

Received 5 August 2019 Accepted 19 September 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; decarbonylation; phosphonic acid; inorganic–organic hybrid framework; hydrogen bonding.

CCDC reference: 1954737

Supporting information: this article has supporting information at journals.iucr.org/e

In situ decarbonylation of *N*,*N*-dimethylformamide to form dimethylammonium cations in the hybrid framework compound {[(CH₃)₂NH₂]₂[Zn{O₃PC₆H₂(OH)₂PO₃}]]_n

Josemaria S. Soriano,^a Bryan E. Galeas,^a Paul Garrett,^a Ryan A. Flores,^a Juan L. Pinedo,^a Tsuyoshi A. Kohlgruber,^b Daniel Felton^c and Pius O. Adelani^a*

^aDepartment of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, USA, ^bDepartment of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA, and ^cDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA. *Correspondence e-mail: padelani@stmarytx.edu

The title phosphonate-based organic–inorganic hybrid framework, poly[bis(dimethylammonium) $[(\mu_4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]],$ $\{(C_2H_8N)_2[Zn(C_6H_4O_8P_2)]\}_n$, was formed unexpectedly when dimethylammonium cations were formed from the *in situ* decarbonylation of the *N*,*N*dimethylformamide solvent. The framework is built up from ZnO₄ tetrahedra and bridging diphosphonate tetra-anions to generate a three-dimensional network comprising [100] channels occupied by the $(CH_3)_2NH_2^+$ cations. Within the channels, an array of N–H···O hydrogen bonds help to establish the structure. In addition, intramolecular O–H···O hydrogen bonds between the appended –OH groups of the phenyl ring and adjacent PO₃^{2–} groups are observed.

1. Chemical context

Studies on the structural chemistry of metal phosphonates developed as a result of the versatility of the phosphonate ligands (Zubieta et al., 2011; Mao, 2007; Clearfield, 1996, 1998, 2002). A slight modification of the organic residues of the phosphonic acids (*R*-PO₃H₂, where R = organic residue) can lead to rich structural diversity. In general, phosphonates tend to assume various coordination modes as a result of the three coordinating oxygen atoms of the central phosphorus units. As a consequence, most metal phosphonates form a low-dimensional and dense layered structure (Deria et al., 2015; Gagnon et al., 2012). Nevertheless, a large number of isolated metal phosphonates have shown various potential applications in ion-exchange, ionic conductivity, gas storage, catalysis, and as small molecule sensors and magnetic interactions (Adelani & Albrecht-Schmitt, 2010; Ramaswamy et al., 2015; Deria et al., 2015; Kirumakki et al., 2008; Brousseau et al., 1997; Zheng et al., 2011).

The majority of metal-organic frameworks (MOFs) are designed with carboxylate- and nitrogen-containing heterocyclic ligands, while phosphonate-based MOFs are less well studied. One possible explanation may have to do with the predisposition of phosphonates to precipitate rapidly into less ordered insoluble phases. However, carboxylate-based MOFs are less stable in air and water, and this poses a significant problem if they are to be used in industrial applications. Metal carboxylate MOFs are subject to hydrolysis and are quite soluble in acidic solutions. On the contrary, phosphonates manifest stronger interactions with oxophilic metal ions than carboxylates and are not subject to hydrolysis (Deria *et al.*, 2015; Gagnon *et al.*, 2012).

About a decade ago, a crystalline and porous zinc diphosphonate MOF, { $[Zn(DHBP)](DMF)_2$ } (DMF = *N*,*N*-dimethylformamide) was reported (Liang & Shimizu, 2007). These researchers utilized a modified phosphonate ligand, 1,4-dihydroxy-2,5-benzenediphosphonate (DHBP), to cross-link one-dimensional Zn(*R*PO₃) columns into an ordered three-dimensional network. Herein, we report the synthesis and structure of the title inorganic–organic hybrid framework, (I), using 1,4-dihydroxy-2,5-benzenediphosphonate *via* the in situ formation of the guest cation.

2. Structural commentary

The structure of (I) crystallizes in the monoclinic space group $P2_1/n$. The asymmetric unit contains one Zn^{2+} cation, a $C_6H_4P_2O_8^{4-}$ hydroxyphosphonate tetra-anion and two $(CH_3)_2NH_2^+$ cations (Fig. 1). The extended structure is constructed from tetrahedral ZnO_4 units with the O atoms arising from four rigid phenyl spacers into a three-dimensional framework (Fig. 2). Two of the oxygen atoms of each PO_3^{2-} moiety are involved in coordination to the Zn^{2+} ion and the others (O2 and O6) are not. The Zn–O bond distances range from 1.9055 (11) to 1.9671 (11) Å and the hydroxyphosphonate ligand is present in (I) with P–O bonds that range from 1.5129 (11) to 1.5337 (11) Å in length. The latter bond lengths are within the expected range for deprotonated P–O bonds (Liang & Shimizu, 2007).

The structure of (I) is similar to that of $\{[Zn(DHBP)](DMF)_2\}$ (Liang & Shimizu, 2007; CCDC

Figure 1

The asymmetric unit of (I) in position 1 - x, 1 - y, 1 - z showing 50% displacement ellipsoids.

Table 1			
Hydrogen-bond geometry ((Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H7A\cdots O5$	0.79(2)	1.91 (2)	2.6510 (17)	156 (3)
$O8-H8A\cdots O2$	0.87 (3)	1.73 (3)	2.5846 (18)	168 (3)
$N1 - H1A \cdots O2$	0.89(2)	1.88 (2)	2.7168 (19)	155.2 (18)
$N1 - H1B \cdots O6^{i}$	0.89(2)	2.02(2)	2.8125 (19)	148.3 (18)
$N2-H2B\cdots O3^{ii}$	0.83 (3)	2.07 (3)	2.8558 (19)	158 (2)
$N2-H2C\cdots O6$	1.03 (2)	1.63 (2)	2.6518 (18)	173 (2)
$C7-H7C\cdots O4^{iii}$	0.91(2)	2.54 (2)	3.443 (3)	174 (2)
$C9-H9B\cdots O8^{iv}$	1.03 (3)	2.57 (2)	3.445 (3)	142.6 (19)
$C10-H10A\cdots O8^{iv}$	0.92(3)	2.42 (3)	3.236 (3)	148 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

refcode JIVFUQ) in that the zinc–phosphonate framework comprises one-dimensional channels occupied by guest species, but with the significant difference that the guest species in JIVFUQ are neutral DMF molecules and the phosphonate groups are singly, rather than doubly deprotonated to form $C_6H_6P_2O_8^{2-}$ dianions.

The channels reported here are smaller than those in JIVFUQ and measure approximately 12.9×7.1 Å between phenyl groups and 9.9 Å between Zn centers. The $(CH_3)_2NH_2^+$ cations in (I) have been formed by the *in situ* decarbonylation of the DMF solvent. It is known that *N*,*N*-dimethylformamide can undergo loss of CO to form dimethylamine in the presence of a metal catalyst or through slow decomposition at elevated temperature around 427 K (Hulushe *et al.*, 2016; Siddiqui *et al.*, 2012; Chen *et al.*, 2007; Karpova *et al.*, 2004). In the previous reports, the nitrate salts of Mg²⁺/Pb²⁺/Ho³⁺ and chloride salts of Nd³⁺/Zr⁴⁺ were suggested to act as a metal catalyst in the decarbonylation of the DMF solvent.

View down [100] of the three-dimensional framework structure of (I) with the ZnO_4 and PO_3C moieties shown as polyhedra. Color key: ZnO_4 groups = cyan, PO_3C groups = magenta, oxygen = red, carbon = black, hydrogen = white. The $(CH_3)_2NH_2^+$ cations are omitted for clarity.

research communications

Ball-and-stick representation of the structure of (I) viewed along the [001] axis. The hydrogen bonds involving the -OH groups are drawn as blue dashed lines. Color key as in Fig. 2.

3. Supramolecular features

The C6–O8H and C3–O7H groups appended on the phenyl ring of the ligand form intramolecular O-H···O hydrogen bonds with the adjacent RPO_3^{2-} moieties (Figs. 1 and 3). Within the channels, the $(CH_3)_2NH_2^+$ cations are linked by N-H···O hydrogen bonds to the RPO_3^{2-} groups of the framework (Table 1). Some short $C-H \cdots O$ contacts (Table 1) may help to consolidate the structure.

4. Synthesis and crystallization

title compound was synthesized by placing The Zn(NO₃)₂·6H₂O (29.7 mg, 0.1 mmol) and 2,5-dihydroxy-1,4benzenediphosphonic acid (27.0 mg, 0.1 mmol) into a 125 ml PTFE-lined Parr reaction vessel along with DMF/H₂O/ ethanol (2.0/0.5/0.5 ml, respectively). The vessel was heated in a programmable furnace at 353 K for 3 d, and then the autoclave was cooled to 296 K at an average rate of 274 K h⁻¹. The mother liquor was decanted from the products and then placed in a petri dish. The solid products were washed with distilled water, dispersed with ethanol and allowed to dry in air. Colorless tablets of the title compound were isolated and studied for single-crystal X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank St. Mary's University, the School of Science, Engineering and Technology, and the Department of Chemistry and Biochemistry for supporting undergraduate research. Single-crystal X-ray analyses were conducted at the Materials

Experimental details.	
Crystal data	
Chemical formula	$(C_2H_8N)_2[Zn(C_6H_4O_8P_2)]$
M _r	423.59
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	220
a, b, c (Å)	8.8455 (5), 16.4492 (9), 11.2721 (6)
β (°)	97.338 (1)
$V(Å^3)$	1626.67 (15)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.75
Crystal size (mm)	$0.09 \times 0.03 \times 0.03$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.706, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19692, 4040, 3582
R _{int}	0.027
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.681
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.060, 1.05
No. of reflections	4040
No. of parameters	288
No. of restraints	1
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.42, -0.31

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT2014/2 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), XP in SHELXTL (Sheldrick, 2008a) and CIFTAB (Sheldrick, 2008b).

Characterization Facility of the Center of Sustainable Energy at the University of Notre Dame.

Funding information

Funding for this research was provided by: Welch Foundation Departmental Research Grant Program (grant No. U-0047); St. Mary's University Internal Faculty Research Grant Award.

References

Table 2

- Adelani, P. O. & Albrecht-Schmitt, T. E. (2010). Angew. Chem. Int. Ed. 49, 8909-8911.
- Brousseau, L. C., Aurentz, D. J., Benesi, A. J. & Mallouk, T. E. (1997). Anal. Chem. 69, 688-694.
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, 01133o1135.
- Clearfield, A. (1996). Curr. Opin. Solid State Mater. Sci. 1, 268-278.
- Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510.
- Clearfield, A. (2002). Curr. Opin. Solid State Mater. Sci. 6, 495-506. Deria, P., Bury, W., Hod, I., Kung, C.-W., Karagiaridi, O., Hupp, J. T. & Farha, O. K. (2015). Inorg. Chem. 54, 2185-2192.
- Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034-1054.
- Hulushe, S. T., Hosten, E. C. & Watkins, G. M. (2016). Acta Cryst. E72, 1521-1525.
- Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491-o2492.
- Kirumakki, S., Samarajeewa, S., Harwell, R., Mukherjee, A., Herber, R. H. & Clearfield, A. (2008). Chem. Commun. pp. 5556-5558.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liang, J. & Shimizu, G. K. H. (2007). *Inorg. Chem.* **46**, 10449–10451. Mao, J.-G. (2007). *Coord. Chem. Rev.* **251**, 1493–1520.
- Ramaswamy, P., Wong, N. E., Gelfand, B. S. & Shimizu, G. K. H. (2015). J. Am. Chem. Soc. 137, 7640–7643.
- Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2008b). CIFTAB. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Siddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, 01778.
- Zheng, Y.-Z., Evangelisti, M. & Winpenny, R. E. P. (2011). *Chem. Sci.* **2**, 99–102.
- Zubieta, J., Zon, J., Brunet, E., Winpenny, R., Wright, P. A., Stock, N., Mao, J. G., Zheng, L.-M., Albrecht-Schmitt, T., Bujoli, B., Cahill, C., Murugavel, R., Rocha, J., Hix, G., Shimizu, G., Clearfield, A. & Demadis, K. (2011). *Metal Phosphonate Chemistry: From Synthesis* to Applications, 1st ed., edited by A. Clearfield & K. Demadis. UK: Royal Society of Chemistry.

supporting information

Acta Cryst. (2019). E75, 1540-1543 [https://doi.org/10.1107/S2056989019012969]

In situ decarbonylation of N,N-dimethylformamide to form dimethylammonium cations in the hybrid framework compound $\{[(CH_3)_2NH_2]_2[Zn\{O_3PC_6H_2(OH)_2PO_3\}]\}_n$

Josemaria S. Soriano, Bryan E. Galeas, Paul Garrett, Ryan A. Flores, Juan L. Pinedo, Tsuyoshi A. Kohlgruber, Daniel Felton and Pius O. Adelani

Computing details

Data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: *SHELXT2014/2* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015b); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008a); software used to prepare material for publication: *CIFTAB* (Sheldrick, 2008b).

Poly[bis(dimethylammonium) [(μ_4 -2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]]

Crystal data

 $\begin{array}{l} (C_{2}H_{8}N)_{2}[Zn(C_{6}H_{4}O_{8}P_{2})]\\ M_{r} = 423.59\\ \text{Monoclinic, } P2_{1}/n\\ a = 8.8455 \ (5) \ \text{\AA}\\ b = 16.4492 \ (9) \ \text{\AA}\\ c = 11.2721 \ (6) \ \text{\AA}\\ \beta = 97.338 \ (1)^{\circ}\\ V = 1626.67 \ (15) \ \text{\AA}^{3}\\ Z = 4 \end{array}$

Data collection

Bruker APEXII diffractometer Radiation source: Incoatec micro-focus Detector resolution: 8.33 pixels mm⁻¹ combination of ω and φ -scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.706$, $T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.060$ S = 1.054040 reflections F(000) = 872 $D_x = 1.730 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8723 reflections $\theta = 2.2-28.8^{\circ}$ $\mu = 1.75 \text{ mm}^{-1}$ T = 220 KBlock, colorless $0.09 \times 0.03 \times 0.03 \text{ mm}$

19692 measured reflections 4040 independent reflections 3582 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 29.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -22 \rightarrow 21$ $l = -14 \rightarrow 14$

288 parameters
1 restraint
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map

All H-atom parameters refined	$(\Delta/\sigma)_{\rm max} = 0.002$
$w = 1/[\sigma^2(F_o^2) + (0.0327P)^2 + 0.4955P]$	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.73693 (2)	0.50748 (2)	-0.00920 (2)	0.01208 (6)
P1	0.53496 (4)	0.52463 (2)	0.21300 (3)	0.01348 (9)
P2	0.52017 (4)	0.86078 (2)	0.50529 (3)	0.01240 (8)
01	0.61568 (13)	0.54669 (7)	0.10670 (10)	0.0251 (3)
O2	0.61879 (14)	0.46378 (7)	0.29864 (11)	0.0241 (3)
03	0.37005 (12)	0.49818 (6)	0.17307 (10)	0.0173 (2)
O4	0.66080 (13)	0.90494 (6)	0.47282 (10)	0.0217 (2)
05	0.37382 (13)	0.90513 (7)	0.45507 (10)	0.0220 (2)
O6	0.53036 (13)	0.84096 (7)	0.63713 (9)	0.0216 (2)
07	0.31114 (15)	0.80860 (7)	0.26689 (12)	0.0287 (3)
08	0.71416 (17)	0.57148 (8)	0.45775 (13)	0.0382 (4)
C1	0.52417 (16)	0.61778 (9)	0.29782 (13)	0.0137 (3)
C2	0.42525 (17)	0.67996 (9)	0.25376 (13)	0.0161 (3)
C3	0.41615 (17)	0.75253 (9)	0.31601 (13)	0.0155 (3)
C4	0.51147 (16)	0.76540 (8)	0.42426 (13)	0.0128 (3)
C5	0.60872 (17)	0.70290 (9)	0.46917 (14)	0.0176 (3)
C6	0.61546 (17)	0.62969 (9)	0.40804 (14)	0.0186 (3)
C7	0.5494 (3)	0.29794 (13)	0.13241 (19)	0.0387 (5)
N1	0.57872 (18)	0.30131 (9)	0.26452 (15)	0.0277 (3)
C8	0.7362 (3)	0.27776 (15)	0.3120 (2)	0.0443 (5)
C9	0.5188 (3)	1.01513 (14)	0.8070 (2)	0.0356 (4)
N2	0.63088 (18)	0.94927 (9)	0.80290 (13)	0.0246 (3)
C10	0.6615 (3)	0.90359 (13)	0.91563 (18)	0.0371 (5)
H1A	0.568 (2)	0.3527 (14)	0.287 (2)	0.038 (6)*
H1B	0.515 (2)	0.2695 (14)	0.2980 (19)	0.037 (6)*
H2A	0.360 (2)	0.6731 (12)	0.1787 (17)	0.026 (5)*
H2B	0.709 (3)	0.9705 (14)	0.783 (2)	0.041 (6)*
H2C	0.588 (3)	0.9111 (15)	0.735 (2)	0.054 (7)*
H5A	0.676 (2)	0.7101 (11)	0.5433 (17)	0.024 (5)*
H7A	0.306 (3)	0.8427 (16)	0.316 (2)	0.050 (7)*
H7B	0.450 (3)	0.3113 (17)	0.109 (2)	0.071 (9)*
H7C	0.620 (2)	0.3284 (16)	0.101 (2)	0.055 (7)*
H7D	0.566 (3)	0.2430 (15)	0.109 (2)	0.044 (6)*
H8A	0.691 (3)	0.5308 (18)	0.410 (3)	0.064 (8)*
H8B	0.806 (3)	0.3177 (15)	0.281 (2)	0.052 (7)*
H8C	0.750 (3)	0.2805 (15)	0.402 (2)	0.053 (7)*

supporting information

H8D	0.748 (3)	0.2232 (16)	0.278 (2)	0.056 (7)*	
H9A	0.501 (2)	1.0337 (13)	0.729 (2)	0.036 (6)*	
H9B	0.569 (3)	1.0562 (16)	0.869 (2)	0.054 (7)*	
H9C	0.431 (3)	0.9924 (13)	0.828 (2)	0.042 (7)*	
H10A	0.719 (4)	0.936 (2)	0.970 (3)	0.088 (11)*	
H10B	0.564 (4)	0.8940 (17)	0.947 (3)	0.077 (9)*	
H10C	0.716 (3)	0.8557 (17)	0.902 (2)	0.062 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01243 (9)	0.01005 (9)	0.01414 (9)	-0.00104 (6)	0.00319 (6)	-0.00073 (6)
P1	0.01327 (18)	0.01165 (17)	0.01539 (18)	0.00072 (13)	0.00134 (14)	-0.00453 (14)
P2	0.01391 (18)	0.00907 (17)	0.01421 (18)	0.00096 (13)	0.00174 (14)	-0.00254 (13)
01	0.0271 (6)	0.0243 (6)	0.0268 (6)	-0.0033 (5)	0.0146 (5)	-0.0084 (5)
O2	0.0287 (6)	0.0141 (5)	0.0268 (6)	0.0053 (5)	-0.0070 (5)	-0.0053 (5)
O3	0.0153 (5)	0.0196 (5)	0.0167 (5)	-0.0027 (4)	0.0006 (4)	-0.0046 (4)
O4	0.0219 (6)	0.0142 (5)	0.0302 (6)	-0.0051 (4)	0.0085 (5)	-0.0057 (4)
O5	0.0210 (6)	0.0185 (5)	0.0253 (6)	0.0094 (4)	-0.0018 (5)	-0.0068 (5)
O6	0.0331 (6)	0.0162 (5)	0.0152 (5)	-0.0024 (5)	0.0023 (5)	-0.0024 (4)
O7	0.0350 (7)	0.0169 (6)	0.0293 (7)	0.0113 (5)	-0.0149 (5)	-0.0073 (5)
08	0.0463 (8)	0.0237 (7)	0.0367 (8)	0.0212 (6)	-0.0249 (6)	-0.0140 (6)
C1	0.0132 (7)	0.0125 (7)	0.0156 (7)	0.0004 (5)	0.0019 (5)	-0.0032 (5)
C2	0.0177 (7)	0.0144 (7)	0.0152 (7)	-0.0005 (6)	-0.0020 (6)	-0.0025 (6)
C3	0.0158 (7)	0.0123 (6)	0.0176 (7)	0.0023 (5)	-0.0005 (6)	0.0002 (5)
C4	0.0142 (7)	0.0105 (6)	0.0141 (7)	-0.0008 (5)	0.0029 (5)	-0.0016 (5)
C5	0.0184 (7)	0.0160 (7)	0.0168 (7)	0.0018 (6)	-0.0032 (6)	-0.0032 (6)
C6	0.0192 (7)	0.0147 (7)	0.0207 (8)	0.0062 (6)	-0.0028 (6)	-0.0032 (6)
C7	0.0482 (13)	0.0331 (11)	0.0375 (11)	-0.0098 (10)	0.0162 (10)	-0.0045 (9)
N1	0.0312 (8)	0.0175 (7)	0.0373 (9)	-0.0035 (6)	0.0154 (7)	-0.0030 (6)
C8	0.0363 (11)	0.0374 (12)	0.0601 (16)	0.0052 (9)	0.0091 (11)	-0.0063 (11)
C9	0.0353 (11)	0.0405 (11)	0.0326 (11)	0.0034 (9)	0.0096 (9)	0.0022 (9)
N2	0.0254 (8)	0.0297 (8)	0.0202 (7)	-0.0096 (6)	0.0087 (6)	-0.0050 (6)
C10	0.0577 (14)	0.0300 (10)	0.0236 (9)	0.0000 (10)	0.0052 (9)	-0.0045 (8)

Geometric parameters (Å, °)

Zn1—O1	1.9055 (11)	C5—C6	1.392 (2)	_
Zn1—O3 ⁱ	1.9671 (11)	C5—H5A	0.971 (19)	
Zn1—O4 ⁱⁱ	1.9330 (11)	C7—N1	1.480 (3)	
Zn1—O5 ⁱⁱⁱ	1.9543 (10)	С7—Н7В	0.92 (2)	
P101	1.5151 (12)	C7—H7C	0.91 (2)	
P1—O2	1.5169 (12)	C7—H7D	0.96 (2)	
P1O3	1.5337 (11)	N1—C8	1.479 (3)	
P1—C1	1.8150 (14)	N1—H1A	0.89 (2)	
P2—O6	1.5129 (11)	N1—H1B	0.89 (2)	
P2—O4	1.5249 (11)	C8—H8B	1.00 (3)	
P2—O5	1.5301 (11)	C8—H8C	1.01 (3)	

P2C4	1 8121 (14)	C8—H8D	0.98(3)
07-03	1 3743 (18)	C9N2	1473(3)
07—H7A	0.79(3)		0.92(2)
08 C6	1.3668(10)		0.92(2)
	1.3008(19)		1.03(3)
	0.80(3)	C9—H9C	0.92(3)
C1 - C2	1.395 (2)		1.4/1(2)
C1 - C0	1.400 (2)	N2—H2B	0.83(2)
$C_2 = C_3$	1.392 (2)	N2—H2C	1.02 (3)
C2—H2A	0.968 (19)	C10—H10A	0.92 (4)
C3—C4	1.408 (2)	C10—H10B	0.98 (3)
C4—C5	1.394 (2)	C10—H10C	0.95 (3)
$O1$ — $Zn1$ — $O4^{ii}$	116.04 (5)	O8—C6—C5	117.94 (14)
O1— $Zn1$ — $O5$ ⁱⁱⁱ	108.06 (5)	O8—C6—C1	121.95 (13)
$O4^{ii}$ —Zn1—O5 ⁱⁱⁱ	113.58 (5)	C5—C6—C1	120.11 (13)
$O1$ — $Zn1$ — $O3^i$	114.48 (5)	N1—C7—H7B	108.8 (17)
$O4^{ii}$ —Zn1—O3 ⁱ	108.30 (5)	N1—C7—H7C	109.5 (15)
$O5^{iii}$ —Zn1—O3 ⁱ	94.45 (4)	H7B—C7—H7C	116 (2)
O1—P1—O2	114.83 (7)	N1—C7—H7D	107.5 (14)
O1—P1—O3	111.25 (7)	H7B—C7—H7D	109 (2)
O2—P1—O3	111.65 (7)	H7C—C7—H7D	106 (2)
O1—P1—C1	106.03 (7)	C8—N1—C7	112.97 (17)
O2—P1—C1	106.03 (7)	C8—N1—H1A	106.0 (14)
O3—P1—C1	106.38 (6)	C7—N1—H1A	107.9 (14)
O6—P2—O4	112.98 (7)	C8—N1—H1B	108.3 (14)
06—P2—05	114.05 (7)	C7—N1—H1B	111.4 (14)
04—P2—05	111.20(7)	H1A—N1—H1B	110 (2)
$06-P^2-C^4$	107 57 (6)	N1—C8—H8B	1073(14)
$04 - P^2 - C^4$	105.95 (6)	N1—C8—H8C	10, 0, (14)
$05-P^2-C^4$	104 29 (6)	H8B-C8-H8C	109(2)
$P1_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{2}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1$	107.29(0) 145.53(8)	N1_C8_H8D	109(2)
$P1 O3 Zn1^{i}$	127 91 (7)		104.0(15)
$P_{2} = O_{4} = Z_{1} I_{1} V$	127.91(7) 137.62(7)		111(2) 115(2)
$\frac{12}{04} \frac{1}{2} \frac{1}{2}$	137.02(7) 142.24(7)	N2 C0 H0A	113(2)
$r_2 = 0_3 = 2 III$	142.34(7) 107.0(18)	$N_2 = C_9 = H_9 A$ $N_2 = C_0 = H_0 P$	104.4(14) 105.8(14)
C_{3}	107.0(18)		105.8(14)
$C_0 = C_1 = C_1$	101.0(19) 110.28(12)	H9A - C9 - H9B	110(2)
$C_2 = C_1 = C_0$	118.38 (13)	$N_2 - C_9 - H_9C$	107.6 (14)
C2—C1—P1	120.27 (11)	H9A—C9—H9C	109 (2)
	121.34 (11)	H9B—C9—H9C	113 (2)
C3—C2—C1	121.54 (14)	C10—N2—C9	113.51 (16)
C3—C2—H2A	118.3 (11)	C10—N2—H2B	112.3 (17)
C1—C2—H2A	120.1 (11)	C9—N2—H2B	106.7 (16)
O7—C3—C2	116.88 (13)	C10—N2—H2C	110.0 (14)
O7—C3—C4	123.19 (13)	C9—N2—H2C	106.8 (14)
C2—C3—C4	119.93 (13)	H2B—N2—H2C	107 (2)
C5—C4—C3	118.52 (13)	N2-C10-H10A	108 (2)
C5—C4—P2	118.11 (11)	N2-C10-H10B	108.4 (17)
C3—C4—P2	123.32 (11)	H10A—C10—H10B	107 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—C4	121.45 (14)	N2—C10—H10C	109.3 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—Н5А	118.1 (11)	H10A—C10—H10C	110 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С5—Н5А	120.4 (11)	H10B—C10—H10C	114 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—P1—O1—Zn1	37.88 (16)	C1—C2—C3—O7	-177.72 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—P1—O1—Zn1	-90.15 (14)	C1—C2—C3—C4	2.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—P1—O1—Zn1	154.59 (13)	O7—C3—C4—C5	176.85 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—P1—O3—Zn1 ⁱ	-0.87 (10)	C2—C3—C4—C5	-2.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—P1—O3—Zn1 ⁱ	-130.59 (8)	O7—C3—C4—P2	-5.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—P1—O3—Zn1 ⁱ	114.17 (8)	C2—C3—C4—P2	174.51 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—P2—O4—Zn1 ^{iv}	-63.56 (12)	O6—P2—C4—C5	-43.03 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—P2—O4—Zn1 ^{iv}	66.18 (12)	O4—P2—C4—C5	78.06 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—P2—O4—Zn1 ^{iv}	178.91 (10)	O5—P2—C4—C5	-164.49 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—P2—O5—Zn1 ^v	43.33 (14)	O6—P2—C4—C3	139.65 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O4$ — $P2$ — $O5$ — $Zn1^{v}$	-85.85 (13)	O4—P2—C4—C3	-99.26 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—P2—O5—Zn1 ^v	160.39 (11)	O5—P2—C4—C3	18.19 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—P1—C1—C2	71.83 (13)	C3—C4—C5—C6	1.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—P1—C1—C2	-165.68 (12)	P2-C4-C5-C6	-175.95 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—P1—C1—C2	-46.70 (14)	C4—C5—C6—O8	179.76 (15)
$O2_P1_C1_C6$ $15.04 (15)$ $C2_C1_C6_O8$ $179.40 (15)$ $O3_P1_C1_C6$ $134.02 (13)$ $P1_C1_C6_O8$ $-1.3 (2)$ $C6_C1_C2_C3$ $0.2 (2)$ $C2_C1_C6_C5$ $-1.6 (2)$ $P1_C1_C2_C3$ $-179.06 (12)$ $P1_C1_C6_C5$ $177.73 (12)$	O1—P1—C1—C6	-107.45 (13)	C4—C5—C6—C1	0.7 (2)
O3—P1—C1—C6 134.02 (13) P1—C1—C6—O8 -1.3 (2) C6—C1—C2—C3 0.2 (2) C2—C1—C6—C5 -1.6 (2) P1—C1—C2—C3 -179.06 (12) P1—C1—C6—C5 177.73 (12)	O2—P1—C1—C6	15.04 (15)	C2-C1-C6-08	179.40 (15)
C6—C1—C2—C3 0.2 (2) C2—C1—C6—C5 -1.6 (2) P1—C1—C2—C3 -179.06 (12) P1—C1—C6—C5 177.73 (12)	O3—P1—C1—C6	134.02 (13)	P1-C1-C6-O8	-1.3 (2)
P1—C1—C2—C3 –179.06 (12) P1—C1—C6—C5 177.73 (12)	C6—C1—C2—C3	0.2 (2)	C2—C1—C6—C5	-1.6 (2)
	P1-C1-C2-C3	-179.06 (12)	P1—C1—C6—C5	177.73 (12)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+3/2, y-1/2, -z+1/2; (iii) x+1/2, -y+3/2, z-1/2; (iv) -x+3/2, y+1/2, -z+1/2; (v) x-1/2, -y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
07—H7 <i>A</i> ···O5	0.79 (2)	1.91 (2)	2.6510 (17)	156 (3)
O8—H8A…O2	0.87 (3)	1.73 (3)	2.5846 (18)	168 (3)
N1—H1A····O2	0.89 (2)	1.88 (2)	2.7168 (19)	155.2 (18)
N1—H1 <i>B</i> ···O6 ^{vi}	0.89 (2)	2.02 (2)	2.8125 (19)	148.3 (18)
N2—H2 <i>B</i> ···O3 ^{vii}	0.83 (3)	2.07 (3)	2.8558 (19)	158 (2)
N2—H2 <i>C</i> ···O6	1.03 (2)	1.63 (2)	2.6518 (18)	173 (2)
С7—Н7 <i>С</i> …О4 ^{іі}	0.91 (2)	2.54 (2)	3.443 (3)	174 (2)
C9—H9 <i>B</i> ···O8 ^{viii}	1.03 (3)	2.57 (2)	3.445 (3)	142.6 (19)
C10—H10A····O8 ^{viii}	0.92 (3)	2.42 (3)	3.236 (3)	148 (3)

Symmetry codes: (ii) -x+3/2, y-1/2, -z+1/2; (vi) -x+1, -y+1, -z+1; (vii) x+1/2, -y+3/2, z+1/2; (viii) -x+3/2, y+1/2, -z+3/2.