

Received 31 July 2019 Accepted 6 September 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; nickel porphyrin; square-pyramidal Ni^{II} coordination; C—H···F hydrogen bonding; solvate.

CCDC reference: 1951945

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of $(15,20-bis(2,3,4,5,6-penta-fluorophenyl)-5,10-{(4-methylpyridine-3,5-diyl)-bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloromethane x-solvate (x > 1/2)$

Florian Gutzeit,^a Tjorge Neumann,^a Christian Näther^b and Rainer Herges^a*

^aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and ^bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany. *Correspondence e-mail: rherges@oc.uni-kiel.de

The title compound, $[Ni(C_{64}H_{33}F_{10}N_5S_2)]\cdot xCH_2Cl_2$, consists of discrete Ni^{II} porphyrin complexes, in which the five-coordinate Ni^{II} cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitrogen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the Ni^{II} cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitrogen atom. The pyridine ring is not perpendicular to the N₄ plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked *via* weak $C-H \cdot \cdot F$ hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in *PLATON* [Spek (2015). *Acta Cryst.* C**71**, 9–18].

1. Chemical context

Ni^{II} porphyrins are emerging in a number of applications including photoswitchable MRI contrast agents (Venkataramani et al., 2011; Dommaschk et al., 2014, 2015a,b), redox catalysts (Eom et al., 1997; Han et al., 2015) or catalysts in the hydrogen evolution reaction (HER) (Han et al., 2016; Solis et al., 2016; Maher et al., 2019). The axial coordination of Ni^{II} porphyrins has been studied extensively regarding the underlying equlibria (Caughey et al., 1962; McLees & Caughey, 1968; Walker et al. 1975), conformational changes (Jia et al., 1998) and photo-induced complex formation and dissociation (Kim et al., 1983; Kim & Holten, 1983). Moreover, the axial coordination determines the spin state of these complexes (Renner et al., 1991; Jentzen et al., 1995). Upon coordination of one axial ligand, Ni^{II} porphyrins undergo spin transition from a diamagnetic (S = 0) square-planar, low-spin (LS) state with a coordination number (CN) of four (CN4) to a paramagnetic (S = 1), square-pyramidal (CN5), high-spin (HS) state. The CN5 HS complex is further stabilized by the coordination of a sixth ligand, resulting in minor changes of the spectroscopic properties of the CN6 complexes compared to their CN5 counterparts. The coordination and de-coordin-

Table 1 Selected bond lengths (Å).			
Ni1-N2	2.031 (3)	Ni1-N1	2.041 (3)

Ni1-N5

2.036 (3)

2.036 (3)

Ni1-N4

Ni1-N3

ation of axial ligands are observed in a fast dynamic equilibrium, dominated by the CN4 and the CN6 species (Kadish et al., 2000 and Kruglik et al., 2003). The spectra and properties of a well defined five-coordinate (CN5) Ni^{II} porphyrin in solution and the solid state was described recently (Gutzeit et al., 2019a). In closely related, tightly strapped Ni^{II} porphyrins, the coordination of the axial pyridine ligand is dependent on the geometry of the ligand-containing strap (Köbke et al., 2019). Furthermore, the coordination behaviour is dependent on the para substituent of the pyridine moiety due to its electronic influence (Dommaschk et al., 2014). Hence, a para methyl substituent was introduced in the complex described previously (Gutzeit et al., 2019a) to improve the intramolecular coordination. The modified synthesis yielded the title compound as a byproduct (Gutzeit et al., 2019a; Köbke et al., 2019) similar to the synthesis of the unsubstituted derivative (Gutzeit et al., 2019b). Metallation was achieved under standard conditions. Splitting of the CH₂-proton signals in the ¹H NMR spectrum are observed for the unmetallated porphyrin and the title compound due to an impeded ring inversion of the strap (Gutzeit et al., 2019b). The increased paramagnetic shifts of the β -pyrrole H atoms ($\delta_{\min} = 8.8$ ppm, $\delta_{\text{max}} = 49.0 \text{ ppm}, \text{CDCl}_3, 298 \text{ K}; \text{Gutzeit et al., 2019a})$ of the title compound (45.9 ppm) compared to the compound without a methyl group in para position of the pyridine ring (42.2 ppm) indicates an increase of intramolecular coordination by 9% (Fig. 1; Gutzeit et al., 2019a), confirming the influence of the para methyl substituent.

2. Structural commentary

In the crystal structure of the title compound, $(C_{64}H_{33}F_{10}N_5NiS_2)$ $(CH_2Cl_2)_x$, the five-coordinate Ni^{II} cations are bound by the four nitrogen atoms of the porphyrin molecule and the nitrogen atom of the pyridine ring (Figs. 2–4). The porphyrin plane is distorted due to steric constraints of the strap, similar to the unsubstituted derivative (Gutzeit *et al.*, 2019*b*). The maximum deviation of the individual atoms from

Figure 1

2.106 (3)

Comparison of the paramagnetic shifts of the β -pyrrole H atoms of the parent compound and the title compound, indicating increased intramolecular coordination.

the mean plane calculated through the porphyrin atoms amounting to 0.137 (3) Å for the parent compound (Gutzeit et al., 2019b) is increased to 0.159 (4) Å in the title compound. The Ni-N bond lengths to the porphyrin nitrogen atoms [2.031 (3)-2.041 (3) Å] are significantly shorter than that to the pyridine nitrogen atom (Table 1). In the title compound, the Ni^{II} cation is shifted 0.241 (3) Å out of the porphyrin N4 plane towards the pyridine nitrogen atom, which is slightly shorter than that in the derivative without the methyl group [0.250(3) Å, Fig. 5]. This is also the case for the Ni–N distance to the pyridine N atom of 2.106 (3) Å, compared to 2.112 (2) Å in the derivative. The angle between the planes of the pyridine ring and the N₄ porphyrin plane amounts to $67.1 (2)^{\circ}$, which is very different from that in the derivative without the methyl group [80.48 (6) $^{\circ}$; Fig. 5]. The tilt of the pyridine ring does not impede the intramolecular coordination, which is reflected by the short $Ni-N_{py}$ (py = pyridine) distance and the NMR shift. The tilt of the axial ligand is reinforced by packing effects leveraged by the para methyl group. This is also in agreement with a different conformation

Figure 2 The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

research communications

Figure 3

Molecular structure of the title compound viewed onto the porphyrin plane.

of the overall porphyrin molecule compared to the unsubstituted derivative, because the pentafluoro phenyl rings are more perpendicular to the porphyrin N4 plane with dihedral angles of 82.53 (8) and 77.37 (7)°, which is also the case for the phenyl rings [67.0 (1) and 83.4 (2)°; Figs. 3 and 4]. Finally, the dihedral angles between the biphenyl rings are 72.3 (2) and 64.3 (2) ° compared to 63.2 (1) and 53.5 (1)° in the derivative. Overall, the increased steric demand of the *para* methyl substituent increases the distortion compared to the unsubstituted derivative.

Figure 4 Molecular structure of the title compound showing the square-pyramidal Ni^{II} coordination.

Table 2	
Hydrogen-bond geometry	(Å, °).

	•	,		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C33-H33B\cdots F8^{i}$	0.99	2.63	3.592 (6)	164
C35-H35···N2	0.95	2.58	3.125 (5)	117
C36-H36···N4	0.95	2.60	3.206 (5)	122

Symmetry code: (i) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$.

3. Supramolecular features

In the extended structure of the title compound, the complexes are linked by $C-H\cdots F$ hydrogen bonds into zigzag chains that extend in the [001] direction with adjacent complexes related by a 2₁-screw-axis (Fig. 6). The $C-H\cdots F$ angle is 164° , indicating a relative strong interaction (Table 2). By this arrangement, cavities are formed, in which the disordered dichloromethane solvate molecules are located. There are additional intramolecular $C-H\cdots N$ contacts, with angles far from linearity that correspond to only very weak interactions (Table 2).

4. Database survey

According to a search of the Cambridge Structural Database, only four crystal structures of five-coordinate Ni^{II} porphyrins have been reported (Kumar & Sankar, 2014; Dommaschk et al., 2015c; Gutzeit et al., 2019a,b; refcodes DOJPAV01, QUZVAK, COCBAA and HOPSIR, respectively). The square-pyramidal complex geometry is predominant in zinc (Paul et al., 2003; Deutman et al., 2014) and iron (Awasabisah et al., 2015; Yu et al., 2015) porphyrins. Zinc porphyrins form five-coordinate complexes additionally with oxygencontaining ligands (Leben et al., 2018), a behaviour uncommon in Ni^{II} porphyrins (Ozette et al., 1997). The conformation of the porphyrin (Flanagan et al., 2015; Senge, 2011) has been recognized as an important factor for the axial coordination, spin state (Thies et al., 2010; Dommaschk et al., 2014) and catalytic activity (Ramesh et al., 2016) of these complexes.

Figure 5 Molecular structure of the title compound showing the orientation of the pyridine ring relative to the N_4 plane.

Figure 6

Crystal structure of the title compound viewed down [010] with intermolecular C-H···F hydrogen bonds shown as dashed lines.

5. Synthesis and crystallization

The free base porphyrin of the title compound was obtained as a byproduct of a variant of the published procedure (Gutzeit *et al.*, 2019*a*; Köbke *et al.*, 2019). The free base porphyrins were separated by column chromatography (silica gel, dichloromethane; silica gel, dichloromethane/n-pentane, 1:1 and silica gel, toluene) and precipitated from dichloromethane by diffusion of methanol (59 mg, 3%).

¹H NMR (500 MHz, CDCl₃, 298 K, TMS): $\delta = 8.97$ (*s*, 2 H, *H*_{β,Por}), 8.65–8.58 (*m*, 4 H, *H*_{β,Por}), 8.51 (*d*, ³*J* = 4.8 Hz, 2 H, *H*_{β,Por}), 8.26 (*dd*, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 2 H, *H*-3_{BP}), 7.91 (*td*, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 2 H, *H*-5_{BP}), 7.83 (*dd*, ³*J* = 7.9 Hz, ⁴*J* = 1.1 Hz, 2 H, *H*-6_{BP}), 7.75 (*td*, ³*J* = 7.5 Hz, ⁴*J* = 1.4 Hz, 2 H, *H*-4_{BP}), 6.66 (*d*, ³*J* = 8.2 Hz, 4 H, *H*-2'_{BP}), 5.67 (*d*, ³*J* = 8.2 Hz, 4 H, *H*-3'_{BP}), 3.00–2.90 (*m*, 4 H, CH_{2,a+b}), 2.21 (*s*, 3 H, CH₃), -2.82 (*s*, 2 H, N*H*) ppm. Unobserved signals: *H*-2_{Py}. ¹³C NMR (126 MHz, CDCl₃, 298 K): δ = 153.5 (C4_{Py}), 144.5 (C1_{BP}), 140.2 (C1'_{BP}), 139.9 (C2_{BP}), 135.9 (C4'_{BP}), 134.7 (C3_{BP}), 129.9 (C3_{Py}), 129.4 (C6_{BP}), 129.3 (C2'_{BP}), 129.2 (C5_{BP}), 127.4 (C3'_{BP}), 125.8 (C4_{BP}), 121.4 (C5Por,C10Por), 38.3 (CH₂), 17.6 (CH₃) ppm. Unobserved signals: C15_{Por}, C20_{Por}, C_{α,Por}, C_{β,Por}, C₆F₅. ¹⁹F NMR (471 MHz, CDCl₃, 298 K): δ = -136.96 (*dd*, ${}^{3}J = 24.3 \text{ Hz}, {}^{4}J = 8.3 \text{ Hz}, F\text{-}ortho), -137.26 (dd, {}^{3}J = 24.7 \text{ Hz},$ ${}^{4}J = 8.1 \text{ Hz}, F\text{-}ortho), -153.08 (t, {}^{3}J = 20.0 \text{ Hz}, F\text{-}para),$ -162.43 to -162.65 (*m*, *F*-meta) ppm. FT-IR (ATR): v =2342.6 (w), 2326.3 (w), 1742.5 (w), 1516.5 (s), 1493.9 (s), 1474.0 (s), 1422.1 (w), 1348.9 (w), 1217.9 (w), 1078.8 (w), 1041.7 (w), 985.4 (s), 917.9 (s), 839.4 (w), 800.8 (s), 763.4 (s), 737.1 (s), 716.5 (s), 700.0 (m), 659.5 (m), 526.8 (w), 506.0 (w), 467.0 (w), 407.2 (m) cm⁻¹. MS (EI): m/z (%) = 1188.10 (43) $[M - H_2 +$ Cu^{+} , 334.96 (14) $[M - C_{44}H_{18}F_{10}N_{4}]^{+}$, 168.99 (100) [M - $C_{57}H_{28}F_{10}N_4]^+$ u. HRMS (EI): Calculated for C₆₄H₃₃CuF₁₀N₅S₂: 1188.1314 u. Found: 1188.128 33 u. Diff.: 2.6 ppm. The free base porphyrin is metallated in the process of sublimation. EA: Calculated for C₆₄H₃₅F₁₀N₅S₂·0.5(CH₂Cl₂): C 66.18, H 3.10, N 5.98, S 5.48. Found C 66.77, H 3.39, N 5.44, S 5.33.

The nickel cation was introduced under standard conditions (31 mg porphyrin, 68 mg Ni(acac)₂, 30 ml toluene, reflux, 21 h) followed by filtration through a pluck of silica (dichloromethane) and precipitation from dichloromethane by diffusion of methanol. The crystals were washed with methanol and n-pentane (11 mg, 34%).

research communications

¹H NMR (500 MHz, CDCl₃, 298 K, TMS, TFA): $\delta = 9.00-$ 8.32 (*m*, 8 H, $H_{\beta,Por}$), 7.97 (*dd*, ³*J* = 7.7 Hz, ⁴*J* = 1.3 Hz, 2 H, $H-3_{\rm BP}$), 7.87 (td, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.1$ Hz, 2 H, $H-5_{\rm BP}$), 7.79 (dd, ${}^{3}J = 7.8 \text{ Hz}, {}^{4}J = 1.1 \text{ Hz}, 2 \text{ H}, H-6_{\text{BP}}), 7.69 (td, {}^{3}J = 7.8 \text{ Hz},$ ${}^{4}J = 1.3 \text{ Hz}, 2 \text{ H}, H \cdot 4_{\text{BP}}), 6.76 (d, {}^{3}J = 8.1 \text{ Hz}, 4 \text{ H}, H \cdot 2'_{\text{BP}}), 6.56$ $(s, 2 \text{ H}, H-2_{\text{Pv}}), 6.08 (d, {}^{3}J = 8.1 \text{ Hz}, 4 \text{ H}, H-3'_{\text{BP}}), 3.54-3.42 (m,$ 4 H, CH_{2 a+b}), 2.38 (s, 3 H, CH₃) ppm. ¹³C NMR (126 MHz, CDCl₃, 298 K, TFA): $\delta = 165.0 (C4_{Pv})$, 143.0 (C1_{BP}), 141.5 $(C1'_{BP}), 138.9 (C2_{Pv}), 137.3 (C3_{Pv}), 135.0 (C3_{BP}), 133.3 (C4'_{BP}),$ 129.9 (Сб_{вР}), 129.7 (С5_{вР}), 129.6 (С2'_{вР}), 127.8 (С3'_{вР}), 126.6 (C4_{BP}), 37.8 (CH₂), 19.3 (CH₃) ppm. Unobserved signals: $C_{meso,Por}$, $C_{\alpha,Por}$, C_{β} ,Por, C_6F_5 . ¹⁹F NMR (471 MHz, CDCl₃, 298 K, TFA): $\delta = -137.27 (br, F-ortho), -138.66 (br, F-ortho),$ -152.09 (t, ${}^{3}J = 20.5$ Hz, F-para), -161.65 (td, ${}^{3}J = 22.0$ Hz, ${}^{4}J = 8.2$ Hz, *F-meta*), -162.06 (*td*, ${}^{3}J = 22.0$ Hz, ${}^{4}J = 8.3$ Hz, *F-meta*) ppm. FT–IR (ATR): v = 1517.8 (*m*), 1487.0 (*m*), 1338.8 (w), 1065.1 (w), 986.5 (s), 948.7 (m), 928.9 (s), 835.3 (w), 799.5(m), 766.4 (m), 752.8 (m), 707.9 (w), 664.1 (w), 599.9 (w), 535.7 (w), 431.5 (w), 418.6 (w) cm⁻¹. MS (EI): m/z (%) = 1183.10 (32) $[M]^+$, 169.00 (86) $[M - C_{57}H_{26}F_{10}N_4Ni]^+$, 131.00 (100) $[M - C_{57}H_{33}F_{10}N_4NiS]^+$ u. HRMS (EI): Calculated for C₆₄H₃₃F₁₀N₅NiS₂: 1183.1371 u. Found: 1183.1362 u. Diff.: 0.8 ppm.

Red blocks of the title compound were obtained by dissolving the complex in dichloromethane and gas-phase diffusion of methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-H hydrogen atoms were located in difference maps but were positioned with idealized geometry (C-H = 0.95–0.98 Å) and refined isotropically with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C$ -methyl) using a riding model.

After structure refinement using a model with one Ni porphyrin complex and a half dichloromethane solvate molecule disordered around a center of inversion, there was significant residual electron density that definitely corresponds to additional dichloromethane disordered over several orientations. A number of different split models were tried using restraints for the geometry and for the components of the anisotropic displacement parameters, but no reasonable structural model was found and very large anisotropic displacement parameters were obtained. Therefore, the contribution of this solvent to the electron density was removed with SQUEEZE in PLATON (Spek, 2009, 2015), which leads to a reasonable structure model and very good reliability factors. By this procedure, the amount of dichloromethane cannot accurately be determined and there is indication that this position is not fully occupied, which is highly likely because this solvate is very unstable and already starts to decompose during the sample preparation.

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.

Crystal data Chemical formula M _r	[Ni(C ₆₄ H ₃₃ F ₁₀ N ₅ S ₂)][+solvent] 1184.78
Chemical formula $M_{\rm r}$	$[Ni(C_{64}H_{33}F_{10}N_5S_2)][+solvent] \\ 1184.78$
$M_{ m r}$	1184.78
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	170
a, b, c (Å)	12.6269 (2), 18.0525 (3), 24.9524 (6)
$V(Å^3)$	5687.83 (19)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.49
Crystal size (mm)	$0.15 \times 0.10 \times 0.05$
Data collection	
Diffractometer	Stoe IPDS2
Absorption correction	Numerical (X-RED and X- SHAPE; Stoe, 2008)
T_{\min}, T_{\max}	0.810, 0.965
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	44401, 12417, 10468
R _{int}	0.055
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.099, 1.04
No. of reflections	12417
No. of parameters	740
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.34, -0.39
Absolute structure	Flack x determined using 4043 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	0.004 (7)

Computer programs: X-AREA (Stoe, 2008), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP (Sheldrick, 2008), DIAMOND (Brandenburg, 2014) and publCIF (Westrip, 2010).

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.

References

Table 2

- Awasabisah, D., Powell, D. R. & Richter-Addo, G. B. (2015). Acta Cryst. E71, m42-m43.
- Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Caughey, W. S., Deal, R. M., McLees, B. D. & Alben, J. O. (1962). J. Am. Chem. Soc. 84, 1735–1736.
- Deutman, A. B. C., Smits, J. M. M., de Gelder, R., Elemans, J. A. A. W., Nolte, R. J. M. & Rowan, A. E. (2014). *Chem. Eur. J.* 20, 11574–11583.
- Dommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496–8500.
- Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015b). J. Am. Chem. Soc. 137, 7552–7555.
- Dommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014). *Dalton Trans.* 43, 17395– 17405.
- Dommaschk, M., Thoms, V., Schütt, C., Näther, C., Puttreddy, R., Rissanen, K. & Herges, R. (2015c). *Inorg. Chem.* 54, 9390–9392.
- Eom, H. S., Jeoung, S. C., Kim, D., Ha, J.-H. & Kim, Y.-R. (1997). J. Phys. Chem. A, 101, 3661–3669.

- Flanagan, K. J., Mothi, E. M., Kötzner, L. & Senge, M. O. (2015). *Acta Cryst.* E**71**, 1397–1400.
- Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019a). *Inorg. Chem.* <u>XX, XX–</u> XX. [Any update?]
- Gutzeit, F., Näther, C. & Herges, R. (2019b). Acta Cryst. E75, 1180– 1184.
- Han, Y., Fang, H., Jing, H., Sun, H., Lei, H., Lai, W. & Cao, R. (2016). Angew. Chem. Int. Ed. 55, 5457–5462.
- Han, Y., Wu, Y., Lai, W. & Cao, R. (2015). *Inorg. Chem.* 54, 5604–5613.
- Jentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J., Takeuchi, T., Goddard, W. A. III & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085–11097.
- Jia, S.-L., Jentzen, W., Shang, M., Song, X.-Z., Ma, J.-G., Scheidt, W. R. & Shelnutt, J. A. (1998). *Inorg. Chem.* 37, 4402–4412.
- Kadish, K. M., Smith, K. M. & Guilard, R. (2000). Editors. *The Porphyrin Handbook – Inorganic, Organometallic & Coordination Chemistry*, vol. 3. San Diego, London: Academic Press.
- Kim, D. & Holten, D. (1983). Chem. Phys. Lett. 98, 584-589.
- Kim, D., Kirmaier, C. & Holten, D. (1983). Chem. Phys. 75, 305-322.
- Köbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). *Nat. Nanotechnol.* Submitted.
- Kruglik, S. G., Ermolenkov, V. V., Orlovich, V. A. & Turpin, P.-Y. (2003). Chem. Phys. 286, 97–108.
- Kumar, R. & Sankar, M. (2014). Inorg. Chem. 53, 12706-12719.
- Leben, L., Schaub, E., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1609–1612.
- Maher, A. G., Liu, M. & Nocera, D. G. (2019). *Inorg. Chem.* 58, 7958–7968.

- McLees, B. D. & Caughey, W. S. (1968). Biochemistry, 7, 642-652.
- Ozette, K., Leduc, P., Palacio, M., Bartoli, J.-F., Barkigia, K. M., Fajer, J., Battioni, P. & Mansuy, D. (1997). J. Am. Chem. Soc. 119, 6442– 6443.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Paul, D., Melin, F., Hirtz, C., Wytko, J., Ochsenbein, P., Bonin, M., Schenk, K., Maltese, P. & Weiss, J. (2003). *Inorg. Chem.* 42, 3779– 3787.
- Ramesh, J., Sujatha, S. & Arunkumar, C. (2016). *RSC Adv.* 6, 63271–63285.
- Renner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H. K., Simpson, D. J., Smith, K. M. & Fajer, J. (1991). *J. Am. Chem. Soc.* **113**, 6891–6898.
- Senge, M. O. (2011). Acta Cryst. C67, m39-m42.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Solis, B. H., Maher, A. G., Dogutan, D. K., Nocera, D. G. & Hammes-Schiffer, S. (2016). Proc. Natl Acad. Sci. USA, 113, 485–492.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). *Chem. Eur. J.* 16, 10074–10083.
- Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445–448.
- Walker, F. A., Hui, E. & Walker, J. M. (1975). J. Am. Chem. Soc. 97, 2390–2397.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yu, Q., Liu, D. S., Li, X. J. & Li, J. F. (2015). Acta Cryst. C71, 856– 859.

Acta Cryst. (2019). E75, 1558-1563 [https://doi.org/10.1107/S2056989019012453]

Crystal structure of $(15,20-bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(4-methyl-pyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloromethane$ *x*-solvate (*x*> 1/2)

Florian Gutzeit, Tjorge Neumann, Christian Näther and Rainer Herges

Computing details

Data collection: *X-AREA* (Stoe, 2008); cell refinement: *X-AREA* (Stoe, 2008); data reduction: *X-AREA* (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *XP* (Sheldrick, 2008) and Diamond (Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(15,20-Bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(4-methylpyridine-3,5-diyl)\ bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloromethane solvate

Crystal data

 $[Ni(C_{64}H_{33}F_{10}N_5S_2)]$ [+solvent] $M_r = 1184.78$ Orthorhombic, $P2_12_12_1$ a = 12.6269 (2) Å b = 18.0525 (3) Å c = 24.9524 (6) Å V = 5687.83 (19) Å³ Z = 4F(000) = 2408Data collection Stoe IPDS-2 diffractometer ω scans Absorption correction: numerical (X-Red and X-Shape; Stoe, 2008) $T_{\rm min} = 0.810, \ T_{\rm max} = 0.965$ 44401 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.099$ S = 1.0412417 reflections 740 parameters 0 restraints $D_x = 1.384 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 44396 reflections $\theta = 1.4-27.0^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 170 KBlock, red $0.15 \times 0.10 \times 0.05 \text{ mm}$

12417 independent reflections 10468 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 27.0^\circ, \ \theta_{min} = 1.4^\circ$ $h = -16 \rightarrow 14$ $k = -23 \rightarrow 20$ $l = -31 \rightarrow 31$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0479P)^2 + 0.9016P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³ Absolute structure: Flack *x* determined using 4043 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter: 0.004 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

				TT */TT
	x	У	Z	$U_{\rm iso} - U_{\rm eq}$
Ni1	0.36866 (4)	0.61346 (3)	0.57341 (2)	0.03235 (11)
N1	0.3385 (2)	0.71635 (17)	0.60371 (11)	0.0329 (7)
N2	0.2384 (3)	0.57504 (17)	0.61227 (12)	0.0340 (7)
N3	0.3742 (3)	0.51813 (17)	0.52990 (11)	0.0374 (7)
N4	0.4729 (3)	0.66068 (18)	0.52138 (11)	0.0337 (7)
C1	0.3978 (3)	0.7789 (2)	0.59612 (14)	0.0361 (8)
C2	0.3622 (4)	0.8368 (2)	0.63062 (15)	0.0411 (8)
H2	0.3916	0.8851	0.6336	0.049*
C3	0.2787 (3)	0.8098 (2)	0.65832 (15)	0.0385 (8)
H3	0.2376	0.8358	0.6841	0.046*
C4	0.2636 (3)	0.7342 (2)	0.64145 (14)	0.0335 (8)
C5	0.1883 (3)	0.6867 (2)	0.66275 (14)	0.0348 (8)
C6	0.1780 (3)	0.6117 (2)	0.64944 (13)	0.0342 (7)
C7	0.1072 (3)	0.5608 (2)	0.67541 (15)	0.0387 (9)
H7	0.0574	0.5724	0.7027	0.046*
C8	0.1249 (4)	0.4939 (2)	0.65372 (15)	0.0429 (9)
H8	0.0898	0.4491	0.6629	0.052*
C9	0.2067 (3)	0.5023 (2)	0.61405 (15)	0.0378 (8)
C10	0.2491 (3)	0.4457 (2)	0.58317 (14)	0.0382 (8)
C11	0.3253 (3)	0.4528 (2)	0.54297 (15)	0.0388 (8)
C12	0.3605 (4)	0.3948 (2)	0.50759 (17)	0.0496 (10)
H12	0.3392	0.3444	0.5084	0.060*
C13	0.4297 (4)	0.4262 (3)	0.47302 (17)	0.0497 (10)
H13	0.4650	0.4019	0.4443	0.060*
C14	0.4400 (3)	0.5026 (2)	0.48752 (15)	0.0385 (8)
C15	0.5083 (3)	0.5531 (2)	0.46350 (14)	0.0382 (8)
C16	0.5222 (3)	0.6268 (2)	0.47900 (13)	0.0342 (8)
C17	0.5939 (3)	0.6784 (2)	0.45336 (16)	0.0423 (9)
H17	0.6376	0.6687	0.4232	0.051*
C18	0.5869 (3)	0.7423 (2)	0.48022 (15)	0.0417 (9)
H18	0.6247	0.7865	0.4726	0.050*
C19	0.5114 (3)	0.7316 (2)	0.52279 (14)	0.0359 (8)
C20	0.4805 (3)	0.7864 (2)	0.55899 (14)	0.0368 (8)
C21	0.1169 (3)	0.7200 (2)	0.70420 (15)	0.0385 (8)
C22	0.1413 (4)	0.7145 (3)	0.75868 (16)	0.0480 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C23	0.0784 (5)	0.7530 (3)	0.7952 (2)	0.0701 (16)
H23	0.0942	0.7501	0.8324	0.084*
C24	-0.0060(5)	0.7952 (3)	0.7784 (2)	0.0754 (17)
H24	-0.0465	0.8221	0.8039	0.090*
C25	-0.0319(5)	0.7984 (3)	0.7248 (2)	0.0630 (14)
H25	-0.0918	0.8261	0.7134	0.076*
C26	0.0293 (4)	0.7613 (3)	0.68774 (18)	0.0481 (10)
H26	0.0118	0.7639	0.6508	0.058*
C27	0.2296 (4)	0.6651 (3)	0.77658 (16)	0.0495 (11)
C28	0.3349 (4)	0.6799 (3)	0.76606 (18)	0.0562 (12)
H28	0.3544	0.7260	0.7506	0.067*
C29	0.4124 (4)	0.6277 (3)	0.77794 (18)	0.0589 (13)
H29	0.4847	0.6393	0.7716	0.071*
C30	0.3863 (4)	0.5589 (3)	0.79893 (17)	0.0572 (12)
C31	0.2806 (4)	0.5464 (3)	0.8117 (2)	0.0631 (14)
H31	0.2611	0.5011	0.8284	0.076*
C32	0.2040(4)	0.5979 (3)	0.80093 (18)	0.0584 (13)
H32	0.1324	0.5878	0.8101	0.070*
C33	0.4666(4)	0.4992 (4)	0.80592 (18)	0.0669 (15)
H33A	0.4555	0 4748	0.8410	0.080*
H33B	0.5382	0.5215	0.8061	0.080*
S1	0.45960(12)	0.42922(8)	0.75272 (5)	0.0652 (4)
C34	0.5137 (4)	0.4798(3)	0.69782(17)	0.0488 (10)
C35	0.4473 (4)	0.5274 (2)	0.67001 (16)	0.0442 (10)
H35	0.3763	0.5329	0.6820	0.053*
N5	0.4788 (3)	0.5663(2)	0.62680 (12)	0.0397(7)
C36	0.5793(3)	0.5587 (3)	0.61168 (17)	0.0449 (9)
H36	0.6028	0.5858	0.5813	0.054*
C37	0.6515 (4)	0.5137 (3)	0.63743 (17)	0.0516 (11)
C38	0.6190 (4)	0.4710 (3)	0.68145 (17)	0.0494 (10)
C39	0.6924 (5)	0.4168 (3)	0.7083 (2)	0.0659 (14)
H39A	0.6722	0.4113	0.7460	0.099*
H39B	0.7653	0.4351	0.7060	0.099*
H39C	0.6873	0.3687	0.6903	0.099*
S2	0.78309 (11)	0.51140 (10)	0.61283 (6)	0.0702 (4)
C40	0.8384 (4)	0.5904 (4)	0.6494 (2)	0.080 (2)
H40A	0.8259	0.5830	0.6882	0.095*
H40B	0.9159	0.5917	0.6436	0.095*
C41	0.7924 (4)	0.6637 (4)	0.63313 (19)	0.0633 (14)
C42	0.7113 (4)	0.6972 (4)	0.66102 (18)	0.0649 (15)
H42	0.6871	0.6754	0.6935	0.078*
C43	0.6643 (4)	0.7615 (3)	0.64298 (18)	0.0607 (13)
H43	0.6077	0.7828	0.6627	0.073*
C44	0.6989 (4)	0.7953 (3)	0.59624 (17)	0.0518 (11)
C45	0.7836 (4)	0.7635 (3)	0.5695 (2)	0.0630 (13)
H45	0.8105	0.7867	0.5382	0.076*
C46	0.8301 (4)	0.6984 (4)	0.5873(2)	0.0658 (14)
H46	0.8878	0.6775	0.5681	0.079*

C47	0.6447 (4)	0.8620 (3)	0.57452 (17)	0.0516 (10)
C48	0.5386 (4)	0.8582 (2)	0.55788 (16)	0.0442 (10)
C49	0.4884 (5)	0.9215 (3)	0.53857 (18)	0.0548 (12)
H49	0.4171	0.9190	0.5264	0.066*
C50	0.5429 (6)	0.9883 (3)	0.5372 (2)	0.0734 (17)
H50	0.5077	1.0321	0.5259	0.088*
C51	0.6486 (6)	0.9911 (3)	0.5521 (2)	0.0768 (19)
H51	0.6863	1.0366	0.5497	0.092*
C52	0.6982 (5)	0.9296 (3)	0.5701 (2)	0.0661 (15)
H52	0.7707	0.9323	0.5800	0.079*
C53	0.2096 (4)	0.3686 (2)	0.59367 (16)	0.0428 (9)
C54	0.1119 (4)	0.3441 (2)	0.57611 (18)	0.0492 (10)
C55	0.0757 (4)	0.2733 (3)	0.58575 (19)	0.0549 (12)
C56	0.1364 (5)	0.2256 (2)	0.6139 (2)	0.0609 (12)
C57	0.2319 (5)	0.2470 (3)	0.6320 (2)	0.0666 (14)
C58	0.2688 (4)	0.3177 (3)	0.6224 (2)	0.0569 (12)
F1	0.0481 (3)	0.38982 (19)	0.54925 (13)	0.0742 (9)
F2	-0.0200 (3)	0.25128 (18)	0.56817 (14)	0.0788 (9)
F3	0.0995 (3)	0.15736 (17)	0.62517 (16)	0.0862 (11)
F4	0.2921 (4)	0.2008 (2)	0.6617 (2)	0.1099 (15)
F5	0.3640 (3)	0.33798 (18)	0.64045 (15)	0.0827 (10)
C59	0.5742 (3)	0.5266 (2)	0.41772 (15)	0.0400 (9)
C60	0.6774 (3)	0.5037 (3)	0.42437 (17)	0.0475 (9)
C61	0.7405 (4)	0.4800 (3)	0.38280 (17)	0.0472 (10)
C62	0.6994 (4)	0.4791 (2)	0.33204 (16)	0.0459 (10)
C63	0.5979 (4)	0.5029 (3)	0.32304 (15)	0.0456 (10)
C64	0.5368 (3)	0.5260 (3)	0.36550 (16)	0.0437 (9)
F6	0.7198 (2)	0.5046 (2)	0.47407 (10)	0.0686 (8)
F7	0.8392 (2)	0.4563 (2)	0.39158 (12)	0.0704 (9)
F8	0.7586 (2)	0.45350 (17)	0.29130 (10)	0.0613 (7)
F9	0.5582 (3)	0.50154 (19)	0.27319 (10)	0.0686 (8)
F10	0.4375 (2)	0.54870 (18)	0.35559 (10)	0.0598 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0320 (2)	0.0340 (2)	0.03107 (19)	-0.0007 (2)	0.00063 (19)	0.00143 (18)
N1	0.0336 (17)	0.0328 (16)	0.0324 (15)	-0.0034 (13)	0.0006 (12)	0.0022 (12)
N2	0.0353 (17)	0.0312 (16)	0.0354 (14)	0.0007 (14)	-0.0009 (13)	0.0008 (12)
N3	0.0395 (17)	0.0364 (16)	0.0364 (14)	-0.0033 (16)	0.0048 (14)	0.0013 (12)
N4	0.0329 (16)	0.0352 (17)	0.0330 (14)	-0.0004 (14)	0.0005 (12)	0.0007 (12)
C1	0.037 (2)	0.0354 (19)	0.0363 (16)	-0.0058 (16)	0.0008 (14)	0.0015 (15)
C2	0.042 (2)	0.037 (2)	0.0441 (19)	-0.0073 (19)	-0.0005 (18)	-0.0016 (15)
C3	0.039 (2)	0.038 (2)	0.0377 (18)	-0.0006 (18)	0.0012 (16)	-0.0038 (15)
C4	0.0333 (19)	0.0346 (19)	0.0324 (16)	0.0029 (16)	-0.0022 (14)	0.0011 (14)
C5	0.033 (2)	0.038 (2)	0.0335 (17)	-0.0002 (16)	-0.0038 (14)	0.0002 (15)
C6	0.0290 (16)	0.0396 (19)	0.0339 (16)	0.0009 (18)	0.0006 (13)	0.0016 (16)
C7	0.037 (2)	0.042 (2)	0.0370 (17)	-0.0016 (17)	0.0042 (15)	0.0023 (16)

C8	0.044 (2)	0.037 (2)	0.0482 (19)	-0.006 (2)	0.0050 (18)	0.0063 (16)
C9	0.038 (2)	0.035 (2)	0.0404 (18)	-0.0072 (17)	-0.0003 (16)	0.0038 (16)
C10	0.041 (2)	0.0336 (19)	0.0398 (19)	-0.0007 (17)	0.0039 (16)	0.0031 (15)
C11	0.043 (2)	0.0299 (19)	0.0438 (19)	-0.0038 (17)	0.0031 (16)	-0.0017 (16)
C12	0.059 (3)	0.036 (2)	0.054 (2)	-0.005 (2)	0.011 (2)	-0.0063 (18)
C13	0.057 (3)	0.045 (2)	0.047 (2)	-0.001(2)	0.011 (2)	-0.0063 (19)
C14	0.040 (2)	0.037 (2)	0.0382 (18)	0.0011 (18)	0.0052 (15)	-0.0037 (16)
C15	0.037 (2)	0.044 (2)	0.0340 (17)	0.0013 (18)	0.0035 (15)	-0.0002(16)
C16	0.0361 (19)	0.039 (2)	0.0275 (15)	-0.0013 (16)	0.0032 (13)	0.0017 (14)
C17	0.042 (2)	0.048 (2)	0.0376 (19)	-0.0022(19)	0.0075 (16)	0.0015 (17)
C18	0.040 (2)	0.044 (2)	0.0409 (19)	-0.0069 (18)	0.0082 (16)	0.0017 (17)
C19	0.036 (2)	0.037(2)	0.0341 (17)	-0.0068(17)	0.0034 (15)	0.0038 (15)
C20	0.036(2)	0.036(2)	0.0382 (18)	-0.0024(16)	0.0012 (15)	0.0018 (15)
C21	0.036 (2)	0.036(2)	0.0427 (18)	-0.0001(17)	0.0065 (16)	-0.0001(15)
C22	0.051 (3)	0.052(2)	0.0406 (19)	0.000 (2)	0.0085 (19)	-0.0008(17)
C23	0.094 (4)	0.073(4)	0.043(2)	0.013(3)	0.024 (3)	-0.003(2)
C24	0.093(4)	0 070 (4)	0.064(3)	0.030(3)	0.021(3)	-0.001(3)
C25	0.093(1)	0.070(1)	0.001(3) 0.073(3)	0.020(3)	0.031(3)	0.001(2)
C26	0.003(3) 0.043(2)	0.031(3) 0.049(3)	0.073(3)	0.020(3) 0.008(2)	0.052(5)	0.011(2) 0.0059(19)
C27	0.013(2) 0.051(3)	0.062(3)	0.032(2)	0.000(2)	0.0070(19)	0.0011(18)
C28	0.051(3)	0.002(3)	0.0391(17) 0.049(2)	-0.007(2)	0.000(2)	0.0011(10)
C29	0.037(3)	0.005(3)	0.045(2)	-0.006(3)	-0.0011(19)	0.001(2)
C30	0.048(3)	0.085(1) 0.084(4)	0.019(2) 0.039(2)	0.000(3)	-0.0033(19)	0.000(2)
C31	0.052(3)	0.081(1) 0.083(4)	0.059(2)	0.001(3)	0.0033(1))	0.011(2) 0.027(3)
C32	0.052(3)	0.000(4)	0.054(5)	-0.002(3)	0.001(2)	0.027(3)
C33	0.043(2) 0.053(3)	0.000(4) 0.106(4)	0.030(2) 0.042(2)	0.003(3)	-0.0022(1)	0.020(2)
S1	0.0664 (8)	0.100(4)	0.042(2)	0.014(3) 0.0039(7)	-0.009(2)	0.0279(6)
C34	0.051(3)	0.0700(9)	0.0391(7) 0.043(2)	0.0035(7)	-0.0007(18)	0.0279(0)
C35	0.031(3)	0.032(3)	0.043(2)	0.004(2)	-0.0030(17)	0.0050(10)
N5	0.045(2)	0.049(2)	0.0407(15) 0.0354(15)	0.002(2)	-0.0030(17)	0.0080(17)
C36	0.037(2)	0.040(2) 0.054(3)	0.0334(13)	0.0004(13)	-0.0011(17)	0.0000(14)
C37	0.037(2) 0.045(3)	0.054(3)	0.044(2) 0.048(2)	0.000(2)	-0.0038(18)	0.0030(1))
C38	0.043(3)	0.002(3)	0.048(2) 0.049(2)	0.011(2) 0.009(2)	-0.0077(19)	0.004(2)
C30	0.047(3)	0.052(3)	0.049(2)	0.009(2)	-0.009(3)	0.0050(10)
S2	0.005(3)	0.004(3)	0.008(3)	0.013(3)	0.009 (5)	0.013(3)
52 C40	0.043 + (7)	0.0985 (11)	0.0000(7)	0.0231(7)	-0.0090(0)	0.0143(7)
C40	0.042(3)	0.130(0)	0.007(3)	-0.006(3)	-0.009(2)	0.023(3)
C_{42}	0.039(2)	0.100(4)	0.031(2)	-0.012(3)	-0.009(2)	0.000(3)
C42	0.049(3)	0.104(4)	0.042(2)	-0.012(3)	0.004(2)	0.008(3)
C43	0.031(3)	0.090(4)	0.041(2)	-0.012(3)	-0.0000(19)	-0.001(2)
C44	0.041(2)	0.072(3)	0.045(2)	-0.013(2)	-0.0008(18)	-0.003(2)
C45	0.040(3)	0.088(4)	0.055(2)	-0.011(3)	0.009(2)	0.004(3)
C40	0.058(2)	0.099(4)	0.001(3)	-0.010(3)	0.003(2)	0.003(3)
C47	0.052(3)	0.059(3)	0.0435(19)	-0.020(2)	0.013(2)	-0.005(2)
C48	0.04/(2)	0.042(2)	0.043(2)	-0.0123(19)	0.0121(17)	-0.001/(10)
C49	0.069 (3)	0.043(2)	0.052(2)	-0.007(2)	0.012(2)	0.003(2)
C50	0.110(5)	0.043(3)	0.06/(3)	-0.013(3)	0.025(3)	0.001(2)
C51	0.106 (5)	0.053(3)	0.071 (3)	-0.041(4)	0.031 (3)	-0.009 (3)
C52	0.071 (3)	0.074 (4)	0.053 (2)	-0.038 (3)	0.013 (3)	-0.016 (3)

C53	0.047 (2)	0.037 (2)	0.0452 (19)	-0.0023 (18)	0.0059 (18)	0.0032 (16)
C54	0.060 (3)	0.042 (2)	0.046 (2)	-0.010 (2)	-0.002 (2)	0.0081 (19)
C55	0.064 (3)	0.044 (2)	0.057 (3)	-0.018 (2)	0.001 (2)	-0.002 (2)
C56	0.074 (3)	0.030 (2)	0.079 (3)	-0.012 (2)	0.008 (3)	0.005 (2)
C57	0.067 (3)	0.038 (2)	0.095 (4)	0.007 (2)	-0.007 (3)	0.021 (2)
C58	0.048 (3)	0.046 (3)	0.077 (3)	0.000 (2)	0.000 (2)	0.005 (2)
F1	0.075 (2)	0.0631 (18)	0.0844 (19)	-0.0207 (18)	-0.0285 (16)	0.0286 (16)
F2	0.082 (2)	0.0674 (19)	0.087 (2)	-0.0361 (17)	-0.0184 (19)	0.0069 (17)
F3	0.104 (3)	0.0368 (15)	0.118 (3)	-0.0149 (17)	0.003 (2)	0.0147 (16)
F4	0.097 (3)	0.057 (2)	0.176 (4)	0.007 (2)	-0.026 (3)	0.049 (2)
F5	0.0599 (19)	0.0634 (19)	0.125 (3)	-0.0026 (18)	-0.026 (2)	0.0207 (18)
C59	0.039 (2)	0.043 (2)	0.038 (2)	-0.0021 (17)	0.0040 (15)	-0.0020 (16)
C60	0.043 (2)	0.061 (3)	0.0383 (18)	0.001 (2)	-0.0013 (18)	-0.005 (2)
C61	0.038 (2)	0.052 (3)	0.051 (2)	0.004 (2)	0.0082 (18)	-0.0058 (19)
C62	0.051 (3)	0.046 (2)	0.041 (2)	-0.003 (2)	0.0152 (18)	-0.0072 (17)
C63	0.053 (3)	0.050 (2)	0.0338 (18)	-0.006 (2)	0.0047 (16)	-0.0030 (17)
C64	0.041 (2)	0.050 (2)	0.0411 (19)	-0.001 (2)	0.0033 (17)	-0.0011 (17)
F6	0.0516 (16)	0.110 (3)	0.0438 (13)	0.0159 (18)	-0.0031 (12)	-0.0095 (15)
F7	0.0442 (16)	0.096 (2)	0.0709 (17)	0.0195 (16)	0.0073 (13)	-0.0099 (16)
F8	0.0660 (18)	0.0676 (18)	0.0502 (14)	0.0031 (15)	0.0220 (13)	-0.0118 (12)
F9	0.0723 (19)	0.096 (2)	0.0375 (12)	-0.0010 (19)	-0.0001 (12)	-0.0108 (14)
F10	0.0475 (15)	0.084 (2)	0.0476 (13)	0.0108 (15)	-0.0008 (11)	-0.0029 (13)

Geometric parameters (Å, °)

Ni1—N2	2.031 (3)	С32—Н32	0.9500
Ni1—N4	2.036 (3)	C33—S1	1.834 (6)
Ni1—N3	2.036 (3)	C33—H33A	0.9900
Ni1—N1	2.041 (3)	C33—H33B	0.9900
Ni1—N5	2.106 (3)	S1—C34	1.782 (5)
N1-C1	1.368 (5)	C34—C35	1.387 (6)
N1-C4	1.373 (5)	C34—C38	1.401 (7)
N2—C6	1.371 (5)	C35—N5	1.347 (5)
N2—C9	1.373 (5)	С35—Н35	0.9500
N3—C11	1.372 (5)	N5—C36	1.331 (5)
N3—C14	1.374 (5)	C36—C37	1.379 (6)
N4—C19	1.370 (5)	С36—Н36	0.9500
N4—C16	1.371 (5)	C37—C38	1.403 (6)
C1-C20	1.402 (5)	C37—S2	1.772 (5)
C1—C2	1.427 (6)	C38—C39	1.505 (6)
C2—C3	1.352 (6)	С39—Н39А	0.9800
C2—H2	0.9500	C39—H39B	0.9800
C3—C4	1.442 (5)	C39—H39C	0.9800
С3—Н3	0.9500	S2—C40	1.832 (7)
C4—C5	1.386 (5)	C40—C41	1.501 (9)
С5—С6	1.400 (6)	C40—H40A	0.9900
C5—C21	1.498 (5)	C40—H40B	0.9900
С6—С7	1.435 (5)	C41—C42	1.379 (8)

C7—C8	1.344 (6)	C41—C46	1.388 (7)
С7—Н7	0.9500	C42—C43	1.379 (8)
C8—C9	1.438 (6)	C42—H42	0.9500
С8—Н8	0.9500	C43—C44	1.387 (7)
C9—C10	1.388 (6)	C43—H43	0.9500
C10—C11	1.396 (5)	C44—C45	1.386 (7)
C10—C53	1.501 (6)	C44—C47	1.488 (7)
C11—C12	1.439 (6)	C45—C46	1.386 (8)
C12—C13	1.352 (6)	C45—H45	0.9500
С12—Н12	0.9500	C46—H46	0.9500
C13—C14	1.432 (6)	C47—C52	1.399 (6)
С13—Н13	0.9500	C47—C48	1.404 (7)
C14—C15	1.390 (6)	C48—C49	1.394 (7)
C15—C16	1.397 (6)	C49—C50	1.388 (7)
C15—C59	1 493 (5)	C49—H49	0.9500
C16-C17	1.498(5)	C50—C51	1.387(10)
C17 - C18	1 336 (6)	C50—H50	0.9500
C17_H17	0.9500	C_{51} C_{52}	1 352 (9)
C18 $C19$	1.440(5)	C51 H51	0.0500
C_{18} H_{18}	0.0500	C52 H52	0.9500
$C_{10} = C_{10}$	1 306 (5)	C52—1152	1 382 (6)
$C_{19} = C_{20}$	1.390 (5)	$C_{33} = C_{34}$	1.362(0) 1.295(7)
$C_{20} = C_{48}$	1.469 (0)	C54 E1	1.303(7) 1.224(5)
$C_{21} = C_{20}$	1.390 (0)	C54 C55	1.334(3)
	1.397 (6)	C54—C55	1.379(6)
C22—C23	1.394 (7)	C55—F2	1.345 (6)
C22—C27	1.496 (7)	C55—C56	1.348 (8)
C23—C24	1.374 (9)	C56—C57	1.344 (8)
C23—H23	0.9500	C56—F3	1.348 (5)
C24—C25	1.380 (8)	C57—F4	1.349 (6)
C24—H24	0.9500	C57—C58	1.379 (7)
C25—C26	1.378 (6)	C58—F5	1.335 (6)
C25—H25	0.9500	C59—C60	1.376 (6)
C26—H26	0.9500	C59—C64	1.386 (6)
C27—C28	1.381 (7)	C60—F6	1.351 (5)
C27—C32	1.395 (7)	C60—C61	1.376 (6)
C28—C29	1.392 (8)	C61—F7	1.336 (5)
C28—H28	0.9500	C61—C62	1.369 (6)
C29—C30	1.388 (8)	C62—F8	1.344 (5)
С29—Н29	0.9500	C62—C63	1.370 (7)
C30—C31	1.391 (7)	C63—F9	1.341 (5)
C30—C33	1.490 (7)	C63—C64	1.375 (6)
C31—C32	1.368 (7)	C64—F10	1.343 (5)
C31—H31	0.9500		
N2—Ni1—N4	166.13 (12)	C30—C31—H31	119.2
N2—Ni1—N3	89.64 (13)	C31—C32—C27	120.8 (5)
N4—Ni1—N3	89.52 (12)	C31—C32—H32	119.6
N2—Ni1—N1	89.02 (12)	C27—C32—H32	119.6

N4—Ni1—N1	88.62 (12)	C30—C33—S1	112.3 (3)
N3—Ni1—N1	166.68 (13)	С30—С33—Н33А	109.1
N2—Ni1—N5	95.43 (13)	S1—C33—H33A	109.1
N4—Ni1—N5	98.38 (13)	С30—С33—Н33В	109.1
N3—Ni1—N5	88.44 (14)	S1—C33—H33B	109.1
N1—Ni1—N5	104.88 (13)	H33A—C33—H33B	107.9
C1—N1—C4	106.2 (3)	C34—S1—C33	100.7 (2)
C1—N1—Ni1	126.7 (2)	C35—C34—C38	119.9 (4)
C4—N1—Ni1	126.6 (2)	C35—C34—S1	118.1 (4)
C6—N2—C9	106.1 (3)	C38—C34—S1	122.0 (3)
C6—N2—Nil	127.5(3)	N5-C35-C34	123.0(4)
C9—N2—Ni1	125.3 (3)	N5-C35-H35	118.5
$C_{11} = N_{3} = C_{14}$	106.2 (3)	C34—C35—H35	118.5
C_{11} N3 Ni1	125.8(2)	$C_{36} N_{5} C_{35}$	117.1 (4)
C14 N3 Ni1	127.2(3)	C36—N5—Ni1	1195(3)
C19 - N4 - C16	1060(3)	C35—N5—Ni1	117.5(3) 1214(3)
C19 N4 Ni1	100.0(3)	N5-C36-C37	121.1(3) 1240(4)
$C_{10} = N_{10} = N_{11}$	127.2(2) 126.8(3)	N5 C36 H36	118.0
N1 C1 C20	120.8(3) 125.4(4)	C37 C36 H36	118.0
N1 = C1 = C20	125.4(4) 110.4(3)	$C_{36} C_{37} C_{38}$	110.0
$\begin{array}{cccc} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 2 & -1$	110.4(3) 124.2(4)	$C_{30} = C_{37} = C_{38}$	119.7(4)
$C_{20} = C_{1} = C_{2}$	124.2(4)	$C_{30} = C_{37} = S_{2}$	110.1(3)
$C_3 = C_2 = C_1$	100.8 (4)	$C_{30} - C_{37} - S_{27}$	122.2(4)
$C_3 = C_2 = H_2$	120.0	$C_{34} = C_{36} = C_{37}$	110.3(4)
C1 - C2 - H2	120.0	$C_{34} = C_{36} = C_{39}$	121.9 (4)
$C_2 = C_3 = C_4$	107.2 (4)	$C_{3}^{28} = C_{38}^{29} = U_{39}^{29}$	121.7 (4)
C2-C3-H3	126.4	C38—C39—H39A	109.5
C4—C3—H3	126.4	С38—С39—Н39В	109.5
NI	126.2 (3)	H39A—C39—H39B	109.5
N1 - C4 - C3	109.4 (3)	C38—C39—H39C	109.5
C_{3}	124.4 (3)	H39A—C39—H39C	109.5
C4—C5—C6	124.8 (3)	H39B—C39—H39C	109.5
C4—C5—C21	115.4 (3)	C_{37} —S2—C40	99.6 (3)
C6-C5-C21	119.7 (3)	C41—C40—S2	113.8 (4)
N2—C6—C5	125.1 (3)	C41—C40—H40A	108.8
N2—C6—C7	110.1 (4)	S2—C40—H40A	108.8
C5—C6—C7	124.7 (3)	C41—C40—H40B	108.8
C8—C7—C6	106.9 (3)	S2—C40—H40B	108.8
С8—С7—Н7	126.6	H40A—C40—H40B	107.7
С6—С7—Н7	126.6	C42—C41—C46	118.2 (6)
C7—C8—C9	107.5 (4)	C42—C41—C40	122.5 (5)
С7—С8—Н8	126.2	C46—C41—C40	119.3 (5)
С9—С8—Н8	126.2	C41—C42—C43	121.6 (5)
N2—C9—C10	125.0 (4)	C41—C42—H42	119.2
N2—C9—C8	109.5 (3)	C43—C42—H42	119.2
С10—С9—С8	125.5 (4)	C42—C43—C44	120.6 (5)
C9—C10—C11	126.7 (4)	C42—C43—H43	119.7
C9—C10—C53	117.3 (3)	C44—C43—H43	119.7
C11—C10—C53	116.1 (3)	C45—C44—C43	117.8 (5)

N3—C11—C10	124.1 (3)	C45—C44—C47	121.0 (4)
N3—C11—C12	109.9 (3)	C43—C44—C47	121.2 (5)
C10-C11-C12	126.0 (4)	C44—C45—C46	121.6 (5)
C13—C12—C11	106.7 (4)	C44—C45—H45	119.2
C13—C12—H12	126.7	C46—C45—H45	119.2
C11—C12—H12	126.7	C45—C46—C41	120.2 (5)
C12—C13—C14	107.5 (4)	C45—C46—H46	119.9
C12—C13—H13	126.2	C41—C46—H46	119.9
C14—C13—H13	126.2	C52—C47—C48	118.7 (5)
N3—C14—C15	124.9 (4)	C52—C47—C44	120.8 (5)
N3—C14—C13	109.6 (4)	C48—C47—C44	120.4 (4)
C15—C14—C13	125.4 (4)	C49—C48—C47	119.7 (4)
C14—C15—C16	125.7 (3)	C49—C48—C20	119.7 (4)
C14—C15—C59	117.7 (4)	C47—C48—C20	120.5 (4)
C16—C15—C59	116.6 (3)	C50—C49—C48	119.7 (6)
N4—C16—C15	125.5 (3)	С50—С49—Н49	120.2
N4—C16—C17	109.7 (3)	C48—C49—H49	120.2
C15—C16—C17	124.7 (3)	C51—C50—C49	120.2 (6)
C18—C17—C16	107.0 (3)	С51—С50—Н50	119.9
С18—С17—Н17	126.5	С49—С50—Н50	119.9
С16—С17—Н17	126.5	C52—C51—C50	120.3 (5)
C17—C18—C19	107.4 (4)	С52—С51—Н51	119.9
С17—С18—Н18	126.3	С50—С51—Н51	119.9
С19—С18—Н18	126.3	C51—C52—C47	121.3 (5)
N4—C19—C20	125.5 (3)	С51—С52—Н52	119.4
N4—C19—C18	109.9 (3)	С47—С52—Н52	119.4
C20—C19—C18	124.6 (4)	C54—C53—C58	115.7 (4)
C19—C20—C1	124.5 (4)	C54—C53—C10	122.5 (4)
C19—C20—C48	117.8 (3)	C58—C53—C10	121.8 (4)
C1—C20—C48	117.6 (4)	F1—C54—C55	117.5 (4)
C26—C21—C22	119.9 (4)	F1—C54—C53	120.0 (4)
C26—C21—C5	119.2 (3)	C55—C54—C53	122.5 (4)
C22—C21—C5	120.7 (4)	F2—C55—C56	119.5 (4)
C23—C22—C21	118.4 (5)	F2—C55—C54	120.9 (5)
C23—C22—C27	121.8 (4)	C56—C55—C54	119.6 (5)
C21—C22—C27	119.8 (4)	C57—C56—F3	120.1 (5)
C24—C23—C22	121.2 (5)	C57—C56—C55	120.1 (4)
C24—C23—H23	119.4	F3—C56—C55	119.7 (5)
С22—С23—Н23	119.4	C56—C57—F4	120.9 (5)
C23—C24—C25	120.2 (5)	C56—C57—C58	120.6 (5)
C23—C24—H24	119.9	F4—C57—C58	118.5 (5)
C25—C24—H24	119.9	F5—C58—C57	119.9 (5)
C26—C25—C24	119.8 (5)	F5—C58—C53	118.6 (4)
C26—C25—H25	120.1	C57—C58—C53	121.5 (5)
C24—C25—H25	120.1	C60—C59—C64	115.7 (4)
C25—C26—C21	120.5 (4)	C60—C59—C15	122.1 (4)
C25—C26—H26	119.8	C64—C59—C15	122.1 (4)
C21—C26—H26	119.8	F6—C60—C59	118.8 (4)
-			~ ~ ~ / /

C28—C27—C32	118.3 (5)	F6—C60—C61	117.8 (4)
C28—C27—C22	123.1 (4)	C59—C60—C61	123.4 (4)
C32—C27—C22	118.4 (4)	F7—C61—C62	120.1 (4)
C27—C28—C29	120.4 (5)	F7—C61—C60	121.1 (4)
С27—С28—Н28	119.8	C62—C61—C60	118.8 (4)
C29—C28—H28	119.8	F8—C62—C61	119.6 (4)
C30—C29—C28	121.3 (5)	F8—C62—C63	120.3 (4)
С30—С29—Н29	119.4	C61—C62—C63	120.1 (4)
С28—С29—Н29	119.4	F9—C63—C62	119.7 (4)
C29—C30—C31	117.4 (5)	F9—C63—C64	120.7 (4)
C29—C30—C33	122.0 (5)	C62—C63—C64	119.6 (4)
C31—C30—C33	120.6 (5)	F10—C64—C63	118.3 (4)
C32—C31—C30	121.6 (5)	F10—C64—C59	119.3 (4)
С32—С31—Н31	119.2	C63—C64—C59	122.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
C33—H33 <i>B</i> …F8 ⁱ	0.99	2.63	3.592 (6)	164	
C35—H35…N2	0.95	2.58	3.125 (5)	117	
C36—H36…N4	0.95	2.60	3.206 (5)	122	

Symmetry code: (i) -x+3/2, -y+1, z+1/2.