CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 30 September 2019
Accepted 9 October 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; nickel(II) thiocyanate; solvate; discrete complex; hydrogen bonding.

CCDC references: 1958279; 1958279

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure, synthesis and thermal properties of bis(acetonitrile- κN)bis(4-benzoylpyridine- κN)-bis(isothiocyanato- κN)nickel(II)

Carsten Wellm* and Christian Näther

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth. Strasse 2, 241128 Kiel, Germany. ${ }^{*}$ Correspondence e-mail: cwellm@ac.uni-kiel.de

In the crystal structure of the title compound, $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$ or $\mathrm{Ni}(\mathrm{NCS})_{2}(4 \text {-benzoylpyridine })_{2}(\text { acetonitrile })_{2}$, the $\mathrm{Ni}^{\mathrm{II}}$ ions are octahedrally coordinated by the N atoms of two thiocyanate anions, two 4-benzoylpyridine ligands and two acetonitrile molecules into discrete complexes that are located on centres of inversion. In the crystal, the discrete complexes are linked by centrosymmetric pairs of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into chains. Thermogravimetric measurements prove that, upon heating, the title complex loses the two acetonitrile ligands and transforms into a new crystalline modification of the chain compound $\left.\left[\mathrm{Ni}(\mathrm{NCS})_{2} \text { (4-benzoylpyridine }\right)_{2}\right]$, which is different from that of the corresponding $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$ coordination polymers reported in the literature. IR spectroscopic investigations indicate the presence of bridging thiocyanate anions but the powder pattern cannot be indexed and, therefore, this structure is unknown.

1. Chemical context

In most cases, the synthesis of new coordination compounds is performed in solution, which in some cases leads to inhomogenous samples or some, e.g. metastable compounds, formed by kinetic control which can easily be overlooked. There are, however, some alternative routes, like synthesis via molecular milling, molten flux synthesis, solid-gas reactions or thermal decomposition of suitable precursor compounds (Braga et al., 2005, 2006; Näther et al., 2013; Zurawski et al., 2012; Höller et al., 2008; Den et al., 2019). These methods can have several advantages because, in most cases, they are irreversible, the products are obtained in quantitative yield, no solvent is needed and sometimes metastable isomeric or polymorphic modifications can be obtained. This is especially the case for thiocyanate coordination polymers prepared by thermal decomposition of suitable precursor compounds that consist of complexes in which the anionic ligands are only terminally bonded and additionally coordinated by neutral N -donor coligands (Wöhlert et al., 2014; Werner et al., 2015). Upon heating, the co-ligands are stepwise removed, leading to new compounds in which the metal cations are linked by thiocyanate anions into chains or layers (Neumann et al., 2019). In this context, we have reported on coordination polymers based on 4-benzoylpyridine. In $\left[M(\mathrm{NCS})_{2}\right.$ (4-benzoylpyridine $\left.)_{2}\right](M=\mathrm{Co}$ and Ni$)$ prepared in solution, a rare cis-cistrans coordination is observed, in which the thiocyanate N and S atoms are each in cis positions, whereas the co-ligand is trans (Rams et al., 2017; Jochim et al., 2018). This is in contrast to all other linear chain compounds, in which the coordinating atoms always show an all-trans coordination. Surprisingly, this

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.038(3)$	$\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.093(2)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$2.038(3)$	$\mathrm{Ni} 1-\mathrm{N} 11^{\mathrm{i}}$	$2.108(2)$
$\mathrm{Ni} 1-\mathrm{N} 2$	$2.093(2)$	$\mathrm{Ni} 1-\mathrm{N} 11$	$2.108(2)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	180.0	$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11$	$89.97(9)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 2$	$91.36(9)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 11$	$90.03(9)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$	$88.64(9)$	$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 11$	$89.69(8)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$88.64(9)$	$\mathrm{N}^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11$	$90.31(8)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$91.36(9)$	$\mathrm{N} 11^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11$	180.0
$\mathrm{~N} 2-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	180.0	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	$163.8(2)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11^{\mathrm{i}}$	$90.03(9)$	$\mathrm{C} 15-\mathrm{N} 11-\mathrm{Ni} 1$	$121.05(18)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 11^{\mathrm{i}}$	$89.97(9)$	$\mathrm{C} 11-\mathrm{N} 11-\mathrm{Ni} 1$	$121.64(17)$
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 11^{\mathrm{i}}$	$90.31(8)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Ni} 1$	$171.5(2)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 11^{\mathrm{i}}$	$89.69(8)$		

Symmetry code: (i) $-x+2,-y+1,-z+2$.
coordination is found in $\left.\left[\mathrm{Cd}(\mathrm{NCS})_{2} \text { (4-benzoylpyridine) }\right)_{2}\right]$ (Neumann et al., 2018). Therefore, the question arose if this form can be prepared with Ni by thermal decomposition using a suitable $\mathrm{Ni}^{\mathrm{II}}$ precursor compound. One discrete complex with methanol has already been reported in the literature, but this compound cannot be prepared pure (Wellm \& Näther, $2019 a$). In the course of this project, we were able to prepare crystals from acetonitrile, which were characterized by singlecrystal structure analysis, which proves that the title compound consists of discrete complexes with the composition $\mathrm{Ni}(\mathrm{NCS})_{2}$ (4-benzoylpyridine) $)_{2}$ (acetonitrile) $)_{2}$. This compound can be prepared pure and is a promising precursor to prepare

Figure 1
DTG, TG and DTA curve of the title compound with the experimental mass loss in \% and the peak temperatures in ${ }^{\circ} \mathrm{C}$. The calculated mass loss of two MeCN molecules amounts to 13.2% and the loss of two 4-benzoylpyridine ligands corresponds to 58.8%.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.98	2.98	$3.662(3)$	127

Symmetry code: (ii) $-x+2,-y+2,-z+2$.
an $\mathrm{Ni}^{\mathrm{II}}$ compound with bridging thiocyanate anions (Fig. S1 in the supporting information). Measurements using differential thermoanalysis and thermogravimetry (DTA-TG) prove that on heating two mass steps are observed that are accompanied by endothermic events in the DTA curve (Fig. 1). The experimental mass loss of 12.8% in the first step is in reasonable agreement with that calculated for the removal of two acetonitrile molecules of 13.1%, indicating the formation of a compound with the desired composition (Fig. 1). If the X-ray powder diffraction pattern of the residue formed after the first mass loss is compared with that calculated for $\left[\mathrm{Ni}(\mathrm{NCS})_{2} \text { (4-benzoylpyridine) }\right)_{2}$] reported in the literature, it is obvious that a crystalline phase has been formed (Fig. S1 in the supporting information). This new form is also different from $\left[\mathrm{Cd}(\mathrm{NCS})_{2}(4 \text {-benzoylpyridine })_{2}\right]$, indicating that a new isomeric or polymorphic form is obtained. The value of the CN stretching vibration of this form $\left(2113 \mathrm{~cm}^{-1}\right)$ is very different from that of the title compound $\left(2080 \mathrm{~cm}^{-1}\right)$ but comparable to that observed in the known modification of $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(4 \text {-benzoylpyridine })_{2}\right]\left(2121 \mathrm{~cm}^{-1}\right)$ reported in the literature (Jochim et al., 2018), which indicates a similar thiocyanate coordination (Figs. S2, S3 and S4 in the supporting information). However, this powder pattern cannot be indexed and thus the structure of this new form is unknown.

2. Structural commentary

The asymmetric unit of the title compound consists of one $\mathrm{Ni}^{\mathrm{II}}$ ion that is located on a centre of inversion, as well as one thiocyanate anion, one 4-benzoylpyridine co-ligand and one acetonitrile ligand that occupy general positions (Fig. 2). The $\mathrm{Ni}^{\mathrm{II}}$ ions are sixfold coordinated by the N atoms of two terminal thiocyanate anions, two 4-benzoylpyridine and two

Figure 2
The molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-x+2,-y+1,-z+2$.]
acetonitrile ligands (Fig. 2). The $\mathrm{Ni}-\mathrm{NCS}$ bond length to the negatively charged anionic ligands of 2.038 (3) \AA is shorter than the $\mathrm{Ni}-\mathrm{N}$ (pyridine) and $\mathrm{Ni}-\mathrm{NCMe}$ bond lengths of

Figure 3
Part of the crystal structure of the title compound, viewed along the crystallographic a axis, and with intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding shown as dashed lines.
2.108 (2) and 2.108 (2) \AA, respectively (Table 1). The bond angles deviate only slightly from ideal values, which shows that the octahedra are only slightly distorted (Table 1). This is also obvious from the octahedral angle variance of 0.71 and the quadratic elongation of 1.0006 calculated according to a procedure published by Robinson et al. (1971). The dihedral angle between the carbonyl plane ($\mathrm{C} 13 / \mathrm{C} 16 / \mathrm{C} 17 / \mathrm{O} 11$) and that of the phenyl (C17-C22) ring is $22.2(2)^{\circ}$, and that between the planes of the pyridine ring (N11/C11-15) and the carbonyl group ($\mathrm{C} 13 / \mathrm{C} 16 / \mathrm{C} 17 / \mathrm{O} 11$) is 33.7 (2) ${ }^{\circ}$, which shows that the 4-benzoylpyridine ligand is not coplanar.

3. Supramolecular features

The discrete complexes are arranged into columns that proceed along the crystallographic a axis (Fig. 3). Along the b axis they are linked into chains by centrosymmetric pairs of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds between the acetonitrile H atoms and the thiocyanate S atoms (Fig. 3 and Table 2).

4. Database survey

There are already some compounds reported in the Cambridge Structural Database (Groom et al., 2016) that consist of transition-metal thiocyanates and 4-benzoylpyridine ligands. These are $\mathrm{Zn}(\mathrm{NCS})_{2}$ (4-benzoylpyridine) $)_{2}$ with tetrahedrally coordinated $\mathrm{Zn}^{\mathrm{II}}$ cations (Neumann et al., 2018) and $\mathrm{Cu}(\mathrm{NCS})_{2}$ (4-benzoylpyridine) $)_{2}$ in which the $\mathrm{Cu}^{\mathrm{II}}$ cations are square-planar coordinated (Bai et al., 2011). There are also a number of discrete complexes with an octahedral metal coordination and terminal thiocyanate anions (Drew et al., 1985; Soliman et al., 2014; Wellm \& Näther, 2018, 2019a,b; Neumann et al., 2018; Suckert et al., 2017). Finally, there are several coordination polymers with the composition $\left.\left[M(\mathrm{NCS})_{2} \text { (4-benzoylpyridine) }\right)_{2}\right]_{n}\left(M=\mathrm{Cd}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}\right.$ and $\left.\mathrm{Co}^{\mathrm{II}}\right)$, in which the cations are linked by pairs of $\mu-1,3$-coordinating thiocyanate anions into chains (Neumann et al., 2018; Rams et al., 2017; Jochim et al., 2018).

5. Synthesis and crystallization

$\mathrm{Ba}(\mathrm{SCN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and 4-benzoylpyridine were purchased from Alfa Aesar. $\mathrm{Ni}\left(\mathrm{SO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was purchased from Merck. All solvents and reactants were used without further purification.
$\mathrm{Ni}(\mathrm{NCS})_{2}$ was prepared by the reaction of equimolar amounts of $\mathrm{Ni}\left(\mathrm{SO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ba}(\mathrm{SCN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in water. The resulting white precipitate of BaSO_{4} was filtered off, and the solvent was evaporated from the filtrate. The green solid was dried at room temperature.

5.1. Synthesis

Crystals of the title compound suitable for single-crystal X-ray diffraction were obtained by the reaction of $\mathrm{Ni}(\mathrm{NCS})_{2}$ ($26.2 \mathrm{mg}, \quad 0.15 \mathrm{mmol}$) with 4-benzoylpyridine $(27.5 \mathrm{mg}$, $0.15 \mathrm{mmol})$ in acetonitrile (1.5 ml) for 2 d at 354 K in a closed test tube. A polycrystalline powder was obtained by stirring a

Table 3
Experimental details.
Crystal data

Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{21}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$
623.38

Triclinic, $P \overline{1}$
200
7.2716 (5), 10.4868 (6), 10.8677 (6)
65.540 (4), 88.893 (5), 88.378 (5)
754.02 (8)

1
Mo $K \alpha$
0.82
$0.14 \times 0.05 \times 0.04$

Stoe IPDS2
Numerical (X-SHAPE and
X-RED32; Stoe \& Cie, 2008)
0.837, 0.966

9692, 3283, 2634
0.041
0.639
0.046, 0.100, 1.06

3283
188
H -atom parameters constrained
$0.28,-0.40$

Computer programs: X-AREA (Stoe \& Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).
solution of $\mathrm{Ni}(\mathrm{NCS})_{2}(87.4 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 4-benzoylpyridine ($183.2 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{MeCN}(3 \mathrm{ml})$ for 4 d .

5.2. Experimental details

Differential thermoanalysis and thermogravimetry (DTATG) were performed under a dynamic nitrogen atmosphere in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles using an STA PT1600 thermobalance from Linseis. The XRPD measurements were performed using a Stoe Transmission Powder Diffraction System (STADI P) with $\mathrm{Cu} K \alpha$ radiation that was equipped with a linear positionsensitive MYTHEN detector from Stoe \& Cie. The IR data were measured using a Bruker Alpha-P ATR-IR spectrometer.

6. Refinement

The $\mathrm{C}-\mathrm{H}$ hydrogens were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ (1.5 for methyl H atoms) using a riding model. Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft and the State of Schleswig-Holstein. We thank

Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. NA 720/5-2).

References

Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. \& Ma, P.-T. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1338-1344.
Braga, D., Curzi, M., Grepioni, F. \& Polito, M. (2005). Chem. Comтии. pp. 2915-2917.
Braga, D., Giaffreda, S. L., Grepioni, F., Pettersen, A., Maini, L., Curzi, M. \& Polito, M. (2006). Dalton Trans. pp. 1249-1263.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Den, T., Usov, P. M., Kim, J., Hashizume, D., Ohtsu, H. \& Kawano, M. (2019). Chem. Eur. J. 25, 11512-11520.

Drew, M. G. B., Gray, N. I., Cabral, M. F. \& Cabral, J. O. (1985). Acta Cryst. C41, 1434-1437.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Höller, C. J. \& Müller-Buschbaum, K. (2008). Inorg. Chem. 47, 1014110149.

Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. \& Näther, C. (2018). Eur. J. Inorg. Chem. 2018, 4779-4789.
Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. \& Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.
Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. \& Näther, C. (2018). Inorg. Chim. Acta, 478, 15-24.

Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. \& Näther, C. (2019). Chem. Commun. 55, 2652-2655.
Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 32323243.

Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567570.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. \& Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017). Acta Cryst. E73, 365-368.
Wellm, C. \& Näther, C. (2018). Acta Cryst. E74, 1899-1902.
Wellm, C. \& Näther, C. (2019a). Acta Cryst. E75, 299-303.
Wellm, C. \& Näther, C. (2019b). Acta Cryst. E75, 917-920.
Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Runčevski, T., Dinnebier, T., Ebbinghaus, S. G. \& Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.

Zurawski, A., Rybak, J. C., Meyer, L. V., Matthes, P. R., Stepanenko, V., Dannenbauer, N., Würthner, F. \& Müller-Buschbaum, K. (2012). Dalton Trans. 41, 4067-4078.

supporting information

Acta Cryst. (2019). E75, 1685-1688 [https://doi.org/10.1107/S2056989019013756]

Crystal structure, synthesis and thermal properties of bis(acetonitrile- $\kappa \mathrm{N}$) bis(4-

 benzoylpyridine- $\kappa \mathrm{N}$) bis(isothiocyanato- $\kappa \mathrm{N}$) nickel(II)
Carsten Wellm and Christian Näther

Computing details

Data collection: X - $A R E A$ (Stoe \& Cie, 2008); cell refinement: $X-A R E A$ (Stoe $\& \mathrm{Cie}, 2008$); data reduction: X - $A R E A$ (Stoe \& Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:
SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(acetonitrile- κN)bis(4-benzoylpyridine- κN)bis(isothiocyanato- κN)nickel(II)

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{21}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\right]$
$M_{r}=623.38$
Triclinic, $P \overline{1}$
$a=7.2716$ (5) Å
$b=10.4868$ (6) \AA
$c=10.8677$ (6) \AA
$\alpha=65.540(4)^{\circ}$
$\beta=88.893$ (5) ${ }^{\circ}$
$\gamma=88.378(5)^{\circ}$
$V=754.02(8) \AA^{3}$

Data collection

Stoe IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\min }=0.837, T_{\max }=0.966$
9692 measured reflections

$$
Z=1
$$

$$
F(000)=322
$$

$D_{\mathrm{x}}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9692 reflections
$\theta=2.1-25.2^{\circ}$
$\mu=0.82 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Needle, blue
$0.14 \times 0.05 \times 0.04 \mathrm{~mm}$

3283 independent reflections
2634 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.100$
$S=1.06$
3283 reflections
188 parameters
0 restraints

$$
\begin{aligned}
& \text { Hydrogen site location: inferred from } \\
& \quad \text { neighbouring sites } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0383 P)^{2}+0.2958 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ni1	1.0000	0.5000	1.0000	0.04329 (15)
N1	1.1925 (3)	0.6472 (3)	0.9052 (2)	0.0544 (5)
C1	1.2695 (4)	0.7524 (3)	0.8535 (3)	0.0476 (6)
S1	1.38122 (12)	0.89701 (8)	0.77890 (9)	0.0675 (2)
N11	0.8623 (3)	0.5571 (2)	0.8151 (2)	0.0470 (5)
C11	0.9542 (4)	0.5796 (3)	0.6999 (3)	0.0511 (6)
H11	1.0844	0.5686	0.7029	0.061*
C12	0.8685 (4)	0.6177 (3)	0.5778 (3)	0.0516 (6)
H12	0.9387	0.6322	0.4987	0.062*
C13	0.6780 (4)	0.6350 (3)	0.5711 (3)	0.0476 (6)
C14	0.5829 (4)	0.6119 (3)	0.6894 (3)	0.0501 (6)
H14	0.4527	0.6230	0.6889	0.060*
C15	0.6789 (3)	0.5726 (3)	0.8082 (3)	0.0476 (6)
H15	0.6116	0.5558	0.8891	0.057*
C16	0.5863 (4)	0.6676 (3)	0.4381 (3)	0.0538 (6)
C17	0.4134 (4)	0.7550 (3)	0.4013 (3)	0.0553 (7)
C18	0.3648 (4)	0.8489 (3)	0.4564 (3)	0.0615 (7)
H18	0.4388	0.8554	0.5246	0.074*
C19	0.2080 (5)	0.9336 (4)	0.4122 (4)	0.0777 (10)
H19	0.1755	0.9989	0.4492	0.093*
C20	0.0997 (5)	0.9225 (4)	0.3144 (4)	0.0886 (12)
H20	-0.0074	0.9806	0.2840	0.106*
C21	0.1459 (5)	0.8281 (4)	0.2610 (4)	0.0868 (12)
H21	0.0694	0.8199	0.1949	0.104*
C22	0.3025 (5)	0.7452 (3)	0.3024 (3)	0.0700 (8)
H22	0.3350	0.6814	0.2637	0.084*
O11	0.6554 (3)	0.6210 (2)	0.3620 (2)	0.0687 (6)
N2	0.8453 (3)	0.6523 (2)	1.0367 (2)	0.0540 (6)
C2	0.7727 (4)	0.7466 (3)	1.0432 (3)	0.0518 (6)
C3	0.6820 (5)	0.8675 (3)	1.0510 (3)	0.0715 (9)
H3A	0.7191	0.9524	0.9733	0.107*
H3B	0.7171	0.8740	1.1348	0.107*
H3C	0.5484	0.8581	1.0501	0.107*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0442(3)$	$0.0443(3)$	$0.0446(3)$	$0.00743(19)$	$-0.00183(19)$	$-0.0221(2)$
N1	$0.0536(13)$	$0.0556(13)$	$0.0542(14)$	$0.0029(11)$	$-0.0014(11)$	$-0.0230(11)$

C1	$0.0488(14)$	$0.0509(15)$	$0.0481(15)$	$0.0079(12)$	$-0.0038(12)$	$-0.0259(12)$
S1	$0.0725(5)$	$0.0514(4)$	$0.0826(6)$	$-0.0061(4)$	$0.0032(4)$	$-0.0317(4)$
N11	$0.0465(11)$	$0.0490(12)$	$0.0479(12)$	$0.0070(9)$	$-0.0016(9)$	$-0.0230(10)$
C11	$0.0458(13)$	$0.0620(16)$	$0.0476(15)$	$0.0031(12)$	$0.0021(11)$	$-0.0249(13)$
C12	$0.0515(14)$	$0.0575(15)$	$0.0472(15)$	$0.0018(12)$	$0.0033(12)$	$-0.0233(12)$
C13	$0.0523(14)$	$0.0456(13)$	$0.0457(14)$	$0.0028(11)$	$-0.0034(11)$	$-0.0199(11)$
C14	$0.0475(13)$	$0.0547(15)$	$0.0508(15)$	$0.0052(11)$	$-0.0033(12)$	$-0.0249(12)$
C15	$0.0453(13)$	$0.0539(14)$	$0.0457(14)$	$0.0072(11)$	$-0.0006(11)$	$-0.0234(12)$
C16	$0.0590(16)$	$0.0534(15)$	$0.0479(15)$	$-0.0010(12)$	$-0.0051(13)$	$-0.0197(12)$
C17	$0.0565(15)$	$0.0528(15)$	$0.0472(15)$	$-0.0032(12)$	$-0.0049(12)$	$-0.0110(12)$
C18	$0.0587(17)$	$0.0571(16)$	$0.0586(18)$	$0.0031(13)$	$-0.0003(14)$	$-0.0141(14)$
C19	$0.069(2)$	$0.066(2)$	$0.080(2)$	$0.0120(16)$	$0.0040(18)$	$-0.0139(17)$
C20	$0.061(2)$	$0.082(2)$	$0.089(3)$	$0.0105(18)$	$-0.0111(19)$	$-0.001(2)$
C21	$0.068(2)$	$0.089(3)$	$0.076(2)$	$-0.0072(19)$	$-0.0239(19)$	$-0.006(2)$
C22	$0.074(2)$	$0.0656(19)$	$0.0601(19)$	$-0.0066(16)$	$-0.0159(16)$	$-0.0149(15)$
O11	$0.0799(14)$	$0.0802(14)$	$0.0541(12)$	$0.0092(11)$	$-0.0061(11)$	$-0.0363(11)$
N2	$0.0574(13)$	$0.0568(13)$	$0.0527(13)$	$0.0123(11)$	$-0.0055(11)$	$-0.0282(11)$
C2	$0.0606(16)$	$0.0522(15)$	$0.0468(15)$	$0.0120(13)$	$-0.0042(12)$	$-0.0252(12)$
C3	$0.093(2)$	$0.0588(17)$	$0.067(2)$	$0.0288(17)$	$-0.0073(17)$	$-0.0328(15)$

Geometric parameters (A, ${ }^{\circ}$)

Ni1-N1 ${ }^{\text {i }}$	2.038 (3)	C16-O11	1.217 (3)
Ni1-N1	2.038 (3)	C16-C17	1.494 (4)
Ni1-N2	2.093 (2)	C17-C18	1.383 (4)
Ni 1 - $\mathrm{N}^{\text {i }}$	2.093 (2)	C17-C22	1.395 (4)
Ni1-N11 ${ }^{\text {i }}$	2.108 (2)	C18-C19	1.390 (4)
Ni1-N11	2.108 (2)	C18-H18	0.9500
N1-C1	1.164 (3)	C19-C20	1.379 (5)
C1-S1	1.626 (3)	C19-H19	0.9500
N11-C15	1.339 (3)	C20-C21	1.371 (6)
N11-C11	1.343 (3)	C20-H20	0.9500
C11-C12	1.373 (4)	C21-C22	1.376 (5)
C11-H11	0.9500	C21-H21	0.9500
C12-C13	1.391 (4)	C22-H22	0.9500
C12-H12	0.9500	N2-C2	1.135 (3)
C13-C14	1.381 (4)	C2-C3	1.445 (4)
C13-C16	1.505 (4)	C3-H3A	0.9800
C14-C15	1.380 (4)	C3-H3B	0.9800
C14-H14	0.9500	C3-H3C	0.9800
C15-H15	0.9500		
N1 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{N} 1$	180.0	N11-C15-C14	123.2 (2)
N1 ${ }^{\text {i }}$-Ni1-N2	91.36 (9)	N11-C15-H15	118.4
N1-Ni1-N2	88.64 (9)	C14-C15-H15	118.4
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 2^{\text {i }}$	88.64 (9)	O11-C16-C17	121.0 (3)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2^{\text {i }}$	91.36 (9)	O11-C16-C13	118.7 (2)
N2-Ni1-N2 ${ }^{\text {i }}$	180.0	C17-C16-C13	120.3 (2)

N1 ${ }^{\text {i }}$ - $\mathrm{Ni1}-\mathrm{N} 11{ }^{\text {i }}$	90.03 (9)
N1-Ni1-N11 ${ }^{\text {i }}$	89.97 (9)
N2-Ni1-N11 ${ }^{\text {i }}$	90.31 (8)
N2 ${ }^{\text {i }}$-Ni1- ${ }^{\text {N1 }} 1{ }^{\text {i }}$	89.69 (8)
N1 ${ }^{\text {i }}$-Ni1-N11	89.97 (9)
N1—Ni1-N11	90.03 (9)
N2-Ni1-N11	89.69 (8)
N2 ${ }^{\text {i }}$-Ni1-N11	90.31 (8)
N11- ${ }^{\text {i }}$ Ni1-N11	180.0
C1-N1-Ni1	163.8 (2)
N1-C1-S1	178.2 (2)
C15-N11-C11	117.3 (2)
C15-N11-Ni1	121.05 (18)
C11-N11-Ni1	121.64 (17)
N11-C11-C12	123.0 (2)
N11-C11-H11	118.5
C12-C11-H11	118.5
C11-C12-C13	119.4 (3)
C11-C12-H12	120.3
C13-C12-H12	120.3
C14-C13-C12	117.8 (2)
C14-C13-C16	123.6 (2)
C12-C13-C16	118.4 (2)
C15-C14-C13	119.3 (2)
C15-C14-H14	120.4
C13-C14-H14	120.4

$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 22$	$119.4(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 16$	$122.7(3)$
$\mathrm{C} 22-\mathrm{C} 17-\mathrm{C} 16$	$117.9(3)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$120.1(3)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{H} 18$	120.0
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{H} 18$	120.0
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18$	$119.8(4)$
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{H} 19$	120.1
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{H} 19$	120.1
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19$	$120.3(3)$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20$	119.9
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{H} 20$	119.9
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$120.5(4)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$	119.8
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{H} 21$	119.8
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 17$	$120.0(4)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	120.0
$\mathrm{C} 17-\mathrm{C} 22-\mathrm{H} 22$	120.0
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Ni} 1$	$171.5(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$179.4(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
H 3 C - $3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5

Symmetry code: (i) $-x+2,-y+1,-z+2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 B \cdots \mathrm{~S}^{\mathrm{ii}}$	0.98	2.98	$3.662(3)$	127

Symmetry code: (ii) $-x+2,-y+2,-z+2$.

