CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 September 2019
Accepted 24 October 2019

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; ethoxypyrazine; cyanides; copper(l); metal-organic framework.

CCDC reference: 1961274
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of catena-poly[[[(2-ethoxy-pyrazine- κN)copper(I)]-di- μ_{2}-cyanido] [copper(I)-μ_{2}-cyanido]]

Sofiia V. Partsevska, ${ }^{*}$ Valerii Y. Sirenko, Kateryna V. Terebilenko, Sergey O. Malinkin and II'ya A. Gural'skiy

Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine.
*Correspondence e-mail: sofiia.partsevska@univ.kiev.ua

In the asymmetric unit of the title coordination compound, $\left\{\left[\mathrm{Cu}(\mathrm{CN})\left(\mathrm{C}_{4} \mathrm{H}_{3}-\right.\right.\right.$ $\left.\left.\left.\mathrm{OC}_{2} \mathrm{H}_{5} \mathrm{~N}_{2}\right)\right][\mathrm{Cu}(\mathrm{CN})]\right\}_{n}$, there are two Cu atoms with different coordination environments. One Cu^{1} ion is coordinated in a triangular coordination geometry by the N atom of the 2-ethoxypyrazine molecule and by two bridging cyanide ligands, equally disordered over two sites exchanging C and N atoms, thus forming polymeric chains parallel to the c axis. The other Cu atom is connected to two bridging cyanide groups disordered over two sites with an occupancy of 0.5 for each C and N atom, and forming an almost linear polymeric chain parallel to the b axis. In the crystal, the two types of chain, which are orthogonal to each other, are connected by cuprophilic $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions [2.7958 (13) \AA], forming two-dimensional metal-organic coordination layers parallel to the $b c$ plane. The coordination framework is further stabilized by weak long-range (electrostatic type) $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between cyano groups and 2-ethoxypyrazine rings.

1. Chemical context

The design and synthesis of coordination polymers has received much attention in the field of inorganic chemistry due to their structural features, as well as their potential applications in catalysis, adsorption, luminescence and as chemical sensors (Li et al., 2012; Czaja et al., 2009; Etaiw et al., 2016; Ley et al., 2010). Complexes with the cyano group, which is one of the important bridging and assembling ligands acting as a monodentate, bidentate or tridentate ligand, are the subject of much interest (Ley et al., 2010). Different types of metal cyanides with building blocks from linear $M(\mathrm{CN})_{2}$ (Okabayashi et al., 2009), trigonal $M(\mathrm{CN})_{3}(\mathrm{Su}$ et al., 2011), tetrahedral $M(\mathrm{CN})_{4}$ (Jószai et al., 2005) to high connected $M(\mathrm{CN})_{7}\left(\right.$ Qian et al., 2013) and $M(\mathrm{CN})_{8}($ Chorazy et al., 2013) units have been reported with various metal ions. Among the large number of various metal cyanides, copper(I) cyanide complexes are very important in organic, organometallic and supramolecular chemistry because of both the copper centre, which possesses several coordination modes (two-, three-, four-, five- or six-coordinate) and can form diverse geometries, and the versatile cyanide ligand (Pike, 2012). In general, the crystallochemistry of $\mathrm{Cu}^{\mathrm{I}} \mathrm{CN}$ systems is highly complex and provides several recurrent structural motifs: (i) linear chains similar to those of pure CuCN with possible disorder in the cyanide groups; (ii) six CN ligands connected by copper dimers with stoichiometry $\mathrm{Cu}_{2}\left(1,1,2-\mu_{3}-\mathrm{CN}\right)_{2}(\mathrm{CN})_{4}$ and $\mathrm{Cu} \cdots \mathrm{Cu}$ distances typical of cuprophilic interactions; (iii) $(\mathrm{CuCN})_{x}$ rings with square, pentagonal or hexagonal geometry
(Grifasi et al., 2016; Pike, 2012). Mixed-valence $\mathrm{Cu}^{\mathrm{I}} / \mathrm{Cu}^{\mathrm{II}}$ coordination complexes with cyanide and amine ligands having different supramolecular architectures and their luminescence properties have also been reported (Grifasi et al., 2016). To improve the design of copper cyanide coordination polymers, as well as to investigate its influence on the resulting luminescence and other properties, different types of co-ligands were used, in particular, N -donor bridging or chelating ligands, such as 1,10 -phenanthroline, $4,4^{\prime}$-bipyridine (Su et al., 2011), pyridines with methyl, ethyl, methoxy and other substituents (Dembo et al., 2010), and pyrazine (Qin et al., 2012; Chesnut et al., 2001) and its derivatives (Chesnut et al., 2001). Here we describe the crystal structure of a new [CuCN]-based metal-organic coordination framework of the general formula $\left\{\left[\mathrm{Cu}(\mathrm{CN})_{2}(\mathrm{EtOpz})\right][\mathrm{CuCN}]\right\}_{n}$ (where EtOpz is 2-ethoxypyrazine).

2. Structural commentary

Fig. 1 shows a fragment of the title compound, which is a polymeric copper complex with different coordination envir-

Figure 1
A fragment of the crystal structure of the title compound, with displacement ellipsoids drawn at the 65% probability level [symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+1,-y,-z+1$; (iii) $\left.x, y-1, z\right]$. Four of the cyanide ligands ($\mathrm{C} 1 / \mathrm{N} 1-\mathrm{C} 1 / \mathrm{N} 1^{i}, \mathrm{C} 2 / \mathrm{N} 2-\mathrm{C} 2 / \mathrm{N} 2^{\mathrm{ii}}, \mathrm{C} 3 / \mathrm{N} 3-\mathrm{C} 4 / \mathrm{N} 4$ and $\mathrm{C} 4 / \mathrm{N} 4^{\text {iii }}-\mathrm{C} 3 / \mathrm{N} 3^{\text {iii }}$) are disordered over two sites with occupancies of 0.5 . The $\mathrm{Cu} \cdots \mathrm{Cu}$ contact is shown as a dashed line.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ is the centroid of the $\mathrm{C} 1 / \mathrm{N} 1-\mathrm{C} 1^{i} / \mathrm{N} 1^{\mathrm{i}}$ cyano group [symmetry code: (i) $-x+$ 1, $\left.y,-z+\frac{1}{2}\right]$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots C g$	0.93	2.93	$3.558(6)$	126

onments of the two crystallographically independent Cu^{I} ions. The Cu 1 atom is coordinated to the N atom of a 2-ethoxypyrazine molecule $[\mathrm{Cu} 1-\mathrm{N} 5=2.090(4) \AA$ A . Two other coordination positions are occupied by bridging cyanide groups, which are equally disordered over two sites, exchanging C and N atoms $[\mathrm{Cu} 1-\mathrm{C} 1 / \mathrm{N} 1=1.905(4) \AA$ and $\mathrm{Cu} 1-\mathrm{C} 2 / \mathrm{N} 2=$ 1.888 (4) A] , thus forming an irregular triangular coordination geometry where the copper ion is displaced from the centre $\left[\mathrm{C} 2 / \mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 5=108.9(2)^{\circ}, \mathrm{C} 1 / \mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5=103.2(2)^{\circ}\right.$ and $\left.\mathrm{C} 2 / \mathrm{N} 2-\mathrm{Cu} 1-\mathrm{C} 1 / \mathrm{N} 1=147.7(2)^{\circ}\right]$. The Cu 2 atom is coordinated by two cyanide ligands, which are also disordered over two sites with an occupancy of 0.5 for each C and N atom $\left[\mathrm{Cu} 2-\mathrm{C} 3 / \mathrm{N} 3=1.859\right.$ (5) \AA and $\mathrm{Cu} 2-\mathrm{C} 4 / \mathrm{N} 4^{\mathrm{iii}}=1.841$ (4) \AA; symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+1,-y,-z+1$; (iii) $x, y-1, z]$ to form an almost linear chain $\left[\mathrm{C} 4 / \mathrm{N} 4^{\mathrm{iii}}-\right.$ $\left.\mathrm{Cu} 2-\mathrm{C} 3 / \mathrm{N} 3=170.5(2)^{\circ}\right]$. The two Cu^{I} centres are connected through a $\mathrm{Cu} \cdots \mathrm{Cu}$ interaction $[\mathrm{Cu} 1-\mathrm{Cu} 2=2.7958$ (13) \AA] that could be interpreted as a cuprophilic contact (Hermann et al., 2001).

3. Supramolecular features

The crystal packing of the title compound (Fig. 2) consists of two types of orthogonal polymeric chains (the first involving the Cu atoms and parallel to the c axis and the second involving the Cu 2 atoms and parallel to the b axis) interconnected by $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts and forming two-dimensional layers parallel to (100). The $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts are almost perpendicular to the $[\mathrm{Cu} 2(\mathrm{CN})]$ chains $[\mathrm{C} 3 / \mathrm{N} 3-\mathrm{Cu} 2-\mathrm{Cu} 1=$

Figure 2
A view normal to the $a c$ plane of the crystal structure of the title compound, showing the $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts as dashed lines. 2-Ethoxypyrazine rings (except for the N atoms connected to Cu 1) and H atoms have been omitted for clarity. Colour code: Cu green, N blue and CN group magenta.

Table 2
Experimental details.

Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Cu}(\mathrm{CN})\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)\right][\mathrm{Cu}(\mathrm{CN})]$
303.26

Monoclinic, C2/c
293
26.840 (5), 4.830 (1), 18.620 (4)
119.91 (3)
2092.3 (9)

8
Mo $K \alpha$
4.04
$0.09 \times 0.04 \times 0.01$

Bruker SMART CCD
Multi-scan (SADABS; Bruker, 2014)
$0.630,0.746$
12437, 2498, 1396
0.113
0.659
$0.045,0.091,0.84$
2498
137
H-atom parameters constrained
$1.72,-0.73$

Computer programs: SAINT (Bruker, 2013), APEX2 (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2017 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
$89.8(2)^{\circ}$ and $\left.\mathrm{C} 4 / \mathrm{N} 4^{\mathrm{iii}}-\mathrm{Cu} 2-\mathrm{Cu} 1=99.7(2)^{\circ}\right]$. At the same time, the Cu 2 atom occupies an axial position with respect to the triangular $\left[\mathrm{N}(\mathrm{CN})_{2}\right]$ coordination environment of $\mathrm{Cu} 1[\mathrm{C} 1 /$ $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 2=70.6(2)^{\circ}$ and $\mathrm{C} 2 / \mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cu} 2=$ $87.6(2)^{\circ}$]. The resulting metal-organic coordination framework is additionally stabilized by weak long-range (electro-static-type) $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between cyanide groups and 2-ethoxypyrazine rings (Aliev et al., 2015; Table 1). Short $\mathrm{Cu} 2 \cdots \mathrm{O} 1^{\text {iv }}$ contacts of $3.060(3) \AA$ are also observed [symmetry code: (iv) $-x+1,-y+1,-z+1$].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) confirmed that the structure of the title complex has not been reported previously and revealed for the fragment $-\mathrm{C} \equiv \mathrm{N}-$ $\mathrm{Cu}-\mathrm{C} \equiv \mathrm{N}-$ and an azine ligand attached to Cu (unsubstituted, substituted and fused azines) 128 structures, which are polymeric copper cyanide chains decorated with various co-ligands. Most of these co-ligands are derivatives of pyridine, piperidine, methylenetetramine and piperazine. In particular, the structure of catena-[pentakis(μ_{2}-cyano)tris(1phenylpiperazine)pentacopper] (refcode VIYPOK; Pike et al., 2014) contains five independent Cu atoms and five nonsymmetrically disordered cyanides, and forms two independent one-dimensional chain sublattices, i.e. $(\mathrm{CuCN})(\mathrm{PhPip})$ and $(\mathrm{CuCN})_{3}(\mathrm{PhPip})$, associated by $\mathrm{Cu} \cdots \mathrm{Cu}$ pairwise cupro-
philic interactions, with distances of 2.5586 (10) and 2.6441 (10) \AA. A search of the CSD for two $\mathrm{C}-\mathrm{N}-\mathrm{Cu}-\mathrm{C}-$ N fragments with a defined $\mathrm{Cu} \cdots \mathrm{Cu}$ distance less than $2.8 \AA$ gave 80 hits, among which is an example close to the title structure, i.e. catena-[($\mu_{2}-N$-benzylpiperazine- $\left.N, N^{\prime}\right)$ tetrakis $\left(\mu_{2^{-}}\right.$ cyano)tetracopper(I)] (refcode LOGWIO; Lim et al., 2008), where the resulting network is composed of planar rows of undulating CuCN chains running roughly parallel to the a axis and crosslinked by bridging benzylpiperazine ligands in the c direction, forming two-dimensional double sheets capped by nonbridging ligands. Two $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions are present in the mentioned coordination polymer, with distances of 2.6650 (6) and 2.9644 (6) \AA.

5. Synthesis and crystallization

Crystals of the title compound were obtained by slow diffusion within three layers in a 3 ml glass tube. The first layer was a solution of $\mathrm{K}\left[\mathrm{Cu}(\mathrm{CN})_{2}\right](7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 1 ml of $\mathrm{H}_{2} \mathrm{O}$, the second layer was a $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}$ mixture $(1: 1 \mathrm{v} / \mathrm{v}, 1 \mathrm{ml})$ and the third layer was a solution of 2-ethoxypyrazine $(3.1 \mathrm{mg}$, 0.025 mmol) in 0.5 ml of EtOH . After two weeks, colourless block-shaped crystals had formed in the middle layer. The crystals were kept under the mother solution prior to measurement.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2 . All H atoms were placed geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic hydrogens, $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the CH_{2} group, and $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the CH_{3} group. A rotating model was used for the methyl group. All cyano ligands are disordered over two sites with occupancies of 0.5 . The coordinates of C and N atoms sharing the same sites and their displacement ellipsoids were constrained to be the same.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant Nos. 19BF037-01M, 19BF037-04 and 19BF037-01).

References

Aliev, A. E., Arendorf, J. R. T., Pavlakos, I., Moreno, R. B., Porter, M. J., Rzepa, H. S. \& Motherwell, W. B. (2015). Angew. Chem. 127, 561-565.
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chesnut, D. J., Plewak, D. \& Zubieta, J. (2001). Dalton Trans. pp. 2567-2580.
Chorazy, S., Podgajny, R., Nitek, W., Rams, M., Ohkoshi, S. \& Sieklucka, B. (2013). Cryst. Growth Des. 13, 3036-3045.
Czaja, A. U., Trukhan, N. \& Müller, U. (2009). Chem. Soc. Rev. 38, 1284-1293.

Dembo, M. D., Dunaway, L. E., Jones, J. S., Lepekhina, E. A., McCullough, S. M., Ming, J. L., Li, X., Baril-Robert, F., Patterson, H. H., Bayse, C. A. \& Pike, R. D. (2010). Inorg. Chim. Acta, 364, 102-114.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Etaiw, S. E. H., Badr El-din, A. S. \& Abdou, S. N. (2016). Trans. Met. Chem. 41, 413-425.
Grifasi, F., Priola, E., Chierotti, M. R., Diana, E., Garino, C. \& Gobetto, R. (2016). Eur. J. Inorg. Chem. 2016, 2975-2983.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hermann, H. L., Boche, G. \& Schwerdtfeger, P. (2001). Chem. Eur. J. 7, 5333-5342.
Jószai, R., Beszeda, I., Bényei, A. C., Fischer, A., Kovács, M., Maliarik, M., Nagy, P., Shchukarev, A. \& Tóth, I. (2005). Inorg. Chem. 44, 9643-9651.
Ley, A. N., Dunaway, L. E., Brewster, T. P., Dembo, M. D., Harris, T. D., Baril-Robert, F., Li, X., Patterson, H. H. \& Pike, R. D. (2010). Chem. Commun. 46, 4565-4567.

Li, J.-R., Sculley, J. \& Zhou, H.-C. (2012). Chem. Rev. 112, 869932.

Lim, M. J., Murray, C. A., Tronic, T. A., DeKrafft, K. E., Ley, A. N., DeButts, J. C., Pike, R. D., Lu, H. \& Patterson, H. H. (2008). Inorg. Chem. 47, 6931-6947.
Okabayashi, T., Okabayashi, E. Y., Koto, F., Ishida, T. \& Tanimoto, M. (2009). J. Am. Chem. Soc. 131, 11712-11718.

Pike, R. D. (2012). Organometallics, 31, 7647-7660.
Pike, R. D., Dziura, T. M., DeButts, J. C., Murray, C. A., Kerr, A. T. \& Cahill, C. L. (2014). J. Chem. Crystallogr. 44, 42-50.
Qian, K., Huang, X.-C., Zhou, C., You, X.-Z., Wang, X.-Y. \& Dunbar, K. R. (2013). J. Am. Chem. Soc. 135, 13302-13305.

Qin, Y.-L., Liu, J., Hou, J.-J., Yao, R.-X. \& Zhang, X.-M. (2012). Cryst. Growth Des. 12, 6068-6073.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Su, Z., Zhao, Z., Zhou, B., Cai, Q. \& Zhang, Y. (2011). CrystEngComm, 13, 1474-1479.

supporting information

Acta Cryst. (2019). E75, 1797-1800 [https://doi.org/10.1107/S205698901901452X]

Crystal structure of catena-poly[[[(2-ethoxypyrazine- $\kappa N) \operatorname{copper}(\mathrm{I})]$-di- $\mu_{2^{-}}$ cyanido] [copper(I)- μ_{2}-cyanido]]

Sofiia V. Partsevska, Valerii Y. Sirenko, Kateryna V. Terebilenko, Sergey O. Malinkin and II'ya A. Gural'skiy

Computing details

Data collection: SAINT (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
catena-Poly[[[(2-ethoxypyrazine- $\kappa N) \operatorname{copper}(\mathrm{I})]-$ di- μ_{2}-cyanido] [copper(I)- μ_{2}-cyanido]]

Crystal data

$\left[\mathrm{Cu}(\mathrm{CN})\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)\right][\mathrm{Cu}(\mathrm{CN})]$
$M_{r}=303.26$
Monoclinic, $C 2 / c$
$a=26.840$ (5) \AA
$b=4.830(1) \AA$
$c=18.620$ (4) \AA
$\beta=119.91$ (3) ${ }^{\circ}$
$V=2092.3(9) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD
diffractometer
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min }=0.630, T_{\text {max }}=0.746$
12437 measured reflections
$F(000)=1200$
$D_{\mathrm{x}}=1.925 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1229 reflections
$\theta=3.1-22.8^{\circ}$
$\mu=4.04 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.09 \times 0.04 \times 0.01 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.091$
$S=0.84$
2498 reflections
137 parameters
0 restraints
Primary atom site location: dual

2498 independent reflections
1396 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.113$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-34 \rightarrow 31$
$k=-6 \rightarrow 6$
$l=-24 \rightarrow 24$

Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0339 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.72 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.73$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cu1	$0.48390(3)$	$0.21483(12)$	$0.37001(4)$	$0.02665(19)$	
Cu2	$0.60202(3)$	$0.16869(12)$	$0.43005(4)$	$0.0350(2)$	
O1	$0.31627(15)$	$0.7706(7)$	$0.3834(2)$	$0.0307(8)$	
N5	$0.42154(19)$	$0.5236(7)$	$0.3357(2)$	$0.0242(10)$	
N6	$0.3369(2)$	$0.9360(8)$	$0.2842(3)$	$0.0303(11)$	
C4	$0.6090(2)$	$0.7890(9)$	$0.4339(3)$	$0.0284(11)$	0.5
C5	$0.3898(2)$	$0.5558(10)$	$0.3714(3)$	$0.0230(12)$	
H5	0.395884	0.440570	0.415076	0.028^{*}	0.5
C3	$0.6081(2)$	$0.5524(10)$	$0.4335(3)$	$0.0313(12)$	
C8	$0.4114(2)$	$0.7025(10)$	$0.2737(3)$	$0.0256(11)$	
H8	0.432622	0.687906	0.246866	0.031^{*}	
C6	$0.3472(2)$	$0.7606(10)$	$0.3445(3)$	$0.0269(12)$	
C7	$0.3710(3)$	$0.9009(10)$	$0.2504(3)$	$0.0320(14)$	
H7	0.366143	1.021425	0.208471	0.038^{*}	
C9	$0.2705(2)$	$0.9697(11)$	$0.3541(4)$	$0.0355(14)$	
H9A	0.242718	0.935695	0.296265	0.043^{*}	
H9B	0.285567	1.155698	0.359242	0.043^{*}	
C10	$0.2431(3)$	$0.9374(13)$	$0.4063(4)$	$0.0437(16)$	
H10A	0.210384	1.058036	0.386082	0.066^{*}	
H10B	0.270287	0.984284	0.462610	0.066^{*}	0.5
H10C	0.230857	0.749007	0.403666	0.066^{*}	0.5
N3	$0.6081(2)$	$0.5524(10)$	$0.4335(3)$	$0.0313(12)$	0.5
N4	$0.6090(2)$	$0.7890(9)$	$0.4339(3)$	$0.0284(11)$	0.5
C2	$0.4969(2)$	$0.0527(9)$	$0.4702(3)$	$0.0274(12)$	0.5
C1	$0.4978(2)$	$0.2054(8)$	$0.2793(3)$	$0.0254(11)$	0.5
N1	$0.4978(2)$	$0.2054(8)$	$0.2793(3)$	$0.0254(11)$	$0.0274(12)$
N2	$0.4969(2)$	$0.0527(9)$	$0.4702(3)$		0.5

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0346(4)$	$0.0309(4)$	$0.0197(3)$	$0.0007(3)$	$0.0175(3)$	$0.0022(3)$
Cu 2	$0.0518(5)$	$0.0196(3)$	$0.0408(5)$	$0.0005(3)$	$0.0285(4)$	$-0.0002(3)$
O1	$0.030(2)$	$0.041(2)$	$0.0252(19)$	$0.0082(18)$	$0.0169(17)$	$0.0077(17)$
N5	$0.035(3)$	$0.017(2)$	$0.022(2)$	$-0.0055(19)$	$0.016(2)$	$-0.0010(18)$
N6	$0.035(3)$	$0.022(2)$	$0.031(3)$	$-0.002(2)$	$0.015(3)$	$0.003(2)$
C4	$0.035(3)$	$0.026(2)$	$0.024(3)$	$0.000(2)$	$0.015(2)$	$-0.001(2)$
C5	$0.033(3)$	$0.022(3)$	$0.017(3)$	$0.000(2)$	$0.015(3)$	$0.002(2)$
C3	$0.038(3)$	$0.032(3)$	$0.021(3)$	$0.001(3)$	$0.013(3)$	$-0.003(2)$

C8	$0.036(3)$	$0.026(3)$	$0.020(3)$	$-0.004(3)$	$0.018(3)$	$0.000(2)$
C6	$0.036(3)$	$0.020(2)$	$0.024(3)$	$-0.006(2)$	$0.015(3)$	$-0.002(2)$
C7	$0.043(4)$	$0.026(3)$	$0.030(3)$	$-0.006(3)$	$0.020(3)$	$0.007(2)$
C9	$0.030(4)$	$0.043(3)$	$0.031(3)$	$0.007(3)$	$0.013(3)$	$0.004(3)$
C10	$0.030(4)$	$0.063(4)$	$0.045(4)$	$0.013(3)$	$0.024(3)$	$0.009(3)$
N3	$0.038(3)$	$0.032(3)$	$0.021(3)$	$0.001(3)$	$0.013(3)$	$-0.003(2)$
N4	$0.035(3)$	$0.026(2)$	$0.024(3)$	$0.000(2)$	$0.015(2)$	$-0.001(2)$
C2	$0.033(3)$	$0.029(3)$	$0.021(3)$	$0.000(2)$	$0.014(3)$	$0.000(2)$
C1	$0.023(3)$	$0.025(2)$	$0.030(3)$	$0.002(2)$	$0.015(2)$	$0.003(2)$
N1	$0.023(3)$	$0.025(2)$	$0.030(3)$	$0.002(2)$	$0.015(2)$	$0.003(2)$
N2	$0.033(3)$	$0.029(3)$	$0.021(3)$	$0.000(2)$	$0.014(3)$	$0.000(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.7958 (13)	C5-H5	0.9300
Cu1-N5	2.090 (4)	C5-C6	1.402 (7)
$\mathrm{Cu}-\mathrm{C} 2$	1.888 (4)	C3-N4	1.143 (6)
Cu1-C1	1.905 (4)	C8-H8	0.9300
$\mathrm{Cu} 1-\mathrm{N} 1$	1.905 (4)	C8-C7	1.347 (7)
Cu - N 2	1.888 (4)	C7-H7	0.9300
$\mathrm{Cu} 2-\mathrm{C} 3$	1.859 (5)	C9-H9A	0.9700
$\mathrm{Cu} 2-\mathrm{N} 3$	1.859 (5)	C9-H9B	0.9700
O1-C6	1.347 (5)	C9-C10	1.492 (7)
O1-C9	1.436 (6)	C10-H10A	0.9600
N5-C5	1.325 (6)	C10-H10B	0.9600
N5-C8	1.357 (6)	C10-H10C	0.9600
N6-C6	1.322 (6)	C2-C2 ${ }^{\text {i }}$	1.155 (8)
N6-C7	1.354 (6)	C1-C1ii	1.152 (8)
C4-N3	1.143 (6)		
N5-Cu1-Cu2	139.01 (11)	C7-C8-H8	119.5
$\mathrm{C} 2-\mathrm{Cu} 1-\mathrm{Cu} 2$	87.55 (16)	O1-C6-C5	116.4 (4)
$\mathrm{C} 2-\mathrm{Cu} 1-\mathrm{N} 5$	108.86 (18)	N6-C6-O1	120.7 (5)
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{Cu} 2$	70.59 (14)	N6-C6-C5	122.9 (5)
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{N} 5$	103.17 (17)	N6-C7-H7	117.9
N1-Cu1-Cu2	70.59 (14)	C8-C7-N6	124.2 (5)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5$	103.17 (17)	C8-C7-H7	117.9
N2- $\mathrm{Cu} 1-\mathrm{Cu} 2$	87.55 (16)	O1-C9-H9A	110.4
N2-Cu1-N5	108.86 (18)	O1-C9- H 9 B	110.4
C3-Cu2-Cu1	89.85 (17)	O1-C9-C10	106.7 (4)
N3-Cu2-Cu1	89.85 (17)	H9A-C9-H9B	108.6
C6-O1-C9	117.2 (4)	C10-C9-H9A	110.4
C5-N5-Cu1	123.2 (3)	C10-C9-H9B	110.4
C5-N5-C8	116.4 (4)	C9-C10-H10A	109.5
C8-N5-Cu1	120.3 (3)	C9-C10-H10B	109.5
C6-N6-C7	114.3 (4)	C9-C10-H10C	109.5
N5-C5-H5	119.4	H10A-C10-H10B	109.5
N5-C5-C6	121.2 (4)	H10A-C10-H10C	109.5

$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.4	$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{~N} 4-\mathrm{C} 3-\mathrm{Cu} 2$	$176.6(5)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{Cu} 2$	$176.6(5)$
$\mathrm{N} 5-\mathrm{C} 8-\mathrm{H} 8$	119.5	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{Cu} 1$	$177.4(7)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 5$	$121.0(5)$	$\mathrm{C} 1-\mathrm{C} 1-\mathrm{Cu} 1$	$175.0(6)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1, y,-z+1 / 2$.
Hydrogen-bond geometry ($\AA,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 1 / \mathrm{N} 1-\mathrm{Cl}^{\mathrm{i}} / \mathrm{N}^{\mathrm{i}}$ cyano group (symmetry code: (i) $1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots C g$	0.93	2.93	$3.558(6)$	126

