

Lewis S. Seaman,^a Cristiane F. da Costa,^b Marcus V. N. de Souza,^b Solange M. S. V. Wardell,^c Iames L. Wardell^a and William T. A. Harrison^a*

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ^bFundacão Oswaldo Cruz, Instituto de Tecnologia em Fármacos Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, and ^cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland. *Correspondence e-mail: w.harrison@abdn.ac.uk

The syntheses and crystal structures of five 2-benzylidene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-methoxybenzylidene)-1-benzosuberone, C₁₉H₁₈O₂, (I), 2-(4-ethoxybenzylidene)-1-benzosuberone, C₂₀H₂₀O₂, (II), 2-(4-benzylbenzylidene)-1benzosuberone, C₂₅H₂₂O₂, (III), 2-(4-chlorobenzylidene)-1-benzosuberone, C₁₈H₁₅ClO, (IV) and 2-(4-cyanobenzylidene)-1-benzosuberone, C₁₉H₁₅NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7) $^{\circ}$ for (V). Key features of the packing include pairwise $C-H \cdots O$ hydrogen bonds for (II) and (IV), and pairwise $C-H \cdots N$ hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature $C-H \cdots O$ hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak $C-H\cdots\pi$ interactions consolidate the structures and weak aromatic π - π stacking is seen in (II) [centroid-centroid separation = 3.8414(7)Å] and (III) [3.9475(7)Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are compared and structural features of the 2-benzylidene-1benzosuberone family of phases are surveyed.

1. Chemical context

The structurally related 2-benzylidenebenzocycloalkanone compounds, viz. (E)-2-benzylidene-2,3-dihydro-1H-inden-1one (n = 1), (E)-2-benzylidene-1-tetralone (n = 2) and (E)-2benzylidene-1-benzosuberone (n = 3), which differ with respect to the number of methylene groups, n, in the alkanone ring fused to the benzene ring (see Scheme 1) have attracted attention in a number of areas. Their biological activities include antitumour (e.g. Gautam et al., 2016: Dimmock et al., 1999, 2002), antimycotic (Al-Nakib et al., 1997) and antifungal (Gupta & Jain, 2015) properties. Their physical properties include nonlinear optical (Watson et al., 1993) and UV hypsochromic shifts and fluorescence effects (Fodor et al., 2011). It may be noted that these compounds can be considered as fused-ring analogues of chalcones (*i.e.* the 'n = 0' family), which might allow for 'tuneable' conformational control of the molecule by changing the number of methylene groups in the cycloalkanone ring (Dimmock et al., 1999).

Received 7 August 2019 Accepted 18 October 2019

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

COMMUNICATIONS

Keywords: crystal structure; suberone; polymorphism.

CCDC references: 1960122; 1960121; 1960120; 1960119; 1960118

Supporting information: this article has supporting information at journals.iucr.org/e

😟 🛈 OPEN 🕢 ACCESS

ISSN 2056-9890

research communications

In continuation of our earlier reports of the crystal structures and Hirshfeld surface analyses of a number of (E)-2benzylidene-2,3-dihydro-1H-inden-1-one derivatives (Baddeley et al., 2017a) and (E)-2-benzylidene-1-tetralone (Baddeley et al., 2017b), we now describe the syntheses and crystal structures of 2-(4-methoxybenzylidene)-1-benzosuberone, (I), 2-(4ethoxybenzylidene)-1-benzosuberone, (II), 2-(4-benzylbenzylidene)-1-benzosuberone, (III), 2-(4-chlorobenzvlidene)-1-benzosuberone, (IV), and 2-(4-cvanobenzylidene)-1-benzosuberone, (V) (see Scheme 2).

2. Structural commentary

The molecular structures of (I)-(V) are shown in Figs. 1-5, respectively. Each molecule is the expected product arising

The molecular structure of (I), showing 50% probability displacement ellipsoids.

The molecular structure of (II), showing 50% probability displacement ellipsoids.

The molecular structure of (IV), showing 50% probability displacement ellipsoids.

Figure 5

The molecular structure of (V), showing 50% probability displacement ellipsoids.

Fragment of the crystal structure of (I), showing part of a [010] chain linked by C15-H15...O1 hydrogen bonds. [Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.]

from the base-catalysed condensation reaction between 1-benzosuberone and the appropriate 4-substituted benzaldehyde derivative (see Experimental section). The conformations of the benzosuberone fragments in (I)-(V) are almost identical, as shown by the overlay plot generated with QMOL (Gans & Shalloway, 2001) shown in Fig. 6. The sevenmembered ring, which is conformationally constrained by being fused to the C6-C11 benzene ring and by the presence of the sp^2 -hybridized atoms C1 and C2, at least approximates to a boat conformation; in the case of (I), atoms C3/C4/C6/C11 are roughly coplanar (r.m.s. deviation = 0.095 Å), with C5 as the prow [deviation = 0.6139(15) Å] and C1 and C2 as the stern [deviations = 1.0114(16) and 1.0154(16) Å, respectively]. This conformation results in a substantial degree of twist about the C11-C1 bond [C10-C11-C1=O1 = $36.06 (14)^{\circ}$ and O1 deviates from the C6–C11 benzene-ring plane by 0.7212 (17) Å. The corresponding data for the sevenmembered rings in (II)-(V) are very similar to those for (I) and are not stated here.

The dihedral angles between the C6–C11 fused benzene ring and the C13–C18 pendant benzene ring are clustered in a \sim 12° range, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). A comparison of the C1–C2–C12–C13 and C2–C12–C13–C14 torsion angles for (I) [–179.67 (10) and –33.81 (17)°,

Figure 8

Fragment of the crystal structure of (II), showing inversion dimers linked by pairs of C18-H18···O1 hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg1 and Cg2 are the centroids of the C6–C11 and C13–C18 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15\cdots O1^{i}$ $C19-H19A\cdots Cg1^{ii}$ $C19-H19C\cdots Cg2^{iii}$	0.95	2.35	3.2971 (14)	176
	0.98	2.76	3.6165 (13)	146
	0.98	2.74	3.6029 (13)	147

Symmetry codes: (i) x, y - 1, z; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x + 1, -y, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °) for (II).

Cg1 and Cg2 are the centroids of the C6-C11 and C13-C18 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C18-H18\cdots O1^{i}$	0.95	2.36	3.2653 (14)	159
$C4-H4B\cdots Cg1^{ii}$	0.98	2.72	3.6429 (13)	155
$C19-H19A\cdots Cg2^{ii}$	0.98	2.71	3.5969 (13)	149

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Table 3

Hydrogen-bond geometry (Å, °) for (III).

Cg3 is the centroid of the C20-C25 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15\cdotsO1^{i}$ $C18-H18\cdots Cg3^{ii}$	0.95	2.40	3.3477 (13)	176
	0.95	2.64	3.5147 (13)	153

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Table 4

Hydrogen-bond geometry (Å, $^{\circ}$) for (IV).

Cg1 is the centroid of the C6-C11 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10\cdotsO1^{i}$ $C3-H3A\cdots Cg1^{ii}$	0.95	2.50	3.319 (2)	145
	0.99	2.83	3.572 (2)	132

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Table 5

Hydrogen-bond geometry (Å, °) for (V).

Calic the control of the C6 C11 ring

cg1 is the centroid of the Co=C11 fling.						
$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$C17-H17\cdots N1^i$	0.95	2.54	3.438 (2)	157		
$C3-H3A\cdots Cg1^{ii}$	0.99	2.84	3.6730 (16)	142		
$C8-H8\cdots Cg1^{iii}$	0.95	2.88	3.7868 (17)	161		

Symmetry codes: (i) -x, -y - 1, -z + 1; (ii) x, y - 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

respectively] indicates that the twisting largely occurs about the C12-C13 bond, and the same conclusion can be drawn for (II)–(V).

For (I), the C19 atom of the methoxy group is close to coplanar with its attached benzene ring [deviation = 0.1079 (19) Å] and for (II) the ethoxy group has an extended conformation [C16-O2-C19-C20 = 178.58 (10)°]. For (III), an additional dihedral angle between the C13–C18 benzene ring and the terminal C20–C25 benzene ring of 78.78 (3)° is

research communications

Table 6	
Fingerprint contact percentages for (I) and V	ENQUA.

Contact type	(I)	VENQUA
$H \cdots H$	54.8	55.3
$C\!\cdot\cdot\cdot H/H\!\cdot\cdot\cdot C$	28.1	29.2
O−H/H···O	15.3	14.5
$\mathbf{C}\!\cdot\!\cdot\!\cdot\!\mathbf{C}$	1.1	0.0
$C \cdot \cdot \cdot O / O \cdot \cdot \cdot C$	0.8	0.8
00	0.0	0.2

observed. Otherwise, the geometrical data for (I)-(V) are unexceptional and similar to those for related compounds (Dimmock *et al.*, 1999, 2002).

It may be noted that a polymorph of (I) [Cambridge Structural Database (CSD; Groom *et al.*, 2016) refcode VENQUA; Dimmock *et al.*, 1999] has been reported in the same space group, *i.e.* $P2_1/c$; VENQUA was recrystallized from methanol solution rather than ethanol for (I). The bond lengths and angles in (I) and VENQUA are very similar, although there is a ~10° difference in the dihedral angle between the benzene rings [value for VENQUA = 35.88 (11)°, calculated with *PLATON* (Spek, 2009)]; for an overlay plot of (I) and VENQUA, see the supporting information.

3. Supramolecular features

There are obviously no classical hydrogen bonds in these structures and, in each case, just one C-H group can be identified as the donor for a weak hydrogen bond with atom O1 as the acceptor in (I)-(IV) and atom N1 in (V); geometrical data for these interactions are listed in Tables 1–5 and illustrated in Figs. 7–11. All the structures also feature weak C-H··· π interactions with either the fused or pendant benzene rings as acceptors, but (II) and (III) are the only structures to display weak aromatic π - π stacking, in both cases between inversion-related C13–C18 rings. For (II), the

Table 7

Code/refcode Substituent(s) Space group φ	Donor atom(s) Pa	acking motif
		U
(I) 4-OMe $P2_1/c$ 23.79 (3)	C15 C	(8) chain
(II) 4-OEt $P2_1/c$ 24.60 (4)	C18 R	² (14) loop
(III) $4-OBz$ $P\overline{1}$ 33.72 (4)	C15 C	(8) chain
(IV) 4-Cl $P2_1/n$ 29.93 (8)	C10 R	$\frac{2}{2}(10)$ loop
(V) 4-CN $P_{21/c}$ 21.81 (7)	C17 R	² (10) loop
VENQOU 4-Me $P_{2_1/n}$ 29.72 (11)	C10 R	² (10) loop
VENQUA 4-OMe $P_{2_1/n}$ 35.88 (11)	C10 R	² (10) loop
VENSIQ $4-NMe_2$ $P2_1/n$ 29.43 (11)	C10 R	² (10) loop
XUGXOM 2-NO ₂ P2 ₁ /a 27.56 (6)	C17 C	(5) chain
VENREL $3-NO_2$ $P\overline{1}$ 18.54 (9)	C7,C14,C16 do	ouble chain
VENRIP $4-NO_2$ $P\overline{1}$ 45.32 (9)	C9,C15 sh	neet
XUGYED 2-Cl $P2_1/c$ 28.40 (19)	C14 C	(7) chain
XUGXUS 3,4-Cl <i>P</i> 2 ₁ / <i>c</i> 39.01 (16)	C15 C	(8) chain
XUGYAZ 2,4-Cl P2//c 30.54 (12)	C14 C	(7) chain
XUGYUT 2-OMe P21 25.82 (17)	None –	
XUGYON 3,4-OMe $P\overline{1}$ 23.48 (9)	C8,C15 sh	neet
XUGYIH 3,4,5-OMe P21/n 35.08 (10)	C7 C7	(6) chain

Notes: packing analyses were carried out using *PLATON* (Spek, 2009); φ is the dihedral angle between the C6–C11 and C13–C18 benzene rings; for the 'VEN' refcode family, see Dimmock *et al.* (1999); for the 'XUG' family, see Dimmock *et al.* (2002); the donor atom labels correspond to our atom numbering scheme.

Figure 9

Fragment of the crystal structure of (III), showing part of a [100] chain linked by C15-H15···O1 hydrogen bonds. [Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.]

Fragment of the crystal structure of (IV), showing inversion dimers linked by pairs of C10-H10···O1 hydrogen bonds. [Symmetry code: (i) -x, -y + 1, -z + 1.]

centroid–centroid separation is 3.8414 (7) Å and the slippage is 1.72 Å; equivalent data for (III) are 3.9475 (7) and 1.89 Å, respectively.

The packing motifs for the extended structures of (I) and (III) are infinite $C-H\cdots O$ hydrogen-bonded chains, which propagate in the [010] and [100] directions, respectively. In each case, adjacent molecules are related only by unit-cell

Figure 11 Fragment of the crystal structure of (V), showing inversion dimers linked by pairs of C17-H17···N1 hydrogen bonds. [Symmetry code: -x, -y + 1, -z + 1.]

translational symmetry and a C(8) graph-set motif results for both structures with the methyne group (C15-H15, *ortho* to the 4-substituent) involved as the donor.

The packing motifs for (II) and (IV) feature inversion dimers. In (II), C18-H18 (*meta* to the 4-substituent) is the donor group and $R_2^2(14)$ loops arise. In this motif, C12-H12 is 'sandwiched' between the donor and acceptor and the H12···O1 separation of 2.60 Å (see Fig. 8) is borderline to be regarded as a directional bond. The donor group in (IV) is C10-H10 in the fused benzene ring, which generates an $R_2^2(10)$ loop. The only possible interaction involving the Cl atom is a long contact from C8-H8, with H···Cl = 2.93 Å. The presence of the cyano group in (V) allows for the formation of pairwise C-H···N hydrogen bonds and an $R_2^2(10)$ graph-set motif arises; the shortest H···O contact in (V) is 2.72 Å.

Rather than the C(8) chains arising from C15-H15···O1 hydrogen bonds seen in (I), the packing for VENQUA (see above) features inversion dimers built from pairwise C10-H10···O1 interactions, which are very similar to those seen in 4-chloro derivative (IV) in the present study. It may be noted that the density of VENQUA ($\rho = 1.368 \text{ Mg m}^{-3}$) is significantly greater than that of (I) ($\rho = 1.284 \text{ Mg m}^{-3}$), suggesting that the former might be the more stable polymorph if the 'rational packing rule' (Kitaigorodskii, 1961) is applicable in this case.

In order to gain further insight into these different packing motifs, the Hirshfeld surfaces and fingerprint plots for (I) and VENQUA were calculated using *CrystalExplorer* (Turner *et al.*, 2017), following the approach recently described by Tan *et al.* (2019). The Hirshfeld surface for (I) (see supporting information) shows the expected large red spots (close contacts) in the vicinity of H15 and O1 corresponding to the C15–H15…O1 interaction noted above, but there is little if any evidence of close contacts in the vicinity of H19A and H19C corresponding to the C–H… π contacts listed in Table 1. The surface for VENQUA (see supporting information)

tion) shows red spots in the vicinity of H10 and O1 corresponding to the C10-H10···O1 hydrogen bond and H2A (our numbering scheme) corresponding to a C3-H2A $\cdots\pi$ interaction (H··· π = 2.69 Å) to the centroid of the C6–C11 benzene ring, but there are also probably spurious features close to H8 and H17 corresponding to a short H...H contact of 2.07 Å between these atoms, which possibly arose because the H atoms of the C19 methyl group in VENOUA were geometrically placed and not treated using a rotating-group model. Notwithstanding this, the fingerprint plots for (I) and VENQUA (see supporting information) decomposed into the different percentage contact types (Table 6) are almost identical; H...H (van der Waals) contacts dominate both structures, followed by $C \cdots H/H \cdots C$ and then $O \cdots H/H \cdots O$. The percentage contributions of the other contact types are negligible.

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016) revealed 167 structures incorporating a 1-benzosuberone fragment but only 20 hits when an exocyclic C=C double bond at the 2-position was added to the search structure. The key papers reporting the structures of closely related, differently substituted, 2-benzylidene-1-benzosuberones are Dimmock et al. (1999, 2002). The hydrogen-bond data for (I)-(V) and the 12 structures reported in the two papers by Dimmock et al. are summarized in Table 7. The most frequently observed motif is the centrosymmetric $R_2^2(10)$ loop involving C10-H10 as the donor group, but there are many others involving different C-H groups as donor and we see no obvious connection to the nature and position of the substituent(s) on the remote benzene ring. There are no structures in which the fused and pendant benzene rings tend towards being perpendicular (dihedral angle > 60°).

The fact that (I) and VENQUA have similar conformations but distinct packing motifs mediated by different $C-H\cdots O$ interactions to the same acceptor O atom may be compared with the fascinating recent survey of weak-interaction polymorphs by Lo Presti (2018). He concluded that weak hydrogen bonds and solvent effects may play an important kinetic role in promoting polymorph formation (after all, something has to favour a situation where the lowest-energy packing motif is not adopted) but they do not play a dominant energetic role in polymorph formation and that the overall energy balance between dispersive (attractive) and repulsive interactions is the most important consideration.

5. Synthesis and crystallization

Compounds (I)–(V) were obtained from the reaction of 1-benzosuberone (1 mmol) with the appropriate 4-substituted benzaldehyde (1 mmol) in ethanol (5 ml) treated with an ethanolic solution of sodium hydroxide (30 mg in 5 ml ethanol). After stirring for 3–4 h at room temperature, each reaction mixture was cooled to 0 $^{\circ}$ C and the precipitated solid was recovered by filtration and rinsing with ice-cold ethanol.

research communications

Table 8Experimental details

Experimental details.			
	(I)	(II)	(III)
Crystal data			
Chemical formula	$C_{19}H_{18}O_2$	$C_{20}H_{20}O_2$	$C_{25}H_{22}O_2$
$M_{ m r}$	278.33	292.36	354.42
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$
Temperature (K)	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.9171 (3), 9.1262 (2), 15.2539 (3)	12.6208 (2), 14.99690 (17), 8.39151 (12)	9.2870 (2), 9.8727 (2), 12.2944 (3)
α, β, γ (°)	90, 108.618 (3), 90	90, 108.6814 (17), 90	67.098 (3), 81.472 (2), 61.989 (3)
$V(A^3)$	1440.24 (6)	1504.60 (4)	915.92 (5)
Z	4	4	2
Radiation type	Μο Κα	Cu Kα	Cu Ka
$\mu (\text{mm}^{-1})$	0.08	0.64	0.63
Crystal size (mm)	$0.20\times0.15\times0.05$	$0.20\times0.11\times0.03$	$0.17 \times 0.11 \times 0.04$
Data collection			
Diffractometer	XtaLAB AFC12 (RCD3): Kappa single CCD	XtaLAB AFC11 (RCD3): quarter- chi single CCD	 XtaLAB AFC11 (RCD3): quarter- chi single CCD
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku, 2017)	Gaussian (CrysAlis PRO; Rigaku, 2017)	Gaussian (<i>CrysAlis PRO</i> ; Rigaku, 2017)
Tmin. Tmar	0.877. 1.000	0.772. 1.000	0.781, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16988, 3296, 2843	9197, 2704, 2486	29818, 3336, 3073
R _{int}	0.033	0.024	0.036
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649	0.602	0.602
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.093, 1.03	0.034, 0.092, 1.04	0.032, 0.080, 1.07
No. of reflections	3296	2704	3336
No. of parameters	191	201	245
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.25, -0.18	0.25, -0.20	0.19, -0.16
	(IV)	(V)	
Crystal data			
Chemical formula	C ₁₈ H ₁₅ ClO	C19H1	₅ NO
$M_{ m r}$	282.75	273.32	2
Crystal system, space group	Monoclinic, $P2_1/n$	Mono	clinic, $P2_1/c$
Temperature (K)	100	100	
a, b, c (A)	10.6273 (5), 11.6191 (4), 1	12.1114 (5) 12.472	25 (4), 7.1718 (2), 15.9983 (5)
α, β, γ (°)	90, 108.777 (4), 90	90, 10	6.120 (3), 90
$V(A^3)$	1415.92 (11)	1374.7	79 (8)
Z	4	4	
Radiation type	Ου Κα	Cu Ka	α
$\mu (\text{mm}^{-1})$	2.31	0.64	0.10 0.02
Crystal size (mm)	$0.28 \times 0.20 \times 0.03$	0.17 >	$< 0.10 \times 0.03$
Data collection	VAL AD ADOLD (DODA)), quantan ahi sin ala 🛛 😽 T	A D A EC11 (DCD2), menter all air l
Dimractometer	CCD	y: quarter-cni single XtaLA	D
Absorption correction	Multi-scan (CrysAlis PR	O; Rigaku, 2017) Gauss	sian (CrysAlis PRO; Rigaku, 2017)
T_{\min}, \hat{T}_{\max}	0.722, 1.000	0.895,	1.000
No. of measured, independent and ob $[I > 2\sigma(I)]$ reflections	11747, 2568, 2203	9732,	2511, 2302

 $\begin{aligned} R_{\text{int}} \\ (\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1}) \end{aligned}$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections
No. of parameters
H-atom treatment $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (\text{e \AA}^{-3}) \end{aligned}$

Computer programs: CrysAlis PRO (Rigaku, 2017), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 (Farrugia, 2012) and publCIF (Westrip, 2010).

H-atom parameters constrained

Recrystallization from ethanol solution at room temperature yielded colourless blocks [(I), (III) and (V)] and plates [(II)

and (IV)]. Spectroscopic data for (I)–(V) are available as supporting information.

0.059

0.602

2511

190

0.49, -0.32

0.068, 0.181, 1.06

H-atom parameters constrained

0.073

0.602

2568

181

0.32, -0.41

0.055, 0.165, 1.11

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8. All H atoms were located geometrically (C–H = 0.95–0.99 Å) and refined as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The methyl groups in (I) and (II) were allowed to rotate, but not to tip, to best fit the electron density.

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collections and Edward Tiekink for assistance with the overlay plot.

References

- Al-Nakib, T. M., Perjesi, P., Varghese, R. & Meegan, M. J. (1997). Med. Princ. Pract. 6, 14–21.
- Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017*a*). *Z. Kristallogr.* **232**, 317–334.
- Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017b). Z. Kristallogr 232, 697–718.
- Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358–1366.
- Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). *J. Med. Chem.* **45**, 3103–3111.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fodor, K., Tomescova, V., Kőszegi, T., Kron, I. & Perjési, P. (2011). Monatsh. Chem. 142, 463–468.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-9, 609.
- Gautam, Y., Dwivedi, S., Srivastava, A., Hamidullah, H., Singh, A., Chanda, D., Singh, J., Rai, S., Konwar, R. & Negi, A. S. (2016). *RSC Adv.* 6, 33369–33379.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gupta, D. & Jain, D. K. (2015). J. Adv. Pharm. Technol. Res. 6, 114– 117.
- Kitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.
- Lo Presti, L. (2018). CrystEngComm, 20, 5976-5989.
- Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface.net.
- Watson, G. J. R., Turner, A. B. & Allen, S. (1993). Organic Materials for Non-linear Optics III, edited by G. J. Ashwell & D. Bloor. RSC Special Publication No. 137, pp. 112–117. Cambridge: Royal Society of Chemistry.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 1741-1747 [https://doi.org/10.1107/S2056989019014245]

Different packing motifs mediated by weak interactions and polymorphism in the crystal structures of five 2-(benzylidene)benzosuberone derivatives

Lewis S. Seaman, Cristiane F. da Costa, Marcus V. N. de Souza, Solange M. S. V. Wardell, James L. Wardell and William T. A. Harrison

Computing details

For all structures, data collection: *CrysAlis PRO* (Rigaku, 2017); cell refinement: *CrysAlis PRO* (Rigaku, 2017); data reduction: *CrysAlis PRO* (Rigaku, 2017); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

6-(4-Methoxybenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (I)

Crystal data

 $C_{19}H_{18}O_2$ $M_r = 278.33$ Monoclinic, $P2_1/c$ a = 10.9171 (3) Å b = 9.1262 (2) Å c = 15.2539 (3) Å $\beta = 108.618$ (3)° V = 1440.24 (6) Å³ Z = 4

Data collection

XtaLAB AFC12 (RCD3): Kappa single CCD diffractometer Radiation source: Rotating-anode X-ray tube Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku, 2017) $T_{\min} = 0.877, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.093$ S = 1.033296 reflections 191 parameters 0 restraints F(000) = 592 $D_x = 1.284 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6994 reflections $\theta = 3.6-30.6^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.20 \times 0.15 \times 0.05 \text{ mm}$

16988 measured reflections 3296 independent reflections 2843 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 2.6^\circ$ $h = -13 \rightarrow 14$ $k = -11 \rightarrow 11$ $l = -19 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0435P)^2 + 0.435P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.21223 (10)	0.67551 (12)	0.33073 (7)	0.0185 (2)	
C2	0.25289 (10)	0.51984 (12)	0.35285 (7)	0.0176 (2)	
C3	0.26700 (10)	0.42493 (12)	0.27568 (7)	0.0192 (2)	
H3A	0.3201	0.3384	0.3032	0.023*	
H3B	0.3146	0.4809	0.2413	0.023*	
C4	0.13905 (11)	0.37140 (12)	0.20672 (7)	0.0235 (2)	
H4A	0.1543	0.3392	0.1491	0.028*	
H4B	0.1077	0.2858	0.2333	0.028*	
C5	0.03505 (11)	0.49088 (12)	0.18348 (8)	0.0228 (2)	
H5A	-0.0381	0.4586	0.1296	0.027*	
H5B	0.0022	0.5024	0.2365	0.027*	
C6	0.08193 (10)	0.63762 (12)	0.16175 (7)	0.0187 (2)	
C7	0.03877 (11)	0.69424 (13)	0.07205 (7)	0.0220 (2)	
H7	-0.0170	0.6369	0.0237	0.026*	
C8	0.07549 (11)	0.83208 (13)	0.05212 (8)	0.0237 (2)	
H8	0.0461	0.8677	-0.0096	0.028*	
C9	0.15527 (11)	0.91857 (13)	0.12212 (8)	0.0227 (2)	
H9	0.1795	1.0139	0.1087	0.027*	
C10	0.19928 (10)	0.86472 (12)	0.21178 (7)	0.0199 (2)	
H10	0.2534	0.9237	0.2600	0.024*	
C11	0.16467 (10)	0.72442 (12)	0.23167 (7)	0.0178 (2)	
C12	0.28541 (10)	0.48266 (12)	0.44276 (7)	0.0184 (2)	
H12	0.2785	0.5598	0.4828	0.022*	
C13	0.32958 (10)	0.34296 (12)	0.48884 (7)	0.0179 (2)	
C14	0.28868 (10)	0.20616 (12)	0.44938 (7)	0.0186 (2)	
H14	0.2300	0.2016	0.3881	0.022*	
C15	0.33124 (10)	0.07653 (12)	0.49704 (7)	0.0192 (2)	
H15	0.3014	-0.0152	0.4689	0.023*	
C16	0.41828 (10)	0.08253 (12)	0.58673 (7)	0.0182 (2)	
C17	0.45955 (10)	0.21776 (12)	0.62786 (7)	0.0205 (2)	
H17	0.5189	0.2220	0.6889	0.025*	
C18	0.41448 (11)	0.34552 (12)	0.58016 (7)	0.0204 (2)	
H18	0.4414	0.4371	0.6096	0.024*	
C19	0.41639 (11)	-0.17646 (12)	0.60092 (8)	0.0220 (2)	
H19A	0.3224	-0.1777	0.5874	0.033*	
H19B	0.4555	-0.2544	0.6452	0.033*	
H19C	0.4370	-0.1924	0.5436	0.033*	
01	0.21902 (8)	0.76586 (9)	0.39153 (5)	0.0253 (2)	

02	0.46646	(7) -0.	03768 (8)	0.63967 (5)	0.02142 (1	8)
Atomic	displacement para	ameters ($Å^2$)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0175 (5)	0.0198 (5)	0.0189 (5)	-0.0002 (4)	0.0067 (4)	-0.0003 (4)
C2	0.0171 (5)	0.0181 (5)	0.0178 (5)	-0.0003 (4)	0.0058 (4)	-0.0001 (4)
C3	0.0236 (6)	0.0186 (5)	0.0166 (5)	0.0020 (4)	0.0081 (4)	0.0007 (4)
C4	0.0305 (6)	0.0199 (6)	0.0183 (5)	-0.0024 (5)	0.0054 (5)	-0.0002 (4)
C5	0.0215 (6)	0.0247 (6)	0.0204 (5)	-0.0040 (4)	0.0041 (4)	0.0002 (4)
C6	0.0165 (5)	0.0211 (5)	0.0192 (5)	0.0020 (4)	0.0065 (4)	0.0011 (4)
C7	0.0195 (5)	0.0265 (6)	0.0186 (5)	0.0036 (4)	0.0041 (4)	0.0004 (4)
C8	0.0246 (6)	0.0283 (6)	0.0192 (5)	0.0083 (5)	0.0083 (4)	0.0070 (4)
C9	0.0250 (6)	0.0203 (6)	0.0260 (6)	0.0048 (4)	0.0127 (5)	0.0057 (4)
C10	0.0196 (5)	0.0194 (5)	0.0220 (5)	0.0027 (4)	0.0086 (4)	-0.0001 (4)
C11	0.0174 (5)	0.0192 (5)	0.0182 (5)	0.0032 (4)	0.0076 (4)	0.0015 (4)
C12	0.0187 (5)	0.0193 (5)	0.0181 (5)	0.0003 (4)	0.0070 (4)	-0.0014 (4)
C13	0.0177 (5)	0.0213 (5)	0.0159 (5)	0.0009 (4)	0.0071 (4)	0.0008 (4)
C14	0.0178 (5)	0.0233 (6)	0.0142 (5)	-0.0003 (4)	0.0042 (4)	0.0008 (4)
C15	0.0200 (5)	0.0204 (5)	0.0175 (5)	-0.0015 (4)	0.0065 (4)	-0.0002 (4)
C16	0.0179 (5)	0.0218 (5)	0.0163 (5)	0.0027 (4)	0.0076 (4)	0.0037 (4)
C17	0.0193 (5)	0.0271 (6)	0.0140 (5)	0.0004 (4)	0.0037 (4)	0.0003 (4)
C18	0.0222 (5)	0.0218 (5)	0.0176 (5)	-0.0011 (4)	0.0071 (4)	-0.0024 (4)
C19	0.0241 (6)	0.0199 (5)	0.0226 (5)	0.0015 (4)	0.0081 (4)	0.0041 (4)
01	0.0349 (5)	0.0208 (4)	0.0187 (4)	0.0036 (3)	0.0066 (3)	-0.0019 (3)
02	0.0239 (4)	0.0209 (4)	0.0177 (4)	0.0025 (3)	0.0043 (3)	0.0037 (3)

Geometric parameters (Å, °)

C1-01	1.2254 (13)	С9—Н9	0.9500	
C1—C2	1.4945 (15)	C10-C11	1.3955 (15)	
C1-C11	1.5003 (14)	C10—H10	0.9500	
C2—C12	1.3458 (15)	C12—C13	1.4614 (15)	
C2—C3	1.5085 (14)	C12—H12	0.9500	
C3—C4	1.5356 (15)	C13—C14	1.3959 (15)	
С3—НЗА	0.9900	C13—C18	1.4056 (15)	
С3—Н3В	0.9900	C14—C15	1.3887 (15)	
C4—C5	1.5319 (16)	C14—H14	0.9500	
C4—H4A	0.9900	C15—C16	1.3956 (15)	
C4—H4B	0.9900	C15—H15	0.9500	
C5—C6	1.5078 (15)	C16—O2	1.3642 (12)	
C5—H5A	0.9900	C16—C17	1.3926 (15)	
С5—Н5В	0.9900	C17—C18	1.3793 (15)	
С6—С7	1.3962 (15)	C17—H17	0.9500	
C6—C11	1.4021 (15)	C18—H18	0.9500	
С7—С8	1.3832 (16)	C19—O2	1.4304 (13)	
С7—Н7	0.9500	C19—H19A	0.9800	
С8—С9	1.3885 (17)	C19—H19B	0.9800	

С8—Н8	0.9500	С19—Н19С	0.9800
C9—C10	1.3869 (15)		
	()		
O1—C1—C2	121.79 (10)	С8—С9—Н9	120.3
01—C1—C11	118.68 (10)	C9—C10—C11	120.47 (11)
C2-C1-C11	119.51 (9)	C9—C10—H10	119.8
$C_{12} - C_{2} - C_{1}$	115.63 (9)	C11—C10—H10	119.8
$C_{12} - C_{2} - C_{3}$	126.23 (10)	C10—C11—C6	120.42 (10)
C1 - C2 - C3	117 81 (9)	C10-C11-C1	11747(10)
$C_2 - C_3 - C_4$	114 83 (9)	C6-C11-C1	121.99 (9)
$C_2 - C_3 - H_3 A$	108.6	C_{2} C_{12} C_{13}	121.99(9) 130.49(10)
C4-C3-H3A	108.6	$C_2 - C_{12} - H_{12}$	114.8
$C_2 - C_3 - H_3B$	108.6	C13 - C12 - H12	114.8
C4-C3-H3B	108.6	C14 - C13 - C18	117.6(10)
$H_3 \Delta = C_3 = H_3 B$	107.5	$C_{14} = C_{13} = C_{10}$	124 18 (9)
$C_{5} - C_{4} - C_{3}$	112 15 (9)	C18 - C13 - C12	124.10(9) 118 30(10)
$C_5 = C_4 = C_5$	100.2	$C_{15} = C_{13} = C_{12}$	110.50(10) 121.02(10)
$C_3 = C_4 = H_4 \Lambda$	109.2	$C_{15} = C_{14} = C_{15}$	121.92 (10)
$C_5 = C_4 = H_4 R$	109.2	$C_{13} = C_{14} = 114$	119.0
$C_3 = C_4 = H_4 B$	109.2	$C_{13} - C_{14} - 1114$	119.0
C_{3} C_{4} $H_{4}D$	109.2	C14 - C15 - C10	119.28 (10)
$\begin{array}{c} \mathbf{H} \mathbf{H} \mathbf{A} - \mathbf{C} 4 - \mathbf{H} 4 \mathbf{D} \\ \mathbf{C} 6 \mathbf{C} 5 \mathbf{C} 4 \end{array}$	107.9	C14 C15 H15	120.4
C6 C5 U5A	115.60 (9)	C10-C15-H15	120.4
$C_0 = C_5 = H_5 A$	108.8	02 - C16 - C17	113.97 (9)
C4—C5—H5A	108.8	02C16C15	124.19 (10)
C6	108.8	C1/-C16-C15	119.84 (10)
C4—C5—H5B	108.8		120.12 (10)
H5A—C5—H5B	107.7	С18—С17—Н17	119.9
C/C6C11	118.05 (10)	С16—С17—Н17	119.9
C7—C6—C5	120.80 (10)	C17—C18—C13	121.34 (10)
C11—C6—C5	121.07 (9)	C17—C18—H18	119.3
C8—C7—C6	121.41 (11)	C13—C18—H18	119.3
С8—С7—Н7	119.3	O2—C19—H19A	109.5
С6—С7—Н7	119.3	O2—C19—H19B	109.5
C7—C8—C9	120.18 (10)	H19A—C19—H19B	109.5
С7—С8—Н8	119.9	O2—C19—H19C	109.5
С9—С8—Н8	119.9	H19A—C19—H19C	109.5
C10—C9—C8	119.45 (11)	H19B—C19—H19C	109.5
С10—С9—Н9	120.3	C16—O2—C19	116.31 (8)
O1—C1—C2—C12	6.07 (15)	O1—C1—C11—C10	36.06 (14)
C11—C1—C2—C12	-175.42(9)	C2-C1-C11-C10	-142.50(10)
01-C1-C2-C3	-167.73(10)	01-C1-C11-C6	-140.03(11)
$C_{11} - C_{1} - C_{2} - C_{3}$	10.78 (14)	$C_2 - C_1 - C_{11} - C_6$	41.42 (14)
$C_{12} - C_{2} - C_{3} - C_{4}$	110.47 (12)	C1 - C2 - C12 - C13	-179.67(10)
C1 - C2 - C3 - C4	-76.47(12)	C_{3} C_{2} C_{12} C_{13}	-6.47 (19)
$C_2 - C_3 - C_4 - C_5$	40.48 (13)	C_2 — C_{12} — C_{13} — C_{14}	-33.81 (17)
$C_3 - C_4 - C_5 - C_6$	46.53 (12)	C_2 — C_{12} — C_{13} — C_{18}	148.98 (11)
-4	110 60 (11)	C_{18} C_{13} C_{14} C_{15}	-1.16(15)
			1.10(15)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-72.74 (13) -0.30 (16) 176.46 (10) -1.05 (17) 0.97 (16) 0.46 (16) -1.83 (15) -177.98 (9) 1.73 (15) -175.02 (10) 177.70 (9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.38 (10) -0.55 (15) -179.87 (9) 1.11 (15) -179.03 (9) 0.07 (15) -1.85 (16) 2.36 (15) 179.75 (9) 174.98 (9) -4.07 (14)
C7—C6—C11—C1 C5—C6—C11—C1	177.70 (9) 0.95 (15)	C15—C16—O2—C19	-4.07 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C15—H15…O1 ⁱ	0.95	2.35	3.2971 (14)	176
C19—H19 <i>A</i> … <i>Cg</i> 1 ⁱⁱ	0.98	2.76	3.6165 (13)	146
C19—H19 <i>C</i> … <i>Cg</i> 2 ⁱⁱⁱ	0.98	2.74	3.6029 (13)	147

Symmetry codes: (i) x, y-1, z; (ii) x, -y+1/2, z+1/2; (iii) -x+1, -y, -z+1.

6-(4-Ethoxybenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (II)

Crystal data

 $C_{20}H_{20}O_2$ $M_r = 292.36$ Monoclinic, $P2_1/c$ a = 12.6208 (2) Å b = 14.99690 (17) Å c = 8.39151 (12) Å $\beta = 108.6814$ (17)° V = 1504.60 (4) Å³ Z = 4

Data collection

XtaLAB AFC11 (RCD3): quarter-chi single CCD diffractometer Radiation source: Rotating-anode X-ray tube Mirror monochromator ω scans Absorption correction: gaussian (CrysAlis PRO; Rigaku, 2017) $T_{\min} = 0.772, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.042704 reflections F(000) = 624 $D_x = 1.291 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4578 reflections $\theta = 3.7-69.7^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.20 \times 0.11 \times 0.03 \text{ mm}$

9197 measured reflections 2704 independent reflections 2486 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 68.3^\circ, \theta_{min} = 3.7^\circ$ $h = -14 \rightarrow 15$ $k = -18 \rightarrow 12$ $l = -9 \rightarrow 9$

201 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsHydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0491P)^2 + 0.4554P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
$$\begin{split} \Delta \rho_{\min} &= -0.20 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL2014} \\ & \text{(Sheldrick, 2015),} \\ & \text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.0019 (3) \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.29882 (10)	0.41642 (7)	0.43555 (14)	0.0187 (3)	
C2	0.34088 (9)	0.37739 (8)	0.60870 (14)	0.0181 (3)	
C3	0.27266 (9)	0.30342 (8)	0.64912 (14)	0.0183 (3)	
H3A	0.3219	0.2668	0.7414	0.022*	
H3B	0.2438	0.2646	0.5492	0.022*	
C4	0.17406 (9)	0.33720 (8)	0.70118 (14)	0.0196 (3)	
H4A	0.2021	0.3603	0.8178	0.024*	
H4B	0.1226	0.2870	0.6990	0.024*	
C5	0.10987 (10)	0.41143 (8)	0.58327 (14)	0.0203 (3)	
H5A	0.0363	0.4193	0.6001	0.024*	
H5B	0.1517	0.4680	0.6155	0.024*	
C6	0.09109 (10)	0.39437 (7)	0.39855 (14)	0.0187 (3)	
C7	-0.01602 (10)	0.37634 (8)	0.28964 (15)	0.0218 (3)	
H7	-0.0757	0.3683	0.3342	0.026*	
C8	-0.03708 (10)	0.36985 (8)	0.11691 (15)	0.0239 (3)	
H8	-0.1104	0.3564	0.0451	0.029*	
C9	0.04853 (10)	0.38295 (8)	0.04913 (15)	0.0233 (3)	
H9	0.0337	0.3808	-0.0692	0.028*	
C10	0.15569 (10)	0.39914 (8)	0.15573 (14)	0.0201 (3)	
H10	0.2145	0.4080	0.1097	0.024*	
C11	0.17889 (10)	0.40265 (7)	0.33013 (14)	0.0183 (3)	
C12	0.43722 (9)	0.41219 (8)	0.71077 (14)	0.0182 (3)	
H12	0.4688	0.4565	0.6587	0.022*	
C13	0.50252 (10)	0.39471 (7)	0.88640 (14)	0.0183 (3)	
C14	0.46487 (10)	0.35195 (8)	1.00672 (15)	0.0207 (3)	
H14	0.3911	0.3284	0.9737	0.025*	
C15	0.53262 (10)	0.34296 (8)	1.17341 (15)	0.0209 (3)	
H15	0.5052	0.3134	1.2523	0.025*	
C16	0.64063 (10)	0.37742 (7)	1.22393 (14)	0.0186 (3)	
C17	0.67988 (9)	0.42064 (8)	1.10640 (14)	0.0193 (3)	
H17	0.7537	0.4441	1.1399	0.023*	
C18	0.61171 (10)	0.42937 (8)	0.94187 (14)	0.0186 (3)	
H18	0.6393	0.4597	0.8639	0.022*	
C19	0.67659 (10)	0.33225 (8)	1.51117 (15)	0.0229 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H19A	0.6531	0.2700	1.4798	0.028*	
H19B	0.6122	0.3655	1.5247	0.028*	
C20	0.77366 (11)	0.33441 (9)	1.67216 (15)	0.0271 (3)	
H20A	0.7515	0.3069	1.7626	0.041*	
H20B	0.7960	0.3964	1.7018	0.041*	
H20C	0.8367	0.3014	1.6569	0.041*	
01	0.36138 (7)	0.45674 (6)	0.37458 (10)	0.0264 (2)	
02	0.71428 (7)	0.37337 (6)	1.38349 (10)	0.0217 (2)	
H20A H20B H20C O1 O2	0.7515 0.7960 0.8367 0.36138 (7) 0.71428 (7)	0.3069 0.3964 0.3014 0.45674 (6) 0.37337 (6)	1.7626 1.7018 1.6569 0.37458 (10) 1.38349 (10)	0.041* 0.041* 0.041* 0.0264 (2) 0.0217 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0219 (6)	0.0195 (6)	0.0159 (6)	-0.0012 (4)	0.0076 (5)	-0.0007 (4)
C2	0.0192 (6)	0.0212 (6)	0.0155 (6)	0.0017 (4)	0.0077 (5)	0.0005 (4)
C3	0.0182 (6)	0.0208 (6)	0.0155 (5)	-0.0006 (4)	0.0049 (4)	0.0011 (4)
C4	0.0195 (6)	0.0250 (6)	0.0154 (5)	-0.0014 (5)	0.0071 (5)	0.0005 (4)
C5	0.0196 (6)	0.0251 (6)	0.0171 (6)	0.0020 (5)	0.0072 (5)	-0.0011 (4)
C6	0.0204 (6)	0.0187 (5)	0.0171 (6)	0.0027 (4)	0.0059 (5)	0.0012 (4)
C7	0.0203 (6)	0.0255 (6)	0.0203 (6)	0.0027 (5)	0.0073 (5)	-0.0004 (5)
C8	0.0197 (6)	0.0297 (6)	0.0195 (6)	0.0019 (5)	0.0023 (5)	-0.0015 (5)
C9	0.0260 (6)	0.0279 (6)	0.0144 (6)	0.0027 (5)	0.0045 (5)	-0.0007 (5)
C10	0.0233 (6)	0.0213 (6)	0.0169 (6)	0.0008 (5)	0.0081 (5)	0.0007 (4)
C11	0.0205 (6)	0.0173 (5)	0.0167 (6)	0.0004 (4)	0.0056 (5)	0.0002 (4)
C12	0.0184 (6)	0.0207 (6)	0.0176 (6)	0.0010 (4)	0.0087 (5)	0.0007 (4)
C13	0.0188 (6)	0.0198 (5)	0.0170 (6)	0.0010 (4)	0.0067 (5)	-0.0008 (4)
C14	0.0169 (6)	0.0258 (6)	0.0195 (6)	-0.0022 (5)	0.0063 (5)	0.0001 (5)
C15	0.0216 (6)	0.0254 (6)	0.0175 (6)	-0.0014 (5)	0.0090 (5)	0.0022 (4)
C16	0.0202 (6)	0.0200 (6)	0.0149 (6)	0.0026 (4)	0.0049 (5)	-0.0009 (4)
C17	0.0174 (6)	0.0220 (6)	0.0187 (6)	-0.0008 (4)	0.0060 (5)	-0.0012 (4)
C18	0.0205 (6)	0.0199 (6)	0.0173 (6)	0.0003 (4)	0.0089 (5)	0.0002 (4)
C19	0.0277 (6)	0.0260 (6)	0.0160 (6)	-0.0015 (5)	0.0084 (5)	0.0017 (5)
C20	0.0329 (7)	0.0287 (7)	0.0174 (6)	-0.0010 (5)	0.0049 (5)	0.0016 (5)
01	0.0244 (5)	0.0366 (5)	0.0183 (4)	-0.0081 (4)	0.0071 (3)	0.0043 (4)
O2	0.0207 (4)	0.0296 (5)	0.0137 (4)	-0.0018 (3)	0.0041 (3)	0.0025 (3)

Geometric parameters (Å, °)

C1-01	1.2286 (14)	C10—C11	1.3985 (16)	
C1—C2	1.4971 (16)	C10—H10	0.9500	
C1C11	1.5027 (16)	C12—C13	1.4635 (16)	
C2—C12	1.3481 (17)	C12—H12	0.9500	
С2—С3	1.5079 (16)	C13—C14	1.4014 (16)	
C3—C4	1.5311 (15)	C13—C18	1.4053 (17)	
С3—НЗА	0.9900	C14—C15	1.3927 (16)	
С3—Н3В	0.9900	C14—H14	0.9500	
C4—C5	1.5365 (16)	C15—C16	1.3909 (17)	
C4—H4A	0.9900	C15—H15	0.9500	
C4—H4B	0.9900	C16—O2	1.3650 (14)	

	1 5120 (10)	016 017	1 20(0 (1()
C5—C6	1.5130 (16)		1.3968 (16)
C5—H5A	0.9900	C17—C18	1.3794 (16)
C5—H5B	0.9900		0.9500
	1.3944 (17)	C18—H18	0.9500
C6—C11	1.4074 (16)	C19—O2	1.4426 (14)
C7—C8	1.3908 (17)	C19—C20	1.5056 (17)
С7—Н7	0.9500	C19—H19A	0.9900
C8—C9	1.3868 (18)	C19—H19B	0.9900
С8—Н8	0.9500	C20—H20A	0.9800
C9—C10	1.3832 (18)	C20—H20B	0.9800
С9—Н9	0.9500	C20—H20C	0.9800
01—C1—C2	121.41 (10)	С11—С10—Н10	119.4
01—C1—C11	118.88 (10)	C10—C11—C6	119.69 (11)
C2—C1—C11	119.65 (10)	C10—C11—C1	117.07 (10)
C12—C2—C1	115.63 (10)	C6—C11—C1	123.24 (10)
C12—C2—C3	127.28 (10)	C2-C12-C13	132.29 (11)
C1—C2—C3	117.09 (10)	C2-C12-H12	113.9
C2—C3—C4	113.30 (9)	C13—C12—H12	113.9
С2—С3—НЗА	108.9	C14—C13—C18	116.96 (11)
С4—С3—НЗА	108.9	C14—C13—C12	126.59 (11)
С2—С3—Н3В	108.9	C18—C13—C12	116.32 (10)
C4—C3—H3B	108.9	C15—C14—C13	121.81 (11)
H3A—C3—H3B	107.7	C15—C14—H14	119.1
$C_{3}-C_{4}-C_{5}$	111 41 (9)	C13—C14—H14	119.1
$C_3 - C_4 - H_4 A$	109 3	C16-C15-C14	119.77 (11)
$C_5 - C_4 - H_{4A}$	109.3	C_{16} C_{15} H_{15}	120.1
$C_3 - C_4 - H_4 B$	109.3	C_{14} C_{15} H_{15}	120.1
$C_5 C_4 H_{4B}$	100.3	0^{2} C16 C15	120.1 125 13 (10)
	109.5	02 - 010 - 013	125.15(10) 115.41(10)
	114 40 (10)	$C_{15} = C_{16} = C_{17}$	110.41(10)
C6 C5 U5A	114.49 (10)	C13 - C10 - C17	119.40(11)
$C_0 = C_5 = H_5 A$	108.0	$C_{18} = C_{17} = C_{10}$	120.13 (11)
C4—C5—H5A	108.0	C16—C17—H17	119.9
C6	108.6	C16-C1/-H1/	119.9
C4—C5—H5B	108.6		121.83 (10)
H5A—C5—H5B	107.6	С17—С18—Н18	119.1
C7—C6—C11	118.32 (11)	C13—C18—H18	119.1
C7—C6—C5	120.34 (11)	O2—C19—C20	106.86 (10)
C11—C6—C5	121.17 (10)	O2—C19—H19A	110.3
C8—C7—C6	121.21 (11)	С20—С19—Н19А	110.3
С8—С7—Н7	119.4	O2—C19—H19B	110.3
С6—С7—Н7	119.4	C20—C19—H19B	110.3
C9—C8—C7	120.24 (11)	H19A—C19—H19B	108.6
С9—С8—Н8	119.9	C19—C20—H20A	109.5
С7—С8—Н8	119.9	С19—С20—Н20В	109.5
C10—C9—C8	119.24 (11)	H20A—C20—H20B	109.5
С10—С9—Н9	120.4	С19—С20—Н20С	109.5
С8—С9—Н9	120.4	H20A—C20—H20C	109.5

121.14 (11) 119.4	H20B—C20—H20C C16—O2—C19	109.5 117.69 (9)
20.55 (16)	01 C1 C11 C10	27.78 (16)
-162.35 (10)	C2-C1-C11-C10	-149.40 (11)
-158.66 (11)	O1—C1—C11—C6	-151.50 (11)
18.45 (15)	C2-C1-C11-C6	31.33 (16)
97.96 (14)	C1-C2-C12-C13	177.92 (11)
-82.94 (12)	C3—C2—C12—C13	-3.0 (2)
45.35 (13)	C2-C12-C13-C14	-17.9 (2)
42.50 (13)	C2-C12-C13-C18	166.41 (12)
110.32 (12)	C18—C13—C14—C15	-0.80 (17)
-74.39 (14)	C12—C13—C14—C15	-176.51 (11)
-2.33 (17)	C13—C14—C15—C16	0.32 (18)
173.09 (11)	C14—C15—C16—O2	179.45 (11)
-1.20 (18)	C14—C15—C16—C17	-0.06 (17)
2.45 (18)	O2—C16—C17—C18	-179.24 (10)
-0.12 (18)	C15—C16—C17—C18	0.32 (17)
-3.44 (17)	C16—C17—C18—C13	-0.85 (17)
177.26 (11)	C14—C13—C18—C17	1.07 (17)
4.59 (16)	C12—C13—C18—C17	177.23 (10)
-170.79 (10)	C15—C16—O2—C19	-1.70 (16)
-176.16 (11)	C17—C16—O2—C19	177.83 (10)
8.46 (17)	C20—C19—O2—C16	178.58 (10)
	121.14 (11) 119.4 $20.55 (16)$ $-162.35 (10)$ $-158.66 (11)$ $18.45 (15)$ $97.96 (14)$ $-82.94 (12)$ $45.35 (13)$ $42.50 (13)$ $110.32 (12)$ $-74.39 (14)$ $-2.33 (17)$ $173.09 (11)$ $-1.20 (18)$ $2.45 (18)$ $-0.12 (18)$ $-3.44 (17)$ $177.26 (11)$ $4.59 (16)$ $-170.79 (10)$ $-176.16 (11)$ $8.46 (17)$	121.14 (11)H20B—C20—H20C119.4C16—O2—C1920.55 (16)O1—C1—C11—C10 $-162.35 (10)$ C2—C1—C11—C10 $-158.66 (11)$ O1—C1—C11—C618.45 (15)C2—C1—C11—C697.96 (14)C1—C2—C12—C13 $-82.94 (12)$ C3—C2—C12—C1345.35 (13)C2—C12—C13—C1442.50 (13)C2—C12—C13—C1410.32 (12)C18—C13—C14—C15 $-74.39 (14)$ C12—C13—C14—C15 $-2.33 (17)$ C13—C14—C15—C16173.09 (11)C14—C15—C16—C17 $-1.20 (18)$ C15—C16—C17—C18 $-0.12 (18)$ C15—C16—C17—C18 $-3.44 (17)$ C16—C17—C18—C13 $177.26 (11)$ C14—C13—C18—C17 $4.59 (16)$ C12—C13—C18—C17 $-170.79 (10)$ C15—C16—O2—C19 $-176.16 (11)$ C17—C16—O2—C19 $8.46 (17)$ C20—C19—O2—C16

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D…A	<i>D</i> —H··· <i>A</i>
C18—H18…O1 ⁱ	0.95	2.36	3.2653 (14)	159
C4—H4 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱ	0.98	2.72	3.6429 (13)	155
C19—H19 A ···Cg2 ⁱⁱ	0.98	2.71	3.5969 (13)	149

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, -*y*+1/2, *z*+1/2.

2-(4-Benzylbenzylidene)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (III)

Crystal data

Z = 2
F(000) = 376
$D_{\rm x} = 1.285 {\rm Mg} {\rm m}^{-3}$
Cu $K\alpha$ radiation, $\lambda = 1.54184$ Å
Cell parameters from 19041 reflections
$\theta = 3.9-70.3^{\circ}$
$\mu = 0.63 \text{ mm}^{-1}$
T = 100 K
Block, colourless
$0.17 \times 0.11 \times 0.04 \text{ mm}$

Data collection

XtaLAB AFC11 (RCD3): quarter-chi single CCD diffractometer	29818 measured reflections 3336 independent reflections 3073 reflections with $I > 2\sigma(I)$
Kadiation source: Kotating-anode A-ray tube	$R_{\text{int}} = 0.036$
Mirror monochromator	$\theta_{\text{max}} = 68.2^\circ, \ \theta_{\text{min}} = 3.9^\circ$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: gaussian	$k = -11 \rightarrow 11$
(CrysAlis PRO; Rigaku, 2017)	$l = -14 \rightarrow 14$
$T_{\min} = 0.781, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 0.2601R$
S = 1.07	where $P = (F_o^2 + 2F_c^2)/3$
3336 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

245 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 0.2601P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0027 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
-0.05094 (13)	0.41786 (13)	0.37210 (9)	0.0206 (2)
0.11044 (12)	0.39278 (12)	0.40498 (9)	0.0201 (2)
0.15112 (13)	0.53459 (13)	0.34098 (9)	0.0218 (2)
0.2299	0.5293	0.3905	0.026*
0.0507	0.6397	0.3286	0.026*
0.22435 (13)	0.53175 (14)	0.22121 (9)	0.0253 (2)
0.3404	0.4482	0.2340	0.030*
0.2204	0.6406	0.1732	0.030*
0.13332 (14)	0.49174 (14)	0.15296 (9)	0.0261 (2)
0.1675	0.5174	0.0702	0.031*
0.1661	0.3720	0.1880	0.031*
-0.05030 (13)	0.58461 (13)	0.15292 (9)	0.0232 (2)
-0.14024 (15)	0.70291 (13)	0.04850 (10)	0.0286 (3)
-0.0846	0.7283	-0.0221	0.034*
-0.30954 (15)	0.78425 (14)	0.04574 (10)	0.0311 (3)
-0.3685	0.8652	-0.0262	0.037*
-0.39279 (14)	0.74770 (14)	0.14755 (11)	0.0295 (3)
-0.5087	0.8033	0.1457	0.035*
	$\begin{array}{c} x \\ -0.05094 (13) \\ 0.11044 (12) \\ 0.15112 (13) \\ 0.2299 \\ 0.0507 \\ 0.22435 (13) \\ 0.3404 \\ 0.2204 \\ 0.13332 (14) \\ 0.1675 \\ 0.1661 \\ -0.05030 (13) \\ -0.14024 (15) \\ -0.0846 \\ -0.30954 (15) \\ -0.3685 \\ -0.39279 (14) \\ -0.5087 \end{array}$	xy $-0.05094 (13)$ $0.41786 (13)$ $0.11044 (12)$ $0.39278 (12)$ $0.15112 (13)$ $0.53459 (13)$ 0.2299 0.5293 0.0507 0.6397 $0.22435 (13)$ $0.53175 (14)$ 0.3404 0.4482 0.2204 0.6406 $0.13332 (14)$ $0.49174 (14)$ 0.1675 0.5174 0.1661 0.3720 $-0.05030 (13)$ $0.58461 (13)$ $-0.14024 (15)$ $0.70291 (13)$ $-0.30954 (15)$ $0.78425 (14)$ $-0.39279 (14)$ $0.74770 (14)$ -0.5087 0.8033	xyz $-0.05094 (13)$ $0.41786 (13)$ $0.37210 (9)$ $0.11044 (12)$ $0.39278 (12)$ $0.40498 (9)$ $0.15112 (13)$ $0.53459 (13)$ $0.34098 (9)$ 0.2299 0.5293 0.3905 0.0507 0.6397 0.3286 $0.22435 (13)$ $0.53175 (14)$ $0.22121 (9)$ 0.3404 0.4482 0.2340 0.2204 0.6406 0.1732 $0.13332 (14)$ $0.49174 (14)$ $0.15296 (9)$ 0.1675 0.5174 0.0702 0.1661 0.3720 0.1880 $-0.05030 (13)$ $0.58461 (13)$ $0.15292 (9)$ $-0.14024 (15)$ $0.70291 (13)$ $0.04850 (10)$ -0.0846 0.7283 -0.0221 $-0.30954 (15)$ $0.78425 (14)$ $0.04574 (10)$ -0.3685 0.8652 -0.0262 $-0.39279 (14)$ $0.74770 (14)$ $0.14755 (11)$ -0.5087 0.8033 0.1457

C10	-0.30610(13)	0.62955 (13)	0.25218 (10)	0.0254 (2)
H10	-0.3632	0.6033	0.3218	0.030*
C11	-0.13575(13)	0.54864 (12)	0.25643 (9)	0.0214 (2)
C12	0.20322 (12)	0.24621 (13)	0.48767 (9)	0.0203(2)
H12	0.1549	0.1733	0.5162	0.024*
C13	0.36457 (13)	0.17816 (13)	0.54185 (9)	0.0208 (2)
C14	0.48036 (13)	0.23711 (13)	0.49726 (9)	0.0232(2)
H14	0.4568	0.3274	0.4241	0.028*
C15	0.62886 (13)	0.16712 (13)	0.55709 (9)	0.0239 (2)
H15	0.7051	0.2099	0.5253	0.029*
C16	0.66527 (12)	0.03382 (13)	0.66400 (9)	0.0214 (2)
C17	0.55458 (13)	-0.03095 (12)	0.70815 (9)	0.0213 (2)
H17	0.5800	-0.1236	0.7799	0.026*
C18	0.40818 (13)	0.03976 (13)	0.64743 (9)	0.0211 (2)
H18	0.3344	-0.0065	0.6779	0.025*
C19	0.92156 (13)	0.02302 (14)	0.68813 (10)	0.0291 (3)
H19A	0.8709	0.1402	0.6798	0.035*
H19B	0.9567	0.0162	0.6096	0.035*
C20	1.06575 (13)	-0.07617 (13)	0.77387 (9)	0.0230 (2)
C21	1.18414 (13)	-0.22910 (13)	0.77295 (10)	0.0251 (2)
H21	1.1719	-0.2709	0.7190	0.030*
C22	1.31964 (13)	-0.32064 (13)	0.85007 (10)	0.0266 (2)
H22	1.3985	-0.4259	0.8499	0.032*
C23	1.34081 (13)	-0.25957 (14)	0.92737 (10)	0.0273 (3)
H23	1.4350	-0.3216	0.9791	0.033*
C24	1.22388 (14)	-0.10747 (14)	0.92885 (10)	0.0283 (3)
H24	1.2376	-0.0652	0.9819	0.034*
C25	1.08673 (13)	-0.01680 (13)	0.85305 (10)	0.0257 (2)
H25	1.0063	0.0868	0.8552	0.031*
01	-0.11776 (9)	0.33551 (9)	0.43769 (6)	0.02637 (19)
O2	0.80574 (9)	-0.04221 (9)	0.73220 (6)	0.02490 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0216 (5)	0.0216 (5)	0.0211 (5)	-0.0107 (4)	0.0026 (4)	-0.0097 (4)
C2	0.0206 (5)	0.0227 (5)	0.0199 (5)	-0.0118 (4)	0.0035 (4)	-0.0089 (4)
C3	0.0214 (5)	0.0210 (5)	0.0235 (5)	-0.0110 (4)	0.0009 (4)	-0.0069 (4)
C4	0.0233 (6)	0.0246 (5)	0.0255 (6)	-0.0122 (5)	0.0037 (4)	-0.0060 (4)
C5	0.0296 (6)	0.0267 (6)	0.0219 (5)	-0.0135 (5)	0.0058 (4)	-0.0094 (4)
C6	0.0298 (6)	0.0209 (5)	0.0224 (5)	-0.0128 (5)	0.0001 (4)	-0.0091 (4)
C7	0.0407 (7)	0.0254 (6)	0.0226 (6)	-0.0172 (5)	-0.0016 (5)	-0.0077 (5)
C8	0.0413 (7)	0.0218 (6)	0.0280 (6)	-0.0106 (5)	-0.0124 (5)	-0.0065 (5)
C9	0.0269 (6)	0.0248 (6)	0.0362 (6)	-0.0062 (5)	-0.0092 (5)	-0.0140 (5)
C10	0.0252 (6)	0.0254 (6)	0.0291 (6)	-0.0113 (5)	-0.0011 (4)	-0.0129 (5)
C11	0.0240 (5)	0.0197 (5)	0.0232 (5)	-0.0101 (4)	-0.0012 (4)	-0.0096 (4)
C12	0.0211 (5)	0.0232 (5)	0.0205 (5)	-0.0129 (4)	0.0036 (4)	-0.0091 (4)
C13	0.0208 (5)	0.0212 (5)	0.0219 (5)	-0.0097 (4)	0.0017 (4)	-0.0092 (4)

C14	0.0227 (5)	0.0230 (5)	0.0217 (5)	-0.0114 (4)	0.0006 (4)	-0.0046 (4)
C15	0.0226 (5)	0.0256 (5)	0.0243 (5)	-0.0144 (5)	0.0030 (4)	-0.0063 (4)
C16	0.0192 (5)	0.0221 (5)	0.0230 (5)	-0.0088(4)	-0.0002 (4)	-0.0086 (4)
C17	0.0223 (5)	0.0197 (5)	0.0210 (5)	-0.0105 (4)	0.0011 (4)	-0.0055 (4)
C18	0.0214 (5)	0.0217 (5)	0.0235 (5)	-0.0122 (4)	0.0033 (4)	-0.0092 (4)
C19	0.0242 (6)	0.0305 (6)	0.0307 (6)	-0.0183 (5)	-0.0022 (5)	-0.0008(5)
C20	0.0205 (5)	0.0242 (5)	0.0242 (5)	-0.0146 (4)	0.0018 (4)	-0.0033 (4)
C21	0.0288 (6)	0.0261 (6)	0.0255 (6)	-0.0174 (5)	0.0023 (4)	-0.0088(4)
C22	0.0236 (6)	0.0217 (5)	0.0303 (6)	-0.0103 (5)	0.0030 (4)	-0.0062 (5)
C23	0.0236 (6)	0.0296 (6)	0.0250 (6)	-0.0153 (5)	-0.0030 (4)	-0.0009 (5)
C24	0.0355 (6)	0.0325 (6)	0.0231 (6)	-0.0209 (5)	0.0015 (5)	-0.0093 (5)
C25	0.0260 (6)	0.0224 (5)	0.0273 (6)	-0.0115 (5)	0.0056 (4)	-0.0085 (4)
01	0.0258 (4)	0.0314 (4)	0.0242 (4)	-0.0182 (3)	0.0011 (3)	-0.0058 (3)
O2	0.0201 (4)	0.0269 (4)	0.0257 (4)	-0.0141 (3)	-0.0028 (3)	-0.0019 (3)

Geometric parameters (Å, °)

C101	1.2294 (12)	C13—C14	1.4001 (14)
C1—C2	1.4914 (14)	C13—C18	1.4042 (15)
C1C11	1.5025 (14)	C14—C15	1.3895 (15)
C2-C12	1.3467 (15)	C14—H14	0.9500
C2—C3	1.5077 (14)	C15—C16	1.3933 (15)
C3—C4	1.5326 (15)	C15—H15	0.9500
С3—НЗА	0.9900	C16—O2	1.3723 (12)
С3—Н3В	0.9900	C16—C17	1.3936 (14)
C4—C5	1.5352 (15)	C17—C18	1.3774 (14)
C4—H4A	0.9900	C17—H17	0.9500
C4—H4B	0.9900	C18—H18	0.9500
С5—С6	1.5099 (15)	C19—O2	1.4392 (12)
С5—Н5А	0.9900	C19—C20	1.4990 (15)
С5—Н5В	0.9900	C19—H19A	0.9900
C6—C7	1.3945 (15)	C19—H19B	0.9900
C6—C11	1.4102 (15)	C20—C25	1.3916 (16)
C7—C8	1.3881 (17)	C20—C21	1.3925 (16)
С7—Н7	0.9500	C21—C22	1.3849 (16)
C8—C9	1.3850 (18)	C21—H21	0.9500
С8—Н8	0.9500	C22—C23	1.3850 (16)
C9—C10	1.3859 (16)	C22—H22	0.9500
С9—Н9	0.9500	C23—C24	1.3850 (17)
C10-C11	1.3960 (15)	C23—H23	0.9500
C10—H10	0.9500	C24—C25	1.3871 (16)
C12—C13	1.4637 (14)	C24—H24	0.9500
С12—Н12	0.9500	С25—Н25	0.9500
O1—C1—C2	121.81 (9)	C13—C12—H12	114.0
O1-C1-C11	118.85 (9)	C14—C13—C18	116.95 (9)
C2—C1—C11	119.33 (9)	C14—C13—C12	125.98 (9)
C12—C2—C1	116.43 (9)	C18—C13—C12	117.06 (9)

C12—C2—C3	127.54 (9)	C15—C14—C13	121.79 (10)
C1-C2-C3	116.03 (9)	C15—C14—H14	119.1
$C_{2} - C_{3} - C_{4}$	111 93 (9)	C13—C14—H14	119.1
C^2 C^3 H^3A	109.2	C14-C15-C16	119 59 (10)
C4-C3-H3A	109.2	C14-C15-H15	120.2
$C_2 - C_3 - H_3 B$	109.2	C16_C15_H15	120.2
C4 - C3 - H3B	109.2	02-C16-C15	120.2
H_{3A} C_{3} H_{3B}	107.9	02 - C16 - C17	121.70(9) 11557(9)
$C_3 - C_4 - C_5$	112 28 (9)	C_{15} C_{16} C_{17}	119.73 (10)
$C_3 - C_4 - H_4 \Delta$	109.1	C18 - C17 - C16	119.83 (10)
C_{5} C_{4} H_{4A}	109.1	C18 - C17 - H17	120.1
$C_3 - C_4 - H_4B$	109.1	$C_{16} - C_{17} - H_{17}$	120.1
$C_5 = C_4 = H_4 B$	109.1	$C_{10} = C_{17} = M_{17}$	120.1
$H_{4} - C_{4} - H_{4} B$	107.9	C17 - C18 - H18	110.0
C6 $C5$ $C4$	11/ 06 (0)	C_{13} C_{18} H_{18}	119.0
C6-C5-H54	108 7	02-C19-C20	108 38 (8)
C_{4} C_{5} H_{5A}	108.7	$O_2 = C_{19} = C_{20}$	110.0
C6 C5 H5P	108.7	C_{2} C_{19} H_{10A}	110.0
C_{4} C_{5} H5B	108.7	$O_2 C_{10} H_{10}B$	110.0
$H_{5A} = C_5 = H_{5B}$	107.6	C_{2} C_{19} H_{19B}	110.0
C7_C6_C11	118 30 (10)	$H_{104} - C_{19} - H_{19B}$	108.4
C7 - C6 - C5	120.45(10)	C_{25} C_{20} C_{21}	118 80 (10)
$C_{11} - C_{6} - C_{5}$	120.43 (10)	$C_{25} = C_{20} = C_{21}$	121.35(10)
C_{8} C_{7} C_{6}	121.17(0) 121.25(11)	$C_{23} = C_{20} = C_{13}$	121.33(10) 119.83(10)
C8-C7-H7	119.4	$C_{21} = C_{20} = C_{12}$	119.05(10) 120.46(10)
C6-C7-H7	119.4	$C_{22} = C_{21} = C_{20}$	110.8
$C_{0} - C_{8} - C_{7}$	119.4 120.17 (10)	$C_{22} = C_{21} = H_{21}$	119.8
$C_{9} = C_{8} = H_{8}$	110.0	$C_{20} = C_{21} = H_{21}$	120.37 (10)
C7 C8 H8	110.0	$C_{21} = C_{22} = C_{23}$	110.8
$C_{8} - C_{9} - C_{10}$	119.9	C_{23} C_{22} H_{22}	119.8
$C_8 = C_9 = C_{10}$	120.2	$C_{23} = C_{22} = H_{22}$	119.60 (10)
$C_{0} = C_{0} = H_{0}$	120.2	$C_{24} = C_{23} = C_{22}$	119.00 (10)
$C_{10} = C_{10} = C_{11}$	120.2 120.72(11)	$C_{24} = C_{23} = H_{23}$	120.2
$C_{9} = C_{10} = C_{11}$	110.6	$C_{22} = C_{23} = H_{23}$	120.2 120.12(10)
$C_{11} = C_{10} = H_{10}$	119.0	$C_{23} = C_{24} = C_{23}$	120.12 (10)
C_{10} C_{11} C_{6}	119.0	$C_{23} = C_{24} = H_{24}$	119.9
$C_{10} = C_{11} = C_{0}$	119.92(10) 117.40(0)	$C_{23} = C_{24} = 1124$	119.9
$C_{10} = C_{11} = C_{11}$	117.49(9) 122.50(0)	$C_{24} = C_{25} = C_{20}$	120.04 (10)
C_{2} C_{12} C_{13}	122.30(9) 132.05(9)	$C_{24} = C_{25} = H_{25}$	119.7
$C_2 = C_{12} = C_{13}$	132.03 (9)	$C_{20} = C_{23} = 1123$	119.7
C2—C12—1112	114.0	02-019	110.40 (8)
01 - C1 - C2 - C12	20.98 (15)	$C_{3} - C_{2} - C_{12} - C_{13}$	0 73 (19)
$C_{11} - C_{12} - C_{12} - C_{12}$	-159.81 (9)	$C_2 - C_{12} - C_{13} - C_{14}$	-17.70(19)
01 - C1 - C2 - C3	-159.38(10)	C_2 — C_{12} — C_{13} — C_{18}	163.17 (11)
$C_{11} - C_{1} - C_{2} - C_{3}$	19.82 (13)	C18 - C13 - C14 - C15	-2.86(16)
$C_{12} - C_{2} - C_{3} - C_{4}$	95.36 (13)	C12-C13-C14-C15	178.01 (10)
C1 - C2 - C3 - C4	-84 23 (11)	C_{13} C_{14} C_{15} C_{16}	0 48 (16)
$C_{2} = C_{3} = C_{4} = C_{5}$	43 11 (12)	C14-C15-C16-O2	-178 18 (10)
$C_2 - C_3 - C_4 - C_3$	TJ.11 (12)	017 - 010 - 010 - 02	1/0.10(10)

C3—C4—C5—C6	45.09 (12)	C14—C15—C16—C17	1.83 (16)
C4—C5—C6—C7	112.75 (11)	O2-C16-C17-C18	178.36 (9)
C4—C5—C6—C11	-70.46 (13)	C15—C16—C17—C18	-1.65 (16)
C11—C6—C7—C8	0.23 (16)	C16—C17—C18—C13	-0.86 (16)
C5—C6—C7—C8	177.11 (10)	C14—C13—C18—C17	3.06 (15)
C6—C7—C8—C9	-0.60 (17)	C12-C13-C18-C17	-177.73 (9)
C7—C8—C9—C10	0.04 (16)	O2—C19—C20—C25	-102.31 (11)
C8—C9—C10—C11	0.89 (16)	O2-C19-C20-C21	79.43 (12)
C9—C10—C11—C6	-1.26 (15)	C25—C20—C21—C22	0.41 (15)
C9—C10—C11—C1	-177.85 (9)	C19—C20—C21—C22	178.72 (9)
C7—C6—C11—C10	0.69 (15)	C20—C21—C22—C23	-1.38 (16)
C5-C6-C11-C10	-176.17 (9)	C21—C22—C23—C24	1.27 (16)
C7—C6—C11—C1	177.10 (9)	C22—C23—C24—C25	-0.20 (16)
C5-C6-C11-C1	0.25 (15)	C23—C24—C25—C20	-0.77 (16)
O1-C1-C11-C10	32.34 (14)	C21—C20—C25—C24	0.67 (16)
C2-C1-C11-C10	-146.89 (10)	C19—C20—C25—C24	-177.61 (10)
O1—C1—C11—C6	-144.16 (10)	C15—C16—O2—C19	0.07 (15)
C2-C1-C11-C6	36.61 (14)	C17—C16—O2—C19	-179.94 (9)
C1—C2—C12—C13	-179.68 (10)	C20—C19—O2—C16	-179.68 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C15—H15…O1 ⁱ	0.95	2.40	3.3477 (13)	176
С18—Н18…Сд3іі	0.95	2.64	3.5147 (13)	153

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

2-(4-Chlorobenzylidene)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (IV)

Crystal data

$C_{18}H_{15}ClO$ $M_r = 282.75$ Monoclinic, P2 ₁ /n a = 10.6273 (5) Å b = 11.6191 (4) Å c = 12.1114 (5) Å $\beta = 108.777$ (4)° V = 1415.92 (11) Å ³ Z = 4 Data collection	F(000) = 592 $D_x = 1.326 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4926 reflections $\theta = 4.8-70.0^{\circ}$ $\mu = 2.31 \text{ mm}^{-1}$ T = 100 K Plate, colourless $0.28 \times 0.20 \times 0.03 \text{ mm}$
XtaLAB AFC11 (RCD3): quarter-chi single CCD diffractometer Radiation source: Rotating-anode X-ray tube Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku, 2017) $T_{min} = 0.722, T_{max} = 1.000$	11747 measured reflections 2568 independent reflections 2203 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 68.2^{\circ}, \theta_{min} = 4.8^{\circ}$ $h = -12 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.165$	neighbouring sites
<i>S</i> = 1.11	H-atom parameters constrained
2568 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1145P)^2 + 0.0344P]$
181 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\min} = -0.41 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2086 (2)	0.65193 (16)	0.58219 (17)	0.0292 (4)
C2	0.34239 (19)	0.67189 (16)	0.67264 (17)	0.0292 (4)
C3	0.34206 (19)	0.73875 (16)	0.77902 (17)	0.0311 (5)
H3A	0.4244	0.7207	0.8436	0.037*
H3B	0.2658	0.7131	0.8029	0.037*
C4	0.3330 (2)	0.86976 (16)	0.76058 (18)	0.0333 (5)
H4A	0.4225	0.9004	0.7685	0.040*
H4B	0.3028	0.9057	0.8218	0.040*
C5	0.2366 (2)	0.90247 (17)	0.64003 (18)	0.0323 (5)
H5A	0.2215	0.9866	0.6372	0.039*
H5B	0.2775	0.8829	0.5796	0.039*
C6	0.1047 (2)	0.84132 (17)	0.61283 (17)	0.0301 (5)
C7	-0.0085 (2)	0.90160 (19)	0.61159 (17)	0.0353 (5)
H7	-0.0024	0.9820	0.6268	0.042*
C8	-0.1309 (2)	0.84680 (19)	0.58856 (19)	0.0367 (5)
H8	-0.2071	0.8896	0.5885	0.044*
C9	-0.1412 (2)	0.72966 (19)	0.56571 (17)	0.0361 (5)
Н9	-0.2242	0.6917	0.5506	0.043*
C10	-0.0297 (2)	0.66851 (18)	0.56509 (17)	0.0330 (5)
H10	-0.0369	0.5884	0.5486	0.040*
C11	0.09310 (19)	0.72291 (16)	0.58837 (16)	0.0294 (5)
C12	0.4476 (2)	0.62505 (16)	0.65047 (18)	0.0317 (5)
H12	0.4264	0.5825	0.5798	0.038*
C13	0.5893 (2)	0.62893 (16)	0.71748 (18)	0.0303 (5)
C14	0.6506 (2)	0.71561 (17)	0.79718 (18)	0.0334 (5)
H14	0.5983	0.7765	0.8116	0.040*
C15	0.7861 (2)	0.71376 (17)	0.85517 (18)	0.0339 (5)
H15	0.8263	0.7730	0.9090	0.041*
C16	0.8629 (2)	0.62534 (17)	0.83450 (19)	0.0341 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.8062 (2)	0.53886 (18)	0.75589 (19)	0.0391 (5)	
H17	0.8593	0.4783	0.7421	0.047*	
C18	0.6709 (2)	0.54195 (18)	0.69764 (18)	0.0360 (5)	
H18	0.6321	0.4833	0.6425	0.043*	
01	0.19203 (14)	0.57880 (12)	0.50600 (12)	0.0347 (4)	
Cl1	1.03346 (5)	0.62611 (5)	0.90563 (5)	0.0469 (3)	
H17 C18 H18 O1 C11	0.8593 0.6709 (2) 0.6321 0.19203 (14) 1.03346 (5)	0.4783 0.54195 (18) 0.4833 0.57880 (12) 0.62611 (5)	0.7421 0.69764 (18) 0.6425 0.50600 (12) 0.90563 (5)	0.047* 0.0360 (5) 0.043* 0.0347 (4) 0.0469 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0308 (11)	0.0267 (9)	0.0297 (10)	-0.0017 (8)	0.0091 (8)	0.0023 (8)
C2	0.0292 (10)	0.0258 (9)	0.0307 (10)	-0.0012 (7)	0.0068 (8)	0.0018 (7)
C3	0.0273 (10)	0.0325 (10)	0.0309 (10)	0.0007 (8)	0.0056 (8)	-0.0006 (8)
C4	0.0274 (11)	0.0321 (11)	0.0371 (12)	-0.0021 (8)	0.0056 (9)	-0.0064 (8)
C5	0.0308 (11)	0.0277 (9)	0.0362 (11)	-0.0004 (8)	0.0076 (9)	-0.0006 (8)
C6	0.0289 (11)	0.0296 (10)	0.0295 (10)	-0.0005 (8)	0.0063 (8)	0.0004 (8)
C7	0.0330 (11)	0.0362 (11)	0.0330 (11)	0.0017 (9)	0.0056 (9)	-0.0004 (9)
C8	0.0286 (11)	0.0469 (12)	0.0328 (11)	0.0045 (9)	0.0074 (9)	-0.0001 (9)
C9	0.0289 (11)	0.0455 (12)	0.0312 (11)	-0.0047 (9)	0.0059 (9)	0.0015 (9)
C10	0.0323 (11)	0.0344 (11)	0.0295 (10)	-0.0043 (8)	0.0062 (8)	0.0008 (8)
C11	0.0280 (11)	0.0318 (10)	0.0263 (10)	0.0004 (8)	0.0058 (8)	0.0017 (7)
C12	0.0350 (12)	0.0274 (10)	0.0303 (11)	-0.0015 (8)	0.0073 (9)	0.0008 (7)
C13	0.0306 (11)	0.0317 (10)	0.0284 (10)	0.0020 (8)	0.0090 (9)	0.0025 (8)
C14	0.0296 (11)	0.0314 (10)	0.0384 (11)	0.0005 (8)	0.0099 (9)	-0.0030 (8)
C15	0.0325 (11)	0.0338 (10)	0.0350 (11)	-0.0023 (8)	0.0101 (9)	-0.0016 (8)
C16	0.0281 (11)	0.0383 (11)	0.0356 (12)	0.0005 (8)	0.0099 (9)	0.0045 (8)
C17	0.0339 (11)	0.0373 (12)	0.0465 (13)	0.0049 (9)	0.0134 (10)	-0.0025 (9)
C18	0.0334 (11)	0.0344 (11)	0.0397 (12)	-0.0005 (8)	0.0110 (9)	-0.0059 (8)
01	0.0348 (8)	0.0318 (8)	0.0354 (8)	-0.0029 (6)	0.0083 (6)	-0.0060 (6)
C11	0.0268 (4)	0.0552 (4)	0.0545 (4)	0.0032 (2)	0.0071 (3)	0.0000 (2)

Geometric parameters (Å, °)

C1-01	1.225 (2)	С8—Н8	0.9500	
C1C11	1.501 (3)	C9—C10	1.384 (3)	
C1—C2	1.507 (3)	С9—Н9	0.9500	
C2—C12	1.346 (3)	C10—C11	1.395 (3)	
C2—C3	1.506 (3)	C10—H10	0.9500	
C3—C4	1.537 (3)	C12—C13	1.464 (3)	
С3—НЗА	0.9900	C12—H12	0.9500	
С3—Н3В	0.9900	C13—C18	1.402 (3)	
C4—C5	1.537 (3)	C13—C14	1.402 (3)	
C4—H4A	0.9900	C14—C15	1.385 (3)	
C4—H4B	0.9900	C14—H14	0.9500	
C5—C6	1.510 (3)	C15—C16	1.384 (3)	
C5—H5A	0.9900	C15—H15	0.9500	
C5—H5B	0.9900	C16—C17	1.382 (3)	
C6—C7	1.388 (3)	C16—Cl1	1.739 (2)	

C6—C11	1.404 (3)	C17—C18	1.383 (3)
С7—С8	1.393 (3)	С17—Н17	0.9500
С7—Н7	0.9500	C18—H18	0.9500
C8—C9	1.386 (3)		
01—C1—C11	119.82 (18)	С7—С8—Н8	120.1
O1—C1—C2	121.84 (18)	С10—С9—С8	119.48 (19)
C11—C1—C2	118.33 (16)	С10—С9—Н9	120.3
C12—C2—C3	127.61 (18)	С8—С9—Н9	120.3
C12—C2—C1	116.26 (17)	C9—C10—C11	120.90 (19)
C3—C2—C1	116.09 (16)	C9—C10—H10	119.6
C2—C3—C4	113.82 (16)	C11—C10—H10	119.6
С2—С3—НЗА	108.8	C10—C11—C6	119.99 (18)
C4—C3—H3A	108.8	C10—C11—C1	117.91 (17)
C2—C3—H3B	108.8	C6-C11-C1	122.07 (17)
C4—C3—H3B	108.8	C2-C12-C13	130.51 (18)
H3A—C3—H3B	107.7	C_{2} C_{12} H_{12}	114 7
$C_3 - C_4 - C_5$	111.98 (16)	C_{13} C_{12} H_{12}	114.7
$C_3 - C_4 - H_4 A$	109.2	C18 - C13 - C14	117 39 (19)
$C_5 - C_4 - H_4 A$	109.2	C18 - C13 - C12	117.35 (19)
$C_3 - C_4 - H_4 B$	109.2	C_{14} C_{13} C_{12} C_{12}	124.81(17)
$C_5 C_4 H_{4B}$	109.2	$C_{15} = C_{14} = C_{13}$	124.01(17) 120.00(18)
$H_{A} = C_{A} = H_{A} B$	109.2	$C_{15} = C_{14} = C_{15}$	120.39 (18)
C6 C5 C4	107.9 112.27(17)	$C_{13} = C_{14} = H_{14}$	119.5
C_{0}	112.27(17)	$C_{15} - C_{14} - 1114$	119.5
$C_0 = C_5 = H_5 \Lambda$	109.1	$C_{10} - C_{13} - C_{14}$	119.62 (19)
C4 - C5 - H5R	109.1	C14 C15 H15	120.1
$C_0 - C_5 - H_5 B$	109.1	C17_C1(_C15	120.1
C4—C5—H5B	109.1	C17 - C16 - C13	120.9 (2)
H5A-C5-H5B	107.9		119.91 (16)
	118.35 (19)		119.19 (17)
	120.36 (18)		118.90 (19)
CII—C6—C5	121.30 (18)	C16—C17—H17	120.6
C6-C/-C8	121.4 (2)	C18—C17—H17	120.6
С6—С/—Н/	119.3	C17—C18—C13	122.0 (2)
С8—С/—Н/	119.3	С17—С18—Н18	119.0
C9—C8—C7	119.8 (2)	C13—C18—H18	119.0
С9—С8—Н8	120.1		
O1—C1—C2—C12	14.6 (3)	C5—C6—C11—C1	-3.0 (3)
C11—C1—C2—C12	-166.52 (17)	O1—C1—C11—C10	38.8 (3)
O1—C1—C2—C3	-163.47 (18)	C2-C1-C11-C10	-140.10 (18)
C11—C1—C2—C3	15.4 (2)	O1—C1—C11—C6	-139.2 (2)
C12—C2—C3—C4	101.3 (2)	C2-C1-C11-C6	42.0 (3)
C1—C2—C3—C4	-80.8 (2)	C3—C2—C12—C13	-3.2 (3)
C2—C3—C4—C5	39.8 (2)	C1—C2—C12—C13	178.97 (18)
C3—C4—C5—C6	48.7 (2)	C2-C12-C13-C18	157.7 (2)
C4—C5—C6—C7	108.5 (2)	C2-C12-C13-C14	-24.7 (3)
C4—C5—C6—C11	-71.4 (2)	C18—C13—C14—C15	-1.1 (3)

C11—C6—C7—C8	1.0 (3)	C12—C13—C14—C15	-178.65 (19)
C5—C6—C7—C8	-178.97 (19)	C13—C14—C15—C16	0.0 (3)
C6—C7—C8—C9	-0.3 (3)	C14—C15—C16—C17	0.5 (3)
C7—C8—C9—C10	-0.5 (3)	C14—C15—C16—Cl1	178.57 (16)
C8—C9—C10—C11	0.7 (3)	C15—C16—C17—C18	0.1 (3)
C9—C10—C11—C6	0.0 (3)	Cl1—C16—C17—C18	-178.02 (16)
C9—C10—C11—C1	-177.98 (18)	C16—C17—C18—C13	-1.2 (3)
C7—C6—C11—C10	-0.8 (3)	C14—C13—C18—C17	1.6 (3)
C5—C6—C11—C10	179.14 (17)	C12—C13—C18—C17	179.39 (18)
C7—C6—C11—C1	177.07 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C10—H10…O1 ⁱ	0.95	2.50	3.319 (2)	145
C3—H3A···Cg1 ⁱⁱ	0.99	2.83	3.572 (2)	132

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1/2, -y+3/2, z+1/2.

6-(4-Cyanobenzylidene)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (V)

Crystal data

C₁₉H₁₅NO $M_r = 273.32$ Monoclinic, $P2_1/c$ a = 12.4725 (4) Å b = 7.1718 (2) Å c = 15.9983 (5) Å $\beta = 106.120$ (3)° V = 1374.79 (8) Å³ Z = 4

Data collection

XtaLAB AFC11 (RCD3): quarter-chi single	97
CCD	25
diffractometer	23
Radiation source: Rotating-anode X-ray tube	R_{i}
Mirror monochromator	$\theta_{ m n}$
ω scans	h
Absorption correction: gaussian	k
(CrysAlis PRO; Rigaku, 2017)	1 =
$T_{\min} = 0.895, \ T_{\max} = 1.000$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.181$ S = 1.062511 reflections 190 parameters 0 restraints F(000) = 576 $D_x = 1.321 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3885 reflections $\theta = 5.7-69.4^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.17 \times 0.10 \times 0.03 \text{ mm}$

9732 measured reflections 2511 independent reflections 2302 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 68.2^\circ, \ \theta_{min} = 3.7^\circ$ $h = -14 \rightarrow 15$ $k = -7 \rightarrow 8$ $l = -19 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1396P)^2 + 0.1712P]$ where $P = (F_o^2 + 2F_e^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.49$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.34825 (12)	0.5911 (2)	0.45058 (9)	0.0284 (4)
C2	0.29525 (12)	0.4044 (2)	0.42080 (9)	0.0275 (4)
C3	0.32674 (12)	0.3153 (2)	0.34549 (9)	0.0279 (4)
H3A	0.3150	0.1790	0.3474	0.033*
H3B	0.4073	0.3366	0.3529	0.033*
C4	0.26091 (13)	0.3882 (2)	0.25527 (10)	0.0292 (4)
H4A	0.3080	0.3783	0.2148	0.035*
H4B	0.1941	0.3093	0.2323	0.035*
C5	0.22444 (13)	0.5911 (2)	0.25887 (10)	0.0296 (4)
H5A	0.1850	0.6337	0.1994	0.036*
H5B	0.1717	0.5993	0.2950	0.036*
C6	0.32277 (12)	0.7168 (2)	0.29642 (9)	0.0279 (4)
C7	0.35894 (13)	0.8371 (2)	0.24193 (10)	0.0304 (4)
H7	0.3192	0.8421	0.1820	0.037*
C8	0.45193 (14)	0.9506 (2)	0.27303 (11)	0.0319 (4)
H8	0.4759	1.0306	0.2344	0.038*
C9	0.50973 (13)	0.9462 (2)	0.36109 (11)	0.0318 (4)
H9	0.5734	1.0232	0.3829	0.038*
C10	0.47389 (13)	0.8293 (2)	0.41635 (10)	0.0305 (4)
H10	0.5128	0.8279	0.4765	0.037*
C11	0.38136 (12)	0.7129 (2)	0.38553 (10)	0.0279 (4)
C12	0.23202 (13)	0.3273 (2)	0.46664 (10)	0.0294 (4)
H12	0.2248	0.3944	0.5160	0.035*
C13	0.17236 (13)	0.1477 (2)	0.44785 (10)	0.0284 (4)
C14	0.11644 (13)	0.0939 (2)	0.36261 (10)	0.0304 (4)
H14	0.1162	0.1752	0.3157	0.036*
C15	0.06168 (13)	-0.0752 (2)	0.34565 (10)	0.0304 (4)
H15	0.0252	-0.1102	0.2874	0.036*
C16	0.05996 (12)	-0.1944 (2)	0.41403 (10)	0.0288 (4)
C17	0.11421 (14)	-0.1427 (2)	0.49975 (10)	0.0327 (4)
H17	0.1138	-0.2237	0.5466	0.039*
C18	0.16847 (13)	0.0273 (2)	0.51552 (10)	0.0320 (4)
H18	0.2040	0.0630	0.5738	0.038*
C19	-0.00015 (13)	-0.3676 (2)	0.39548 (10)	0.0308 (4)
N1	-0.05047 (12)	-0.5036 (2)	0.37711 (9)	0.0374 (4)
01	0.36770 (11)	0.63971 (17)	0.52639 (7)	0.0376 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0239 (8)	0.0341 (9)	0.0233 (8)	0.0023 (6)	0.0002 (6)	-0.0017 (6)
C2	0.0235 (7)	0.0299 (8)	0.0234 (8)	0.0018 (6)	-0.0028 (6)	0.0020 (6)
C3	0.0228 (7)	0.0306 (8)	0.0273 (8)	0.0001 (6)	0.0020 (6)	-0.0004 (6)
C4	0.0263 (8)	0.0345 (9)	0.0243 (8)	-0.0036 (6)	0.0030 (6)	-0.0032 (6)
C5	0.0256 (8)	0.0356 (9)	0.0231 (8)	-0.0009 (6)	-0.0009 (6)	0.0006 (6)
C6	0.0248 (8)	0.0304 (8)	0.0264 (8)	0.0042 (6)	0.0034 (6)	-0.0011 (6)
C7	0.0278 (8)	0.0311 (8)	0.0307 (9)	0.0048 (6)	0.0054 (7)	0.0001 (6)
C8	0.0314 (8)	0.0286 (8)	0.0375 (9)	0.0031 (6)	0.0122 (7)	0.0008 (6)
C9	0.0244 (8)	0.0305 (8)	0.0391 (9)	-0.0001 (6)	0.0065 (7)	-0.0044 (7)
C10	0.0254 (8)	0.0307 (8)	0.0317 (9)	0.0019 (6)	0.0016 (6)	-0.0038 (6)
C11	0.0235 (7)	0.0288 (8)	0.0292 (8)	0.0015 (6)	0.0035 (6)	-0.0021 (6)
C12	0.0272 (8)	0.0323 (8)	0.0243 (8)	0.0018 (6)	-0.0002 (6)	-0.0001 (6)
C13	0.0236 (8)	0.0321 (9)	0.0277 (8)	0.0015 (6)	0.0042 (6)	-0.0011 (6)
C14	0.0274 (8)	0.0340 (9)	0.0257 (8)	-0.0011 (6)	0.0009 (6)	0.0060 (6)
C15	0.0263 (8)	0.0354 (9)	0.0248 (8)	-0.0013 (6)	-0.0006 (6)	0.0005 (6)
C16	0.0239 (7)	0.0300 (8)	0.0294 (8)	0.0004 (6)	0.0025 (6)	0.0006 (6)
C17	0.0332 (8)	0.0359 (9)	0.0256 (8)	-0.0014 (7)	0.0027 (7)	0.0045 (6)
C18	0.0312 (8)	0.0371 (9)	0.0245 (8)	-0.0022 (7)	0.0024 (6)	-0.0005 (6)
C19	0.0300 (8)	0.0339 (9)	0.0259 (8)	0.0023 (7)	0.0033 (6)	0.0036 (6)
N1	0.0377 (8)	0.0359 (9)	0.0338 (8)	-0.0053 (6)	0.0018 (6)	0.0021 (6)
01	0.0426 (7)	0.0412 (7)	0.0259 (6)	-0.0094 (5)	0.0042 (5)	-0.0047 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C101	1.2199 (19)	С8—Н8	0.9500
C1—C11	1.502 (2)	C9—C10	1.380 (2)
C1—C2	1.510(2)	С9—Н9	0.9500
C2—C12	1.337 (2)	C10-C11	1.399 (2)
C2—C3	1.509 (2)	C10—H10	0.9500
C3—C4	1.540 (2)	C12—C13	1.476 (2)
С3—НЗА	0.9900	C12—H12	0.9500
С3—Н3В	0.9900	C13—C18	1.396 (2)
C4—C5	1.531 (2)	C13—C14	1.402 (2)
C4—H4A	0.9900	C14—C15	1.381 (2)
C4—H4B	0.9900	C14—H14	0.9500
C5—C6	1.506 (2)	C15—C16	1.393 (2)
С5—Н5А	0.9900	C15—H15	0.9500
С5—Н5В	0.9900	C16—C17	1.400 (2)
C6—C7	1.388 (2)	C16—C19	1.439 (2)
C6—C11	1.410 (2)	C17—C18	1.383 (2)
C7—C8	1.391 (2)	C17—H17	0.9500
С7—Н7	0.9500	C18—H18	0.9500
C8—C9	1.393 (2)	C19—N1	1.153 (2)
01—C1—C11	120.38 (14)	С9—С8—Н8	120.2

O1—C1—C2	121.05 (14)	C10—C9—C8	119.53 (15)
C11—C1—C2	118.52 (13)	С10—С9—Н9	120.2
C12—C2—C3	125.92 (15)	С8—С9—Н9	120.2
C12—C2—C1	117.85 (14)	C9—C10—C11	121.29 (14)
C3—C2—C1	116.04 (13)	С9—С10—Н10	119.4
C2—C3—C4	114.54 (13)	C11—C10—H10	119.4
С2—С3—НЗА	108.6	C10—C11—C6	119.32 (14)
С4—С3—НЗА	108.6	C10-C11-C1	117.50 (14)
С2—С3—Н3В	108.6	C6-C11-C1	123.17 (14)
С4—С3—Н3В	108.6	C2-C12-C13	126.19 (14)
НЗА—СЗ—НЗВ	107.6	C2—C12—H12	116.9
C5—C4—C3	111.96 (12)	C13—C12—H12	116.9
C5—C4—H4A	109.2	C18—C13—C14	117.97 (14)
C3—C4—H4A	109.2	C18—C13—C12	120.39 (14)
C5—C4—H4B	109.2	C14—C13—C12	121.63 (14)
C3—C4—H4B	109.2	C15—C14—C13	121.18 (14)
H4A—C4—H4B	107.9	C15—C14—H14	119.4
C6—C5—C4	111.51 (12)	C13—C14—H14	119.4
С6—С5—Н5А	109.3	C14—C15—C16	119.93 (14)
C4—C5—H5A	109.3	C14—C15—H15	120.0
С6—С5—Н5В	109.3	C16—C15—H15	120.0
C4—C5—H5B	109.3	C15—C16—C17	119.88 (15)
H5A—C5—H5B	108.0	C15—C16—C19	119.24 (14)
C7—C6—C11	118.67 (14)	C17—C16—C19	120.86 (14)
C7—C6—C5	119.49 (13)	C18—C17—C16	119.40 (15)
C11—C6—C5	121.83 (14)	C18—C17—H17	120.3
C6—C7—C8	121.55 (15)	С16—С17—Н17	120.3
С6—С7—Н7	119.2	C17—C18—C13	121.62 (14)
С8—С7—Н7	119.2	C17—C18—H18	119.2
C7—C8—C9	119.64 (15)	C13—C18—H18	119.2
С7—С8—Н8	120.2	N1-C19-C16	177.09 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C17—H17…N1 ⁱ	0.95	2.54	3.438 (2)	157
C3—H3 A ··· $Cg1^{ii}$	0.99	2.84	3.6730 (16)	142
C8—H8··· <i>Cg</i> 1 ⁱⁱⁱ	0.95	2.88	3.7868 (17)	161

Symmetry codes: (i) -*x*, -*y*-1, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, *y*+1/2, -*z*+1/2.