



ISSN 2056-9890

Received 19 August 2019 Accepted 16 October 2019

Edited by J. Jasinsk, Keene State College, USA

**Keywords:** crystal structure;  $R_2^2(10)$  ring motif; intermoleculsr interactions; Hirshfeld surface analysis.

CCDC reference: 1449658

**Supporting information**: this article has supporting information at journals.iucr.org/e







# Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl picolinate

# T. N. Sanjeeva Murthy,<sup>a</sup> C. S. Chidan Kumar,<sup>b</sup> S. Naveen,<sup>c</sup>\* M. K. Veeraiah,<sup>d</sup> Kakarla Raghava Reddy<sup>e</sup> and Ismail Warad<sup>f</sup>\*

<sup>a</sup>Department of Chemistry, Sri Siddhartha Academy of Higher Education, Tumkur 572 107, Karnataka, India, <sup>b</sup>Department of Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, India, <sup>c</sup>Department of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, <sup>d</sup>Department of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, <sup>e</sup>School of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia, and <sup>f</sup>Department of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories. \*Correspondence e-mail: s.naveen@jainuniversity.ac.in, khalil.i@najah.edu

2-(4-Nitrophenyl)-2-oxoethyl picolinate,  $C_{14}H_{10}N_2O_5$ , was synthesized under mild conditions. The chemical and molecular structures were confirmed by single-crystal X-ray diffraction analysis. The molecules are linked by inversion into centrosymmetric dimers *via* weak intermolecular  $C-H\cdots O$  interactions, forming  $R_2^2(10)$  ring motifs, and further strengthened by weak  $\pi-\pi$  interactions. Hirshfeld surface analyses, the  $d_{norm}$  surfaces, electrostatic potential and twodimensional fingerprint (FP) plots were used to verify the contributions of the different intermolecular interactions within the supramolecular structure. The shape-index surface shows that two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking.

#### 1. Chemical context

Derivatives of phenacyl bromide have found significant application in the identification of organic acids (Rather & Reid, 1919). In organic chemistry, phenacyl benzoate is a derivative of an acid, formed by reaction between an acid and phenacyl bromide. The syntheses of phenacyl esters have many advantages in organic chemistry because they are usually solids and provide a useful means of characterizing acids and phenols. Phenacyl esters are useful for the photoremoval of protecting groups for carboxylic acids in organic synthesis and biochemistry. These compounds can be photolysed under neutral and mild conditions (Sheehan et al., 1973; Ruzicka et al., 2002; Literák et al., 2006). They also find application in the field of synthetic chemistry, such as in the synthesis of oxazoles and imidazoles (Huang et al., 1996), as well as with benzoxazepine (Gandhi et al., 1995). In continuation of our work on the synthesis of these ester derivaties (Kumar et al., 2014), we report herein the crystal and molecular structures of 2-(4-nitrophenyl)-2-oxoethyl picolinate.



## research communications

| Selected geometri | c parameters (Å, | °).        |             |
|-------------------|------------------|------------|-------------|
| 01-C8             | 1.4329 (17)      | O5-N1      | 1.211 (2)   |
| O1-C9             | 1.3374 (16)      | N1-C3      | 1.4761 (19) |
| O2-C7             | 1.2021 (18)      | N2-C10     | 1.3372 (18) |
| O3-C9             | 1.1969 (17)      | N2-C11     | 1.339 (2)   |
| O4-N1             | 1.205 (2)        |            |             |
| C8-O1-C9          | 116.39 (10)      | O2-C7-C8   | 121.71 (13) |
| O4-N1-O5          | 123.38 (16)      | O1-C8-C7   | 108.11 (11) |
| O4-N1-C3          | 118.83 (14)      | O1-C9-O3   | 123.96 (13) |
| O5-N1-C3          | 117.79 (15)      | O1-C9-C10  | 111.08 (11) |
| C10-N2-C11        | 115.93 (13)      | O3-C9-C10  | 124.96 (12) |
| N1-C3-C2          | 118.29 (14)      | N2-C10-C9  | 114.56 (12) |
| N1-C3-C4          | 118.83 (13)      | N2-C10-C14 | 124.07 (13) |
| O2-C7-C6          | 120.57 (13)      | N2-C11-C12 | 123.99 (16) |



Figure 1

Table 1

The molecular structure of the title compound, indicating the atomnumbering scheme and with displacement ellipsoids drawn at the 50% probability level.

#### 2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1, and bond lengths and angles are listed in Table 1. The compound is composed of two aromatic rings (4-nitrophenyl and pyridine) linked by C-C(=O)-O-C(=O) bonds forming a bridge. The unique molecular conformation of this compound is characterized by three torsion angles, *viz.*  $\tau_1$  (N2–C10–C9–O3),  $\tau_2$  (C7–C8–O1–C9) and  $\tau_3$  (O2–C7–C6–C1), whereby  $\tau_1$  [-6.1 (2)°] signifies the apparent

 Table 2

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the pyridine and nitrophenyl rings, respectively.

| $D - H \cdots A$                | D-H  | $H \cdots A$ | $D \cdots A$ | $D - H \cdots A$ |
|---------------------------------|------|--------------|--------------|------------------|
|                                 |      |              |              |                  |
| $C5-H5A\cdots O3^{i}$           | 0.93 | 2.55         | 3.2283 (18)  | 130              |
| $C8-H8B\cdots O3^{i}$           | 0.97 | 2.45         | 3.2681 (17)  | 141              |
| $C12-H12A\cdots O5^{ii}$        | 0.93 | 2.52         | 3.396 (3)    | 157              |
| $C13-H13A\cdots O2^{iii}$       | 0.93 | 2.47         | 3.277 (2)    | 146              |
| $C9 - O3 \cdot \cdot \cdot Cg1$ |      | 3.35(1)      | 3.4735 (16)  | 86(1)            |
| $C7 - O2 \cdot \cdot \cdot Cg2$ |      | 3.58(1)      | 3.8788 (15)  | 67 (1)           |
| $N1 - O4 \cdot \cdot \cdot Cg2$ |      | 3.76(1)      | 3.5479 (16)  | 71 (1)           |
| $N1 - O5 \cdots Cg2$            |      | 3.68 (1)     | 3.5479 (16)  | 74 (1)           |

coplanarity of the mean planes of the pyridine and adjacent carbonyl rings at the connecting bridge. The torsion angle value of  $\tau_2 = -147.02 (11)^\circ$  between the two carbonyl groups indicates a *-anticlinal* conformation. Likewise, owing to a substitution on the functional group, the title compound experiences steric repulsion between the substituent and adjacent carbonyl groups, which can influence the torsion angle [ $\tau_3 = 2.4 (2)\%$ ] and resulting in a *+synclinal* conformation. The bond lengths and angles are normal and the molecular conformation is characterized by a dihedral angle of  $31.58 (8)^\circ$  between the mean planes of the two aromatic rings. The nitro group lies nearly in the plane of the phenyl ring, as indicated by the torsion angle values of -4.7 (2) and  $-5.1 (2)^\circ$ for C4-C3-N1-O4 and C2-C3-N1-O5, respectively.

#### 3. Supramolecular features

There are no classical hydrogen bonds in the structure. However, the structure is consolidated by weak  $C-H\cdots O$  intermolecular interactions. Specifically, singular weak intermolecular  $C8-H8B\cdots O3(-x, -y, -z)$  interactions stabilize the supramolecular architecture by forming  $R_2^2(10)$  ring motifs and chains along [011] (Fig. 2). The molecular structure is also stabilized by weak intermolecular  $C-O\cdots Cg$ ,  $N-O\cdots Cg$ 



Figure 2

A view of two molecules of the title compound linked by inversion into centrosymmetric dimers by weak  $C8-H8B\cdots O3$  intermolecular interactions forming an  $R_2^2(10)$  ring motif. [See Note 1]



#### Figure 3

The packing of molecules of the title compound in the *ab* plane, viewed along the *c* axis. Cyan dashed lines indicate weak intermolecular C– $H \cdot \cdot \cdot O$  interactions forming  $R_2^2(10)$  ring motifs.

### research communications



Figure 4

A view of the three-dimensional Hirshfeld surface of the title compound mapped over  $d_{\text{norm}}$ .

and  $Cg \cdots Cg$  interactions. The hydrogen-bond geometry and lone pair- $\pi$  interactions are listed in Table 2. The molecule also



Figure 5 Hirshfeld surface of the title compound mapped with shape-index and curvedness.





Two-dimensional fingerprint plots of the title compound, showing the percentage contributions of all interactions, and the individual types of interactions.

exhibits  $Cg \cdots Cg$  interactions, *i.e.*  $Cg1 \cdots Cg1$  [Cg1 is the centroid of the N2/C10/C14-C11 ring;  $Cg \cdots Cg$  distance = 4.6293 (10) Å,  $\alpha = 0^{\circ}$ ,  $\beta = 42.1^{\circ}$ , the perpendicular distance of Cg1 on itself = 3.4332 (7) Å (symmetry code: x - 1, y, z)] and  $Cg2 \cdots Cg2$  [Cg2 is the centroid of the pyridine ring;;  $Cg \cdots Cg$  distance = 4.6292 (10) Å,  $\alpha = 0^{\circ}$ ,  $\beta = 40.3^{\circ}$ ,  $\gamma = 40.3^{\circ}$  and the perpendicular distance of Cg2 on itself = 3.5322 (6) Å (symmetry code: x + 1, y, z)]. These weak intermolecular interactions link the molecules to form a one-dimensional chain along the *c* axis and the molecules exhibit layered stacking (Fig. 3).

#### 4. Hirshfeld surface analysis

Hirshfeld surfaces and fingerprint plots (McKinnon *et al.*, 2007) were generated for the title compound based on the crystallographic information file (CIF) using *CrystalExplorer* (Wolff *et al.*, 2012). Hirshfeld surfaces enable the visualization of intermolecular interactions by different colours and colour intensity, representing short or long contacts and indicating the relative strengths of the interactions. Figs. 4 and 5 show the Hirshfeld surfaces mapped over  $d_{norm}$  (-0.196 to 1.128 a.u.) and shape-index (-1.0 to 1.0 a.u.), respectively. The calculated volume inside the Hirshfeld surface is 311.97 Å<sup>3</sup> in the area of 305.78 Å<sup>3</sup>.

### research communications

Table 3Experimental details.

| Crystal data                                                                 |                                            |
|------------------------------------------------------------------------------|--------------------------------------------|
| Chemical formula                                                             | $C_{14}H_{10}N_2O_5$                       |
| $M_{\rm r}$                                                                  | 286.24                                     |
| Crystal system, space group                                                  | Triclinic, P1                              |
| Temperature (K)                                                              | 297                                        |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                           | 4.6292 (4), 10.6563 (9),<br>13.3592 (11)   |
| $\alpha, \beta, \gamma$ (°)                                                  | 99.136 (1), 93.426 (1), 100.556 (1)        |
| $V(\dot{A}^3)$                                                               | 636.95 (9)                                 |
| Ζ                                                                            | 2                                          |
| Radiation type                                                               | Μο Κα                                      |
| $\mu (\mathrm{mm}^{-1})$                                                     | 0.12                                       |
| Crystal size (mm)                                                            | $0.41 \times 0.27 \times 0.16$             |
| •                                                                            |                                            |
| Data collection                                                              |                                            |
| Diffractometer                                                               | Bruker APEXII DUO CCD area-<br>detector    |
| Absorption correction                                                        | Multi-scan ( <i>SADABS</i> ; Bruker, 2012) |
| $T_{\min}, T_{\max}$                                                         | 0.953, 0.981                               |
| No. of measured, independent and                                             | 21701, 3496, 2571                          |
| observed $[I > 2\sigma(I)]$ reflections                                      |                                            |
| R <sub>int</sub>                                                             | 0.022                                      |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                         | 0.690                                      |
|                                                                              |                                            |
| Refinement                                                                   |                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.046, 0.136, 1.07                         |
| No. of reflections                                                           | 3496                                       |
| No. of parameters                                                            | 190                                        |
| H-atom treatment                                                             | H-atom parameters constrained              |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.24, -0.19                                |

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2015 (Sheldrick, 2015) and PLATON (Spek, 2009).

In Fig. 4, the dark spots near the C and O atoms result from  $C-H\cdots O$  interactions, which play a significant role in the molecular packing of the title compound. The Hirshfeld surfaces illustrated in Fig. 4 also reflect the involvement of different atoms in the intermolecular interactions through the appearance of blue and red regions around the participating atoms, which correspond to positive and negative electrostatic potential, respectively. The shape-index surface clearly shows that the two sides of the molecules are involved in the same contacts with neighbouring molecules and the curvedness plots show flat surface patches characteristic of planar stacking.

The overall two-dimensional fingerprint plot for the title compound and those delineated into  $O \cdots H/H \cdots H$ ,  $H \cdots H$ ,  $C \cdots H/H \cdots C$ ,  $C \cdots O/O \cdots C$  and  $N \cdots H/H \cdots N$  contacts are illustrated in Fig. 6; the percentage contributions from the different interatomic contacts to the Hirshfeld surfaces are as follows: O-H 38.9%, H-H 21.7%, C-H12%, C-O 10.2% and N-H 8.2%, as shown in the two-dimensional fingerprint plots, respectively, in Fig. 6. The percentage contributions for the other intermolecular contacts are less than 5% in the Hirshfeld surface mapping.

#### 5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom *et al.*, 2016) using

2-oxo-2-phenylethyl benzoate as the main skeleton revealed the presence of a number structures containing a moiety similar to the title compound, but with different substituents on the terminal phenyl rings. These include the following: 2-oxo-2-phenylethyl benzoate, 2-(4-bromophenyl)-2-oxoethyl 4-methoxybenzoate, 2-(4-bromophenyl)-2-oxoethyl 4-chlorobenzoate, 2-(4-bromophenyl)-2-oxoethyl 4-bromobenzoate, 2-(4-chlorophenyl)-2-oxoethyl 2-methoxybenzoate, 2-(4bromophenyl)-2-oxoethyl 2-methoxybenzoate, 2-(4-chlorophenyl)-2-oxoethyl 2,4-difluoro-benzoate, 2-(4-chlorophenyl)-2-oxoethyl 2,4-difluorobenzoate, 2-(4-chlorophenyl)-2-oxoethyl benzoate, 2-(4-chlorophenyl)-2-oxoethyl 4-hydroxybenzoate, 2-(4-bromophenyl)-2-oxoethyl 2-methylbenzoate, 2-(4-chlorophenyl)-2-oxoethyl 4-methylbenzoate, 2-(4bromophenyl)-2-oxoethyl 4-hydroxybenzoate, 2-(4-bromophenyl)-2-oxoethyl 4-methylbenzoate, 2-(2,4-dichlorophenyl)-2-oxoethyl 4-methoxybenzoate, 2-(4-fluorophenyl)-2-oxoethyl 4-methoxybenzoate and 2-(4-chlorophenyl)-2-oxoethyl 3,4dimethoxybenzoate (Fun et al., 2011a,b,c,d,e,f,g,h,i,j,k,l,m,n,o), 2-(4-fluorophenyl)-2-oxoethyl 2-methoxybenzoate (Isloor et al., 2012), 1-(4-bromophenyl)-2-(2-chlorophenoxy)ethanone (Shenvi et al., 2012) and 2,4-dichlorobenzyl 2-methoxybenzoate (Isloor et al., 2013). In these 19 compounds, the dihedral angles between the phenyl rings are in the range  $3.2(2)-85.92(10)^{\circ}$ . The difference may arise from the weak intermolecular interactions between adjacent molecules (Fig. 7).

#### 6. Synthesis and crystallization

The title compound was synthesized as per the procedure of Kumar *et al.* (2014). A mixture of 2-bromo-1-(4-nitrophenyl)ethanone (0.2 g, 0.5 mmol), potassium carbonate (0.087 g, 0.63 mmol) and nicotinic acid (0.079 g, 0.65 mmol) in dimethylformamide (5 ml) was stirred at room temperature for 5 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered off, washed with water and recrystallized from ethanol [m.p. 407–410 K, determined with a Stuart Scientific (UK) apparatus].

#### 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms on C atoms were positioned geometrically (C–H = 0.95–0.99 Å) and refined using a riding model, with  $U_{\rm iso}(\rm H) = 1.2$  or  $1.5U_{\rm eq}(\rm C)$ .

#### Acknowledgements

CSCK extends his appreciation to Vidya Vikas Research & Development Centre for the facilities and encouragement. NS thanks Jain University for sanctioning research grants under minor project.



Figure 7

Packing of the molecules when viewed down along the a axis. The dashed lines represent  $C-H \cdots O$  hydrogen bonds.

#### References

- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, 01582–01583.
- Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, 01599.
- Fun, H.-K., Asik, S. I. J., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011c). Acta Cryst. E67, 01687.
- Fun, H.-K., Chia, T. S., Shenvi, S., Isloor, A. M. & Garudachari, B. (2011d). Acta Cryst. E67, 03379.
- Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011e). Acta Cryst. E67, 02854.
- Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayana, M. N. (2011f). Acta Cryst. E67, o3030.
- Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011g). Acta Cryst. E67, 01529.
- Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011h). Acta Cryst. E67, 03456.
- Fun, H.-K., Ooi, C. W., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011i). Acta Cryst. E67, 03119.
- Fun, H.-K., Quah, C. K., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011*j*). Acta Cryst. E**67**, 01724.
- Fun, H.-K., Quah, C. K., Vijesh, A. M., Isloor, A. M. & Arulmoli, T. (2011k). Acta Cryst. E67, 03351.
- Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011*l*). Acta Cryst. E67, 03154.
- Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Satyganarayan, M. N. (2011m). Acta Cryst. E67, o1802.
- Fun, H.-K., Shahani, T., Garudachari, G., Isloor, A. M. & Shivananda, K. N. (2011n). Acta Cryst. E67, o2682.

- Fun, H.-K., Yeap, C. S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (20110). Acta Cryst. E67, 01723.
- Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). *Tetrahedron*, **51**, 13301–13308.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Huang, W., Pei, J., Chen, B., Pei, W. & Ye, X. (1996). *Tetrahedron*, **52**, 10131–10136.
- Isloor, A. M., Garudachari, B., Gerber, T., Hosten, E. & Betz, R. (2013). Acta Cryst. E69, 0509.
- Isloor, A. M., Garudachari, B., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2012). *Acta Cryst.* E68, o513.
- Kumar, C. S. C., Chia, T. S., Ooi, C. W., Quah, C. K., Chandraju, S. & Fun, H. K. (2014). Z. Kristallogr. Cryst. Mater. 229, 328–342.
- Literák, J., Dostálová, A. & Klán, P. (2006). J. Org. Chem. 71, 713–723.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.
- Ruzicka, R., Zabadal, M. & Klán, P. (2002). Synth. Commun. 32, 2581–2590.
- Sheehan, J. C. & Umezawa, K. (1973). J. Org. Chem. 38, 3771-3774.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shenvi, S. S., Isloor, A. M., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, 03478.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *CrystalExplorer*. University of Western Australia.

## supporting information

Acta Cryst. (2019). E75, 1763-1767 [https://doi.org/10.1107/S2056989019014105]

# Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl picolinate

# T. N. Sanjeeva Murthy, C. S. Chidan Kumar, S. Naveen, M. K. Veeraiah, Kakarla Raghava Reddy and Ismail Warad

#### **Computing details**

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXL2015* (Sheldrick, 2015) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2015* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

2-(4-Nitrophenyl)-2-oxoethyl picolinate

Crystal data

 $C_{14}H_{10}N_{2}O_{5}$   $M_{r} = 286.24$ Triclinic, *P*I Hall symbol: -P 1 a = 4.6292 (4) Å b = 10.6563 (9) Å c = 13.3592 (11) Å  $a = 99.136 (1)^{\circ}$   $\beta = 93.426 (1)^{\circ}$   $\gamma = 100.556 (1)^{\circ}$  $V = 636.95 (9) Å^{3}$ 

Data collection

Bruker APEXII DUO CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 18.4 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2012)  $T_{\min} = 0.953$ ,  $T_{\max} = 0.981$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.046$  $wR(F^2) = 0.136$ S = 1.073496 reflections Z = 2 F(000) = 296  $D_x = 1.492 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2571 reflections  $\theta = 1.6-29.4^{\circ}$   $\mu = 0.12 \text{ mm}^{-1}$  T = 297 KRectangle, white  $0.41 \times 0.27 \times 0.16 \text{ mm}$ 

21701 measured reflections 3496 independent reflections 2571 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.022$  $\theta_{max} = 29.4^{\circ}, \theta_{min} = 1.6^{\circ}$  $h = -6 \rightarrow 6$  $k = -14 \rightarrow 14$  $l = -18 \rightarrow 18$ 

190 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

| Hydrogen site location: inferred from | $w = 1/[\sigma^2(F_o^2) + (0.0588P)^2 + 0.1188P]$        |
|---------------------------------------|----------------------------------------------------------|
| neighbouring sites                    | where $P = (F_o^2 + 2F_c^2)/3$                           |
| H-atom parameters constrained         | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
|                                       | $\Delta  ho_{ m max} = 0.24 \  m e \  m \AA^{-3}$        |
|                                       | $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm A}^{-3}$ |

#### Special details

**Geometry**. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The observed criterion of  $F^2 > 2sigma(F^2)$  is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

|      | x           | у            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|-------------|--------------|---------------|-------------------------------|
| 01   | 0.5089 (2)  | 0.21852 (9)  | 0.04455 (7)   | 0.0528 (3)                    |
| O2   | 0.3481 (3)  | 0.40340 (11) | 0.16679 (10)  | 0.0824 (5)                    |
| O3   | 0.2932 (2)  | 0.05168 (10) | -0.07629 (8)  | 0.0578 (3)                    |
| O4   | -0.6315 (3) | 0.13249 (15) | 0.50999 (11)  | 0.0961 (6)                    |
| O5   | -0.5484 (4) | 0.33778 (16) | 0.55148 (12)  | 0.1149 (7)                    |
| N1   | -0.5128 (3) | 0.23923 (15) | 0.49895 (10)  | 0.0653 (5)                    |
| N2   | 0.7107 (3)  | 0.12934 (12) | -0.20395 (9)  | 0.0563 (4)                    |
| C1   | -0.0180 (4) | 0.38578 (14) | 0.32225 (12)  | 0.0581 (5)                    |
| C2   | -0.2018 (4) | 0.37345 (15) | 0.39938 (12)  | 0.0614 (5)                    |
| C3   | -0.3152 (3) | 0.25177 (14) | 0.41686 (10)  | 0.0493 (4)                    |
| C4   | -0.2565 (3) | 0.14168 (14) | 0.36073 (11)  | 0.0547 (4)                    |
| C5   | -0.0737 (3) | 0.15511 (13) | 0.28293 (11)  | 0.0512 (4)                    |
| C6   | 0.0465 (3)  | 0.27660 (12) | 0.26370 (9)   | 0.0426 (3)                    |
| C7   | 0.2433 (3)  | 0.29607 (13) | 0.17993 (10)  | 0.0466 (4)                    |
| C8   | 0.2962 (3)  | 0.17779 (13) | 0.11235 (10)  | 0.0491 (4)                    |
| C9   | 0.4795 (3)  | 0.14691 (12) | -0.04857 (10) | 0.0435 (4)                    |
| C10  | 0.7087 (3)  | 0.20214 (12) | -0.11282 (10) | 0.0442 (4)                    |
| C11  | 0.9099 (4)  | 0.17721 (17) | -0.26372 (13) | 0.0659 (6)                    |
| C12  | 1.1060 (4)  | 0.29307 (18) | -0.23613 (14) | 0.0707 (6)                    |
| C13  | 1.1009 (4)  | 0.36515 (16) | -0.14264 (14) | 0.0675 (5)                    |
| C14  | 0.8961 (3)  | 0.31902 (13) | -0.07891 (12) | 0.0536 (4)                    |
| H1A  | 0.06280     | 0.46770      | 0.30960       | 0.0700*                       |
| H2A  | -0.24750    | 0.44630      | 0.43860       | 0.0740*                       |
| H4A  | -0.33680    | 0.06020      | 0.37440       | 0.0660*                       |
| H5A  | -0.03160    | 0.08170      | 0.24340       | 0.0610*                       |
| H8A  | 0.36960     | 0.12060      | 0.15300       | 0.0590*                       |
| H8B  | 0.11330     | 0.13120      | 0.07380       | 0.0590*                       |
| H11A | 0.91590     | 0.12910      | -0.32780      | 0.0790*                       |
| H12A | 1.24020     | 0.32180      | -0.28060      | 0.0850*                       |
| H13A | 1.23200     | 0.44370      | -0.12200      | 0.0810*                       |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

## supporting information

| H14A     | 0.88590            | 0.36                     | 510             | -0.01480    | 0.0640*     |            |
|----------|--------------------|--------------------------|-----------------|-------------|-------------|------------|
| Atomic a | lisplacement paran | neters (Å <sup>2</sup> ) |                 |             |             |            |
|          | $U^{11}$           | U <sup>22</sup>          | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$   |
| 01       | 0.0520 (5)         | 0.0536 (5)               | 0.0472 (5)      | -0.0055 (4) | 0.0231 (4)  | 0.0038 (4) |
| O2       | 0.1022 (9)         | 0.0475 (6)               | 0.0962 (9)      | -0.0035 (6) | 0.0567 (8)  | 0.0123 (6) |
| O3       | 0.0560 (6)         | 0.0544 (6)               | 0.0562 (6)      | -0.0052 (4) | 0.0168 (4)  | 0.0034 (4) |
| O4       | 0.1105 (11)        | 0.0952 (10)              | 0.0910 (10)     | 0.0128 (8)  | 0.0615 (9)  | 0.0306 (8) |
| O5       | 0.1705 (16)        | 0.0994 (11)              | 0.0930 (10)     | 0.0483 (11) | 0.0884 (11) | 0.0174 (9) |
| N1       | 0.0719 (8)         | 0.0818 (10)              | 0.0506 (7)      | 0.0243 (7)  | 0.0280 (6)  | 0.0176 (7) |
| N2       | 0.0651 (7)         | 0.0588 (7)               | 0.0479 (6)      | 0.0142 (6)  | 0.0207 (5)  | 0.0096 (5) |
| C1       | 0.0717 (9)         | 0.0420 (7)               | 0.0613 (9)      | 0.0079 (6)  | 0.0242 (7)  | 0.0080 (6) |
| C2       | 0.0757 (10)        | 0.0527 (8)               | 0.0587 (9)      | 0.0193 (7)  | 0.0263 (7)  | 0.0035 (7) |
| C3       | 0.0501 (7)         | 0.0608 (8)               | 0.0394 (6)      | 0.0129 (6)  | 0.0150 (5)  | 0.0098 (6) |
| C4       | 0.0638 (8)         | 0.0489 (7)               | 0.0510(7)       | 0.0032 (6)  | 0.0225 (6)  | 0.0102 (6) |
| C5       | 0.0617 (8)         | 0.0416 (7)               | 0.0489 (7)      | 0.0045 (6)  | 0.0223 (6)  | 0.0035 (5) |
| C6       | 0.0424 (6)         | 0.0427 (6)               | 0.0412 (6)      | 0.0037 (5)  | 0.0103 (5)  | 0.0057 (5) |
| C7       | 0.0451 (6)         | 0.0453 (7)               | 0.0479 (7)      | 0.0010 (5)  | 0.0143 (5)  | 0.0089 (5) |
| C8       | 0.0500(7)          | 0.0483 (7)               | 0.0478 (7)      | 0.0002 (5)  | 0.0222 (5)  | 0.0087 (5) |
| С9       | 0.0437 (6)         | 0.0432 (6)               | 0.0456 (7)      | 0.0082 (5)  | 0.0143 (5)  | 0.0102 (5) |
| C10      | 0.0461 (6)         | 0.0452 (6)               | 0.0455 (7)      | 0.0116 (5)  | 0.0175 (5)  | 0.0126 (5) |
| C11      | 0.0812 (11)        | 0.0742 (10)              | 0.0521 (8)      | 0.0272 (9)  | 0.0313 (8)  | 0.0170 (7) |
| C12      | 0.0771 (10)        | 0.0764 (11)              | 0.0763 (11)     | 0.0270 (9)  | 0.0479 (9)  | 0.0368 (9) |
| C13      | 0.0670 (9)         | 0.0548 (8)               | 0.0852 (11)     | 0.0043 (7)  | 0.0367 (8)  | 0.0236 (8) |
| C14      | 0.0573 (8)         | 0.0468 (7)               | 0.0581 (8)      | 0.0057 (6)  | 0.0256 (6)  | 0.0107 (6) |

Geometric parameters (Å, °)

| 01       | 1.4329 (17) | С7—С8       | 1.4973 (19) |
|----------|-------------|-------------|-------------|
| O1—C9    | 1.3374 (16) | C9—C10      | 1.4998 (19) |
| O2—C7    | 1.2021 (18) | C10—C14     | 1.3737 (19) |
| O3—C9    | 1.1969 (17) | C11—C12     | 1.375 (3)   |
| O4—N1    | 1.205 (2)   | C12—C13     | 1.362 (3)   |
| O5—N1    | 1.211 (2)   | C13—C14     | 1.387 (2)   |
| N1—C3    | 1.4761 (19) | C1—H1A      | 0.9300      |
| N2—C10   | 1.3372 (18) | C2—H2A      | 0.9300      |
| N2—C11   | 1.339 (2)   | C4—H4A      | 0.9300      |
| C1—C2    | 1.382 (2)   | С5—Н5А      | 0.9300      |
| C1—C6    | 1.386 (2)   | C8—H8A      | 0.9700      |
| C2—C3    | 1.369 (2)   | C8—H8B      | 0.9700      |
| C3—C4    | 1.369 (2)   | C11—H11A    | 0.9300      |
| C4—C5    | 1.387 (2)   | C12—H12A    | 0.9300      |
| C5—C6    | 1.3822 (19) | C13—H13A    | 0.9300      |
| C6—C7    | 1.5006 (19) | C14—H14A    | 0.9300      |
|          |             |             |             |
| C8—O1—C9 | 116.39 (10) | N2—C11—C12  | 123.99 (16) |
| O4—N1—O5 | 123.38 (16) | C11—C12—C13 | 119.00 (17) |
|          |             |             |             |

| O4—N1—C3       | 118.83 (14)  | C12—C13—C14     | 118.62 (16)  |
|----------------|--------------|-----------------|--------------|
| O5—N1—C3       | 117.79 (15)  | C10-C14-C13     | 118.39 (14)  |
| C10—N2—C11     | 115.93 (13)  | C2—C1—H1A       | 120.00       |
| C2—C1—C6       | 120.27 (14)  | C6—C1—H1A       | 120.00       |
| C1—C2—C3       | 118.56 (14)  | C1—C2—H2A       | 121.00       |
| N1—C3—C2       | 118.29 (14)  | C3—C2—H2A       | 121.00       |
| N1—C3—C4       | 118.83 (13)  | C3—C4—H4A       | 121.00       |
| C2—C3—C4       | 122.88 (14)  | C5—C4—H4A       | 121.00       |
| C3—C4—C5       | 118.09 (13)  | C4—C5—H5A       | 120.00       |
| C4—C5—C6       | 120.56 (13)  | C6—C5—H5A       | 120.00       |
| C1—C6—C5       | 119.64 (13)  | O1—C8—H8A       | 110.00       |
| C1—C6—C7       | 117.81 (12)  | O1—C8—H8B       | 110.00       |
| C5—C6—C7       | 122.54 (12)  | C7—C8—H8A       | 110.00       |
| O2—C7—C6       | 120.57 (13)  | C7—C8—H8B       | 110.00       |
| O2—C7—C8       | 121.71 (13)  | H8A—C8—H8B      | 108.00       |
| C6—C7—C8       | 117.70 (12)  | N2-C11-H11A     | 118.00       |
| O1—C8—C7       | 108.11 (11)  | C12—C11—H11A    | 118.00       |
| O1—C9—O3       | 123.96 (13)  | C11—C12—H12A    | 120.00       |
| O1—C9—C10      | 111.08 (11)  | C13—C12—H12A    | 121.00       |
| O3—C9—C10      | 124.96 (12)  | С12—С13—Н13А    | 121.00       |
| N2—C10—C9      | 114.56 (12)  | C14—C13—H13A    | 121.00       |
| N2-C10-C14     | 124.07 (13)  | C10—C14—H14A    | 121.00       |
| C9—C10—C14     | 121.36 (12)  | C13—C14—H14A    | 121.00       |
|                |              |                 |              |
| C9—O1—C8—C7    | -147.02 (11) | C4—C5—C6—C1     | -0.5 (2)     |
| C8—O1—C9—O3    | -1.63 (19)   | C4—C5—C6—C7     | -179.49 (13) |
| C8—O1—C9—C10   | 178.12 (11)  | C1—C6—C7—O2     | 2.4 (2)      |
| O4—N1—C3—C2    | 174.45 (15)  | C1—C6—C7—C8     | -175.97 (13) |
| O4—N1—C3—C4    | -4.7 (2)     | C5—C6—C7—O2     | -178.60 (14) |
| O5—N1—C3—C2    | -5.1 (2)     | C5—C6—C7—C8     | 3.1 (2)      |
| O5—N1—C3—C4    | 175.83 (15)  | O2—C7—C8—O1     | 6.80 (19)    |
| C11—N2—C10—C9  | 178.95 (13)  | C6—C7—C8—O1     | -174.90 (11) |
| C11—N2—C10—C14 | -0.4 (2)     | O1—C9—C10—N2    | 174.17 (12)  |
| C10—N2—C11—C12 | 0.4 (3)      | O1—C9—C10—C14   | -6.46 (18)   |
| C6—C1—C2—C3    | 0.6 (3)      | O3—C9—C10—N2    | -6.1 (2)     |
| C2-C1-C6-C5    | -0.1 (2)     | O3—C9—C10—C14   | 173.28 (14)  |
| C2—C1—C6—C7    | 178.99 (15)  | N2-C10-C14-C13  | 0.0 (2)      |
| C1—C2—C3—N1    | -179.64 (15) | C9-C10-C14-C13  | -179.32 (14) |
| C1—C2—C3—C4    | -0.6 (2)     | N2-C11-C12-C13  | -0.1 (3)     |
| N1—C3—C4—C5    | 179.10 (13)  | C11—C12—C13—C14 | -0.4 (3)     |
| C2—C3—C4—C5    | 0.0 (2)      | C12-C13-C14-C10 | 0.4 (2)      |
| C3—C4—C5—C6    | 0.5 (2)      |                 |              |

### Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | Н…А  | D····A      | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|-------------|------|-------------|-------------------------|
| C5—H5A···O3 <sup>i</sup>          | 0.93        | 2.55 | 3.2283 (18) | 130                     |
| C8—H8 <i>B</i> ···O3 <sup>i</sup> | 0.97        | 2.45 | 3.2681 (17) | 141                     |

## supporting information

| C12—H12A…O5 <sup>ii</sup>    | 0.93 | 2.52     | 3.396 (3)   | 157    |  |
|------------------------------|------|----------|-------------|--------|--|
| C13—H13A···O2 <sup>iii</sup> | 0.93 | 2.47     | 3.277 (2)   | 146    |  |
| C9—O3… <i>Cg</i> 1           |      | 3.35 (1) | 3.4735 (16) | 86 (1) |  |
| C7—O2…Cg2                    |      | 3.58 (1) | 3.8788 (15) | 67 (1) |  |
| N1—O4… <i>Cg</i> 2           |      | 3.76(1)  | 3.5479 (16) | 71 (1) |  |
| N1—O5… <i>Cg</i> 2           |      | 3.68 (1) | 3.5479 (16) | 74 (1) |  |
|                              |      |          |             |        |  |

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *x*+2, *y*, *z*-1; (iii) -*x*+2, -*y*+1, -*z*.