271 (9)	0.0274 (9)	0.0028 (7)	0.0091 (7)	0.0009 (7)
C1	0.0301 (9)	0.0346 (10)	0.0264 (9)	0.0027 (8)	0.0068 (7)	-0.0023 (8)
C8	0.0278 (9)	0.0244 (9)	0.0371 (10)	-0.0008 (7)	0.0044 (8)	0.0026 (8)
C7	0.0290 (9)	0.0277 (9)	0.0287 (9)	0.0002 (8)	0.0059 (7)	-0.0012 (7)
C11	0.0319 (10)	0.0275 (9)	0.0250 (9)	-0.0046 (7)	0.0046 (7)	0.0031 (7)
C12	0.0302 (9)	0.0353 (10)	0.0291 (9)	-0.0052 (8)	0.0032 (8)	0.0031 (8)
C10	0.0339 (10)	0.0275 (9)	0.0281 (9)	-0.0027 (8)	0.0019 (8)	0.0059 (7)
C5	0.0326 (10)	0.0312 (10)	0.0257 (9)	0.0012 (8)	0.0070 (7)	-0.0004 (8)
C2	0.0422 (11)	0.0393 (11)	0.0309 (10)	0.0086 (9)	0.0099 (9)	0.0083 (9)
C9	0.0318 (10)	0.0301 (10)	0.0341 (10)	-0.0011 (8)	0.0000 (8)	0.0073 (8)
C4	0.0378 (11)	0.0312 (10)	0.0362 (10)	-0.0032 (8)	0.0114 (8)	-0.0058 (8)
C14	0.0479 (12)	0.0390 (11)	0.0272 (10)	-0.0054 (10)	0.0081 (9)	-0.0003 (8)
C15	0.0381 (11)	0.0369 (11)	0.0273 (9)	-0.0032 (9)	-0.0010 (8)	0.0042 (8)

C13	0.0370 (11)	0.0341 (10)	0.0341 (10)	-0.0042 (9)	0.0115 (8)	0.0020 (8)
C3	0.0469 (12)	0.0295 (10)	0.0421 (11)	0.0029 (9)	0.0169 (10)	0.0051 (9)
C16	0.0579 (15)	0.0655 (16)	0.0437 (13)	-0.0029 (13)	0.0256 (12)	-0.0042 (12)

Geometric parameters (Å, °)

Br1—C1	1.8961 (19)	C12—H12	0.9300
S1—C7	1.8307 (19)	C12—C13	1.392 (3)
S1—C11	1.7574 (19)	C10—C9	1.440 (3)
F4—C4	1.357 (2)	C10-C15	1.398 (3)
O3—C13	1.355 (3)	С5—Н5	0.9300
O3—C16	1.426 (3)	C5—C4	1.374 (3)
O2—N8	1.221 (2)	C2—H2	0.9300
O1—N8	1.232 (2)	C2—C3	1.380 (3)
N8—C8	1.460 (3)	С9—Н9	0.9300
C6—C1	1.394 (3)	C4—C3	1.370 (3)
C6—C7	1.516 (3)	C14—H14	0.9300
C6—C5	1.395 (3)	C14—C15	1.376 (3)
C1—C2	1.379 (3)	C14—C13	1.393 (3)
C8—C7	1.497 (3)	C15—H15	0.9300
C8—C9	1.332 (3)	С3—Н3	0.9300
С7—Н7	0.9800	C16—H16A	0.9600
C11—C12	1.377 (3)	C16—H16B	0.9600
C11—C10	1.410 (3)	C16—H16C	0.9600
C11—S1—C7	100.47 (9)	C4—C5—C6	119.55 (18)
C13—O3—C16	117.99 (18)	C4—C5—H5	120.2
O2—N8—O1	123.58 (19)	C1—C2—H2	119.8
O2—N8—C8	119.36 (19)	C1—C2—C3	120.50 (19)
O1—N8—C8	117.04 (17)	C3—C2—H2	119.8
C1—C6—C7	121.27 (17)	C8—C9—C10	123.18 (18)
C1—C6—C5	117.40 (17)	С8—С9—Н9	118.4
C5—C6—C7	121.32 (16)	С10—С9—Н9	118.4
C6—C1—Br1	120.14 (15)	F4—C4—C5	117.72 (18)
C2—C1—Br1	118.09 (15)	F4—C4—C3	119.08 (19)
C2—C1—C6	121.77 (18)	C3—C4—C5	123.20 (19)
N8—C8—C7	115.63 (17)	C15—C14—H14	120.5
C9—C8—N8	118.44 (18)	C15—C14—C13	118.98 (19)
C9—C8—C7	125.74 (18)	C13—C14—H14	120.5
S1—C7—H7	107.0	C10—C15—H15	118.8
C6—C7—S1	111.58 (13)	C14—C15—C10	122.39 (19)
С6—С7—Н7	107.0	C14—C15—H15	118.8
C8—C7—S1	108.90 (13)	O3—C13—C12	115.12 (18)
C8—C7—C6	114.88 (15)	O3—C13—C14	124.95 (19)
С8—С7—Н7	107.0	C12—C13—C14	119.93 (19)
C12—C11—S1	118.22 (14)	С2—С3—Н3	121.2
C12—C11—C10	120.41 (18)	C4—C3—C2	117.55 (19)
C10-C11-S1	121.01 (15)	С4—С3—Н3	121.2

C11—C12—H12	119.7	O3—C16—H16A	109.5
C11—C12—C13	120.61 (18)	O3—C16—H16B	109.5
C13—C12—H12	119.7	O3—C16—H16C	109.5
C11—C10—C9	121.27 (18)	H16A—C16—H16B	109.5
C15—C10—C11	117.59 (19)	H16A—C16—H16C	109.5
C15—C10—C9	121.07 (18)	H16B—C16—H16C	109.5
С6—С5—Н5	120.2		

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 ring.

D—H···A	D—H	H···A	D··· A	D—H··· A	
С9—Н9…О1 ^і	0.93	2.60	3.418 (3)	148	
C15—H15…F4 ⁱⁱ	0.93	2.54	3.268 (2)	136	
C16—C16B…Cg3 ⁱⁱⁱ	0.96	2.86	3.668 (3)	143	

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.