



Received 18 July 2019 Accepted 9 October 2019

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia

Keywords: metal-halide cluster; charge-assisted hydrogen bonds; primary ammonium salt; quaternary ammonium salt; Hirshfeld surface; crystal structure.

CCDC references: 1907244; 1907230; 1907249; 1907231

**Supporting information**: this article has supporting information at journals.iucr.org/e



# Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters

#### Dean H. Johnston\* and Ikponmwosa Agho

Department of Chemistry, Otterbein University, Westerville, OH 43081, USA. \*Correspondence e-mail: djohnston@otterbein.edu

Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic compounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis(anilinium) octa- $\mu_3$ -chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate,  $(C_6H_8N)_2[Mo_6Cl_8Cl_6]$ .  $4C_3H_7NO$ , (I), p-phenylenediammonium octa- $\mu_3$ -chlorido-hexachlorido-octa*hedro*-hexamolybdate N,N-dimethylformamide hexasolvate,  $(C_6H_{10}N_2)[M_{06} Cl_8Cl_6] \cdot 6C_3H_7NO$ , (II), N,N'-(1,4-phenylene)bis(propan-2-iminium) octa- $\mu_3$ chlorido-hexachlorido-octahedro-hexamolybdate acetone trisolvate, (C12H18N2)- $[Mo_6Cl_8Cl_6]$ ·3C<sub>3</sub>H<sub>6</sub>O, (III), and 1,1'-dimethyl-4,4'-bipyridinium octa- $\mu_3$ -chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>)[Mo<sub>6</sub>Cl<sub>8</sub>Cl<sub>6</sub>]·4C<sub>3</sub>H<sub>7</sub>NO, (IV), are reported and described. In (I), the anilinium cations and N.N-dimethylformamide (DMF) solvent molecules form a cyclic  $R_4^2(8)$  hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF molecule forming a D(2)interaction. The p-phenylenediammonium cation in (II) forms three D(2)interactions between the three N-H bonds and three independent N,Ndimethylformamide molecules. The dication in (III) is a protonated Schiff base solvated by acetone molecules. Compound (IV) contains a methyl viologen dication with N,N-dimethylformamide molecules forming close contacts with both aromatic and methyl H atoms.

### 1. Chemical context

The unique photochemistry of the molybdenum and tungsten halide clusters  $[M_6X_8Y_6]^{2-}$  (M = Mo, W; X, Y = Cl, Br, I) has been known for over 30 years (Maverick *et al.*, 1983) and researchers continue to explore the tunability of the redox potentials, crystal structures and photochemical properties of cluster-containing compounds *via* variation of the bridging and terminal ligands and the counter-ion (Mikhailov *et al.*, 2016; Saito *et al.*, 2017; Akagi *et al.*, 2018). Metal clusters, such as molybdenum halides, consist of an inner  $[Mo_6X_8]^{4+}$  core surrounded by six axial ligands which are more labile than the core ligands, making the preparation of mixed-ligand cluster complexes relatively straightforward.

Charge-assisted hydrogen bonds (CAHBs) are particularly strong among hydrogen bonds (Gilli & Gilli, 2009) and can be a significant factor in the design and formation of supramolecular complexes. CAHBs have been exploited in the formation of supramolecular organic–inorganic uranyl materials (de Groot *et al.*, 2014), noncovalent macrocycles and catenanes (Pop *et al.*, 2016), molecular switches (Gurbanov *et* 

# research communications



Figure 1 The structures of (I)–(IV).

*al.*, 2017), and CAHB networks (Ward, 2009). Protonated diamines are a common motif found in hydrogen-bonded materials (Brozdowska & Chojnacki, 2017; Zick & Geiger, 2018). Examination of the nature and range of hydrogen bonding for solvates can provide information about the stability and physical properties of molecular solids (Brychczynska *et al.*, 2012).

We have prepared a series of ammonium salts of the  $[Mo_6Cl_8Cl_6]^{2-}$  complex anion, each containing cations

'solvated' by either dimethylformamide or acetone through strong CAHBs.

#### 2. Structural commentary

The asymmetric unit of dianilinium salt (I) (Fig. 1) contains half a cluster unit, one anilinium cation, and two independent N,N-dimethylformamide (DMF) molecules. The structure with the atom-numbering scheme is shown in Fig. 2. The  $[Mo_6Cl_8Cl_6]^{2-}$  cluster unit resides on a crystallographic inversion center, as it does in all four structures. In compound (II), the asymmetric unit contains half a cluster unit, half a *p*-phenylenediammonium cation, and three independent DMF molecules. The *p*-phenylenediammonium cation is disordered



Figure 2

Displacement ellipsoid plot and atom-numbering scheme for (I), with ellipsoids drawn at the 50% probability level.



Figure 3

Displacement ellipsoid plot and atom-numbering scheme for (II), with ellipsoids drawn at the 50% probability level. The minor component of the disordered p-phenylenediammonium cation is not shown for clarity.

Table 1Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (I).

| $D - H \cdot \cdot \cdot A$                     | D-H                  | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - H \cdots A$   |
|-------------------------------------------------|----------------------|-------------------------|------------------------|--------------------|
| $N1-H1A\cdots O2^{i}$<br>$N1-H1B\cdots O2^{ii}$ | 0.89 (3)<br>0.91 (3) | 2.01 (3)<br>1.94 (3)    | 2.827 (3)<br>2.833 (3) | 152 (2)<br>168 (3) |
| $N1 - H1C \cdots O1^{iii}$                      | 0.91 (3)             | 1.82 (3)                | 2.715 (3)              | 166 (3)            |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z; (iii) x, y, z - 1.

| Table 2         |            |       |       |                |
|-----------------|------------|-------|-------|----------------|
| Hydrogen-bond g | geometry ( | [Å, ⁰ | ) for | ( <b>II</b> ). |

| $D - H \cdot \cdot \cdot A$ | D-H     | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|---------|-------------------------|--------------|---------------------------|
| $N1-H1A\cdots O2^{i}$       | 0.92(2) | 1.76 (2)                | 2.672 (4)    | 171 (4)                   |
| $N1-H1B\cdots O3^{ii}$      | 0.93(2) | 1.79 (2)                | 2.710 (4)    | 173 (4)                   |
| $N1-H1C\cdots O1^{iii}$     | 0.92(2) | 1.81 (2)                | 2.727 (4)    | 175 (4)                   |

Symmetry codes: (i) x, y + 1, z - 1; (ii) -x + 2, -y + 1, -z; (iii) -x + 1, -y + 1, -z + 1.

over two positions (rotation of  $70.6^{\circ}$  about the N–N axis), with a refined occupancy of 0.918 (4) for the primary orientation. The structure with the atom-numbering scheme is shown in Fig. 3.

The asymmetric unit of Schiff base salt (III) contains half a cluster unit, half a Schiff base cation, and two independent acetone molecules. The structure with the atom-numbering scheme is shown in Fig. 4. One acetone molecule is disordered over an inversion center. The Schiff base cation, presumably formed from the reaction between a p-phenylenediammonium cation and two acetone molecules, shows strong similarities to the cation found in the bismuthate structure reported by Shestimerova *et al.* (2018).

For comparison, a dicationic salt incapable of conventional hydrogen bonding (methyl viologen) was prepared and structurally characterized. The asymmetric unit of (IV), as in



Figure 4

Displacement ellipsoid plot and atom-numbering scheme for (III), with ellipsoids drawn at the 50% probability level.

| Table 3                                            |  |
|----------------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ) for (III). |  |

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|----------|-------------------------|--------------|------------------|
| $N1-H1\cdots O1^i$          | 0.87 (2) | 1.93 (2)                | 2.791 (4)    | 172 (3)          |

Symmetry code: (i) x, y - 1, z.

| Table 4                                                    |  |
|------------------------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ) for ( <b>IV</b> ). |  |

| $D - H \cdots A$                                  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C5 - H5 \cdots O1^{i}$ $C6 - H6C \cdots O2^{ii}$ | 0.95 | 2.23                    | 3.063 (4)    | 145                                  |
|                                                   | 0.98 | 2.31                    | 3.088 (4)    | 136                                  |

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 2, -z + 1.

the other structures, contains half of the cluster unit, half of the methyl viologen dication, and two independent DMF molecules. The structure with the atom-numbering scheme is shown in Fig. 5.



Figure 5

Displacement ellipsoid plot and atom-numbering scheme for (IV), with ellipsoids drawn at the 50% probability level.



Figure 6 Ö The cationic hydrogen-bonded dimer formed by anilinium cations and DMF molecules in (I).



Hydrogen bonding in the DMF-solvated p-phenylenediammonium dication in (II). The minor component of the disordered p-phenylenediammonium cation is not shown for clarity.

#### 3. Hydrogen-bonding analysis

In compound (I), the anilinium cation and DMF molecules form a cyclic  $R_4^2(8)$  hydrogen-bonded motif centered on a crystallographic inversion center, with an additional DMF forming a D(2) interaction, as illustrated in Fig. 6. Although similar to some motifs discussed by Loehlin & Okasako (2007), the hydrogen-bonding network in (I) does not represent an example of saturated hydrogen bonding, as one DMF molecule has an additional lone pair that is not involved in hydrogen bonding (Table 1). The DMF molecules in compound (II) form three unique D(2) interactions with the three N-H bonds on each end of the *p*-phenylenediammonium cations, as shown in Fig. 7 (Table 2). In compound (III), one acetone molecule forms a hydrogen-bonding interaction with the N-H group of the Schiff base, as shown in Fig. 8 (Table 3).





In spite of the lack of conventional hydrogen bonding in compound (**IV**), the methyl viologen cation forms several C– $H \cdots O$  contacts, with the O atoms of the two independent DMF molecules forming close contacts with the H atoms of the aromatic ring ( $O \cdots H = 2.23 \text{ Å}$ ) and the methyl group ( $O \cdots H = 2.31 \text{ Å}$ ) (Table 4).

Analysis of the hydrogen bonding and close contacts *via* Hirshfeld surfaces and fingerprint plots was conducted using *CrystalExplorer* (Spackman & Jayatilaka, 2009) and the results are shown in Fig. 9. Compound (II) has the strongest hydrogen-bonding interactions, with similar, but slightly weaker, interactions for (I) and (III). All four compounds show very similar  $H(cation) \cdots Cl(cluster anion)$  interactions.



Figure 9

Fingerprint plots and Hirshfeld surfaces for (I)–(IV). For (II), only the major component of the disordered *p*-phenylenediammonium cation was included in the generation of the fingerprint plot.

# Table 5Experimental details.

|                                                                               | ( <b>I</b> )                                                                      | ( <b>II</b> )                                                                     | (III)                                                                             | ( <b>IV</b> )                                                |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|
| Crystal data                                                                  |                                                                                   |                                                                                   |                                                                                   |                                                              |
| Chemical formula                                                              | $\begin{array}{c} (C_6H_8N)_2[Mo_6Cl_8Cl_6] \\ - 4C_3H_7NO \end{array}$           | $\begin{array}{c} (C_6H_{10}N_2)[Mo_6Cl_8Cl_6] \\ - \\ 6C_3H_7NO \end{array}$     | $(C_{12}H_{18}N_2)[Mo_6Cl_8Cl_6] - 3C_3H_6O$                                      | $(C_{12}H_{14}N_2)[Mo_6Cl_8Cl_6]$ -<br>4C_3H <sub>7</sub> NO |
| $M_{ m r}$                                                                    | 1552.59                                                                           | 1620.67                                                                           | 1436.46                                                                           | 1550.57                                                      |
| Crystal system, space group                                                   | Triclinic, P1                                                                     | Triclinic, $P\overline{1}$                                                        | Triclinic, $P\overline{1}$                                                        | Triclinic, P1                                                |
| Temperature (K)                                                               | 200                                                                               | 200                                                                               | 200                                                                               | 200                                                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                            | 9.9813 (11), 10.6074 (13),<br>12.1686 (15)                                        | 10.1752 (16), 10.3227 (16),<br>13.736 (2)                                         | 9.451 (2), 11.236 (3),<br>11.712 (3)                                              | 9.8252 (11), 10.0933 (11),<br>12.6319 (15)                   |
| $lpha,eta,\gamma(^\circ)$                                                     | 104.606 (3), 90.709 (3),<br>103.146 (3)                                           | 95.204 (4), 111.483 (4),<br>101.973 (4)                                           | 64.933 (6), 71.174 (6),<br>75.440 (6)                                             | 107.395 (3), 91.881 (3),<br>93.309 (3)                       |
| $V(\text{\AA}^3)$                                                             | 1210.7 (3)                                                                        | 1291.1 (3)                                                                        | 1056.7 (5)                                                                        | 1191.8 (2)                                                   |
| Z                                                                             | 1                                                                                 | 1                                                                                 | 1                                                                                 | 1                                                            |
| Radiation type                                                                | Μο Κα                                                                             | Μο Κα                                                                             | Μο Κα                                                                             | Μο <i>Κα</i>                                                 |
| $\mu \text{ (mm}^{-1})$                                                       | 2.32                                                                              | 2.18                                                                              | 2.64                                                                              | 2.35                                                         |
| Crystal size (mm)                                                             | $0.48\times0.46\times0.12$                                                        | $0.50 \times 0.13 \times 0.13$                                                    | $0.55 \times 0.33 \times 0.20$                                                    | $0.32 \times 0.30 \times 0.28$                               |
| Data collection                                                               |                                                                                   |                                                                                   |                                                                                   |                                                              |
| Diffractometer                                                                | Bruker SMART X2S<br>benchtop                                                      | Bruker SMART X2S<br>benchtop                                                      | Bruker SMART X2S<br>benchtop                                                      | Bruker SMART X2S<br>benchtop                                 |
| Absorption correction                                                         | Multi-scan (SADABS;<br>Bruker, 2012)                                              | Multi-scan (SADABS;<br>Bruker, 2012)                                              | Multi-scan (SADABS;<br>Bruker, 2012)                                              | Multi-scan (SADABS;<br>Bruker, 2012)                         |
| $T_{\min}, T_{\max}$                                                          | 0.498, 0.745                                                                      | 0.552, 0.745                                                                      | 0.490, 0.745                                                                      | 0.815, 1.000                                                 |
| No. of measured, indepen-<br>dent and observed $[I > 2\sigma(I)]$ reflections | 11709, 4245, 3834                                                                 | 12459, 4504, 3666                                                                 | 10036, 3692, 3220                                                                 | 11498, 4187, 3743                                            |
| R <sub>int</sub>                                                              | 0.026                                                                             | 0.035                                                                             | 0.030                                                                             | 0.024                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                          | 0.597                                                                             | 0.595                                                                             | 0.598                                                                             | 0.597                                                        |
| Refinement                                                                    |                                                                                   |                                                                                   |                                                                                   |                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                           | 0.019, 0.046, 1.07                                                                | 0.026, 0.062, 1.03                                                                | 0.025, 0.068, 1.05                                                                | 0.020, 0.049, 1.02                                           |
| No. of reflections                                                            | 4245                                                                              | 4504                                                                              | 3692                                                                              | 4187                                                         |
| No. of parameters                                                             | 258                                                                               | 285                                                                               | 235                                                                               | 250                                                          |
| No. of restraints                                                             | 0                                                                                 | 144                                                                               | 13                                                                                | 0                                                            |
| H-atom treatment                                                              | H atoms treated by a<br>mixture of independent<br>and constrained refine-<br>ment | H atoms treated by a<br>mixture of independent<br>and constrained refine-<br>ment | H atoms treated by a<br>mixture of independent<br>and constrained refine-<br>ment | H-atom parameters<br>constrained                             |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$    | 0.36, -0.54                                                                       | 0.66, -0.56                                                                       | 0.96, -0.82                                                                       | 0.42, -0.44                                                  |

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), CrystalMaker (Palmer, 2019), CrystalExplorer (Spackman & Jayatilaka, 2009), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

The C-H···O contacts in (IV), especially with the aromatic C-H group of the methyl viologen, can be clearly identified on the Hirshfeld surface.

### 4. Database survey

Interest in molybdenum(II) halide clusters and related compounds have led to numerous structural studies, with 45 entries in the Cambridge Structural Database (CSD, Version 5.40; Groom *et al.*, 2016) containing the  $[Mo_6Cl_{14}]^{2-}$  dianion and almost 200 structures containing the  $[Mo_6X_8]^{4+}$  core. Similarly, one can find over 50 structures in the Inorganic Crystal Structure Database (ICSD, Version 4.2.0; Hellenbrandt, 2004) containing the same molybdenum halide core structure. The structures of the  $[Mo_6Cl_{14}]^{2-}$  cluster anions in this study are unremarkable and do not differ significantly from previous studies.

The anilinium cluster dihydrate structure published by Flemström (2003) has some similarities to (I). In that structure, the three N-H bonds of the anilinium cation serve as hydrogen-bond donors to one water molecule (hydrate) and

two terminal Cl atoms on two discrete cluster anions. The N– H···Cl interactions create  $C_4^4(15)$  chains. The water molecules create  $R_4^4(14)$  rings involving two water molecules and two cluster units, as well as  $C_2^2(8)$  and  $C_2^2(7)$  chains.

While DMF-solvated ammonium salts appear to be relatively uncommon, a series of molybdenum halide cluster salts have been prepared with dimethylformamide-coordinated metal cations serving as the counter-cation (Khutornoi *et al.*, 2002; Kozhomuratova *et al.*, 2007; Liu *et al.*, 2006). The complexes prepared and characterized include the  $[Mo_6Cl_8Cl_6]^{2-}$ ,  $[Mo_6Br_8Cl_6]^{2-}$ , and  $[Mo_6Br_8(NCS)_6]^{2-}$  cluster anions as salts with  $[M(DMF)]^{2+}$  cations, where  $M = Ca^{2+}$ ,  $Mn^{2+}$ , and  $Co^{2+}$ . A similar set of rhenium chalcogenide cluster salts with DMFsolvated calcium and a series of lanthanides has been prepared by Perruchas *et al.* (2002) and Yarovoi *et al.* (2006).

A separate search of the CSD for structures with similar hydrogen-bonded networks containing anilinium and *p*-phenylenediammonium cations yielded a large number of hits due to their propensity for forming significant hydrogenbonding networks. In the structure of anilinium dihydrogen phosphate (Kaman *et al.*, 2012), each of the three independent

# research communications

ammonium groups forms four different hydrogen bonds to the O atoms of nearby dihydrogen phosphate moieties. A very similar set of hydrogen-bonding interactions and layered organic/inorganic structural arrangements are found in the structures of *p*-phenylenediammonium bis(dihydrogen phosphate) (Mrad *et al.*, 2006*a*) and *p*-phenylenediammonium di-hydrogen diphosphate (Mrad *et al.*, 2006*b*). While less closely related to the current report, the structure of *p*-phenylenediammonium tetrachloridozincate(II) (Bringley & Rajeswaran, 2006) also displays alternating organic and inorganic layers and strong hydrogen bonding between the tetrachloridozinc(II) anions and the *p*-phenylenediammonium cations.

A dimethyl sulfoxide (DMSO)-solvated *p*-phenylenediammonium salt of an iodidobismuthate reported by Shestimerova *et al.* (2018) displays strong structural similarities to (**II**) in the way the DMSO solvates the *p*-phenylenediammonium cation. Three unique DMSO molecules also form D(2) interactions with each end of the *p*-phenylenediammonium. One of the three DMSO molecules simultaneously coordinates to one of the Bi atoms.

#### 5. Synthesis and crystallization

All reagents were used as received from the manufacturer.

5.1. Cluster synthesis, metathesis, and crystallization of (I), (II), and (IV)

The hydronium salt of the  $[Mo_6Cl_8Cl_6]^{2-}$  anion was prepared by the method of Hay *et al.* (2004) and then metathesized to the appropriate ammonium salt by combining an ethanolic solution of  $(H_3O)_2[Mo_6Cl_8Cl_6]\cdot 6H_2O$  with a slight stoichiometric excess (~2.5 times) of the respective ammonium chloride salt (anilinium chloride, *p*-phenylenediamine hydrochloride, and methyl viologen dichloride). The brightyellow precipitate that formed was isolated by filtration and the product was recrystallized by vapor diffusion of diethyl ether into a dimethylformamide solution of the cluster salt.

#### 5.2. Synthesis and crystallization of Schiff base salt (III)

The cluster in compound (III) was prepared and metathesized to the diammonium salt *via* the same procedure as above using the *p*-phenylenediammonium chloride to isolate a yellow precipitate. The salt was then redissolved in acetone and allowed to evaporate. The acetone inadvertently formed a Schiff base dication in a reaction with the *p*-phenylenediammonium cation (Kolb & Bahadir, 1994).

### 6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5. All H atoms were located in a difference map. All carbon-bonded H atoms were placed in idealized positions using a riding model, with aromatic and amide C-H = 0.95 Å and methyl C-H = 0.98 Å, and with  $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$  (aromatic and amide) or  $U_{\rm iso}({\rm H}) =$  $1.5U_{\rm eq}({\rm C})$  (methyl). The positions of all H atoms bonded to N atoms were refined with N-H distances restrained to 0.91 (2) (NH<sub>3</sub>) or 0.88 (2) Å (Schiff base), and with  $U_{iso}(H) = 1.5U_{eq}(N)$ .

All four structures were refined in the space group  $P\overline{1}$  and the  $[Mo_6Cl_{14}]^{2-}$  dianion sits on an inversion center in every case. The dications in (II), (III), and (IV) are also each located on an inversion center. The *p*-phenylenediammonium cation in (II) is disordered over two orientations with an occupancy of 0.918 (4) for the major component. One of the two acetone molecules in (III) is disordered over an inversion center.

#### Acknowledgements

This work was supported in part by the National Science Foundation. The authors thank H. Kaur and A. Maldonado for initial work on this project.

#### **Funding information**

Funding for this research was provided by: National Science Foundation, Division Of Undergraduate Education (grant No. 0942850 to DHJ).

#### References

- Akagi, S., Fujii, S. & Kitamura, N. (2018). Dalton Trans. 47, 1131– 1139.
- Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304m1305.
- Brozdowska, A. & Chojnacki, J. (2017). Acta Cryst. B73, 507-518.
- Bruker (2012). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brychczynska, M., Davey, R. J. & Pidcock, E. (2012). *CrystEngComm*, **14**, 1479–1484.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flemström, A. (2003). Acta Cryst. E59, m162-m164.
- Gilli, G. & Gilli, P. (2009). *The Nature of the Hydrogen Bond: Outline* of a Comprehensive Hydrogen Bond Theory. Oxford University Press.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Groot, J. de, Gojdas, K., Unruh, D. K. & Forbes, T. Z. (2014). Cryst. Growth Des. 14, 1357–1365.
- Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). *Dyes Pigments*, 138, 107–111.
- Hay, D. N., Adams, J. A., Carpenter, J., DeVries, S. L., Domyancich, J., Dumser, B., Goldsmith, S., Kruse, M. A., Leone, A., Moussavi-Harami, F., O'Brien, J. A., Pfaffly, J. R., Sylves, M., Taravati, P., Thomas, J. L., Tiernan, B. & Messerle, L. (2004). *Inorg. Chim. Acta*, 357, 644–648.
- Hellenbrandt, M. (2004). Crystallogr. Rev. 10, 17-22.
- Kaman, O., Smrcok, L., Gyepes, R. & Havlícek, D. (2012). *Acta Cryst.* C68, 057–060.
- Khutornoi, V. A., Naumov, N. G., Mironov, Y. V., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). *Russ. J. Coord. Chem.* 28, 183–190.
- Kolb, M. & Bahadir, M. (1994). J. Chromatogr. A, 685, 189-194.
- Kozhomuratova, Z. S., Mironov, Y. V., Shestopalov, M. A., Gaifulin, Y. M., Kurat'eva, N. V., Uskov, E. M. & Fedorov, V. E. (2007). *Russ. J. Coord. Chem.* 33, 1–6.
- Liu, X., Cai, L.-Z., Guo, C.-C., Li, Q. & Huang, J.-S. (2006). Jiegou Huaxue, 25, 90–94.
- Loehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132-141.

- Maverick, A. W., Najdzionek, J. S., MacKenzie, D., Nocera, D. G. & Gray, H. B. (1983). J. Am. Chem. Soc. 105, 1878–1882.
- Mikhailov, M. A., Brylev, K. A., Abramov, P. A., Sakuda, E., Akagi, S., Ito, A., Kitamura, N. & Sokolov, M. N. (2016). *Inorg. Chem.* 55, 8437–8445.
- Mrad, M. L., Nasr, C. B. & Rzaigui, M. (2006a). Mater. Res. Bull. 41, 1287–1294.
- Mrad, M. L., Nasr, C. B., Rzaigui, M. & Lefebvre, F. (2006b). Phosphorus Sulfur Silicon, 181, 1625–1635.
- Palmer, D. C. (2019). *CrystalMaker*. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.
- Perruchas, S., Simon, F., Uriel, S., Avarvari, N., Boubekeur, K. & Batail, P. (2002). J. Organomet. Chem. 643-644, 301-306.
- Pop, L., Hadade, N. D., van der Lee, A., Barboiu, M., Grosu, I. & Legrand, Y.-M. (2016). *Cryst. Growth Des.* **16**, 3271–3278.

- Saito, N., Lemoine, P., Dumait, N., Amela-Cortes, M., Paofai, S., Roisnel, T., Nassif, V., Grasset, F., Wada, Y., Ohashi, N. & Cordier, S. (2017). J. Cluster Sci. 28, 773–798.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Shestimerova, T. A., Golubev, N. A., Mironov, A. V., Bykov, M. A. & Shevelkov, A. V. (2018). *Russ. Chem. Bull.* 67, 1212–1219.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Ward, M. D. (2009). *Molecular Networks*, Vol. 132, edited by M. W.
- Hosseini, pp. 1-23. Berlin, Heidelberg: Springer.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yarovoi, S. S., Mironov, Yu. V., Solodovnikov, S. F., Solodovnikova, Z. A., Naumov, D. Yu. & Fedorov, V. E. (2006). *Russ. J. Coord. Chem.* 32, 712–722.
- Zick, P. L. & Geiger, D. K. (2018). Acta Cryst. C74, 1725-1731.

# Acta Cryst. (2019). E75, 1705-1711 [https://doi.org/10.1107/S205698901901380X]

# Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters

# Dean H. Johnston and Ikponmwosa Agho

# **Computing details**

For all structures, data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *CrystalMaker* (Palmer, 2019) and *CrystalExplorer* (Spackman & Jayatilaka, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

Bis(anilinium) octa- $\mu_3$ -chlorido-hexachlorido-*octahedro*-hexamolybdate *N*,*N*-dimethylformamide tetrasolvate (1)

# Crystal data

| $(C_6H_8N)_2[Mo_6Cl_8Cl_6]\cdot 4C_3H_7NO$ |
|--------------------------------------------|
| $M_r = 1552.59$                            |
| Triclinic, $P\overline{1}$                 |
| a = 9.9813 (11)  Å                         |
| b = 10.6074 (13)  Å                        |
| c = 12.1686 (15)  Å                        |
| $\alpha = 104.606 \ (3)^{\circ}$           |
| $\beta = 90.709 \ (3)^{\circ}$             |
| $\gamma = 103.146 (3)^{\circ}$             |
| V = 1210.7 (3) Å <sup>3</sup>              |
|                                            |

# Data collection

Bruker SMART X2S benchtop diffractometer Radiation source: sealed microfocus source, XOS X-beam microfocus source Graphite monochromator Detector resolution: 8.3330 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2012)

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.019$  $wR(F^2) = 0.046$ S = 1.07 Z = 1 F(000) = 752  $D_x = 2.129 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7006 reflections  $\theta = 2.3-25.1^{\circ}$   $\mu = 2.32 \text{ mm}^{-1}$  T = 200 KPlate, clear orangish yellow  $0.48 \times 0.46 \times 0.12 \text{ mm}$ 

 $T_{\min} = 0.498, T_{\max} = 0.745$ 11709 measured reflections
4245 independent reflections
3834 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.026$   $\theta_{\text{max}} = 25.1^{\circ}, \theta_{\text{min}} = 2.3^{\circ}$   $h = -11 \rightarrow 11$   $k = -12 \rightarrow 12$   $l = -14 \rightarrow 14$ 

4245 reflections258 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0123P)^2 + 0.5808P]$ 

where 
$$P = (F_o^2 + 2F_c^2)/3$$
  
 $(\Delta/\sigma)_{\text{max}} = 0.001$ 

### Special details

 $\begin{aligned} \Delta \rho_{\text{max}} &= 0.36 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{\text{min}} &= -0.54 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL2018} \\ & \text{(Sheldrick, 2015),} \\ & \text{Fc}^* &= \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.0096 (3) \end{aligned}$ 

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x           | У            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |  |
|-----|-------------|--------------|---------------|-------------------------------|--|
| Mo1 | 0.33000 (2) | 0.50142 (2)  | 0.43962 (2)   | 0.01755 (7)                   |  |
| Mo2 | 0.42505 (2) | 0.33816 (2)  | 0.52988 (2)   | 0.01753 (7)                   |  |
| Mo3 | 0.45872 (2) | 0.58737 (2)  | 0.64151 (2)   | 0.01766 (7)                   |  |
| Cl1 | 0.30660 (6) | 0.26453 (5)  | 0.33717 (5)   | 0.02208 (12)                  |  |
| Cl2 | 0.44848 (6) | 0.57046 (5)  | 0.27978 (5)   | 0.02298 (13)                  |  |
| C13 | 0.37196 (6) | 0.73926 (5)  | 0.55008 (5)   | 0.02352 (13)                  |  |
| Cl4 | 0.22876 (5) | 0.43149 (5)  | 0.60532 (5)   | 0.02318 (13)                  |  |
| C15 | 0.32774 (6) | 0.12583 (6)  | 0.57003 (5)   | 0.03234 (15)                  |  |
| Cl6 | 0.39836 (6) | 0.69501 (6)  | 0.82888 (5)   | 0.03331 (15)                  |  |
| C17 | 0.10839 (6) | 0.50315 (6)  | 0.35713 (5)   | 0.03118 (14)                  |  |
| N1  | 0.1138 (2)  | 0.6861 (2)   | -0.02394 (19) | 0.0291 (5)                    |  |
| H1A | 0.144 (3)   | 0.612 (3)    | -0.048(2)     | 0.044*                        |  |
| H1B | 0.026 (3)   | 0.651 (3)    | -0.010 (2)    | 0.044*                        |  |
| H1C | 0.111 (3)   | 0.732 (3)    | -0.078(2)     | 0.044*                        |  |
| C1  | 0.1999 (2)  | 0.7715 (2)   | 0.0778 (2)    | 0.0262 (5)                    |  |
| C2  | 0.1890 (3)  | 0.7327 (3)   | 0.1777 (2)    | 0.0352 (6)                    |  |
| H2  | 0.125907    | 0.652029     | 0.180955      | 0.042*                        |  |
| C3  | 0.2713 (3)  | 0.8128 (3)   | 0.2728 (2)    | 0.0439 (7)                    |  |
| H3  | 0.264848    | 0.787222     | 0.342295      | 0.053*                        |  |
| C4  | 0.3621 (3)  | 0.9288 (3)   | 0.2678 (3)    | 0.0454 (7)                    |  |
| H4  | 0.418475    | 0.983410     | 0.333788      | 0.055*                        |  |
| C5  | 0.2894 (3)  | 0.8879 (2)   | 0.0709 (2)    | 0.0326 (6)                    |  |
| H5  | 0.294613    | 0.913873     | 0.001580      | 0.039*                        |  |
| C6  | 0.3718 (3)  | 0.9666 (3)   | 0.1671 (2)    | 0.0411 (7)                    |  |
| H6  | 0.435330    | 1.046973     | 0.163742      | 0.049*                        |  |
| 01  | 0.0921 (2)  | 0.85206 (19) | 0.84303 (16)  | 0.0431 (5)                    |  |
| N2  | 0.0472 (2)  | 0.88716 (19) | 0.67193 (17)  | 0.0287 (5)                    |  |
| C7  | 0.0074 (3)  | 1.0112 (3)   | 0.7195 (2)    | 0.0408 (7)                    |  |
| H7A | 0.004355    | 1.025920     | 0.802189      | 0.061*                        |  |
| H7B | -0.083924   | 1.006277     | 0.685843      | 0.061*                        |  |
| H7C | 0.074846    | 1.085755     | 0.702938      | 0.061*                        |  |
| C8  | 0.0860 (2)  | 0.8186 (3)   | 0.7380 (2)    | 0.0325 (6)                    |  |
| H8  | 0.111034    | 0.737608     | 0.702115      | 0.039*                        |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C9   | 0.0410 (3)   | 0.8403 (3)   | 0.5486 (2)   | 0.0364 (6)  |  |
|------|--------------|--------------|--------------|-------------|--|
| H9A  | 0.057014     | 0.749801     | 0.526886     | 0.055*      |  |
| H9B  | 0.111888     | 0.901063     | 0.519142     | 0.055*      |  |
| H9C  | -0.050269    | 0.838466     | 0.516599     | 0.055*      |  |
| O2   | 0.85598 (19) | 0.57853 (18) | 0.05179 (17) | 0.0418 (5)  |  |
| N3   | 0.7318 (2)   | 0.7329 (2)   | 0.05377 (17) | 0.0320 (5)  |  |
| C10  | 0.7698 (3)   | 0.6417 (3)   | 0.0921 (2)   | 0.0397 (7)  |  |
| H10  | 0.727510     | 0.621423     | 0.157083     | 0.048*      |  |
| C11  | 0.6338 (3)   | 0.8071 (3)   | 0.1095 (2)   | 0.0460 (7)  |  |
| H11A | 0.607218     | 0.779492     | 0.178708     | 0.069*      |  |
| H11B | 0.551612     | 0.788223     | 0.057583     | 0.069*      |  |
| H11C | 0.676785     | 0.903485     | 0.129568     | 0.069*      |  |
| C12  | 0.7879 (4)   | 0.7684 (4)   | -0.0466 (3)  | 0.0621 (10) |  |
| H12A | 0.866691     | 0.846144     | -0.023497    | 0.093*      |  |
| H12B | 0.716767     | 0.790546     | -0.089431    | 0.093*      |  |
| H12C | 0.818232     | 0.692417     | -0.094617    | 0.093*      |  |
|      |              |              |              |             |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Mo1 | 0.01465 (11) | 0.01876 (11) | 0.01888 (11) | 0.00353 (8)  | 0.00272 (8)  | 0.00463 (8)  |
| Mo2 | 0.01627 (11) | 0.01691 (10) | 0.01871 (11) | 0.00234 (8)  | 0.00337 (8)  | 0.00474 (8)  |
| Mo3 | 0.01646 (12) | 0.01852 (11) | 0.01703 (11) | 0.00379 (8)  | 0.00436 (8)  | 0.00307 (8)  |
| Cl1 | 0.0205 (3)   | 0.0202 (3)   | 0.0218 (3)   | 0.0011 (2)   | 0.0008 (2)   | 0.0022 (2)   |
| C12 | 0.0233 (3)   | 0.0256 (3)   | 0.0208 (3)   | 0.0045 (2)   | 0.0022 (2)   | 0.0086 (2)   |
| C13 | 0.0231 (3)   | 0.0211 (3)   | 0.0272 (3)   | 0.0086 (2)   | 0.0041 (2)   | 0.0046 (2)   |
| Cl4 | 0.0169 (3)   | 0.0267 (3)   | 0.0247 (3)   | 0.0029 (2)   | 0.0066 (2)   | 0.0066 (2)   |
| C15 | 0.0345 (3)   | 0.0242 (3)   | 0.0369 (3)   | -0.0020(3)   | 0.0024 (3)   | 0.0134 (3)   |
| C16 | 0.0350 (4)   | 0.0359 (3)   | 0.0241 (3)   | 0.0078 (3)   | 0.0112 (3)   | -0.0010 (3)  |
| C17 | 0.0199 (3)   | 0.0356 (3)   | 0.0397 (3)   | 0.0061 (3)   | -0.0019 (3)  | 0.0132 (3)   |
| N1  | 0.0306 (12)  | 0.0255 (11)  | 0.0341 (12)  | 0.0094 (10)  | 0.0055 (10)  | 0.0104 (10)  |
| C1  | 0.0273 (13)  | 0.0252 (12)  | 0.0296 (13)  | 0.0132 (11)  | 0.0041 (11)  | 0.0072 (10)  |
| C2  | 0.0437 (16)  | 0.0307 (13)  | 0.0379 (15)  | 0.0162 (12)  | 0.0069 (13)  | 0.0142 (12)  |
| C3  | 0.063 (2)    | 0.0469 (17)  | 0.0309 (15)  | 0.0328 (16)  | 0.0019 (14)  | 0.0097 (13)  |
| C4  | 0.0505 (18)  | 0.0396 (16)  | 0.0433 (17)  | 0.0259 (15)  | -0.0084 (14) | -0.0073 (13) |
| C5  | 0.0372 (15)  | 0.0263 (13)  | 0.0383 (15)  | 0.0145 (11)  | 0.0117 (12)  | 0.0089 (11)  |
| C6  | 0.0412 (17)  | 0.0277 (14)  | 0.0495 (18)  | 0.0115 (12)  | 0.0063 (14)  | -0.0016 (13) |
| 01  | 0.0496 (12)  | 0.0479 (11)  | 0.0392 (11)  | 0.0149 (10)  | 0.0045 (9)   | 0.0219 (9)   |
| N2  | 0.0270 (11)  | 0.0275 (11)  | 0.0326 (11)  | 0.0065 (9)   | 0.0007 (9)   | 0.0094 (9)   |
| С7  | 0.0462 (17)  | 0.0355 (15)  | 0.0465 (17)  | 0.0170 (13)  | 0.0084 (14)  | 0.0144 (13)  |
| C8  | 0.0248 (14)  | 0.0313 (13)  | 0.0428 (16)  | 0.0048 (11)  | 0.0040 (12)  | 0.0140 (12)  |
| С9  | 0.0334 (15)  | 0.0362 (14)  | 0.0332 (14)  | -0.0008 (12) | -0.0040 (12) | 0.0062 (12)  |
| 02  | 0.0359 (11)  | 0.0345 (10)  | 0.0614 (13)  | 0.0134 (9)   | 0.0149 (10)  | 0.0192 (9)   |
| N3  | 0.0309 (12)  | 0.0407 (12)  | 0.0301 (11)  | 0.0169 (10)  | 0.0066 (10)  | 0.0120 (10)  |
| C10 | 0.0391 (16)  | 0.0390 (15)  | 0.0470 (17)  | 0.0112 (13)  | 0.0145 (13)  | 0.0197 (13)  |
| C11 | 0.0527 (19)  | 0.0527 (18)  | 0.0427 (17)  | 0.0301 (15)  | 0.0149 (15)  | 0.0142 (14)  |
| C12 | 0.073 (2)    | 0.099 (3)    | 0.0438 (18)  | 0.053 (2)    | 0.0248 (17)  | 0.0425 (19)  |

Geometric parameters (Å, °)

| Mo1-Mo2 <sup>i</sup>                   | 2.6034 (4)   | С3—Н3                    | 0.9500       |  |
|----------------------------------------|--------------|--------------------------|--------------|--|
| Mo1—Mo2                                | 2.6051 (3)   | C3—C4                    | 1.368 (4)    |  |
| Mo1—Mo3 <sup>i</sup>                   | 2.6068 (3)   | C4—H4                    | 0.9500       |  |
| Mo1—Mo3                                | 2.6032 (4)   | C4—C6                    | 1.381 (4)    |  |
| Mo1—Cl1                                | 2.4636 (6)   | С5—Н5                    | 0.9500       |  |
| Mo1—Cl2                                | 2.4697 (6)   | C5—C6                    | 1.383 (4)    |  |
| Mo1—Cl3                                | 2.4782 (6)   | С6—Н6                    | 0.9500       |  |
| Mo1—Cl4                                | 2.4700 (6)   | O1—C8                    | 1.234 (3)    |  |
| Mo1—Cl7                                | 2.4235 (6)   | N2—C7                    | 1.444 (3)    |  |
| Mo2—Mo3                                | 2.5922 (4)   | N2—C8                    | 1.319 (3)    |  |
| Mo2—Mo3 <sup>i</sup>                   | 2.6065 (3)   | N2—C9                    | 1.453 (3)    |  |
| Mo2—Cl1                                | 2.4687 (6)   | C7—H7A                   | 0.9800       |  |
| Mo2—Cl2 <sup>i</sup>                   | 2.4772 (6)   | C7—H7B                   | 0.9800       |  |
| Mo2—Cl3 <sup>i</sup>                   | 2.4756 (6)   | С7—Н7С                   | 0.9800       |  |
| Mo2—Cl4                                | 2.4758 (6)   | C8—H8                    | 0.9500       |  |
| Mo2—Cl5                                | 2.4138 (6)   | С9—Н9А                   | 0.9800       |  |
| Mo3—Cl1 <sup>i</sup>                   | 2.4754 (6)   | С9—Н9В                   | 0.9800       |  |
| Mo3—Cl2 <sup>i</sup>                   | 2.4639 (6)   | С9—Н9С                   | 0.9800       |  |
| Mo3—Cl3                                | 2.4695 (6)   | O2—C10                   | 1.239 (3)    |  |
| Mo3—Cl4                                | 2.4652 (6)   | N3—C10                   | 1.299 (3)    |  |
| Mo3—C16                                | 2.4288 (6)   | N3—C11                   | 1.461 (3)    |  |
| N1—H1A                                 | 0.89 (3)     | N3—C12                   | 1.449 (3)    |  |
| N1—H1B                                 | 0.91 (3)     | C10—H10                  | 0.9500       |  |
| N1—H1C                                 | 0.91 (3)     | C11—H11A                 | 0.9800       |  |
| N1C1                                   | 1.465 (3)    | C11—H11B                 | 0.9800       |  |
| C1—C2                                  | 1.376 (3)    | C11—H11C                 | 0.9800       |  |
| C1—C5                                  | 1.371 (3)    | C12—H12A                 | 0.9800       |  |
| C2—H2                                  | 0.9500       | C12—H12B                 | 0.9800       |  |
| C2—C3                                  | 1.378 (4)    | C12—H12C                 | 0.9800       |  |
| Mo2 <sup>i</sup> —Mo1—Mo2              | 89.753 (11)  | Cl3—Mo3—Mo1 <sup>i</sup> | 118.261 (15) |  |
| Mo2—Mo1—Mo3 <sup>i</sup>               | 60.013 (9)   | Cl3—Mo3—Mo2 <sup>i</sup> | 58.306 (14)  |  |
| Mo2 <sup>i</sup> —Mo1—Mo3 <sup>i</sup> | 59.675 (10)  | Cl3—Mo3—Mo2              | 118.588 (17) |  |
| Mo3—Mo1—Mo2 <sup>i</sup>               | 60.080 (8)   | Cl3—Mo3—Cl1 <sup>i</sup> | 89.67 (2)    |  |
| Mo3—Mo1—Mo2                            | 59.698 (9)   | Cl4—Mo3—Mo1 <sup>i</sup> | 118.636 (17) |  |
| Mo3—Mo1—Mo3 <sup>i</sup>               | 89.786 (11)  | Cl4—Mo3—Mo1              | 58.254 (14)  |  |
| Cl1—Mo1—Mo2 <sup>i</sup>               | 118.020 (15) | Cl4—Mo3—Mo2              | 58.556 (14)  |  |
| Cl1—Mo1—Mo2                            | 58.214 (16)  | Cl4—Mo3—Mo2 <sup>i</sup> | 118.205 (16) |  |
| Cl1—Mo1—Mo3                            | 117.899 (15) | Cl4—Mo3—Cl1 <sup>i</sup> | 175.592 (19) |  |
| Cl1—Mo1—Mo3 <sup>i</sup>               | 58.365 (14)  | Cl4—Mo3—Cl3              | 89.93 (2)    |  |
| Cl1—Mo1—Cl2                            | 89.683 (19)  | Cl6—Mo3—Mo1              | 134.228 (19) |  |
| Cl1—Mo1—Cl3                            | 175.251 (19) | Cl6—Mo3—Mo1 <sup>i</sup> | 135.485 (18) |  |
| Cl1—Mo1—Cl4                            | 89.963 (19)  | Cl6—Mo3—Mo2 <sup>i</sup> | 137.228 (18) |  |
| Cl2—Mo1—Mo2 <sup>i</sup>               | 58.387 (15)  | Cl6—Mo3—Mo2              | 132.798 (17) |  |
| Cl2—Mo1—Mo2                            | 117.999 (16) | Cl6—Mo3—Cl1 <sup>i</sup> | 94.40 (2)    |  |
| Cl2—Mo1—Mo3                            | 118.444 (17) | Cl6—Mo3—Cl2 <sup>i</sup> | 90.84 (2)    |  |

| C12 Mal Mali                           | 57.005(14)                  | $C_{16} M_{\odot} 2 C_{12}$            | 02.06(2)          |
|----------------------------------------|-----------------------------|----------------------------------------|-------------------|
| $C12 - M01 - M03^{-1}$                 | 57.995(14)                  | CIO-MOS-CIS                            | 95.00 (2)         |
| C12 - M01 - C13                        | 90.38 (2)                   | C10 - M103 - C14                       | 90.01(2)          |
| C12—Mo1— $C14$                         | 1/5.624 (19)                |                                        | 63.764 (15)       |
| $C13-Mo1-Mo2^4$                        | 58.247 (14)                 |                                        | 63./13(15)        |
| Cl3—Mo1—Mo2                            | 11/.//1 (1/)                |                                        | 63.630 (15)       |
| Cl3—Mo1—Mo3 <sup>1</sup>               | 117.898 (15)                | Mo1—Cl2—Mo2 <sup>1</sup>               | 63.507 (16)       |
| Cl3—Mo1—Mo3                            | 58.092 (14)                 | Mo <sup>31</sup> —Cl2—Mo1              | 63.792 (15)       |
| Cl4—Mo1—Mo2 <sup>1</sup>               | 118.144 (16)                | Mo3 <sup>1</sup> —Cl2—Mo2 <sup>1</sup> | 63.287 (16)       |
| Cl4—Mo1—Mo2                            | 58.325 (14)                 | Mo2 <sup>i</sup> —Cl3—Mo1              | 63.408 (14)       |
| Cl4—Mo1—Mo3 <sup>i</sup>               | 118.319 (15)                | Mo3—Cl3—Mo1                            | 63.489 (16)       |
| Cl4—Mo1—Mo3                            | 58.077 (16)                 | Mo3—Cl3—Mo2 <sup>i</sup>               | 63.616 (15)       |
| Cl4—Mo1—Cl3                            | 89.62 (2)                   | Mo1—Cl4—Mo2                            | 63.569 (15)       |
| Cl7—Mo1—Mo2                            | 135.582 (17)                | Mo3—Cl4—Mo1                            | 63.669 (15)       |
| Cl7—Mo1—Mo2 <sup>i</sup>               | 134.650 (17)                | Mo3—Cl4—Mo2                            | 63.286 (16)       |
| Cl7—Mo1—Mo3                            | 135.962 (17)                | H1A—N1—H1B                             | 101 (2)           |
| Cl7—Mo1—Mo3 <sup>i</sup>               | 134.249 (18)                | H1A—N1—H1C                             | 114 (3)           |
| Cl7—Mo1—Cl1                            | 92.00 (2)                   | H1B—N1—H1C                             | 109 (2)           |
| Cl7—Mo1—Cl2                            | 91.25 (2)                   | C1—N1—H1A                              | 108.4 (18)        |
| Cl7—Mo1—Cl3                            | 92.75 (2)                   | C1—N1—H1B                              | 113.6 (18)        |
| C17—Mo1—C14                            | 93.12 (2)                   | C1—N1—H1C                              | 111.0 (18)        |
| $Mo1^{i}$ — $Mo2$ — $Mo1$              | 90.246 (11)                 | C2-C1-N1                               | 119.1 (2)         |
| $Mo1^{i}$ $Mo2$ $Mo3^{i}$              | 59.955 (8)                  | C5-C1-N1                               | 119.1 (2)         |
| $Mo1 - Mo2 - Mo3^{i}$                  | 60.026 (9)                  | C5-C1-C2                               | 121.8(2)          |
| $Mo3 - Mo2 - Mo1^{i}$                  | 60 228 (8)                  | C1 - C2 - H2                           | 120.6             |
| Mo3—Mo2—Mo1                            | 60 114 (10)                 | C1 - C2 - C3                           | 120.0<br>118.8(3) |
| $Mo3 - Mo2 - Mo3^{i}$                  | 90.033 (11)                 | $C_{3}$ $C_{2}$ $H_{2}$                | 120.6             |
| M03 M02 M03                            | 58 022 (15)                 | $C_2 - C_3 - H_3$                      | 119.7             |
| $C11  Mo2  Mo1^{i}$                    | $118\ 250\ (15)$            | $C_2 = C_3 = H_3$                      | 119.7<br>120.5(3) |
| $C_{11} = M_0 2 = M_0 2^{i}$           | 58 310 (15)                 | $C_4 = C_3 = C_2$                      | 120.5 (5)         |
| $C_{11} = M_{02} = M_{03}$             | 118 122 (15)                | $C_4 = C_5 = H_4$                      | 119.7             |
| $C_{11} = M_0 2 = C_{12} $             | 110.122(13)<br>175 449 (19) | $C_{3}$ $C_{4}$ $C_{6}$                | 120.0             |
| $C11 - M_0 2 - C12$                    | 1/3.440(10)                 | $C_{4} = C_{0}$                        | 120.0 (3)         |
| C11 - M02 - C13                        | 89.08 (2)<br>89.71 (2)      | $C_0 - C_4 - H_4$                      | 120.0             |
| C12 = M02 = C14                        | 89.71 (2)                   | CIC5H3                                 | 120.7             |
| $C12^{i}$ Mo2 Mo1                      | 58.106 (14)                 | CI = C5 = C6                           | 118.6 (3)         |
| Cl2 <sup>i</sup> —Mo2—Mo1              | 118.200 (16)                | C6—C5—H5                               | 120.7             |
| Cl2 <sup>1</sup> —Mo2—Mo3              | 58.105 (14)                 | C4—C6—C5                               | 120.2 (3)         |
| $Cl2^{1}$ —Mo2—Mo3 <sup>1</sup>        | 118.038 (16)                | С4—С6—Н6                               | 119.9             |
| Cl3 <sup>1</sup> —Mo2—Mo1 <sup>1</sup> | 58.346 (16)                 | С5—С6—Н6                               | 119.9             |
| Cl3 <sup>i</sup> —Mo2—Mo1              | 118.097 (16)                | C7—N2—C9                               | 117.3 (2)         |
| Cl3 <sup>i</sup> —Mo2—Mo3              | 118.549 (15)                | C8—N2—C7                               | 121.2 (2)         |
| Cl3 <sup>i</sup> —Mo2—Mo3 <sup>i</sup> | 58.076 (14)                 | C8—N2—C9                               | 121.5 (2)         |
| Cl3 <sup>i</sup> —Mo2—Cl2 <sup>i</sup> | 90.26 (2)                   | N2—C7—H7A                              | 109.5             |
| Cl3 <sup>i</sup> —Mo2—Cl4              | 175.629 (18)                | N2—C7—H7B                              | 109.5             |
| Cl4—Mo2—Mo1                            | 58.105 (15)                 | N2—C7—H7C                              | 109.5             |
| Cl4—Mo2—Mo1 <sup>i</sup>               | 118.367 (16)                | H7A—C7—H7B                             | 109.5             |
| Cl4—Mo2—Mo3                            | 58.157 (14)                 | H7A—C7—H7C                             | 109.5             |
| Cl4—Mo2—Mo3 <sup>i</sup>               | 118.112 (15)                | Н7В—С7—Н7С                             | 109.5             |
| Cl4—Mo2—Cl2 <sup>i</sup>               | 90.00 (2)                   | O1—C8—N2                               | 124.7 (2)         |

|                                        | 101 501 (10) | 01 00 110     | 115 (      |
|----------------------------------------|--------------|---------------|------------|
| $Cl5-Mo2-Mo1^{1}$                      | 134.531 (18) | O1—C8—H8      | 117.6      |
| Cl5—Mo2—Mo1                            | 135.222 (19) | N2—C8—H8      | 117.6      |
| Cl5—Mo2—Mo3 <sup>i</sup>               | 135.276 (17) | N2—C9—H9A     | 109.5      |
| Cl5—Mo2—Mo3                            | 134.689 (19) | N2—C9—H9B     | 109.5      |
| Cl5—Mo2—Cl1                            | 92.63 (2)    | N2—C9—H9C     | 109.5      |
| Cl5—Mo2—Cl2 <sup>i</sup>               | 91.92 (2)    | H9A—C9—H9B    | 109.5      |
| Cl5—Mo2—Cl3 <sup>i</sup>               | 92.04 (2)    | Н9А—С9—Н9С    | 109.5      |
| Cl5—Mo2—Cl4                            | 92.31 (2)    | H9B—C9—H9C    | 109.5      |
| Mo1—Mo3—Mo1 <sup>i</sup>               | 90.214 (10)  | C10—N3—C11    | 122.7 (2)  |
| Mo1—Mo3—Mo2 <sup>i</sup>               | 59.965 (10)  | C10—N3—C12    | 121.0 (2)  |
| Mo2—Mo3—Mo1 <sup>i</sup>               | 60.098 (8)   | C12—N3—C11    | 116.3 (2)  |
| Mo2 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 59.961 (8)   | O2—C10—N3     | 126.1 (3)  |
| Mo2—Mo3—Mo1                            | 60.188 (8)   | O2—C10—H10    | 116.9      |
| Mo2—Mo3—Mo2 <sup>i</sup>               | 89.968 (10)  | N3—C10—H10    | 116.9      |
| Cl1 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 57.923 (15)  | N3—C11—H11A   | 109.5      |
| Cl1 <sup>i</sup> —Mo3—Mo1              | 118.008 (15) | N3—C11—H11B   | 109.5      |
| Cl1 <sup>i</sup> —Mo3—Mo2              | 118.001 (15) | N3—C11—H11C   | 109.5      |
| Cl1 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 58.058 (14)  | H11A—C11—H11B | 109.5      |
| Cl2 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 58.214 (14)  | H11A—C11—H11C | 109.5      |
| Cl2 <sup>i</sup> —Mo3—Mo1              | 118.777 (16) | H11B—C11—H11C | 109.5      |
| Cl2 <sup>i</sup> —Mo3—Mo2              | 58.608 (16)  | N3—C12—H12A   | 109.5      |
| Cl2 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 118.165 (15) | N3—C12—H12B   | 109.5      |
| Cl2 <sup>i</sup> —Mo3—Cl1 <sup>i</sup> | 89.55 (2)    | N3—C12—H12C   | 109.5      |
| Cl2 <sup>i</sup> —Mo3—Cl3              | 176.071 (19) | H12A—C12—H12B | 109.5      |
| Cl2 <sup>i</sup> —Mo3—Cl4              | 90.56 (2)    | H12A—C12—H12C | 109.5      |
| Cl3—Mo3—Mo1                            | 58.419 (15)  | H12B—C12—H12C | 109.5      |
|                                        |              |               |            |
| N1—C1—C2—C3                            | 179.4 (2)    | C3—C4—C6—C5   | 0.4 (4)    |
| N1—C1—C5—C6                            | -178.9 (2)   | C5—C1—C2—C3   | -0.5 (4)   |
| C1—C2—C3—C4                            | 0.0 (4)      | C7—N2—C8—O1   | 0.0 (4)    |
| C1—C5—C6—C4                            | -0.8 (4)     | C9—N2—C8—O1   | -179.2 (2) |
| C2-C1-C5-C6                            | 0.9 (4)      | C11—N3—C10—O2 | -177.1 (3) |
| C2—C3—C4—C6                            | 0.1 (4)      | C12—N3—C10—O2 | 1.5 (5)    |
|                                        |              |               |            |

Symmetry code: (i) -x+1, -y+1, -z+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                             | <i>D</i> —Н | H···A    | D···A     | D—H··· $A$ |
|-------------------------------------|-------------|----------|-----------|------------|
| N1—H1A····O2 <sup>ii</sup>          | 0.89 (3)    | 2.01 (3) | 2.827 (3) | 152 (2)    |
| N1—H1 <i>B</i> ···O2 <sup>iii</sup> | 0.91 (3)    | 1.94 (3) | 2.833 (3) | 168 (3)    |
| N1—H1C····O1 <sup>iv</sup>          | 0.91 (3)    | 1.82 (3) | 2.715 (3) | 166 (3)    |

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*, *z*-1.

*p*-Phenylenediammonium octa- $\mu_3$ -chlorido-hexachlorido-*octahedro*-hexamolybdate *N*,*N*-dimethylformamide hexasolvate (2)

Z = 1

F(000) = 790

 $\theta = 2.2 - 25.0^{\circ}$ 

 $\mu = 2.18 \text{ mm}^{-1}$ 

Needle, yellow

 $0.50 \times 0.13 \times 0.13$  mm

T = 200 K

 $D_{\rm x} = 2.084 {\rm Mg} {\rm m}^{-3}$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 4690 reflections

#### Crystal data

 $\begin{array}{l} ({\rm C_6H_{10}N_2})[{\rm Mo_6Cl_8Cl_6}]\cdot 6{\rm C_3H_7NO} \\ M_r = 1620.67 \\ {\rm Triclinic}, \ P\overline{1} \\ a = 10.1752 \ (16) \ {\rm \mathring{A}} \\ b = 10.3227 \ (16) \ {\rm \mathring{A}} \\ c = 13.736 \ (2) \ {\rm \mathring{A}} \\ a = 95.204 \ (4)^\circ \\ \beta = 111.483 \ (4)^\circ \\ \gamma = 101.973 \ (4)^\circ \\ V = 1291.1 \ (3) \ {\rm \mathring{A}}^3 \end{array}$ 

# Data collection

| Bruker SMART X2S benchtop                           | $T_{\min} = 0.552, \ T_{\max} = 0.745$                         |
|-----------------------------------------------------|----------------------------------------------------------------|
| diffractometer                                      | 12459 measured reflections                                     |
| Radiation source: sealed microfocus source,         | 4504 independent reflections                                   |
| XOS X-beam microfocus source                        | 3666 reflections with $I > 2\sigma(I)$                         |
| Graphite monochromator                              | $R_{\rm int} = 0.035$                                          |
| Detector resolution: 8.3330 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 25.0^\circ,  \theta_{\rm min} = 2.4^\circ$ |
| $\varphi$ and $\omega$ scans                        | $h = -12 \rightarrow 12$                                       |
| Absorption correction: multi-scan                   | $k = -12 \rightarrow 12$                                       |
| (SADABS; Bruker, 2012)                              | $l = -16 \rightarrow 16$                                       |
|                                                     |                                                                |

#### Refinement

| Refinement on $F^2$                             | H atoms treated by a mixture of independent                |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | and constrained refinement                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.026$                 | $w = 1/[\sigma^2(F_o^2) + (0.0182P)^2 + 0.7035P]$          |
| $wR(F^2) = 0.062$                               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.03                                        | $(\Delta/\sigma)_{\rm max} = 0.002$                        |
| 4504 reflections                                | $\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$  |
| 285 parameters                                  | $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$ |
| 144 restraints                                  | Extinction correction: SHELXL2018                          |
| Primary atom site location: structure-invariant | (Sheldrick, 2015),                                         |
| direct methods                                  | $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$    |
| Hydrogen site location: mixed                   | Extinction coefficient: 0.0019 (2)                         |

Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|-------------|-------------|-----------------------------|-----------|
| Mo1 | 0.38576 (3) | 0.32569 (3) | 0.46504 (2) | 0.01984 (9)                 |           |
| Mo2 | 0.38226 (3) | 0.53457 (3) | 0.37203 (2) | 0.01942 (9)                 |           |
| Mo3 | 0.61719 (3) | 0.44772 (3) | 0.43759 (2) | 0.01961 (9)                 |           |
| Cl1 | 0.39098 (9) | 0.31721 (8) | 0.28606 (6) | 0.02470 (19)                |           |
| Cl2 | 0.16889 (8) | 0.41769 (8) | 0.40411 (7) | 0.02485 (19)                |           |

| C13         | 0.61432 (9)            | 0.25211 (8)            | 0.52889(7)             | 0.02446 (19)         |           |
|-------------|------------------------|------------------------|------------------------|----------------------|-----------|
| Cl4         | 0.39296 (9)            | 0.35261 (8)            | 0.64765 (6)            | 0.02436 (19)         |           |
| C15         | 0.23637 (10)           | 0.09538 (8)            | 0.42076 (7)            | 0.0329 (2)           |           |
| Cl6         | 0.22927 (9)            | 0.58540 (9)            | 0.20362 (7)            | 0.0303 (2)           |           |
| Cl7         | 0.77350 (10)           | 0.38668 (9)            | 0.35511 (7)            | 0.0340 (2)           |           |
| N1          | 0.6572 (4)             | 0.7709 (3)             | 0.0311 (3)             | 0.0349 (8)           |           |
| H1A         | 0.593 (4)              | 0.816 (4)              | -0.008(3)              | 0.052*               |           |
| H1B         | 0.735 (3)              | 0.773 (4)              | 0.010 (3)              | 0.052*               |           |
| H1C         | 0.702 (4)              | 0.814 (4)              | 0.1013 (17)            | 0.052*               |           |
| C1          | 0.5771(4)              | 0.6310 (4)             | 0.0161(3)              | 0.0300 (8)           |           |
| C2          | 0.4838(4)              | 0.5982(4)              | 0.0660(3)              | 0.0346(10)           | 0.918 (4) |
| H2          | 0.473071               | 0.666286               | 0.111672               | 0.041*               | 0.918 (4) |
| C2A         | 0.614(4)               | 0.562(3)               | 0.098(2)               | 0.0346(10)           | 0.082(4)  |
| H2A         | 0.690135               | 0.603414               | 0.164923               | 0.041*               | 0.082(4)  |
| C3          | 0.5946(4)              | 0.5334(4)              | -0.0500(3)             | 0.041<br>0.0368 (11) | 0.002(4)  |
| С5<br>H3    | 0.659871               | 0.556614               | -0.084221              | 0.0308(11)           | 0.918(4)  |
| C3A         | 0.059871<br>0.465(2)   | 0.550014               | -0.0702(18)            | 0.044<br>0.0368 (11) | 0.913(4)  |
|             | 0.405(2)               | 0.570 (5)              | -0.124626              | 0.0308 (11)          | 0.082(4)  |
| 115A<br>01  | 0.440087<br>0.2262 (3) | 0.020072<br>0.1030(3)  | 0.134020<br>0.7614 (2) | 0.044                | 0.082 (4) |
| N2          | 0.2202(3)              | 0.1030(3)<br>0.1087(3) | 0.7014(2)<br>0.6536(2) | 0.0397(7)            |           |
| INZ<br>C4   | -0.0102(4)             | 0.1987(3)<br>0.2107(4) | 0.0330(2)<br>0.5464(2) | 0.0343(7)            |           |
|             | -0.0195(4)             | 0.2197(4)              | 0.3404 (3)             | 0.0471(11)           |           |
| П4А<br>114D | 0.012128               | 0.1/3444               | 0.490725               | 0.071*               |           |
| П4D         | 0.001881               | 0.102100               | 0.544827               | 0.071*               |           |
| H4C         | -0.12400/              | 0.183480               | 0.525552               | $0.0/1^{*}$          |           |
|             | 0.0344 (6)             | 0.26/1(6)              | 0.7385 (4)             | 0.089 (2)            |           |
| НЭА         | 0.1055/7               | 0.355597               | 0.705020               | 0.133*               |           |
| НЭВ         | 0.045962               | 0.213536               | 0.795020               | 0.133*               |           |
| HOC         | -0.064912              | 0.279168               | 0./11359               | 0.133*               |           |
| C6          | 0.1511 (4)             | 0.1229 (3)             | 0.6/38(3)              | 0.0310 (9)           |           |
| H6          | 0.160825               | 0.078393               | 0.614092               | 0.03/*               |           |
| 02          | 0.4557 (3)             | -0.1235 (3)            | 0.9024 (2)             | 0.0528 (8)           |           |
| N3          | 0.5360 (3)             | -0.0093(3)             | 0.7928 (2)             | 0.0365 (8)           |           |
| C7          | 0.6841 (5)             | 0.0426 (5)             | 0.8/04 (4)             | 0.0737 (16)          |           |
| H/A         | 0.742668               | -0.019070              | 0.863107               | 0.111*               |           |
| H/B         | 0.684310               | 0.050996               | 0.942109               | 0.111*               |           |
| H7C         | 0.726072               | 0.131344               | 0.858773               | 0.111*               |           |
| C8          | 0.5004 (5)             | 0.0294 (4)             | 0.6892 (3)             | 0.0521 (12)          |           |
| H8A         | 0.516051               | 0.127409               | 0.697400               | 0.078*               |           |
| H8B         | 0.397800               | -0.014548              | 0.643792               | 0.078*               |           |
| H8C         | 0.563372               | 0.001622               | 0.656359               | 0.078*               |           |
| C9          | 0.4359 (4)             | -0.0854 (4)            | 0.8172 (4)             | 0.0401 (10)          |           |
| H9          | 0.339326               | -0.113538              | 0.763903               | 0.048*               |           |
| 03          | 1.1120 (3)             | 0.2000 (3)             | 0.0265 (2)             | 0.0531 (8)           |           |
| N4          | 0.9538 (3)             | 0.2480 (3)             | 0.0950 (2)             | 0.0348 (7)           |           |
| C10         | 0.8672 (5)             | 0.3384 (4)             | 0.1084 (4)             | 0.0542 (12)          |           |
| H10A        | 0.910401               | 0.386797               | 0.182173               | 0.081*               |           |
| H10B        | 0.767006               | 0.286161               | 0.091710               | 0.081*               |           |
| H10C        | 0.865666               | 0.403223               | 0.060362               | 0.081*               |           |

| C11  | 0.9567 (5) | 0.1356 (4) | 0.1512 (3) | 0.0513 (11) |
|------|------------|------------|------------|-------------|
| H11A | 0.986243   | 0.066079   | 0.116745   | 0.077*      |
| H11B | 0.859138   | 0.097880   | 0.149607   | 0.077*      |
| H11C | 1.026857   | 0.166773   | 0.225219   | 0.077*      |
| C12  | 1.0327 (4) | 0.2695 (4) | 0.0379 (3) | 0.0415 (10) |
| H12  | 1.027845   | 0.344630   | 0.002820   | 0.050*      |
|      |            |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Mo1 | 0.01844 (16) | 0.01776 (16) | 0.02281 (18) | 0.00192 (12) | 0.00933 (13) | 0.00253 (12) |
| Mo2 | 0.01778 (16) | 0.01982 (16) | 0.02082 (18) | 0.00380 (12) | 0.00849 (13) | 0.00326 (12) |
| Mo3 | 0.01810 (16) | 0.01988 (16) | 0.02220 (18) | 0.00434 (12) | 0.01006 (13) | 0.00274 (12) |
| Cl1 | 0.0253 (4)   | 0.0231 (4)   | 0.0234 (5)   | 0.0034 (3)   | 0.0097 (4)   | -0.0003 (3)  |
| Cl2 | 0.0174 (4)   | 0.0274 (4)   | 0.0279 (5)   | 0.0026 (3)   | 0.0088 (4)   | 0.0041 (4)   |
| C13 | 0.0252 (4)   | 0.0212 (4)   | 0.0287 (5)   | 0.0079 (3)   | 0.0115 (4)   | 0.0047 (4)   |
| Cl4 | 0.0249 (4)   | 0.0248 (4)   | 0.0264 (5)   | 0.0041 (3)   | 0.0142 (4)   | 0.0067 (4)   |
| C15 | 0.0336 (5)   | 0.0222 (4)   | 0.0385 (5)   | -0.0019 (4)  | 0.0151 (4)   | 0.0018 (4)   |
| Cl6 | 0.0290 (5)   | 0.0361 (5)   | 0.0254 (5)   | 0.0108 (4)   | 0.0087 (4)   | 0.0072 (4)   |
| C17 | 0.0331 (5)   | 0.0407 (5)   | 0.0373 (5)   | 0.0137 (4)   | 0.0223 (4)   | 0.0051 (4)   |
| N1  | 0.0345 (19)  | 0.039 (2)    | 0.0338 (19)  | 0.0056 (16)  | 0.0181 (16)  | 0.0081 (16)  |
| C1  | 0.028 (2)    | 0.036 (2)    | 0.029 (2)    | 0.0097 (17)  | 0.0132 (17)  | 0.0136 (17)  |
| C2  | 0.039 (2)    | 0.038 (2)    | 0.032 (2)    | 0.015 (2)    | 0.018 (2)    | 0.0055 (19)  |
| C2A | 0.039 (2)    | 0.038 (2)    | 0.032 (2)    | 0.015 (2)    | 0.018 (2)    | 0.0055 (19)  |
| C3  | 0.035 (2)    | 0.049 (3)    | 0.033 (2)    | 0.010 (2)    | 0.021 (2)    | 0.012 (2)    |
| C3A | 0.035 (2)    | 0.049 (3)    | 0.033 (2)    | 0.010 (2)    | 0.021 (2)    | 0.012 (2)    |
| 01  | 0.0426 (16)  | 0.0405 (16)  | 0.0385 (17)  | 0.0171 (13)  | 0.0145 (14)  | 0.0111 (13)  |
| N2  | 0.0296 (17)  | 0.0395 (19)  | 0.040 (2)    | 0.0109 (15)  | 0.0191 (15)  | 0.0086 (15)  |
| C4  | 0.030 (2)    | 0.060 (3)    | 0.054 (3)    | 0.013 (2)    | 0.015 (2)    | 0.027 (2)    |
| C5  | 0.109 (5)    | 0.126 (5)    | 0.065 (4)    | 0.083 (4)    | 0.045 (3)    | 0.016 (4)    |
| C6  | 0.032 (2)    | 0.0247 (19)  | 0.039 (2)    | 0.0027 (17)  | 0.0197 (19)  | 0.0024 (17)  |
| O2  | 0.0527 (19)  | 0.0526 (19)  | 0.052 (2)    | 0.0122 (15)  | 0.0172 (16)  | 0.0249 (16)  |
| N3  | 0.0329 (18)  | 0.0305 (18)  | 0.040 (2)    | 0.0080 (15)  | 0.0073 (15)  | 0.0089 (15)  |
| C7  | 0.048 (3)    | 0.060 (3)    | 0.082 (4)    | -0.008 (3)   | -0.001 (3)   | 0.027 (3)    |
| C8  | 0.076 (3)    | 0.054 (3)    | 0.041 (3)    | 0.032 (3)    | 0.029 (2)    | 0.016 (2)    |
| C9  | 0.033 (2)    | 0.027 (2)    | 0.051 (3)    | 0.0096 (18)  | 0.007 (2)    | 0.003 (2)    |
| 03  | 0.0490 (18)  | 0.0476 (18)  | 0.071 (2)    | 0.0059 (15)  | 0.0388 (17)  | 0.0033 (16)  |
| N4  | 0.0308 (17)  | 0.0370 (19)  | 0.0326 (19)  | 0.0017 (15)  | 0.0122 (15)  | 0.0045 (15)  |
| C10 | 0.047 (3)    | 0.057 (3)    | 0.064 (3)    | 0.012 (2)    | 0.028 (2)    | 0.008 (2)    |
| C11 | 0.051 (3)    | 0.055 (3)    | 0.048 (3)    | 0.009 (2)    | 0.021 (2)    | 0.020 (2)    |
| C12 | 0.039 (2)    | 0.040 (2)    | 0.037 (2)    | -0.004 (2)   | 0.014 (2)    | 0.0043 (19)  |

# Geometric parameters (Å, °)

| Mo1—Mo2 <sup>i</sup> | 2.6065 (5) | СЗА—НЗА | 0.9500    |  |
|----------------------|------------|---------|-----------|--|
| Mo1—Mo2              | 2.6040 (5) | O1—C6   | 1.229 (4) |  |
| Mo1—Mo3              | 2.6039 (5) | N2—C4   | 1.456 (5) |  |
| Mo1—Mo3 <sup>i</sup> | 2.5984 (5) | N2—C5   | 1.435 (5) |  |

| Mo1—Cl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4724 (9)              | N2—C6                     | 1.312 (4)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|----------------------|
| Mo1—Cl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4764 (9)              | C4—H4A                    | 0.9800               |
| Mo1—Cl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4727 (9)              | C4—H4B                    | 0.9800               |
| Mo1—Cl4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4708 (9)              | C4—H4C                    | 0.9800               |
| Mo1—Cl5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4277 (9)              | С5—Н5А                    | 0.9800               |
| Mo2—Mo3 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6027 (5)              | С5—Н5В                    | 0.9800               |
| Mo2—Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6055 (5)              | C5—H5C                    | 0.9800               |
| Mo2—Cl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,4729 (9)              | С6—Н6                     | 0.9500               |
| Mo2—Cl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4644 (9)              | 02                        | 1.228 (5)            |
| $M_02$ — $C13^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4682 (9)              | N3—C7                     | 1.442 (5)            |
| $M_0^2$ —Cl4 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,4629 (9)              | N3—C8                     | 1450(5)              |
| $M_02$ —Cl6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,4436 (9)              | N3—C9                     | 1.100(5)<br>1.316(5) |
| Mo3—Cl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 4781 (9)              | C7—H7A                    | 0.9800               |
| $Mo3-C12^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 4751 (9)              | C7—H7B                    | 0.9800               |
| Mo3-Cl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1731(9)<br>2 4724 (9) | C7—H7C                    | 0.9800               |
| $Mo3-Cl4^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4632 (9)              | C8—H8A                    | 0.9800               |
| Mo3—Cl7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1052 (9)              | C8—H8B                    | 0.9800               |
| N1_H1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.922(18)               |                           | 0.9800               |
| N1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.922(18)               | С9—Н9                     | 0.9800               |
| N1 H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.927(18)               | $O_3 C_{12}$              | 1.227(5)             |
| N1 C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.458(5)                | N4 C10                    | 1.227(5)<br>1.453(5) |
| C1 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.450 (5)               | N4—C11                    | 1.450(5)             |
| C1 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.361 (16)              | N4—C12                    | 1.430(5)             |
| C1 C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.301(10)<br>1.377(5)   | $C_{10}$ $H_{10A}$        | 0.9800               |
| C1 = C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.377 (3)               |                           | 0.9800               |
| $C_1 = C_3 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0500                  |                           | 0.9800               |
| $C_2 = C_2^{ii}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9300                  |                           | 0.9800               |
| $C_2 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.578 (5)               |                           | 0.9800               |
| $C_2A = C_2A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,280 (15)              |                           | 0.9800               |
| $C_{2A}$ $C$ | 1.560 (15)              |                           | 0.9800               |
| Сэ—пэ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300                  | С12—П12                   | 0.9300               |
| Mo2—Mo1—Mo2 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90.126 (16)             | Cl4 <sup>i</sup> —Mo3—Cl3 | 175.60 (3)           |
| Mo3—Mo1—Mo2 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59.936 (14)             | Cl7—Mo3—Mo1               | 136.77 (3)           |
| Mo3—Mo1—Mo2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.038 (12)             | Cl7—Mo3—Mo1 <sup>i</sup>  | 133.17 (3)           |
| Mo3 <sup>i</sup> —Mo1—Mo2 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.074 (13)             | Cl7—Mo3—Mo2 <sup>i</sup>  | 135.56 (3)           |
| Mo3 <sup>i</sup> —Mo1—Mo2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.036 (15)             | C17—Mo3—Mo2               | 134.21 (3)           |
| Mo3 <sup>i</sup> —Mo1—Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.946 (14)             | Cl7—Mo3—Cl1               | 92.98 (3)            |
| Cl1—Mo1—Mo2 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.30 (2)              | Cl7—Mo3—Cl2 <sup>i</sup>  | 91.41 (3)            |
| Cl1—Mo1—Mo2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.24 (2)               | Cl7—Mo3—Cl3               | 93.96 (3)            |
| Cl1—Mo1—Mo3 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.26 (2)              | Cl7—Mo3—Cl4 <sup>i</sup>  | 90.44 (3)            |
| Cl1—Mo1—Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.37 (2)               | Mo1—Cl1—Mo2               | 63.55 (2)            |
| Cl1—Mo1—Cl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89.61 (3)               | Mo1—Cl1—Mo3               | 63.47 (2)            |
| Cl1—Mo1—Cl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90.01 (3)               | Mo2—Cl1—Mo3               | 63.50(2)             |
| Cl2—Mo1—Mo2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57.97 (2)               | Mo2—Cl2—Mo1               | 63.61 (2)            |
| Cl2—Mo1—Mo2 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.37 (2)              | Mo2—Cl2—Mo3 <sup>i</sup>  | 63.59 (2)            |
| Cl2—Mo1—Mo3 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58.32 (2)               | Mo3 <sup>i</sup> —Cl2—Mo1 | 63.31 (2)            |
| Cl2—Mo1—Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.99 (2)              | Mo2 <sup>i</sup> —Cl3—Mo1 | 63.68 (2)            |
| Cl3—Mo1—Mo2 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58.08 (2)               | Mo2 <sup>i</sup> —Cl3—Mo3 | 63.58 (2)            |

| $C_{12} = M_{-1} = M_{-2}$             | 119 24 (2)             | M-2 C12 M-1                                        | (2.55.(2))           |
|----------------------------------------|------------------------|----------------------------------------------------|----------------------|
| C13— $M101$ — $M02$                    | 118.24 (2)             | $\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000}$ | (3.33(2))            |
| C13—M01—M03 <sup>4</sup>               | 118.13 (2)             |                                                    | 63.78(2)             |
| Cl3—Mol—Mo3                            | 58.22 (2)              | Mo2 <sup>1</sup> —Cl4—Mo3 <sup>1</sup>             | 63.86 (2)            |
| Cl3—Mo1—Cl2                            | 175.50 (3)             | Mo3 <sup>1</sup> —Cl4—Mo1                          | 63.56 (2)            |
| Cl4—Mo1—Mo2 <sup>i</sup>               | 57.96 (2)              | H1A—N1—H1B                                         | 112 (4)              |
| Cl4—Mo1—Mo2                            | 118.09 (2)             | H1A—N1—H1C                                         | 110 (4)              |
| Cl4—Mo1—Mo3                            | 117.88 (2)             | H1B—N1—H1C                                         | 103 (3)              |
| Cl4—Mo1—Mo3 <sup>i</sup>               | 58.08 (2)              | C1—N1—H1A                                          | 108 (3)              |
| Cl4—Mo1—Cl1                            | 175.46 (3)             | C1—N1—H1B                                          | 109 (3)              |
| Cl4—Mo1—Cl2                            | 90.28 (3)              | C1—N1—H1C                                          | 114 (3)              |
| C14—Mo1—C13                            | 89.74 (3)              | C2-C1-N1                                           | 119.9 (3)            |
| $C15-Mo1-Mo2^{i}$                      | 134.38 (3)             | $C_{2}$ — $C_{1}$ — $C_{3}$                        | 120.7(4)             |
| C15 - Mo1 - Mo2                        | 13549(3)               | $C_2 = C_1 = N_1$                                  | 119.6(15)            |
| C15 Mo1 Mo2                            | 135.18(2)              | $C_2A = C_1 = C_3A$                                | 120.3(10)            |
| $C_{15}$ Mo1 Mo2 <sup>i</sup>          | 133.10(2)<br>124.97(2) | $C_{2A} = C_{1} = C_{3A}$                          | 120.3(10)            |
| C15 Mo1 C11                            | 134.07(3)              | $C_{3}$ $C_{1}$ $N_{1}$                            | 119.4(3)             |
|                                        | 92.58 (3)              | $C_{3A} = C_{1} = N_{1}$                           | 120.1 (10)           |
| CI5—Mo1—CI2                            | 92.57 (3)              | C1—C2—H2                                           | 119.9                |
| Cl5—Mo1—Cl3                            | 91.93 (3)              | C1—C2—C3 <sup>n</sup>                              | 120.1 (4)            |
| Cl5—Mo1—Cl4                            | 91.96 (3)              | $C3^{n}$ — $C2$ — $H2$                             | 119.9                |
| Mo1—Mo2—Mo1 <sup>i</sup>               | 89.873 (16)            | C1—C2A—H2A                                         | 121.4                |
| Mo1—Mo2—Mo3                            | 59.978 (12)            | C1—C2A—C3A <sup>ii</sup>                           | 117 (3)              |
| Mo3 <sup>i</sup> —Mo2—Mo1 <sup>i</sup> | 59.981 (14)            | C3A <sup>ii</sup> —C2A—H2A                         | 121.4                |
| Mo3 <sup>i</sup> —Mo2—Mo1              | 59.875 (13)            | C1—C3—C2 <sup>ii</sup>                             | 119.2 (4)            |
| Mo3—Mo2—Mo1 <sup>i</sup>               | 59.809 (14)            | С1—С3—Н3                                           | 120.4                |
| Mo3 <sup>i</sup> —Mo2—Mo3              | 89.819 (14)            | C2 <sup>ii</sup> —C3—H3                            | 120.4                |
| Cl1—Mo2—Mo1 <sup>i</sup>               | 118.14 (2)             | C1—C3A—C2A <sup>ii</sup>                           | 122 (3)              |
| Cl1—Mo2—Mo1                            | 58.22 (2)              | С1—С3А—НЗА                                         | 118.8                |
| Cl1—Mo2—Mo3 <sup>i</sup>               | 118.08 (2)             | C2A <sup>ii</sup> —C3A—H3A                         | 118.8                |
| C11—Mo2—Mo3                            | 58.34 (2)              | C5—N2—C4                                           | 117.3 (3)            |
| $C12 - Mo2 - Mo1^{i}$                  | 118 37 (2)             | C6-N2-C4                                           | 122.3(3)             |
| C12 - Mo2 - Mo1                        | 58 42 (2)              | C6 N2 C5                                           | 122.3(3)<br>120.4(3) |
| C12 - Mo2 - Mo3                        | 11838(2)               | N2 - C4 - H4A                                      | 109.5                |
| $C_{12} = M_{02} = M_{03}^{i}$         | 58 40 (2)              | $N_2 = C_4 = H_4 R$                                | 109.5                |
| $C_{12} = M_{02} = C_{11}$             | 50.40(2)               | $N_2 = C_4 = H_4 C$                                | 109.5                |
| C12 - M02 - C11                        | 09.00 (3)<br>90.05 (3) | $N_2 \rightarrow C_4 \rightarrow H_4 D$            | 109.5                |
| C12— $M02$ — $C13$                     | 89.95 (3)              | H4A - C4 - H4B                                     | 109.5                |
| Cl3 <sup>1</sup> —Mo2—Mo1 <sup>1</sup> | 58.25 (2)              | H4A—C4—H4C                                         | 109.5                |
| Cl3 <sup>1</sup> —Mo2—Mo1              | 118.15 (2)             | H4B—C4—H4C                                         | 109.5                |
| Cl3 <sup>1</sup> —Mo2—Mo3 <sup>1</sup> | 58.29 (2)              | N2—C5—H5A                                          | 109.5                |
| Cl3 <sup>i</sup> —Mo2—Mo3              | 118.04 (2)             | N2—C5—H5B                                          | 109.5                |
| Cl3 <sup>i</sup> —Mo2—Cl1              | 175.56 (3)             | N2—C5—H5C                                          | 109.5                |
| Cl4 <sup>i</sup> —Mo2—Mo1              | 118.04 (2)             | H5A—C5—H5B                                         | 109.5                |
| Cl4 <sup>i</sup> —Mo2—Mo1 <sup>i</sup> | 58.26 (2)              | H5A—C5—H5C                                         | 109.5                |
| Cl4 <sup>i</sup> —Mo2—Mo3              | 58.07 (2)              | H5B—C5—H5C                                         | 109.5                |
| Cl4 <sup>i</sup> —Mo2—Mo3 <sup>i</sup> | 118.22 (2)             | O1—C6—N2                                           | 127.2 (4)            |
| Cl4 <sup>i</sup> —Mo2—Cl1              | 89.81 (3)              | O1—C6—H6                                           | 116.4                |
| Cl4 <sup>i</sup> —Mo2—Cl2              | 175.77 (3)             | N2—C6—H6                                           | 116.4                |
| $C14^{i}$ —Mo2— $C13^{i}$              | 90.03 (3)              | C7—N3—C8                                           | 117.8 (4)            |
| Cl6—Mo2—Mo1 <sup>i</sup>               | 133.87 (3)             | C9—N3—C7                                           | 120.7 (4)            |
|                                        |                        |                                                    | ( ) ( ) /            |

| Cl6—Mo2—Mo1                            | 136.26 (3)  | C9—N3—C8                     | 121.5 (4) |
|----------------------------------------|-------------|------------------------------|-----------|
| Cl6—Mo2—Mo3 <sup>i</sup>               | 134.96 (3)  | N3—C7—H7A                    | 109.5     |
| Cl6—Mo2—Mo3                            | 135.19 (2)  | N3—C7—H7B                    | 109.5     |
| Cl6—Mo2—Cl1                            | 93.14 (3)   | N3—C7—H7C                    | 109.5     |
| Cl6—Mo2—Cl2                            | 92.74 (3)   | H7A—C7—H7B                   | 109.5     |
| Cl6—Mo2—Cl3 <sup>i</sup>               | 91.30 (3)   | H7A—C7—H7C                   | 109.5     |
| Cl6—Mo2—Cl4 <sup>i</sup>               | 91.49 (3)   | H7B—C7—H7C                   | 109.5     |
| Mo1 <sup>i</sup> —Mo3—Mo1              | 90.053 (14) | N3—C8—H8A                    | 109.5     |
| Mo1 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 60.086 (12) | N3—C8—H8B                    | 109.5     |
| Mo1—Mo3—Mo2                            | 59.984 (14) | N3—C8—H8C                    | 109.5     |
| Mo1 <sup>i</sup> —Mo3—Mo2              | 60.116 (12) | H8A—C8—H8B                   | 109.5     |
| Mo2 <sup>i</sup> —Mo3—Mo1              | 60.082 (11) | H8A—C8—H8C                   | 109.5     |
| Mo2 <sup>i</sup> —Mo3—Mo2              | 90.179 (13) | H8B—C8—H8C                   | 109.5     |
| Cl1—Mo3—Mo1 <sup>i</sup>               | 118.25 (2)  | O2—C9—N3                     | 126.1 (4) |
| Cl1—Mo3—Mo1                            | 58.16 (2)   | O2—C9—H9                     | 116.9     |
| Cl1—Mo3—Mo2                            | 58.15 (2)   | N3—C9—H9                     | 116.9     |
| Cl1—Mo3—Mo2 <sup>i</sup>               | 118.23 (2)  | C11—N4—C10                   | 117.9 (3) |
| Cl2 <sup>i</sup> —Mo3—Mo1              | 118.07 (2)  | C12—N4—C10                   | 121.7 (3) |
| Cl2 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 58.37 (2)   | C12—N4—C11                   | 120.3 (4) |
| Cl2 <sup>i</sup> —Mo3—Mo2              | 118.46 (2)  | N4-C10-H10A                  | 109.5     |
| Cl2 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 58.00 (2)   | N4—C10—H10B                  | 109.5     |
| Cl2 <sup>i</sup> —Mo3—Cl1              | 175.60 (3)  | N4—C10—H10C                  | 109.5     |
| Cl3—Mo3—Mo1                            | 58.23 (2)   | H10A-C10-H10B                | 109.5     |
| Cl3—Mo3—Mo1 <sup>i</sup>               | 118.20 (2)  | H10A-C10-H10C                | 109.5     |
| Cl3—Mo3—Mo2                            | 118.20 (2)  | H10B-C10-H10C                | 109.5     |
| Cl3—Mo3—Mo2 <sup>i</sup>               | 58.13 (2)   | N4—C11—H11A                  | 109.5     |
| Cl3—Mo3—Cl1                            | 89.89 (3)   | N4—C11—H11B                  | 109.5     |
| Cl3—Mo3—Cl2 <sup>i</sup>               | 89.61 (3)   | N4—C11—H11C                  | 109.5     |
| Cl4 <sup>i</sup> —Mo3—Mo1              | 118.03 (2)  | H11A—C11—H11B                | 109.5     |
| Cl4 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 58.36 (2)   | H11A—C11—H11C                | 109.5     |
| Cl4 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 118.43 (2)  | H11B—C11—H11C                | 109.5     |
| Cl4 <sup>i</sup> —Mo3—Mo2              | 58.06 (2)   | O3—C12—N4                    | 125.0 (4) |
| Cl4 <sup>i</sup> —Mo3—Cl1              | 89.68 (3)   | O3—C12—H12                   | 117.5     |
| Cl4 <sup>i</sup> —Mo3—Cl2 <sup>i</sup> | 90.48 (3)   | N4—C12—H12                   | 117.5     |
|                                        |             |                              |           |
| N1-C1-C2-C3 <sup>ii</sup>              | 178.5 (3)   | C3A—C1—C2A—C3A <sup>ii</sup> | 1.0 (17)  |
| N1—C1—C2A—C3A <sup>ii</sup>            | -179.7 (9)  | C4—N2—C6—O1                  | 177.0 (4) |
| N1-C1-C3-C2 <sup>ii</sup>              | -178.5 (3)  | C5—N2—C6—O1                  | -1.6 (6)  |
| N1—C1—C3A—C2A <sup>ii</sup>            | 179.7 (9)   | C7—N3—C9—O2                  | -2.6 (6)  |
| C2-C1-C3-C2 <sup>ii</sup>              | 0.3 (6)     | C8—N3—C9—O2                  | 179.8 (4) |
| C2A—C1—C3A—C2A <sup>ii</sup>           | -1.1 (18)   | C10—N4—C12—O3                | 177.3 (4) |
| C3—C1—C2—C3 <sup>ii</sup>              | -0.3 (6)    | C11—N4—C12—O3                | 0.4 (6)   |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

# Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------|-------------|----------|-----------|-------------------------|
| N1—H1A····O2 <sup>iii</sup> | 0.92 (2)    | 1.76 (2) | 2.672 (4) | 171 (4)                 |

|                                     |          |          | supportin | g information |
|-------------------------------------|----------|----------|-----------|---------------|
| N1—H1 <i>B</i> ····O3 <sup>iv</sup> | 0.93 (2) | 1.79 (2) | 2.710 (4) | 173 (4)       |
| N1—H1C···O1 <sup>i</sup>            | 0.92 (2) | 1.81 (2) | 2.727 (4) | 175 (4)       |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*-1; (iv) -*x*+2, -*y*+1, -*z*.

N,N'-(1,4-Phenylene)bis(propan-2-iminium) octa- $\mu_3$ -chlorido-hexachlorido-octahedro-hexamolybdate acetone trisolvate (3)

### Crystal data

| $(C_{12}H_{18}N_2)[Mo_6Cl_8Cl_6] \cdot 3C_3H_6O$<br>$M_r = 1436.46$<br>Triclinic, $P\overline{1}$<br>a = 9.451 (2) Å<br>b = 11.236 (3) Å<br>c = 11.712 (3) Å<br>a = 64.933 (6)° | Z = 1<br>F(000) = 690<br>$D_x = 2.257 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}<br>Cell parameters from 5309 reflections<br>$\theta = 2.2-25.1^{\circ}$<br>$\mu = 2.64 \text{ mm}^{-1}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\beta = 71.174 \ (6)^{\circ}$                                                                                                                                                  | T = 200  K                                                                                                                                                                                                             |
| $\gamma = 75.440 \ (6)^{\circ}$<br>$V = 1056.7 \ (5) \ Å^{3}$                                                                                                                   | Block, clear light orange $0.55 \times 0.33 \times 0.20$ mm                                                                                                                                                            |
| Data collection                                                                                                                                                                 |                                                                                                                                                                                                                        |
| Bruker SMART X2S benchtop<br>diffractometer                                                                                                                                     | $T_{\min} = 0.490, T_{\max} = 0.745$<br>10036 measured reflections                                                                                                                                                     |
| Radiation source: sealed microfocus source,<br>XOS X-beam microfocus source                                                                                                     | 3692 independent reflections<br>3220 reflections with $I > 2\sigma(I)$                                                                                                                                                 |
| Graphite monochromator                                                                                                                                                          | $R_{\rm int} = 0.030$                                                                                                                                                                                                  |
| Detector resolution: 8.3330 pixels mm <sup>-1</sup>                                                                                                                             | $\theta_{\rm max} = 25.2^\circ, \ \theta_{\rm min} = 2.6^\circ$                                                                                                                                                        |
| $\varphi$ and $\omega$ scans                                                                                                                                                    | $h = -11 \rightarrow 11$                                                                                                                                                                                               |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2012)                                                                                                                     | $k = -13 \rightarrow 13$ $l = -13 \rightarrow 13$                                                                                                                                                                      |
| Refinement                                                                                                                                                                      |                                                                                                                                                                                                                        |
| Refinement on $F^2$                                                                                                                                                             | Hydrogen site location: mixed                                                                                                                                                                                          |
| Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.025$                                                                                                                   | H atoms treated by a mixture of independent<br>and constrained refinement                                                                                                                                              |
| $wR(F^2) = 0.068$                                                                                                                                                               | $w = 1/[\sigma^2(F_0^2) + (0.0347P)^2 + 0.3989P]$                                                                                                                                                                      |
| S = 1.05                                                                                                                                                                        | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                         |
| 3692 reflections                                                                                                                                                                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                                                                                                    |
| 235 parameters                                                                                                                                                                  | $\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$                                                                                                                                                              |
| 13 restraints                                                                                                                                                                   | $\Delta \rho_{\rm min} = -0.82 \text{ e } \text{\AA}^{-3}$                                                                                                                                                             |
| Primary atom site location: heavy-atom method                                                                                                                                   |                                                                                                                                                                                                                        |

Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|-------------|-------------|-----------------------------|-----------|
| Mo1 | 0.54044 (3) | 0.46936 (2) | 0.65449 (2) | 0.01669 (9)                 |           |
| Mo2 | 0.46251 (3) | 0.32776 (2) | 0.56169 (2) | 0.01681 (9)                 |           |
| Mo3 | 0.29965 (3) | 0.55064 (2) | 0.56544 (2) | 0.01718 (9)                 |           |

| Cl1  | 0.41212 (10) | 0.10003 (8) | 0.64118 (8) | 0.0324 (2)   |     |
|------|--------------|-------------|-------------|--------------|-----|
| Cl2  | 0.76390 (8)  | 0.58538 (7) | 0.52537 (7) | 0.02273 (17) |     |
| C13  | 0.69229 (9)  | 0.25958 (7) | 0.64379 (7) | 0.02413 (18) |     |
| Cl4  | 0.59212 (10) | 0.43277 (8) | 0.85707 (7) | 0.0303 (2)   |     |
| C15  | 0.38283 (9)  | 0.68264 (7) | 0.65005 (7) | 0.02236 (17) |     |
| C16  | 0.31409 (9)  | 0.35417 (8) | 0.76707 (7) | 0.02377 (18) |     |
| Cl7  | 0.03772 (9)  | 0.61748 (9) | 0.65222 (9) | 0.0360 (2)   |     |
| N1   | 0.2062 (3)   | 0.0615 (3)  | 0.2565 (3)  | 0.0242 (6)   |     |
| H1   | 0.196 (4)    | 0.021 (3)   | 0.211 (3)   | 0.036*       |     |
| C1   | 0.4140 (4)   | 0.1369 (4)  | 0.0787 (3)  | 0.0382 (9)   |     |
| H1A  | 0.431717     | 0.228439    | 0.022574    | 0.057*       |     |
| H1B  | 0.366916     | 0.102550    | 0.037660    | 0.057*       |     |
| H1C  | 0.510355     | 0.081919    | 0.091601    | 0.057*       |     |
| C2   | 0.3131 (4)   | 0.1337 (3)  | 0.2058 (3)  | 0.0265 (7)   |     |
| C3   | 0.3406 (4)   | 0.2109 (3)  | 0.2704 (4)  | 0.0370 (9)   |     |
| H3A  | 0.424810     | 0.163487    | 0.311157    | 0.056*       |     |
| H3B  | 0.249770     | 0.222227    | 0.337134    | 0.056*       |     |
| H3C  | 0.365572     | 0.298048    | 0.205817    | 0.056*       |     |
| C4   | 0.1507 (4)   | -0.0037 (3) | 0.4928 (3)  | 0.0281 (7)   |     |
| H4   | 0.253881     | -0.006002   | 0.486934    | 0.034*       |     |
| C5   | 0.1019 (4)   | 0.0328 (3)  | 0.3819 (3)  | 0.0227 (7)   |     |
| C6   | -0.0482 (4)  | 0.0368 (3)  | 0.3885 (3)  | 0.0274 (7)   |     |
| H6   | -0.079966    | 0.062241    | 0.311317    | 0.033*       |     |
| O1   | 0.1737 (3)   | 0.9573 (3)  | 0.0897 (2)  | 0.0440 (7)   |     |
| C7   | 0.0245 (5)   | 0.7839 (4)  | 0.1942 (4)  | 0.0502 (11)  |     |
| H7A  | 0.012696     | 0.802221    | 0.271696    | 0.075*       |     |
| H7B  | 0.067673     | 0.691137    | 0.209401    | 0.075*       |     |
| H7C  | -0.074289    | 0.800190    | 0.175911    | 0.075*       |     |
| C8   | 0.1262 (4)   | 0.8717 (4)  | 0.0818 (4)  | 0.0345 (8)   |     |
| C9   | 0.1705 (5)   | 0.8501 (4)  | -0.0432 (4) | 0.0468 (10)  |     |
| H9A  | 0.205823     | 0.930184    | -0.115350   | 0.070*       |     |
| H9B  | 0.083109     | 0.830392    | -0.056688   | 0.070*       |     |
| H9C  | 0.251527     | 0.775370    | -0.039653   | 0.070*       |     |
| 02   | 0.0767 (6)   | 0.3001 (5)  | 0.0578 (5)  | 0.0461 (13)  | 0.5 |
| C10  | 0.0375 (9)   | 0.4167 (7)  | 0.0246 (6)  | 0.0351 (17)  | 0.5 |
| C11  | 0.143 (2)    | 0.512 (2)   | -0.011 (2)  | 0.049 (5)    | 0.5 |
| H11A | 0.117815     | 0.548863    | 0.056809    | 0.073*       | 0.5 |
| H11B | 0.134909     | 0.584134    | -0.094095   | 0.073*       | 0.5 |
| H11C | 0.246860     | 0.466249    | -0.018685   | 0.073*       | 0.5 |
| C12  | -0.1156 (17) | 0.473 (2)   | 0.006 (2)   | 0.044 (5)    | 0.5 |
| H12A | -0.114886    | 0.495968    | -0.085108   | 0.067*       | 0.5 |
| H12B | -0.148442    | 0.553655    | 0.026059    | 0.067*       | 0.5 |
| H12C | -0.185388    | 0.408443    | 0.063119    | 0.067*       | 0.5 |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|---------------|---------------|
| Mo1 | 0.01921 (17) | 0.01543 (15) | 0.01644 (15) | -0.00245 (12) | -0.00747 (11) | -0.00459 (11) |

| M. 2 | 0.0102((17)) | 0.01244(15)  | 0.0102((15)) | 0.00251 (11)  | 0.00714 (11)  | 0.00450 (11)  |
|------|--------------|--------------|--------------|---------------|---------------|---------------|
| Mo2  | 0.01936 (17) | 0.01344 (15) | 0.01826 (15) | -0.00251 (11) | -0.00/14 (11) | -0.00450 (11) |
| Mo3  | 0.01548 (17) | 0.01715 (15) | 0.01989 (15) | -0.00117 (11) | -0.00588 (11) | -0.00728 (12) |
| Cl1  | 0.0385 (5)   | 0.0179 (4)   | 0.0390 (5)   | -0.0077 (4)   | -0.0110 (4)   | -0.0057 (3)   |
| Cl2  | 0.0208 (4)   | 0.0243 (4)   | 0.0272 (4)   | -0.0053 (3)   | -0.0092 (3)   | -0.0098 (3)   |
| C13  | 0.0278 (4)   | 0.0172 (4)   | 0.0286 (4)   | 0.0030 (3)    | -0.0158 (3)   | -0.0065 (3)   |
| Cl4  | 0.0429 (5)   | 0.0301 (4)   | 0.0223 (4)   | -0.0098 (4)   | -0.0159 (4)   | -0.0053 (3)   |
| C15  | 0.0248 (4)   | 0.0208 (4)   | 0.0247 (4)   | -0.0008 (3)   | -0.0075 (3)   | -0.0118 (3)   |
| C16  | 0.0266 (4)   | 0.0245 (4)   | 0.0186 (4)   | -0.0084 (3)   | -0.0029 (3)   | -0.0057 (3)   |
| Cl7  | 0.0189 (4)   | 0.0453 (5)   | 0.0457 (5)   | 0.0015 (4)    | -0.0055 (4)   | -0.0237 (4)   |
| N1   | 0.0263 (16)  | 0.0219 (14)  | 0.0257 (14)  | -0.0046 (12)  | -0.0068 (12)  | -0.0090 (11)  |
| C1   | 0.040 (2)    | 0.036 (2)    | 0.0310 (19)  | -0.0163 (18)  | -0.0023 (16)  | -0.0037 (16)  |
| C2   | 0.0241 (19)  | 0.0158 (16)  | 0.0354 (18)  | 0.0018 (14)   | -0.0126 (15)  | -0.0045 (14)  |
| C3   | 0.037 (2)    | 0.0235 (18)  | 0.054 (2)    | -0.0030 (16)  | -0.0155 (18)  | -0.0152 (17)  |
| C4   | 0.0213 (18)  | 0.0312 (18)  | 0.0346 (18)  | -0.0018 (15)  | -0.0099 (15)  | -0.0136 (15)  |
| C5   | 0.0251 (19)  | 0.0163 (15)  | 0.0275 (16)  | 0.0008 (13)   | -0.0074 (14)  | -0.0102 (13)  |
| C6   | 0.028 (2)    | 0.0311 (18)  | 0.0265 (17)  | -0.0021 (15)  | -0.0113 (14)  | -0.0115 (15)  |
| 01   | 0.0565 (18)  | 0.0433 (16)  | 0.0429 (15)  | -0.0198 (14)  | -0.0152 (13)  | -0.0166 (13)  |
| C7   | 0.038 (2)    | 0.047 (2)    | 0.063 (3)    | -0.012 (2)    | -0.013 (2)    | -0.014 (2)    |
| C8   | 0.031 (2)    | 0.0322 (19)  | 0.043 (2)    | 0.0004 (16)   | -0.0204 (17)  | -0.0105 (16)  |
| C9   | 0.057 (3)    | 0.043 (2)    | 0.050 (2)    | -0.001 (2)    | -0.028 (2)    | -0.018 (2)    |
| O2   | 0.051 (4)    | 0.037 (3)    | 0.052 (3)    | -0.007 (3)    | -0.016 (3)    | -0.015 (3)    |
| C10  | 0.046 (5)    | 0.038 (5)    | 0.020 (3)    | -0.006 (4)    | -0.003 (3)    | -0.013 (3)    |
| C11  | 0.048 (8)    | 0.054 (10)   | 0.061 (10)   | -0.010 (7)    | -0.008 (8)    | -0.040 (8)    |
| C12  | 0.043 (7)    | 0.042 (8)    | 0.036 (8)    | 0.000 (6)     | 0.006 (5)     | -0.017 (7)    |
|      |              |              |              |               |               |               |

# Geometric parameters (Å, °)

| Mo1-Mo2 <sup>i</sup> | 2.5943 (6)  | C2—C3               | 1.480 (5)  |  |
|----------------------|-------------|---------------------|------------|--|
| Mo1—Mo2              | 2.6126 (5)  | С3—НЗА              | 0.9800     |  |
| Mo1—Mo3              | 2.6038 (6)  | С3—Н3В              | 0.9800     |  |
| Mo1—Mo3 <sup>i</sup> | 2.6031 (7)  | C3—H3C              | 0.9800     |  |
| Mo1—Cl2              | 2.4695 (9)  | C4—H4               | 0.9500     |  |
| Mo1—Cl3              | 2.4627 (9)  | C4—C5               | 1.381 (4)  |  |
| Mo1—Cl4              | 2.4202 (9)  | C4—C6 <sup>ii</sup> | 1.372 (5)  |  |
| Mo1—Cl5              | 2.4727 (9)  | C5—C6               | 1.386 (4)  |  |
| Mo1—Cl6              | 2.4729 (9)  | С6—Н6               | 0.9500     |  |
| Mo2—Mo3 <sup>i</sup> | 2.6069 (6)  | O1—C8               | 1.206 (4)  |  |
| Mo2—Mo3              | 2.5989 (7)  | С7—Н7А              | 0.9800     |  |
| Mo2—Cl1              | 2.4391 (10) | C7—H7B              | 0.9800     |  |
| Mo2—Cl2 <sup>i</sup> | 2.4668 (9)  | C7—H7C              | 0.9800     |  |
| Mo2—Cl3              | 2.4727 (9)  | C7—C8               | 1.480 (5)  |  |
| Mo2—Cl5 <sup>i</sup> | 2.4738 (9)  | C8—C9               | 1.494 (5)  |  |
| Mo2—Cl6              | 2.4616 (9)  | С9—Н9А              | 0.9800     |  |
| Mo3—Cl2 <sup>i</sup> | 2.4655 (8)  | С9—Н9В              | 0.9800     |  |
| Mo3—Cl3 <sup>i</sup> | 2.4680 (9)  | С9—Н9С              | 0.9800     |  |
| Mo3—Cl5              | 2.4767 (8)  | O2—C10              | 1.193 (8)  |  |
| Mo3—Cl6              | 2.4714 (9)  | C10—C11             | 1.488 (13) |  |
| Mo3—Cl7              | 2.4110 (10) | C10—C12             | 1.475 (13) |  |
|                      |             |                     |            |  |

| N1—H1                                  | 0.870 (18)  | C11—H11A                               | 0.9800     |
|----------------------------------------|-------------|----------------------------------------|------------|
| N1—C2                                  | 1.284 (4)   | C11—H11B                               | 0.9800     |
| N1—C5                                  | 1.434 (4)   | C11—H11C                               | 0.9800     |
| C1—H1A                                 | 0.9800      | C12—H12A                               | 0.9800     |
| C1—H1B                                 | 0.9800      | C12—H12B                               | 0.9800     |
| C1—H1C                                 | 0.9800      | C12—H12C                               | 0.9800     |
| C1—C2                                  | 1.477 (5)   |                                        |            |
|                                        |             |                                        |            |
| Mo2 <sup>i</sup> —Mo1—Mo2              | 89.98 (2)   | Cl3 <sup>i</sup> —Mo3—Cl5              | 89.98 (3)  |
| Mo2 <sup>i</sup> —Mo1—Mo3 <sup>i</sup> | 60.005 (19) | Cl3 <sup>i</sup> —Mo3—Cl6              | 175.12 (3) |
| Mo2 <sup>i</sup> —Mo1—Mo3              | 60.202 (14) | Cl5—Mo3—Mo1                            | 58.18 (2)  |
| Mo3 <sup>i</sup> —Mo1—Mo2              | 59.977 (16) | Cl5—Mo3—Mo1 <sup>i</sup>               | 118.35 (2) |
| Mo3—Mo1—Mo2                            | 59.763 (15) | Cl5—Mo3—Mo2 <sup>i</sup>               | 58.17 (2)  |
| Mo3 <sup>i</sup> —Mo1—Mo3              | 89.98 (2)   | Cl5—Mo3—Mo2                            | 118.46 (3) |
| Cl2—Mo1—Mo2                            | 118.05 (2)  | Cl6—Mo3—Mo1                            | 58.25 (2)  |
| Cl2—Mo1—Mo2 <sup>i</sup>               | 58.24 (2)   | Cl6—Mo3—Mo1 <sup>i</sup>               | 117.84 (3) |
| Cl2—Mo1—Mo3 <sup>i</sup>               | 58.09 (2)   | Cl6—Mo3—Mo2                            | 58.02 (2)  |
| Cl2—Mo1—Mo3                            | 118.42 (3)  | Cl6—Mo3—Mo2 <sup>i</sup>               | 117.94 (2) |
| Cl2—Mo1—Cl5                            | 90.29 (3)   | Cl6—Mo3—Cl5                            | 90.12 (3)  |
| Cl2—Mo1—Cl6                            | 175.36 (2)  | Cl7—Mo3—Mo1                            | 134.62 (3) |
| Cl3—Mo1—Mo2                            | 58.22 (2)   | Cl7—Mo3—Mo1 <sup>i</sup>               | 135.36 (2) |
| Cl3—Mo1—Mo2 <sup>i</sup>               | 118.22 (2)  | Cl7—Mo3—Mo2 <sup>i</sup>               | 134.89 (3) |
| Cl3—Mo1—Mo3 <sup>i</sup>               | 58.23 (2)   | Cl7—Mo3—Mo2                            | 135.11 (3) |
| Cl3—Mo1—Mo3                            | 117.98 (2)  | Cl7—Mo3—Cl2 <sup>i</sup>               | 92.39 (3)  |
| Cl3—Mo1—Cl2                            | 89.80 (3)   | Cl7—Mo3—Cl3 <sup>i</sup>               | 92.59 (3)  |
| Cl3—Mo1—Cl5                            | 175.65 (2)  | Cl7—Mo3—Cl5                            | 91.72 (3)  |
| Cl3—Mo1—Cl6                            | 89.39 (3)   | Cl7—Mo3—Cl6                            | 92.28 (3)  |
| Cl4—Mo1—Mo2 <sup>i</sup>               | 134.02 (3)  | Mo2 <sup>i</sup> —Cl2—Mo1              | 63.41 (2)  |
| Cl4—Mo1—Mo2                            | 136.00 (2)  | Mo3 <sup>i</sup> —Cl2—Mo1              | 63.67 (2)  |
| Cl4—Mo1—Mo3 <sup>i</sup>               | 135.46 (3)  | Mo3 <sup>i</sup> —Cl2—Mo2 <sup>i</sup> | 63.59 (2)  |
| Cl4—Mo1—Mo3                            | 134.55 (2)  | Mo1—Cl3—Mo2                            | 63.92 (2)  |
| Cl4—Mo1—Cl2                            | 91.90 (3)   | Mo1—Cl3—Mo3 <sup>i</sup>               | 63.73 (2)  |
| Cl4—Mo1—Cl3                            | 93.21 (3)   | Mo3 <sup>i</sup> —Cl3—Mo2              | 63.69 (2)  |
| Cl4—Mo1—Cl5                            | 91.13 (3)   | Mo1—Cl5—Mo2 <sup>i</sup>               | 63.26 (2)  |
| Cl4—Mo1—Cl6                            | 92.71 (3)   | Mo1—Cl5—Mo3                            | 63.48 (2)  |
| Cl5—Mo1—Mo2 <sup>i</sup>               | 58.39 (2)   | Mo2 <sup>i</sup> —Cl5—Mo3              | 63.55 (2)  |
| Cl5—Mo1—Mo2                            | 118.08 (2)  | Mo2—Cl6—Mo1                            | 63.94 (2)  |
| Cl5—Mo1—Mo3                            | 58.33 (2)   | Mo2—Cl6—Mo3                            | 63.58 (3)  |
| Cl5—Mo1—Mo3 <sup>i</sup>               | 118.37 (2)  | Mo3—Cl6—Mo1                            | 63.56 (2)  |
| Cl5—Mo1—Cl6                            | 90.17 (3)   | C2—N1—H1                               | 117 (2)    |
| Cl6—Mo1—Mo2 <sup>i</sup>               | 118.37 (2)  | C2—N1—C5                               | 129.1 (3)  |
| Cl6—Mo1—Mo2                            | 57.82 (2)   | C5—N1—H1                               | 114 (2)    |
| Cl6—Mo1—Mo3                            | 58.19 (2)   | H1A—C1—H1B                             | 109.5      |
| Cl6—Mo1—Mo3 <sup>i</sup>               | 117.79 (2)  | H1A—C1—H1C                             | 109.5      |
| Mo1 <sup>i</sup> —Mo2—Mo1              | 90.02 (2)   | H1B—C1—H1C                             | 109.5      |
| Mo1 <sup>i</sup> —Mo2—Mo3              | 60.165 (17) | C2—C1—H1A                              | 109.5      |
| Mo1 <sup>i</sup> —Mo2—Mo3 <sup>i</sup> | 60.081 (15) | C2—C1—H1B                              | 109.5      |
| Mo3—Mo2—Mo1                            | 59.951 (17) | C2—C1—H1C                              | 109.5      |

| Mo3 <sup>i</sup> —Mo2—Mo1              | 59.830 (17)             | N1—C2—C1                        | 118.1 (3)            |
|----------------------------------------|-------------------------|---------------------------------|----------------------|
| Mo3—Mo2—Mo3 <sup>i</sup>               | 90.00 (2)               | N1—C2—C3                        | 122.8 (3)            |
| Cl1—Mo2—Mo1                            | 135.83 (3)              | C1—C2—C3                        | 119.1 (3)            |
| Cl1—Mo2—Mo1 <sup>i</sup>               | 134.15 (2)              | С2—С3—НЗА                       | 109.5                |
| C11—Mo2—Mo3                            | 134.88 (3)              | C2—C3—H3B                       | 109.5                |
| C11—Mo2—Mo3 <sup>i</sup>               | 135.11 (2)              | C2—C3—H3C                       | 109.5                |
| $C11-Mo2-C12^{i}$                      | 91.56 (3)               | H3A—C3—H3B                      | 109.5                |
| C11-Mo2-C13                            | 93.08 (3)               | H3A—C3—H3C                      | 109.5                |
| $C11-Mo2-C15^{i}$                      | 91.61 (3)               | H3B-C3-H3C                      | 109.5                |
| C11-Mo2-C16                            | 92 55 (3)               | C5-C4-H4                        | 120.4                |
| $C12^{i}$ Mo2 Mo1 <sup>i</sup>         | 58 35 (2)               | $C6^{ii}$ C4—H4                 | 120.1                |
| $C12^{i}$ Mo2 Mo1                      | 118 11 (2)              | $C6^{ii}$ C4 C5                 | 119 1 (3)            |
| $C12^{i}$ Mo2 Mo3 <sup>i</sup>         | 118.40(2)               | C4-C5-N1                        | 121.0(3)             |
| $C12^{i}$ Mo2 Mo3                      | 58 18 (2)               | C4 - C5 - C6                    | 121.0(3)<br>121.2(3) |
| $C12^{i}$ Mo2 Mo3                      | 175 35 (2)              | $C_{6} = C_{5} = N_{1}$         | 121.2(3)<br>1177(3)  |
| $C12^{i}$ Mo2 $C15^{i}$                | 173.33(2)               | $C^{Aii}$ C6 C5                 | 117.7(3)<br>110.6(3) |
| $C_{12} - M_{02} - C_{13}$             | 57 85 (2)               | $C4^{ii}$ C6 H6                 | 120.2                |
| $C_{13} = M_{02} = M_{01}^{i}$         | 57.05(2)                | $C_{4} = C_{0} = 110$           | 120.2                |
| $C_{13} = M_{02} = M_{01}^{2i}$        | 110.13(2)               | $U_{2} = U_{2} = U_{1}$         | 120.2                |
| $C_{13} = M_{02} = M_{03}$             | 38.07(2)                | H/A - C/ - H/B                  | 109.5                |
| $C_{13} = M_{02} = C_{15}^{10}$        | 117.79(2)               | H/A - C/ - H/C                  | 109.5                |
| C15 - M02 - C15                        | (39.93)                 | H/B - C/ - H/C                  | 109.5                |
| $C15^{-}$ Mo2 Mo1                      | 116.09(2)               | $C_{0}$ $C_{1}$ $H_{1}$ $H_{2}$ | 109.5                |
| $C15^{\circ}$ Mo2 Mo2i                 | 58.55(2)                | $C_{0}$ $C_{1}$ $H_{1}$         | 109.5                |
| $C15^{\circ}$ Mo2 Mo2                  | 58.28(2)                | $C_{A}$ $C_{A}$ $H/C$           | 109.5                |
| C15 - M02 - M03                        | 118.49 (2)              | 01 - 08 - 07                    | 121.9 (4)            |
| CI6-M02-M01                            | 58.24 (2)<br>119.54 (2) | 01 - 08 - 09                    | 120.5(3)             |
| $CI6-Mo2-Mo1^{2}$                      | 118.54 (3)              | $C_{1} = C_{2} = C_{2}$         | 11/./(3)             |
| $CI6-M02-M03^{\circ}$                  | 118.06 (2)              | C8—C9—H9A                       | 109.5                |
| C16-M02-M03                            | 58.39 (2)               | C8—C9—H9B                       | 109.5                |
| $C16-M02-C12^{\circ}$                  | 89.98 (3)               | C8—C9—H9C                       | 109.5                |
| C16-M02-C13                            | 89.42 (3)               | H9A—C9—H9B                      | 109.5                |
| Cl6—Mo2—Cl5 <sup>1</sup>               | 175.82 (2)              | H9A—C9—H9C                      | 109.5                |
| Mol <sup>1</sup> —Mo3—Mol              | 90.025 (19)             | H9B—C9—H9C                      | 109.5                |
| Mo1—Mo3—Mo2 <sup>1</sup>               | 59.719 (18)             | O2—C10—C11                      | 122.1 (9)            |
| Mo1 <sup>1</sup> —Mo3—Mo2 <sup>1</sup> | 60.193 (13)             | O2—C10—C12                      | 120.8 (9)            |
| Mo2—Mo3—Mo1                            | 60.287 (13)             | C12—C10—C11                     | 116.9 (14)           |
| Mo2—Mo3—Mo1 <sup>1</sup>               | 59.830 (12)             | C10—C11—H11A                    | 109.5                |
| Mo2—Mo3—Mo2 <sup>i</sup>               | 90.00 (2)               | C10—C11—H11B                    | 109.5                |
| Cl2 <sup>i</sup> —Mo3—Mo1              | 118.50 (2)              | C10—C11—H11C                    | 109.5                |
| Cl2 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 58.24 (2)               | H11A—C11—H11B                   | 109.5                |
| Cl2 <sup>i</sup> —Mo3—Mo2              | 58.23 (2)               | H11A—C11—H11C                   | 109.5                |
| Cl2 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 118.42 (2)              | H11B—C11—H11C                   | 109.5                |
| Cl2 <sup>i</sup> —Mo3—Cl3 <sup>i</sup> | 89.77 (3)               | C10—C12—H12A                    | 109.5                |
| Cl2 <sup>i</sup> —Mo3—Cl5              | 175.88 (3)              | C10—C12—H12B                    | 109.5                |
| Cl2 <sup>i</sup> —Mo3—Cl6              | 89.79 (3)               | C10—C12—H12C                    | 109.5                |
| Cl3 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 58.03 (2)               | H12A—C12—H12B                   | 109.5                |
| Cl3 <sup>i</sup> —Mo3—Mo1              | 117.94 (2)              | H12A—C12—H12C                   | 109.5                |
| Cl3 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 58.24 (2)               | H12B-C12-H12C                   | 109.5                |

| Cl3 <sup>i</sup> —Mo3—Mo2 | 117.85 (2) |                            |            |
|---------------------------|------------|----------------------------|------------|
| N1-C5-C6-C4 <sup>ii</sup> | 176.9 (3)  | C5—N1—C2—C1                | 174.4 (3)  |
| C2—N1—C5—C4               | -46.6 (5)  | C5—N1—C2—C3                | -4.4 (5)   |
| C2—N1—C5—C6               | 136.5 (3)  | C6 <sup>ii</sup> —C4—C5—N1 | -176.7 (3) |
| C4C5C4 <sup>ii</sup>      | -0.1 (5)   | C6 <sup>ii</sup> —C4—C5—C6 | 0.1 (5)    |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1.

#### Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H      | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------|----------|----------|-----------|-------------------------|
| N1—H1…O1 <sup>iii</sup> | 0.87 (2) | 1.93 (2) | 2.791 (4) | 172 (3)                 |

Symmetry code: (iii) x, y-1, z.

 $1,1'-Dimethyl-4,4'-bipyridinium\ octa-\mu_3-chlorido-hexachlorido-octahedro-hexamolybdate\ N,N-bipyridinium\ octa-\mu_3-chlorido-hexachlorido-octahedro-hexamolybdate\ N,N-bipyridinium\ octa-\mu_3-chlorido-hexachlorido-hexamolybdate\ N,N-bipyridinium\ octa-\mu_3-chlorido-hexamolybdate\ octa-\mu_3-chlorido-hexamolybdate\ octa-\mu_3-chlorido-hexamolybdate\ octa-\mu_3-chlorido-hexamolybdate\ octa-\mu_3-chlorido-hexamolybdate\ octa-\mu_3-chlorido-hexamolybdate\ octa-\mu_3-chlorido-hexamolybdate\ octa-\mu_3-chlorido-hexam$ 

dimethylformamide tetrasolvate (4)

### Crystal data

| $(C_{12}H_{14}N_2)[Mo_6Cl_8Cl_6]\cdot 4C_3H_7NO$ | Z = 1                                         |
|--------------------------------------------------|-----------------------------------------------|
| $M_r = 1550.57$                                  | F(000) = 750                                  |
| Triclinic, $P\overline{1}$                       | $D_{\rm x} = 2.161 {\rm Mg} {\rm m}^{-3}$     |
| a = 9.8252 (11)  Å                               | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 10.0933 (11)  Å                              | Cell parameters from 6604 reflections         |
| c = 12.6319 (15)  Å                              | $\theta = 2.6 - 25.0^{\circ}$                 |
| $\alpha = 107.395 \ (3)^{\circ}$                 | $\mu = 2.35 \text{ mm}^{-1}$                  |
| $\beta = 91.881 \ (3)^{\circ}$                   | T = 200  K                                    |
| $\gamma = 93.309 \ (3)^{\circ}$                  | Block, orange                                 |
| V = 1191.8 (2) Å <sup>3</sup>                    | $0.32 \times 0.30 \times 0.28 \text{ mm}$     |

# Data collection

| Bruker SMART X2S benchtop                           | $T_{\rm min} = 0.815, \ T_{\rm max} = 1.000$                             |
|-----------------------------------------------------|--------------------------------------------------------------------------|
| diffractometer                                      | 11498 measured reflections                                               |
| Radiation source: sealed microfocus source,         | 4187 independent reflections                                             |
| XOS X-beam microfocus source                        | 3743 reflections with $I > 2\sigma(I)$                                   |
| Graphite monochromator                              | $R_{\rm int} = 0.024$                                                    |
| Detector resolution: 8.3330 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 25.1^{\circ},  \theta_{\text{min}} = 2.3^{\circ}$ |
| $\varphi$ and $\omega$ scans                        | $h = -11 \rightarrow 11$                                                 |
| Absorption correction: multi-scan                   | $k = -11 \rightarrow 11$                                                 |
| (SADABS; Bruker, 2012)                              | $l = -15 \rightarrow 15$                                                 |

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.020$  $wR(F^2) = 0.049$ S = 1.024187 reflections 250 parameters 0 restraints Primary atom site location: heavy-atom method Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0184P)^2 + 0.8263P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} = 0.002$   $\Delta\rho_{max} = 0.42$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.44$  e Å<sup>-3</sup> Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0075 (3)

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x           | У           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|-------------|-------------|-----------------------------|--|
| Mol  | 0.34350 (2) | 0.52105 (2) | 0.42443 (2) | 0.01878 (7)                 |  |
| Mo2  | 0.43880 (2) | 0.61443 (2) | 0.62913 (2) | 0.01930 (7)                 |  |
| Mo3  | 0.41622 (2) | 0.34763 (2) | 0.52876 (2) | 0.01916 (7)                 |  |
| Cl4  | 0.21336 (6) | 0.48336 (6) | 0.57792 (5) | 0.02520 (14)                |  |
| Cl2  | 0.51113 (6) | 0.44527 (7) | 0.72253 (5) | 0.02551 (14)                |  |
| C17  | 0.30745 (7) | 0.14843 (7) | 0.56719 (6) | 0.03486 (17)                |  |
| C16  | 0.35663 (7) | 0.76331 (7) | 0.79813 (6) | 0.03874 (18)                |  |
| C13  | 0.32970 (6) | 0.26780 (6) | 0.33243 (5) | 0.02516 (14)                |  |
| Cl1  | 0.37330 (6) | 0.77313 (6) | 0.52328 (5) | 0.02510 (14)                |  |
| C15  | 0.13401 (6) | 0.54800 (7) | 0.32618 (5) | 0.03256 (16)                |  |
| N1   | 0.0168 (2)  | 0.9093 (3)  | 0.7467 (2)  | 0.0392 (6)                  |  |
| C3   | 0.0031 (2)  | 0.9806 (3)  | 0.5519 (2)  | 0.0299 (6)                  |  |
| C6   | 0.0223 (4)  | 0.8700 (4)  | 0.8508 (3)  | 0.0560 (9)                  |  |
| H6A  | 0.092144    | 0.930439    | 0.903109    | 0.084*                      |  |
| H6B  | 0.045141    | 0.772867    | 0.834244    | 0.084*                      |  |
| H6C  | -0.066769   | 0.880619    | 0.883944    | 0.084*                      |  |
| 01   | 0.0987 (4)  | 0.2529 (3)  | 0.9699 (2)  | 0.0947 (11)                 |  |
| N2   | 0.1930 (3)  | 0.4599 (3)  | 0.9693 (2)  | 0.0462 (7)                  |  |
| C7   | 0.1610 (5)  | 0.3616 (4)  | 1.0150 (3)  | 0.0661 (11)                 |  |
| H7   | 0.190127    | 0.378592    | 1.090665    | 0.079*                      |  |
| C9   | 0.1539 (4)  | 0.4414 (4)  | 0.8553 (3)  | 0.0642 (10)                 |  |
| H9A  | 0.191569    | 0.357250    | 0.808268    | 0.096*                      |  |
| H9B  | 0.189323    | 0.522299    | 0.834281    | 0.096*                      |  |
| H9C  | 0.054111    | 0.432088    | 0.845257    | 0.096*                      |  |
| C8   | 0.2613 (6)  | 0.5918 (5)  | 1.0316 (4)  | 0.0954 (17)                 |  |
| H8A  | 0.274154    | 0.595293    | 1.109641    | 0.143*                      |  |
| H8B  | 0.205703    | 0.667344    | 1.026178    | 0.143*                      |  |
| H8C  | 0.350353    | 0.602489    | 1.001246    | 0.143*                      |  |
| O2   | 0.2430 (3)  | 0.9764 (3)  | 0.1097 (2)  | 0.0629 (7)                  |  |
| N3   | 0.4369 (3)  | 0.9015 (3)  | 0.1660 (2)  | 0.0425 (6)                  |  |
| C10  | 0.3573 (4)  | 0.9392 (3)  | 0.0942 (3)  | 0.0479 (8)                  |  |
| H10  | 0.393572    | 0.936671    | 0.024855    | 0.058*                      |  |
| C12  | 0.3883 (4)  | 0.9057 (4)  | 0.2736 (3)  | 0.0567 (9)                  |  |
| H12A | 0.311583    | 0.965299    | 0.289780    | 0.085*                      |  |
| H12B | 0.462220    | 0.943321    | 0.330545    | 0.085*                      |  |
| H12C | 0.358102    | 0.811373    | 0.273342    | 0.085*                      |  |
| C11  | 0.5716 (4)  | 0.8576 (4)  | 0.1409 (4)  | 0.0698 (11)                 |  |
| H11A | 0.576876    | 0.762359    | 0.144373    | 0.105*                      |  |
| H11B | 0.638360    | 0.920002    | 0.195053    | 0.105*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H11C | 0.591481    | 0.860583   | 0.066069   | 0.105*     |  |
|------|-------------|------------|------------|------------|--|
| C2   | 0.0219 (3)  | 0.8454 (3) | 0.5522 (2) | 0.0407 (7) |  |
| H2   | 0.030656    | 0.774946   | 0.483942   | 0.049*     |  |
| C1   | 0.0281 (3)  | 0.8128 (4) | 0.6492 (3) | 0.0450 (8) |  |
| H1   | 0.040636    | 0.719562   | 0.647548   | 0.054*     |  |
| C4   | -0.0086 (4) | 1.0768 (3) | 0.6542 (3) | 0.0499 (9) |  |
| H4   | -0.021238   | 1.170823   | 0.658585   | 0.060*     |  |
| C5   | -0.0023 (4) | 1.0392 (3) | 0.7493 (3) | 0.0539 (9) |  |
| H5   | -0.011812   | 1.107404   | 0.818648   | 0.065*     |  |
|      |             |            |            |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | <i>U</i> <sup>33</sup> | $U^{12}$     | U <sup>13</sup> | U <sup>23</sup> |
|-----|--------------|--------------|------------------------|--------------|-----------------|-----------------|
| Mo1 | 0.01652 (11) | 0.02000 (13) | 0.02050 (12)           | 0.00181 (8)  | 0.00057 (8)     | 0.00707 (9)     |
| Mo2 | 0.01846 (11) | 0.01990 (13) | 0.01947 (12)           | 0.00228 (9)  | 0.00309 (8)     | 0.00547 (9)     |
| Mo3 | 0.01755 (11) | 0.01909 (13) | 0.02210 (12)           | 0.00020 (8)  | 0.00183 (8)     | 0.00827 (9)     |
| Cl4 | 0.0185 (3)   | 0.0295 (3)   | 0.0290 (3)             | 0.0021 (2)   | 0.0059 (2)      | 0.0103 (3)      |
| Cl2 | 0.0272 (3)   | 0.0301 (4)   | 0.0223 (3)             | 0.0025 (3)   | 0.0018 (2)      | 0.0124 (3)      |
| Cl7 | 0.0300 (3)   | 0.0327 (4)   | 0.0474 (4)             | -0.0075 (3)  | -0.0014 (3)     | 0.0226 (3)      |
| Cl6 | 0.0430 (4)   | 0.0374 (4)   | 0.0305 (4)             | 0.0072 (3)   | 0.0131 (3)      | 0.0001 (3)      |
| C13 | 0.0239 (3)   | 0.0227 (3)   | 0.0259 (3)             | -0.0016 (2)  | -0.0023 (2)     | 0.0038 (3)      |
| Cl1 | 0.0240 (3)   | 0.0207 (3)   | 0.0318 (3)             | 0.0047 (2)   | 0.0021 (2)      | 0.0090 (3)      |
| C15 | 0.0254 (3)   | 0.0383 (4)   | 0.0335 (4)             | 0.0070 (3)   | -0.0058 (3)     | 0.0100 (3)      |
| N1  | 0.0294 (12)  | 0.0537 (17)  | 0.0346 (13)            | 0.0046 (11)  | 0.0096 (10)     | 0.0125 (12)     |
| C3  | 0.0193 (12)  | 0.0339 (16)  | 0.0316 (14)            | -0.0056 (11) | 0.0078 (11)     | 0.0031 (12)     |
| C6  | 0.054 (2)    | 0.082 (3)    | 0.0421 (19)            | 0.0242 (19)  | 0.0164 (16)     | 0.0289 (19)     |
| 01  | 0.166 (3)    | 0.0601 (18)  | 0.0529 (17)            | -0.046 (2)   | 0.0022 (19)     | 0.0192 (15)     |
| N2  | 0.0566 (17)  | 0.0467 (16)  | 0.0351 (14)            | -0.0092 (13) | -0.0047 (12)    | 0.0153 (13)     |
| C7  | 0.105 (3)    | 0.061 (3)    | 0.0329 (18)            | -0.010 (2)   | 0.0046 (19)     | 0.0184 (19)     |
| C9  | 0.078 (3)    | 0.070 (3)    | 0.047 (2)              | -0.013 (2)   | -0.0116 (19)    | 0.028 (2)       |
| C8  | 0.132 (4)    | 0.080 (3)    | 0.067 (3)              | -0.046 (3)   | -0.033 (3)      | 0.026 (3)       |
| O2  | 0.0563 (16)  | 0.0770 (18)  | 0.0618 (16)            | 0.0167 (14)  | -0.0073 (13)    | 0.0295 (14)     |
| N3  | 0.0483 (15)  | 0.0320 (14)  | 0.0497 (16)            | 0.0033 (12)  | -0.0034 (13)    | 0.0165 (12)     |
| C10 | 0.060 (2)    | 0.0404 (19)  | 0.0432 (18)            | -0.0019 (16) | -0.0034 (16)    | 0.0146 (16)     |
| C12 | 0.078 (3)    | 0.048 (2)    | 0.047 (2)              | 0.0120 (18)  | -0.0094 (18)    | 0.0183 (17)     |
| C11 | 0.056 (2)    | 0.064 (3)    | 0.100 (3)              | 0.0104 (19)  | 0.009 (2)       | 0.038 (2)       |
| C2  | 0.0383 (16)  | 0.0433 (19)  | 0.0360 (16)            | 0.0171 (14)  | 0.0025 (13)     | 0.0024 (14)     |
| C1  | 0.0423 (17)  | 0.049 (2)    | 0.0455 (19)            | 0.0226 (15)  | 0.0062 (14)     | 0.0125 (16)     |
| C4  | 0.079 (2)    | 0.0295 (17)  | 0.0366 (17)            | -0.0111 (16) | 0.0227 (16)     | 0.0043 (14)     |
| C5  | 0.080 (3)    | 0.039 (2)    | 0.0360 (18)            | -0.0106 (17) | 0.0218 (17)     | 0.0016 (15)     |

Geometric parameters (Å, °)

| Mo1-Mo2 <sup>i</sup> | 2.6043 (4) | С6—Н6С | 0.9800    |  |
|----------------------|------------|--------|-----------|--|
| Mo1—Mo2              | 2.5948 (4) | O1—C7  | 1.195 (4) |  |
| Mo1—Mo3              | 2.6026 (3) | N2—C7  | 1.318 (4) |  |
| Mo1—Mo3 <sup>i</sup> | 2.5996 (4) | N2—C9  | 1.432 (4) |  |
| Mo1—Cl4              | 2.4671 (6) | N2—C8  | 1.442 (5) |  |
|                      |            |        |           |  |

| Mo1—Cl2 <sup>1</sup>                               | 2.4692 (6)                  | С7—Н7                                  | 0.9500               |
|----------------------------------------------------|-----------------------------|----------------------------------------|----------------------|
| Mo1—Cl3                                            | 2.4650 (7)                  | С9—Н9А                                 | 0.9800               |
| Mo1—Cl1                                            | 2.4716 (7)                  | С9—Н9В                                 | 0.9800               |
| Mo1—Cl5                                            | 2.4392 (7)                  | С9—Н9С                                 | 0.9800               |
| Mo2—Mo3 <sup>i</sup>                               | 2.5949 (3)                  | C8—H8A                                 | 0.9800               |
| Mo2—Mo3                                            | 2.6037 (4)                  | C8—H8B                                 | 0.9800               |
| Mo2—Cl4                                            | 2.4760 (6)                  | C8—H8C                                 | 0.9800               |
| Mo2—C12                                            | 2.4701 (6)                  | O2—C10                                 | 1.208 (4)            |
| $M_02$ —Cl6                                        | 2,4088(7)                   | N3-C10                                 | 1 331 (4)            |
| $M_0^2$ $C13^i$                                    | 2 4683 (6)                  | N3                                     | 1.661(1)<br>1 445(4) |
| Mo2 Cl1                                            | 2,1005 (0)                  | N3 C11                                 | 1.115(1)<br>1.435(4) |
| Mo2 Cl4                                            | 2.4720(0)<br>2.4745(6)      |                                        | 0.9500               |
| $M_{0}^{2}$ Cl2                                    | 2.4745(0)                   | $C_{12}$ $H_{12A}$                     | 0.9500               |
| $M_{0}^{-2} = C_{1}^{-2}$                          | 2.4700(7)                   | C12—III2A                              | 0.9800               |
|                                                    | 2.4061 (7)                  | CI2—HI2B                               | 0.9800               |
| Mo3—Cl3                                            | 2.4/19(/)                   | C12—H12C                               | 0.9800               |
| Mo3—CII <sup>1</sup>                               | 2.4689 (6)                  | CII—HIIA                               | 0.9800               |
| N1—C6                                              | 1.484 (4)                   | C11—H11B                               | 0.9800               |
| N1—C1                                              | 1.334 (4)                   | C11—H11C                               | 0.9800               |
| N1—C5                                              | 1.327 (4)                   | С2—Н2                                  | 0.9500               |
| C3—C3 <sup>ii</sup>                                | 1.477 (5)                   | C2—C1                                  | 1.361 (4)            |
| C3—C2                                              | 1.388 (4)                   | C1—H1                                  | 0.9500               |
| C3—C4                                              | 1.377 (4)                   | C4—H4                                  | 0.9500               |
| С6—Н6А                                             | 0.9800                      | C4—C5                                  | 1.363 (4)            |
| С6—Н6В                                             | 0.9800                      | С5—Н5                                  | 0.9500               |
|                                                    |                             |                                        |                      |
| Mo2—Mo1—Mo2 <sup>i</sup>                           | 89.921 (11)                 | C17—Mo3—Mo2 <sup>i</sup>               | 135.04 (2)           |
| $Mo2-Mo1-Mo3^{i}$                                  | 59 942 (8)                  | $C17 - M_03 - C14$                     | 92.33 (2)            |
| Mo2 - Mo1 - Mo3                                    | 60 128 (10)                 | C17 - Mo3 - C12                        | 92.13 (2)            |
| $Mo2 = Mo1 = Mo2^{i}$                              | 59 784 (9)                  | C17 - Mo3 - C12                        | 92.61 (2)            |
| $Mo3^{i}$ $Mo1^{i}$ $Mo2^{i}$                      | 60.045(11)                  | $C17 - Mo3 - C11^{i}$                  | 91.81 (2)            |
| Mo3 - Mo1 - Mo2                                    | 00.043(11)                  | $C_{17} = M_{03} = C_{11}$             | 51.01(2)             |
| $\frac{1}{1000} - \frac{1}{1001} - \frac{1}{1000}$ | 09.992 (11)<br>118 120 (17) | $C_{12} = M_{02} = M_{01}$             | 38.037(10)           |
| C14 Mo1 Mo2                                        | 116.129 (17)                | C13 - M03 - M01                        | 118.139 (10)         |
| CI4—Mo1—Mo2                                        | 58.503 (17)                 | C13 - M03 - M02                        | 117.829 (17)         |
| Cl4—Mo1—Mo3 <sup>1</sup>                           | 118.428 (17)                | Cl3—Mo3—Mo2 <sup>1</sup>               | 58.247 (16)          |
| Cl4—Mo1—Mo3                                        | 58.357 (16)                 | Cl3—Mo3—Cl4                            | 89.57 (2)            |
| Cl4—Mo1—Cl2 <sup>1</sup>                           | 175.80 (2)                  | Cl3—Mo3—Cl2                            | 175.25 (2)           |
| Cl4—Mo1—Cl1                                        | 90.24 (2)                   | Cl1 <sup>i</sup> —Mo3—Mo1              | 118.500 (16)         |
| Cl2 <sup>i</sup> —Mo1—Mo2                          | 118.347 (18)                | Cl1 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 58.302 (17)          |
| Cl2 <sup>i</sup> —Mo1—Mo2 <sup>i</sup>             | 58.200 (16)                 | Cl1 <sup>i</sup> —Mo3—Mo2 <sup>i</sup> | 58.376 (16)          |
| Cl2 <sup>i</sup> —Mo1—Mo3 <sup>i</sup>             | 58.426 (16)                 | Cl1 <sup>i</sup> —Mo3—Mo2              | 118.352 (17)         |
| Cl2 <sup>i</sup> —Mo1—Mo3                          | 117.975 (17)                | Cl1 <sup>i</sup> —Mo3—Cl4              | 175.86 (2)           |
| Cl2 <sup>i</sup> —Mo1—Cl1                          | 90.06 (2)                   | Cl1 <sup>i</sup> —Mo3—Cl2              | 89.95 (2)            |
| Cl3—Mo1—Mo2 <sup>i</sup>                           | 58.199 (15)                 | Cl1 <sup>i</sup> —Mo3—Cl3              | 90.20 (2)            |
| Cl3—Mo1—Mo2                                        | 118.426 (17)                | Mo1—Cl4—Mo2                            | 63.328 (16)          |
| Cl3—Mo1—Mo3                                        | 58.314 (17)                 | Mo1—Cl4—Mo3                            | 63.562 (15)          |
| Cl3—Mo1—Mo3 <sup>i</sup>                           | 118.235 (16)                | Mo3-Cl4-Mo2                            | 63.465 (17)          |
| Cl3—Mo1—Cl4                                        | 89.90 (2)                   | $M_01^i$ — $C12$ — $M_02$              | 63 638 (16)          |
| $Cl3-Mo1-Cl2^i$                                    | 89 50 (2)                   | $Mo1^{i}$ Cl2 Mo2                      | 63 422 (17)          |
| 013 101 012                                        | 07.50 (2)                   | 10101 -012 -10103                      | 05.722 (17)          |

| Cl3—Mo1—Cl1                            | 175.83 (2)   | Mo2—Cl2—Mo3               | 63.519 (17) |
|----------------------------------------|--------------|---------------------------|-------------|
| Cl1—Mo1—Mo2 <sup>i</sup>               | 118.234 (17) | Mo1—Cl3—Mo2 <sup>i</sup>  | 63.726 (16) |
| Cl1—Mo1—Mo2                            | 58.347 (15)  | Mo1—Cl3—Mo3               | 63.629 (16) |
| Cl1—Mo1—Mo3 <sup>i</sup>               | 58.203 (15)  | Mo2 <sup>i</sup> —Cl3—Mo3 | 63.372 (16) |
| Cl1—Mo1—Mo3                            | 118.456 (18) | Mo1—Cl1—Mo2               | 63.322 (17) |
| Cl5—Mo1—Mo2                            | 134.428 (19) | Mo3 <sup>i</sup> —Cl1—Mo1 | 63.496 (16) |
| Cl5—Mo1—Mo2 <sup>i</sup>               | 135.644 (19) | Mo3 <sup>i</sup> —Cl1—Mo2 | 63.363 (16) |
| Cl5—Mo1—Mo3                            | 134.380 (19) | C1—N1—C6                  | 119.9 (3)   |
| Cl5—Mo1—Mo3 <sup>i</sup>               | 135.62 (2)   | C5—N1—C6                  | 120.5 (3)   |
| Cl5—Mo1—Cl4                            | 91.17 (2)    | C5—N1—C1                  | 119.6 (3)   |
| Cl5—Mo1—Cl2 <sup>i</sup>               | 93.01 (2)    | C2—C3—C3 <sup>ii</sup>    | 122.0 (3)   |
| Cl5—Mo1—Cl3                            | 92.03 (2)    | C4—C3—C3 <sup>ii</sup>    | 121.9 (3)   |
| Cl5—Mo1—Cl1                            | 92.13 (2)    | C4—C3—C2                  | 116.1 (3)   |
| Mo1—Mo2—Mo1 <sup>i</sup>               | 90.078 (10)  | N1—C6—H6A                 | 109.5       |
| Mo1—Mo2—Mo3 <sup>i</sup>               | 60.121 (11)  | N1—C6—H6B                 | 109.5       |
| Mo1—Mo2—Mo3                            | 60.084 (8)   | N1—C6—H6C                 | 109.5       |
| Mo3—Mo2—Mo1 <sup>i</sup>               | 59.890 (9)   | H6A—C6—H6B                | 109.5       |
| Mo3 <sup>i</sup> —Mo2—Mo1 <sup>i</sup> | 60.076 (9)   | H6A—C6—H6C                | 109.5       |
| Mo3 <sup>i</sup> —Mo2—Mo3              | 90.070 (10)  | H6B—C6—H6C                | 109.5       |
| Cl4—Mo2—Mo1 <sup>i</sup>               | 118.113 (18) | C7—N2—C9                  | 120.4 (3)   |
| Cl4—Mo2—Mo1                            | 58.169 (15)  | C7—N2—C8                  | 122.3 (3)   |
| Cl4—Mo2—Mo3                            | 58.238 (16)  | C9—N2—C8                  | 117.2 (3)   |
| Cl4—Mo2—Mo3 <sup>i</sup>               | 118.272 (17) | O1—C7—N2                  | 125.8 (3)   |
| Cl2—Mo2—Mo1                            | 118.429 (18) | O1—C7—H7                  | 117.1       |
| Cl2—Mo2—Mo1 <sup>i</sup>               | 58.164 (15)  | N2—C7—H7                  | 117.1       |
| Cl2—Mo2—Mo3                            | 58.360 (17)  | N2—C9—H9A                 | 109.5       |
| Cl2—Mo2—Mo3 <sup>i</sup>               | 118.230 (17) | N2—C9—H9B                 | 109.5       |
| Cl2—Mo2—Cl4                            | 90.05 (2)    | N2—C9—H9C                 | 109.5       |
| Cl2—Mo2—Cl1                            | 175.86 (2)   | H9A—C9—H9B                | 109.5       |
| Cl6—Mo2—Mo1                            | 134.52 (2)   | Н9А—С9—Н9С                | 109.5       |
| Cl6—Mo2—Mo1 <sup>i</sup>               | 135.40 (2)   | H9B—C9—H9C                | 109.5       |
| Cl6—Mo2—Mo3                            | 134.68 (2)   | N2—C8—H8A                 | 109.5       |
| Cl6—Mo2—Mo3 <sup>i</sup>               | 135.25 (2)   | N2—C8—H8B                 | 109.5       |
| Cl6—Mo2—Cl4                            | 91.70 (2)    | N2—C8—H8C                 | 109.5       |
| Cl6—Mo2—Cl2                            | 92.13 (2)    | H8A—C8—H8B                | 109.5       |
| Cl6—Mo2—Cl3 <sup>i</sup>               | 92.69 (2)    | H8A—C8—H8C                | 109.5       |
| Cl6—Mo2—Cl1                            | 92.01 (3)    | H8B—C8—H8C                | 109.5       |
| Cl3 <sup>i</sup> —Mo2—Mo1 <sup>i</sup> | 58.075 (17)  | C10—N3—C12                | 119.7 (3)   |
| Cl3 <sup>i</sup> —Mo2—Mo1              | 118.479 (16) | C10—N3—C11                | 122.2 (3)   |
| Cl3 <sup>i</sup> —Mo2—Mo3 <sup>i</sup> | 58.382 (16)  | C11—N3—C12                | 118.1 (3)   |
| Cl3 <sup>i</sup> —Mo2—Mo3              | 117.956 (16) | O2—C10—N3                 | 125.6 (3)   |
| Cl3 <sup>i</sup> —Mo2—Cl4              | 175.60 (2)   | O2—C10—H10                | 117.2       |
| Cl3 <sup>i</sup> —Mo2—Cl2              | 89.40 (2)    | N3—C10—H10                | 117.2       |
| Cl3 <sup>i</sup> —Mo2—Cl1              | 90.21 (2)    | N3—C12—H12A               | 109.5       |
| Cl1—Mo2—Mo1 <sup>i</sup>               | 118.322 (16) | N3—C12—H12B               | 109.5       |
| Cl1—Mo2—Mo1                            | 58.332 (17)  | N3—C12—H12C               | 109.5       |
| Cl1—Mo2—Mo3 <sup>i</sup>               | 58.262 (16)  | H12A—C12—H12B             | 109.5       |
| Cl1—Mo2—Mo3                            | 118.397 (19) | H12A—C12—H12C             | 109.5       |

| Cl1—Mo2—Cl4                            | 90.03 (2)    | H12B—C12—H12C | 109.5     |
|----------------------------------------|--------------|---------------|-----------|
| Mo1 <sup>i</sup> —Mo3—Mo1              | 90.008 (11)  | N3—C11—H11A   | 109.5     |
| Mo1 <sup>i</sup> —Mo3—Mo2              | 60.064 (8)   | N3—C11—H11B   | 109.5     |
| Mo1—Mo3—Mo2                            | 59.788 (11)  | N3—C11—H11C   | 109.5     |
| Mo2 <sup>i</sup> —Mo3—Mo1              | 60.140 (9)   | H11A—C11—H11B | 109.5     |
| Mo2 <sup>i</sup> —Mo3—Mo1 <sup>i</sup> | 59.936 (10)  | H11A—C11—H11C | 109.5     |
| Mo2 <sup>i</sup> —Mo3—Mo2              | 89.930 (10)  | H11B-C11-H11C | 109.5     |
| Cl4—Mo3—Mo1 <sup>i</sup>               | 118.345 (18) | C3—C2—H2      | 119.6     |
| Cl4—Mo3—Mo1                            | 58.082 (15)  | C1—C2—C3      | 120.8 (3) |
| Cl4—Mo3—Mo2                            | 58.296 (16)  | C1—C2—H2      | 119.6     |
| Cl4—Mo3—Mo2 <sup>i</sup>               | 118.209 (17) | N1—C1—C2      | 121.2 (3) |
| Cl4—Mo3—Cl2                            | 89.94 (2)    | N1—C1—H1      | 119.4     |
| Cl2—Mo3—Mo1                            | 117.894 (18) | C2-C1-H1      | 119.4     |
| Cl2—Mo3—Mo1 <sup>i</sup>               | 58.152 (15)  | C3—C4—H4      | 119.4     |
| Cl2—Mo3—Mo2 <sup>i</sup>               | 118.066 (17) | C5—C4—C3      | 121.1 (3) |
| Cl2—Mo3—Mo2                            | 58.121 (16)  | C5—C4—H4      | 119.4     |
| Cl7—Mo3—Mo1                            | 135.303 (19) | N1—C5—C4      | 121.2 (3) |
| Cl7—Mo3—Mo1 <sup>i</sup>               | 134.689 (19) | N1—C5—H5      | 119.4     |
| Cl7—Mo3—Mo2                            | 135.02 (2)   | С4—С5—Н5      | 119.4     |
| C3 <sup>ii</sup> —C3—C2—C1             | 179.5 (3)    | C8—N2—C7—O1   | 176.1 (5) |
| C3 <sup>ii</sup> —C3—C4—C5             | -179.8 (3)   | C12—N3—C10—O2 | -1.1 (5)  |
| C3—C2—C1—N1                            | -0.3 (5)     | C11—N3—C10—O2 | 179.6 (3) |
| C3—C4—C5—N1                            | 0.8 (5)      | C2—C3—C4—C5   | -0.3 (5)  |
| C6—N1—C1—C2                            | 179.3 (3)    | C1—N1—C5—C4   | -1.0 (5)  |
| C6—N1—C5—C4                            | -179.5 (3)   | C4—C3—C2—C1   | 0.0 (4)   |
| C9—N2—C7—O1                            | -0.6 (7)     | C5—N1—C1—C2   | 0.8 (5)   |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+2, -*z*+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | H···A | D···A     | D—H···A |
|------------------------------------|------|-------|-----------|---------|
| С5—Н5…О1 <sup>ііі</sup>            | 0.95 | 2.23  | 3.063 (4) | 145     |
| C6—H6 <i>C</i> ···O2 <sup>ii</sup> | 0.98 | 2.31  | 3.088 (4) | 136     |

Symmetry codes: (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*, *y*+1, *z*.