

Received 5 August 2019 Accepted 11 September 2019

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: synthesis; piperazines; crystal structure; disorder; twinning; hydrogen bonding; supramolecular assembly.

CCDC references: 1953078; 1953077; 1953076; 1953075; 1953074; 1953073; 1953072; 1953071; 1953070; 1953069; 1953068; 1953067

Supporting information: this article has supporting information at journals.iucr.org/e

Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in one, two and three dimensions

Haruvegowda Kiran Kumar,^a Hemmige S. Yathirajan,^a* Sabine Foro^b and Christopher Glidewell^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and ^cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. *Correspondence e-mail: yathirajan@hotmail.com

Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluorobenzoate, 4-chlorobenzoate and 4-bromobenzoate salts, $C_{11}H_{17}N_2O^+ \cdot C_7H_5O_2^- \cdot H_2O$ (I), $C_{11}H_{17}N_2O^+ \cdot C_7H_4FO_2^- \cdot H_2O$ (II), $C_{11}H_{17}N_2O^+ \cdot C_7H_4ClO_2^- \cdot H_2O$ (III), and $C_{11}H_{17}N_2O^+ \cdot C_7H_4BrO_2^- \cdot H_2O$ (IV), respectively, are isomorphous and all exhibit disorder in the 4-methoxyphenyl unit: the components are linked by $N-H \cdots O$ and $O-H \cdots O$ hydrogen bond to form chains of rings. The unsolvated 2-hydroxybenzoate, pyridine-3-carboxylate and 2-hydroxy-3,5-dinitrobenzoate salts, $C_{11}H_{17}N_2O^+ \cdot C_7H_5O_3^-$ (V). $C_{11}H_{17}N_2O^+ \cdot C_6H_4NO_2^-$ (VI) and $C_{11}H_{17}N_2O^+ \cdot C_7H_3N_2O_7^-$ (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N-H···O hydrogen bonds to form a chain of rings; those of (VI) are linked into a threedimensional framework by a combination of N-H···O, C-H···O and C- $H \cdots N$ hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N-H···O and C-H···O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, $C_{11}H_{17}N_2O^+ \cdot C_4H_5O_4^-$ (VIII) and $C_{11}H_{17}N_2O^+ \cdot C_4H_3O_3^{-}$ (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N-H···O and O-H···O hydrogen bonds link the ions into sheets, which are further linked by $C-H \cdots \pi$ (arene) interactions. The anion of the hydrogenmaleate salt, $C_{11}H_{17}N_2O^+ \cdot C_4H_3O_3^-$ (X), contains a very short and nearly symmetrical $O \cdots H \cdots O$ hydrogen bond, and $N - H \cdots O$ hydrogen bonds link the anions into chains of rings. The ions in the trichloroacetate salt, C₁₁H₁₇N₂O⁺·C₂Cl₃O₂⁻ (XI), are linked into simple chains by $N-H\cdots O$ hydrogen bonds. In the hydrated chloranilate salt, $2C_{11}H_{17}N_2O^+ \cdot C_6Cl_2O_4^{2-} \cdot 2H_2O$ (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group $P2_1/n$, and a combination of $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.

1. Chemical context

In recent years, *N*-(4-methoxyphenyl)piperazine (MeOPP) has emerged as a new addition to the range of designer recreational drugs, and considerable effort has been invested in the development of methods for the detection both of MeOPP itself and of its metabolites *N*-(4-hydroxyphen-yl)piperazine and 4-hydroxyaniline (Arbo *et al.*, 2012) in human fluids (Staack & Maurer, 2003; Staack *et al.*, 2004). MeOPP has euphoric stimulant properties and its action on human physiology is similar to that of amphetamines (Staack

& Maurer, 2005; Wohlfarth et al., 2010), but it has a significantly lower potential for abuse (Nagai et al., 2007). However, no therapeutic applications of MeOPP have been reported to date. In view of the reported properties of MeOPP, coupled with the broad range of biological activities exhibited by piperazine derivatives (Asif, 2015; Brito et al., 2019), we have recently initiated a programme of study centred on N-(4methoxyphenyl)piperazine derivatives, and we have recently reported the synthesis and structures of a series of 1-aroyl-4-(4-methoxyphenyl)piperazines (Kiran Kumar et al., 2019). In a continuation of that work, we have now prepared a series of 4methoxyphenyl)piperazin-1-ium salts of simple organic acids, (I)-(XII), in order to study the various patterns of hydrogenbonding interactions present in these salts, which may eventually be of value in pharmacological and pharmaceutical applications (Kavitha et al., 2014; Kaur et al., 2015; Shaibah, Yathirajan et al., 2017; Shaibah, Sagar et al., 2017; Shaibah et al., 2019). Salts of this type are readily prepared by co-crystallizations of the piperazine and the acids in methanol solution and, in total, 28 different acids representing a wide range of chemical types were investigated (see Section 5): however, only twelve of these provided crystals suitable for singlecrystal X-ray diffraction, and thus we report here the molecular and supramolecular structures of (I)-(XII) (Figs. 1-12).

Figure 1

The independent components of compound (I), showing the atomlabelling scheme, the disorder of the 4-methoxyphenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.

The independent components of compound (II), showing the atomlabelling scheme, the disorder of the 4-methoxyphenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.

The independent components of compound (III), showing the atomlabelling scheme, the disorder of the 4-methoxyphenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.

The independent components of compound (IV), showing the atomlabelling scheme, the disorder of the 4-methoxyphenyl group, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn dashed broken lines. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.

Figure 5

The independent components of compound (V), showing the atomlabelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Figure 6

The independent components of compound (VI), showing the atomlabelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Figure 7

The independent components of compound (VII), showing the atomlabelling scheme and the hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Figure 8

The independent components of compound (VIII), showing the atomlabelling scheme, the disorder of anion, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

Compounds (I)-(XI) are all 1:1 salts, but in (XII), where the dianion lies across a centre of inversion while the cation lies in a general position, the cation:anion ratio is 2:1. Compounds (I)-(IV) and (XII) all crystallize as hydrates, but compounds (V)-(XI) all crystallize in solvent-free form. Compounds (I)-(IV) are isomorphous (Table 2), in each of which the 4-methoxyphenyl groups is disordered over two sets of atomic sites (Figs. 1-4), having occupancies 0.66 (2) and 0.34 (2) in (I),

0.81 (3) and 0.19 (3) in (II), 0.73 (2) and 0.27 (2) in (III) and 0.80 (2) and 0.20 (2) in (IV). Similarly, compounds (VIII) and (IX) are isomorphous, and in both of them the anion exhibits disorder, with occupancies of 0.660 (15) and 0.340 (15) in (VIII), and 0.906 (9) and 0.094 (9) in (IX) (Figs. 8 and 9).

Figure 9

The independent components of compound (IX), showing the atomlabelling scheme, the disorder of anion, and the hydrogen bonds within the selected asymmetric unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 10

The independent components of compound (X), showing the atomlabelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Figure 11

The independent components of compound (XI), showing the atomlabelling scheme and the hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

The independent components of compound (XII), showing the atomlabelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with the suffix 'a' are at the symmetry position (1 - x,1 - y, -z

While compounds (I)–(IV) are isostructural, compounds (VIII) and (IX) are not, because of both the different configurations of their anions and the different degrees of disorder. Examples have been previously reported of compounds that are isomorphous but not strictly isostructural in terms of their intermolecular interactions (Acosta *et al.*, 2009).

In the anion of compound (VII), the carboxyl group is unionized, with C–O distances of 1.220 (3) and 1.309 (3) Å and it is the phenolic H atom which has been lost (Fig. 7). The C32–O33 distance, 1.280 (3) Å, is closer to that normally found in ketones than to that typical of phenols or phenolates (Allen et al., 1987): in addition, the C31-C32 and C32-C33 distances, 1.437 (4) and 1.430 (4) Å, respectively, are significantly larger than the other C-C distances in this ring, which lie in the rather narrow range 1.370 (3)–1.385 (4) Å, but the C–N and N–O distances are all typical of their types (Allen et al., 1987). These observations indicate that the negative charge in this anion is delocalized over the five atoms C31, C33, C34, C35 and C36, but without any significant delocalization onto the nitro groups, as has been observed in trinitrophenolate (picrate) anions (Kavitha et al., 2006; Sagar et al., 2017; Shaibah et al., 2017a,b).

The anion of compound (X) contains an almost linear and very short (Emsley, 1980; Herschlag & Pinney, 2018) $O \cdots H \cdots O$ hydrogen bond, in which the H atom is almost, but not exactly, centred between the two O atoms (Table 1). In the centrosymmetric anion of compound (XII) (Fig. 12), the two

Figure 13 The canonical forms of the anion in compound (XII).

Figure 14

Part of the crystal structure of compound (I) showing the formation of a chain of rings parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to C atoms have been omitted.

independent C—O distances are identical within experimental uncertainty, 1.244 (2) and 1.246 (2) Å, as are the distances C31—C32 and C32—C33, 1.398 (3) and 1.392 (2) Å. However, the remaining C—C distance in this ring, 1.539 (3) Å is typical of a single C—C bond (Allen *et al.*, 1987). These observations indicates the delocalization of a negative charge across each of the O–C–C–C–O units, and that these two units are effectively isolated from each other electronically. Despite the apparent simplicity of this dianion, with its high intrinsic symmetry, it is not possible adequately to describe its electronic structure in a single diagrammatic form, and four forms (A)–(D) (Fig. 13) are required.

3. Supramolecular features

In each of the four isomorphous salts (I)–(IV), the ions are linked by a combination of N–H···O and O–H···O hydrogen bonds (Table 1) to form a chain of edge-fused centrosymmetric rings running parallel to the [100] direction, in which $R_6^4(12)$ (Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) rings centred at $(n, \frac{1}{2}, \frac{1}{2})$ alternate with $R_6^6(16)$ rings centred at $(n + \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, where *n* represents an integer in each case (Fig. 14). In each of these four salts, a combination of C– H···O and C–H··· π (arene) hydrogen bonds links the [100] chain into complex sheets lying parallel to (001).

There is an intermolecular $O-H\cdots O$ hydrogen bond in the anion of the unsolvated salt (V). The two anions in the selected asymmetric unit (Fig. 5) are linked by an asymmetric three-centre $N-H\cdots (O)_2$ hydrogen bond, and the resulting ion pairs, which are related by 2_1 screw axis along $(\frac{1}{2}, y, \frac{1}{4})$, are

Table 1

Hydrogen-bond parameters and short intermolecular contacts (Å, $^\circ).$

Cg1 and Cg2 are the centroids of the C31-C36 and C21-C26 rings, respectively.

Compound	$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - H \cdot \cdot \cdot A$
(I)	N1-H11···O31	0.90 (2)	1.88 (2)	2.777 (3)	174.1 (19)
	$N1 - H12 \cdot \cdot \cdot O41$	0.97(2)	1.85 (2)	2.808 (3)	169.7 (18)
	$O41 - H41 \cdots O32^{i}$	0.88(3)	1 75 (3)	2 631 (3)	177 (3)
	$041 - H42 \dots 031^{ii}$	0.91(3)	1.87 (3)	2.763(3)	169(3)
	$C^2 - H^2 B_{11} + O^{31}$	0.97	2.54	3.485(3)	165
	$C_{2} = H_{2} + C_{2} + H_{3}$	0.97	2.54	3.603 (3)	105
	$C22 - H22 \cdots Cg1$	0.93	2.83	3.603 (3)	139
	$C_{26} - H_{26} \cdots C_{g1}$	0.93	2.90	3.62 (2)	135
	$C56-H56\cdots Cg1^{*}$	0.93	2.64	3.41 (5)	141
(II)	N1-H11···O31	1.09 (3)	1.67 (3)	2.758 (4)	174.1 (19)
	$N1-H12\cdots O41$	0.86 (3)	1.96 (3)	2.818 (4)	170 (3)
	$O41 - H41 \cdots O32^{i}$	0.86 (4)	1.75 (4)	2.627 (4)	174 (4)
	$O41 - H42 \cdots O31^{ii}$	0.91(4)	1.88 (4)	2.768 (3)	163 (3)
	$C2 - H2B \cdots O31^{iii}$	0.97	2.58	3,529(4)	166
	$C6-H6B\cdots O41^{i}$	0.97	2.57	3,386(4)	142
	C^{26} H ²⁶ \cdots $C^{g1^{iv}}$	0.93	2.81	3 56 (2)	138
	$C56 - H56 \cdots Cg^{1}$	0.93	2.96	3.55 (9)	123
		1.00.(2)	1.71 (2)	2 700 (4)	17((2)
(111)	N1-H11···O31	1.09 (3)	1./1 (3)	2.790 (4)	176 (3)
	$N1 - H12 \cdots O41$	0.83 (3)	1.98 (3)	2.811 (4)	174 (3)
	$O41 - H41 \cdots O32^{i}$	0.91 (4)	1.73 (4)	2.624 (4)	172 (4)
	$O41 - H42 \cdots O31^n$	0.94 (4)	1.84 (4)	2.775 (4)	170 (4)
	$C2-H2B\cdots O31^{iii}$	0.97	2.52	3.467 (4)	165
	$C6-H6B\cdots O41^{i}$	0.97	2.60	3.408 (4)	141
	$C22-H22\cdots Cg1^{iv}$	0.93	2.89	3.631 (13)	137
	$C26-H26\cdots Cg1^{iv}$	0.93	2.81	3.58 (2)	141
(\mathbf{W})	N1 H11 O21	0.78 (4)	2.02(4)	2 805 (5)	174 (5)
(\mathbf{IV})	N1-H112 041	0.78 (4)	2.05 (4)	2.803 (5)	174 (3)
	N1 - H12 + 0041	0.95 (5)	1.86 (5)	2.802 (5)	172 (4)
	$O41 - H41 \cdots O32^{\circ}$	0.79 (6)	1.84 (6)	2.623 (6)	170 (6)
	$O41 - H42 \cdots O31^{n}$	0.79 (7)	2.00 (7)	2.772 (5)	169 (6)
	$C2-H2B\cdots O31^{m}$	0.97	2.52	3.471 (5)	166
	$C22-H22\cdots Cg1^{n}$	0.93	2.52	3.471 (5)	166
	$C26-H26\cdots Cg1^{iv}$	0.93	2.84	3.58 (2)	137
(V)	N1-H11O31	0.96 (3)	1.85 (3)	2.759 (3)	156 (3)
	N1 - H11 - O32	0.96(3)	2.47(3)	3,283 (3)	142(2)
	$N1 - H12 O32^{v}$	0.95(3)	1.87(3)	2 806 (3)	166(2)
	$O_{33} = H_{33} A = O_{31}$	0.95(3)	1.67(3)	2,500(3)	100(2) 156(3)
	$C_6 + 6A - O22^{vi}$	0.97 (3)	2.58	2.510(5)	130 (3)
	$C_0 = H_0 A \cdots O_{33}$	0.97	2.38	3.444(3)	140
	$C2 - H2A \cdots Cg1$	0.97	2.88	3./11 (3)	144
	$C_{26} - H_{26} \cdots C_{g1}$	0.93	2.87	3.642 (3)	141
(VI)	N1-H11···O31	0.976 (19)	1.714 (19)	2.677 (2)	168.2 (18)
	$N1 - H12 \cdot \cdot \cdot O32^{ix}$	0.94 (2)	1.82 (2)	2.749 (2)	168.3 (17)
	$C2-H2B\cdots N31^{iv}$	0.97	2.56	3.518 (2)	169
	$C36-H36\cdots O24^{x}$	0.93	2.51	3.432 (2)	172
	$C3-H3A\cdots Cg1^{xi}$	0.97	2.97	3.775 (2)	156
(VII)	$032 - H32 \dots 033$	1.04 (4)	1 47 (4)	2 472 (3)	158 (3)
(()))	N1 H11 033	0.03(3)	1.47(4) 1.08(3)	2.772(3)	150(3)
	N1-1111-035	0.93(3)	1.98(5)	2.020(3)	130(3) 126(2)
	N1-H11-034	0.93 (3)	2.27 (3)	2.910 (3)	120 (2)
	N1-H12···O31	0.93 (3)	2.04 (3)	2.931 (3)	160 (3)
	$N1 - H12 \cdot \cdot \cdot O32^{t}$	0.93 (3)	2.58 (3)	3.250 (3)	129 (2)
	$C34 - H34 \cdots O36^{\text{xii}}$	0.93	2.53	3.449 (3)	171
	C3-H3BCg2	0.97	2.84	5.059 (5)	140
(VIII)	N1-H11···O31	0.86 (3)	1.90 (3)	2.750 (15)	167 (4)
	$N1-H12\cdots O32^{XV}$	0.98 (3)	1.77 (4)	2.741 (19)	171 (3)
	$O34-H34\cdots O31^{xv}$	0.82	1.79	2.60 (2)	168
	$N1-H11\cdots O41$	0.86 (3)	2.18 (4)	3.03 (3)	165 (4)
	$N1-H12\cdots O42^{xiv}$	0.98 (3)	1.82 (5)	2.77 (4)	163 (3)
	$O44-H44\cdots O41^{xv}$	0.82	1.56	2.35 (2)	161
	$C3-H3A\cdots Cg2^{xvi}$	0.97	2.76	3.652 (3)	154
(IX)	N1_H11_O21	0.81(4)	2 18 (3)	2 940 (4)	155 (2)
(111)	$N1 - H12 = O22^{xiv}$	0.01(4)	2.10(3) 1 77 (4)	2.570(4) 2 714(4)	155(5) 160(2)
	$\frac{1}{1024} \frac{1124}{1024} \frac{1000}{1000}$	0.90 (4)	1.77	2.714 (4)	109 (3)
	0.42 + 1124 + 0.21	0.82	1./1	2.522 (5)	170
	$043 - H34 \cdots 031^{22}$	0.82	1.62	2.44 (2)	175

Compound	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
	$C3-H3A\cdots Cg2^{xvi}$	0.97	2.76	3.650 (3)	153
(X)	O33-H33A···O32	1.167 (18)	1.247 (18)	2.4121 (16)	175 (2)
	N1-H11···O31	0.915 (17)	2.126 (16)	2.9309 (19)	146.2 (15)
	N1-H11···O32	0.915 (17)	2.296 (17)	3.0798 (18)	143.5 (14)
	$N1-H12\cdots O34^{xvii}$	0.919 (18)	1.881 (18)	2.7563 (17)	158.5 (17)
	$C2-H2A\cdots O34^{ii}$	0.97	2.56	3.363 (2)	140
(XI)	N1-H11···O31	0.92 (4)	1.86 (4)	2.775 (4)	172 (3)
	$N1-H11\cdots O32^{xviii}$	0.97 (3)	1.80 (3)	2.724 (3)	158 (3)
(XII)	N1-H11···O31	0.89 (3)	1.96 (3)	2.802 (3)	157 (2)
· /	N1-H11···O33	0.89 (3)	2.29 (2)	2.838 (3)	119 (2)
	N1-H12···O41	0.90 (2)	1.92 (2)	2.798 (3)	168 (3)
	$O41-H41\cdots O33^{i}$	0.84 (4)	1.92 (4)	2.738 (3)	166 (3)
	$O41 - H42 \cdots O24^{xix}$	0.82 (3)	2.49 (3)	3.269 (3)	160 (3)

Table 1 (continued)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) 2 - x, 2 - y, 1 - z; (iv) 1 - x, 2 - y, 1 - z; (v) $1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (vi) $2 - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (vii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $1 - x, -\frac{1}{2} + y, \frac{3}{2} - z$; (xiv) $-\frac{1}{2} + x, \frac{3}{2} - y, 1 + z$; (xvi) $1 - x, \frac{1}{2} + x, \frac{3}{2} - y, z$; (xvi) $-\frac{1}{2} + x, \frac{3}{2} - y, 1 + z$; (xvi) $1 - x, \frac{1}{2} + z$; (xvii) -1 + x, y, z; (xviii) $-\frac{1}{2} + x, \frac{1}{2} - y, -\frac{1}{2} + z$.

linked by a two-centre N-H···O hydrogen bond to form chain of rings running parallel to the [010] direction (Fig. 15). Chains of this type are weakly linked into sheets lying parallel to (001) by a combination of C-H···O and C-H··· π (arene) hydrogen bonds.

The component ions in compound (VI) (Fig. 6) are linked by a two-centre $N-H\cdots O$ hydrogen bond and the resulting ion pairs are further linked by a combination of N-H···O, C-H···O and C-H···N hydrogen bonds to form a threedimensional framework structure, whose formation can readily be analysed in terms of three simple sub-structures (Ferguson *et al.*, 1998*a*,*b*; Gregson *et al.*, 2000). Ion pairs which are related by the *b*-glide plane at $x = \frac{3}{4}$ are linked by a second N-H···O hydrogen bond to form a $C_2^2(6)$ chain running

Figure 15

Part of the crystal structure of compound (V) showing the formation of a chain of rings parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Part of the crystal structure of compound (VI) showing the formation of a sheet of $R_6^6(40)$ rings lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

parallel to the [010] direction, and in the second sub-structure, ion pairs which are related by the *c*-glide plane at $y = \frac{3}{4}$ are linked by a C-H···O hydrogen bond (Table 1) to form a $C_2^2(17)$ chain running parallel to the [001] direction. The combination of these two simple chain motifs generates a sheet of $R_6^6(40)$ rings lying parallel to (100) in the domain $\frac{1}{2} < x < 1.0$ (Fig. 16). A second sheet of this type, related to the first by inversion lies in the domain $0 < x < \frac{1}{2}$, and adjacent sheets are linked by the third sub-structure in which inversionrelated ion pairs are linked by C-H···N hydrogen bonds into a centrosymmetric $R_4^4(18)$ ring (Fig. 17): the action of this interaction is to link all of the (100) sheets into a continuous three-dimensional array.

There is an intermolecular $O-H\cdots O$ hydrogen bond in the anion of compound (VII) (Fig. 7), but the carboxyl H atom plays no part in the supramolecular assembly. The ions are linked by a combination of $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds to form a chain of centrosymmetric rings

Part of the crystal structure of compound (VI) showing the formation of the $R_4^4(18)$ ring which links the (100) sheets. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline and the H atoms which are bonded to the C atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 2 - y, 1 - z).

Part of the crystal structure of compound (VII) showing the formation of a chain of $R_2^2(10)$ and $R_6^4(16)$ rings parallel to the [210] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are bonded to the C atoms not involved in the motif shown have been omitted.

running parallel to the [210] direction, in which $R_2^2(10)$ rings centred at $(2n - \frac{1}{2}, n, \frac{1}{2})$ alternate with $R_6^4(16)$ rings centred at $(2n + \frac{1}{2}, n + \frac{1}{2}, \frac{1}{2})$, where *n* represents an integer in each case (Fig. 18). Two chains of this type, related to one another by the translational symmetry operations, pass through each unit cell, and a weak C-H··· π (arene) hydrogen bond links the chains into a three-dimensional framework structure.

For the disordered structure of compound (VIII), the hydrogen bonds formed by the major and minor disorder components are very similar (Table 1) so that only the major disorder form need be considered in detail. Within the selected asymmetric unit (Fig. 8), the component ions are linked by a two-centre N-H···O hydrogen bond: the ion pairs are linked by a combination of N-H···O and O-H···O hydrogen bonds to form sheets, whose formation can readily be analysed in terms of two simple sub-structures. In the simpler of these, anions which are related by the *a*-glide plane at $y = \frac{3}{4}$ are linked by O-H···O hydrogen bonds into C(7) chains running parallel to the [102] direction (Fig. 19); in the second sub-structure, ion pairs which are related by the same glide plane are linked by N-H···O hydrogen bonds to form a $C_2^2(6)$ chain running parallel to the [100] direction

Figure 19

Part of the crystal structure of compound (VIII) showing the formation of a C(7) chain of anions, parallel to $[10\overline{2}]$. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(\frac{1}{2} + x, \frac{3}{2} - y, -1 + z)$ and $(-\frac{1}{2} + x, \frac{3}{2} - y, 1 + z)$, respectively.

(Fig. 20). The combination of these two chain motifs generates a sheet lying parallel to (010), and a single $C-H\cdots\pi(arene)$ hydrogen bond links these sheets into a three-dimensional framework structure. The supramolecular aggregation in the isomorphous compound (IX) is similar to that in (VIII). As noted in Section 2 above, the anion in compound (X) contains

Figure 20

Part of the crystal structure of compound (VIII) showing the formation of a $C_2^2(6)$ chain parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Figure 21

Part of the crystal structure of compound (X) showing the formation of a chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

a very short and nearly symmetrical $O \cdots H \cdots O$ hydrogen bond. Within the selected asymmetric unit, the component ions are linked by the three-centre $N-H \cdots (O)_2$ hydrogen bond and ion pairs which are related by translation are linked by a two-centre $N-H \cdots O$ hydrogen bond to form a $C(9)C(9)[R_1^2(4)]$ chain of rings running parallel to the [100] direction (Fig. 21). The $C-H \cdots O$ contact is at the margin of significance (Wood *et al.*, 2009), but it involves chains related by inversion.

The supramolecular assembly of compound (XI) is extremely simple: two N-H···O hydrogen bonds link the ions into a $C_2^2(6)$ chain running parallel to the [100] direction (Fig. 22). In compound (XII), a combination of N-H···O and O-H···O hydrogen bonds links all three components into a chain of $R_6^6(18)$ rings running parallel to the [001] direction (Fig. 23), while a second O-H···O hydrogen bond links a combination of cations and water molecules into a simple $C_2^2(12)$ chain running parallel to the [101] direction (Fig. 24) and the combination of these two chain motifs generates a complex sheet lying parallel to (010).

Overall, therefore, the hydrogen-bonded assembly is onedimensional in each of compounds (X) and (XI), twodimensional in compounds (I)–(V) and (XII), and threedimensional in compounds (VI)–(IX). Sub-structures in the

Figure 22

Part of the crystal structure of compound (XI) showing the formation of a $C_2^2(6)$ chain parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

form of chains of rings can be identified in compounds (I)–(IV) and in (VII), although (I)–(IV) are all monohydrates, while (VII) is solvent free: within the chain of rings formed by (I)–(IV) it is possible to identify a $C_2^2(6)$ motif formed by water molecules and anions only (Fig. 14), and a $C_2^2(6)$ motif built from alternating cations and anions can, in fact, be identified in each of compounds (V), (VI), (VIII), (IX) and (XI) (Figs. 15, 16, 20, 22). By contrast, a $C_2^2(12)$ motif, built from water molecules and cations can be identified in the structure of compound (XII) (Fig. 24), but sub-structural motifs in the form of simple chains are uncommon in this series (Fig. 19).

4. Database survey

Compounds (I)–(IV), reported here, are isomorphous across the series of anions $4-XC_6H_4COO^-$, where X = H, F, Cl or Br, despite the rather disparate sizes of the substituents X. A similar, but more extreme, series of isomorphous salts was found in the substituted anilinium 5-nitro(hydrogenphthalate) salts $(4-XC_6H_4NH_3)^+ \cdot (C_8H_4NO_6)^-$, which are isomorphous for X = H, Cl, Br and I (Glidewell *et al.*, 2005). The structures of a number of salts containing the chloranilate dianion have been reported (Ishida, 2004*a*,*b*,*c*,*d*; Sovago *et al.*, 2016), and the geometric features previously observed in this anion are fully consistent with the geometry found here in (XII): the

Figure 23

Part of the crystal structure of compound (XII) showing the formation of an $R_6^6(18)$ chain of rings parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Part of the crystal structure of compound (XII) showing the formation of a $C_2^2(12)$ chain of cations and water molecules parallel to [101]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

nature of the electronic delocalization has been confirmed in several such salts using a combination of deformation density plots and net atomic charge calculations (Sovago *et al.*, 2016).

The structures of very few salts containing the 4-(methoxyphenyl)piperazin-1-ium cations have been reported. In 4-(4-methoxyphenyl)piperazin-1-ium chloride, two N-H···Cl hydrogen bonds link the ions into $C_2^1(4)$ chains (Zia-ur-Rehman et al., 2009), and in the closely related 4-(4-nitrophenyl)piperazin-1-ium chloride monohydrate, a combination of N-H···O, O-H···Cl and N-H···Cl hydrogen bonds links the components into complex ribbons in which each anion accepts three hydrogen bonds (Lu, 2007). The structure of 4-(3-methoxyphenyl)piperazin-1-ium maleate has been reported (Verdonk et al., 1997), as have those of the picrate (Verdonk et al., 1997) and 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide (Al-Omary et al., 2014) salts of the 4-(2-methoxyphenyl)piperazin-1-ium cation. Finally we note, in addition to the 1-aroyl-4-(4-methoxyphenyl)piperazines referred to in Section 1 above (Kiran Kumar et al., 2019), the structure of 1-acetyl-(4-hydroxyphenyl)piperazine (Kavitha et al., 2013), which is an N-acetylated derivative of 4-(4-hydroxyphenyl)piperazines, a metabolite of 4-(4-methoxyphenyl)piperazine.

5. Synthesis and crystallization

All reagents were obtained commercially and were used as received. For the synthesis of each of compounds (I)-(XII), equimolar quantities (0.52 mmol of each component) of N-(4methoxyphenyl)piperazine and the appropriate acid were separately dissolved in methanol (10 ml) and the two solutions were then mixed, stirred briefly, and then set aside to crystallize, giving the solid products (I)–(XII) after a few days. The products were all collected by filtration and then dried in air. Yields (I) 81%, (II) 83%, (III) 83%, (IV) 81%, (V) 83%, (VI) 78%, (VII) 80%, (VIII) 82%, (IX) 82%, (X) 84%, (XI) 79%, (XII) 82%: melting ranges (I) 513-515 K, (II) 405-407 K, (III) 449-451 K, (IV) 447-449 K, (V) 471-473 K, (VI) 441-443 K, (VII) 475-477 K, (VIII) 439-441 K, (IX) 483-485 K, (X) 429-431 K, (XI) 393-395 K, (XII) 575-577 K. Spectroscopic data (IR and ¹H NMR) are provided in the supporting information. Crystals of compounds (I), (II), and (VIII)-(XII) suitable for single-crystal X-ray diffraction analysis were selected directly from the prepared samples. Crystals of compounds (III)-(VII) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in methanol-ethyl acetate (initial composition 1:1, v/v). A number of other acids were used in similar co-crystallization experiments but they did not provide crystal suitable for single-crystal X-ray diffraction, thus: 2- and 3-fluorobenzoic acids [cf. compound (II)], 2- and 3-chlorobenzoic acids [cf. compound (III)], 2- and 3-bromobenzoic acids [cf. compound (IV)], 2- and 3-iodobenzoic acids, phthalic acid, 3-methylbenzoic acid [cf. compound (I)], 2,4-dichlorobenzoic acid, crotonic and adipic acids [cf. compounds (VIII)-(X)], and ascorbic, aspartic and glutamic acids.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. In each of the isomorphous compounds (I)-(IV), the 4-methoxyphenyl group exhibits disorder over two sets of atomic sites, and in each of (VIII) and (IX), the anion exhibits disorder involving two sets of atomic sites having unequal occupancies. In each case, the bonded distances and the 1,3 non-bonded distances in the minor disorder component were restrained to be the same as the equivalent distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively, and the anisotropic displacement parameters for pairs of partialoccupancy atoms occupying essentially the same physical space were constrained to be equal: in addition, it was found necessary to constrain the minor component of the carboxyl group in (IX) to be planar. The ratio of observed-to-unique data was only 39% for compounds (II) and (III): this is probably a consequence of the ambient temperature data collection allied to the disorder: in both (VII) and (IX), the average U_3/U_1 ratio was > 4.0: this may be consequence of the disorder. Apart from those in the minor disorder components of (I)-(IV), (VIII) and (IX), all H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C-H distances of 0.93 Å (alkenyl and aromatic), 0.96 Å (CH₃) or 0.97 Å (CH₂), and with $U_{iso}(H) = kU_{eq}(C)$, where k =1.5 for the methyl groups which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms: the H atoms bonded to C atoms in the minor disorder components were included on the same basis. The H atoms bonded to O atoms in the disordered components of (VIII) and (IX) were treated as riding atoms with O-H = 0.82 Å and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$, For the H atoms bonded to N atoms, and for the H atoms bonded to O atoms in (I)-(V), (VII), (X) and (XII), the atomic coordinates were refined with $U_{iso}(H) =$ $1.2U_{eq}(N)$ or $1.5U_{eq}(O)$, leading to the N-H and O-H distances shown in Table 1. The refined occupancies for the disorder components were 0.66 (2) and 0.34 (2) in (I), 0.81 (3) and 0.19 (3) in (II), 0.73 (2) and 0.27 (2) in (III), 0.80 (2) and 0.20 (2) in (IV), 0.660 (15) and 0.340 (15) in (VIII), and 0.906 (9) and 0.094 (9) in (IX). For compound (XI), the correct orientation of the structure relative to the polar axis direction was established using the Flack x parameter (Flack, 1983), x = 0.11 (7). However, for compounds (V), (VIII) and (IX), where there is very little resonant scattering the values of the Flack x parameter were indeterminate (Flack & Bernardinelli, 2000), with values -0.3(5), -0.6(7) and -0.3(4), respectively: hence in these three cases, the correct orientation of the structure with respect to the polar axis direction cannot be established, although this has no chemical significance. The refinement of (XII) was treated as a non-merohedral twin. with twin matrix (-1, 0, 0/0, -1, 0/0.496, 0, 1) and with refined twin fractions 0.2467 (9) and 0.7533 (9).

Acknowledgements

HKK thanks University of Mysore for research facilities.

Table 2Experimental details.

	(-)	()	()	(
	(1)	(11)	(111)	(IV)
Crystal data				
Chemical formula	$C_{11}H_{17}N_2O^+ \cdot C_7H_5O_2^- \cdot H_2O$	$C_{11}H_{17}N_2O^+ \cdot C_7H_4FO_2^- \cdot H_2O$	$C_{11}H_{17}N_2O^+ \cdot C_7H_4ClO_2^- \cdot H_2O$	$C_{11}H_{17}N_2O^+ \cdot C_7H_4BrO_2^- \cdot H_2O$
Mr	332.39	350.38	366.83	411.28
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	296	293	293	293
a, b, c (Å)	6.215 (1), 7.547 (1), 18.716 (4)	6.256 (1), 7.489 (1), 19.097 (2)	6.211 (1), 7.481 (1), 20.144 (4)	6.2004 (8), 7.4957 (9), 20.440 (2)
$\alpha \beta \gamma (^{\circ})$	84 34 (2) 87 14 (2) 84 69 (2)	84 10 (1) 86 98 (2) 84 62 (2)	84 90 (2) 87 48 (2) 85 19 (2)	20.440(2) 85.08(1), 87.37(1), 85.00(1)
$V(A^3)$	869.1 (3)	885.4 (2)	928.4 (3)	942.17 (19)
Radiation type				
(mm^{-1})	0.00	0.10	0.22	2 21
μ (mm)	0.09	0.10	0.25	2.21
Crystal size (IIIII)	0.40 × 0.24 × 0.04	$0.40 \times 0.24 \times 0.04$	0.20 × 0.10 × 0.02	0.48 × 0.44 × 0.10
Data collection				
Diffractometer	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur
Dimactometer	with Sapphire CCD	with Sapphire CCD	with Sapphire CCD	with Sapphire CCD
Absorption correction	Multi scop (Crus Alis PED:	Multi scop (Crus Alis PED:	Multi scop (Crus Alis PED:	Multi scon (Crus Alis PED:
Absorption correction	Outend Diffusction 2000)	Outord Diffraction 2000)	Outord Diffraction 2000)	Outerd Diffraction 2000)
T T	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)
I _{min} , I _{max}	0.834, 0.996	0.973, 0.996	0.951, 0.995	0.536, 0.719
No. of measured, independent	5751, 3442, 1839	5760, 3477, 1355	5883, 3454, 1343	61/6, 3818, 2063
and observed $[I > 2\sigma(I)]$ reflections				
R _{int}	0.029	0.046	0.041	0.018
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.618	0.618	0.607	0.629
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.134, 1.02	0.066, 0.128, 1.01	0.065, 0.135, 0.94	0.068, 0.197, 1.06
No. of reflections	3442	3477	3454	3818
No. of parameters	256	265	265	265
No. of restraints	17	17	17	17
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.17, -0.19	0.13, -0.14	0.24, -0.23	0.94, -0.64
	,	,		
	(V)	(VI)	(VII)	(VIII)
Constal data				
Crystal data	$C H N O^{+} C H O =$			
Chemical formula	$C_{11}H_{17}N_2O \cdot C_7H_5O_3$	$C_{11}H_{17}N_2O \cdot C_6H_4NO_2$	$C_7 H_3 N_2 O_7 \cdot C_{11} H_{17} N_2 O_7$	$C_{11}H_{17}N_2O \cdot C_4H_5O_4$
M _r	330.38	315.37	420.38	310.35
Crystal system, space group	Orthorhombic, $P2_12_12_1$	Orthorhombic, Pbca	Monoclinic, $P2_1/c$	Orthorhombic, $Pna2_1$
Temperature (K)	296	296	296	296
a, b, c (A)	6.5009 (8), 7.9735 (9),	9.2817 (7), 11.2905 (7),	7.5500 (9), 7.6489 (9),	9.3225 (9), 28.261 (3),
	32.155 (4)	30.309 (2)	32.719 (6)	5.8228 (8)
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 91.30 (1), 90	90, 90, 90
$V(\dot{A}^3)$	1666.8 (3)	3176.2 (4)	1889.0 (5)	1534.1 (3)
Ζ	4	8	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09	0.09	0.12	0.10
Crystal size (mm)	$0.42 \times 0.42 \times 0.34$	$0.46 \times 0.42 \times 0.36$	$0.18\times0.12\times0.06$	$0.44 \times 0.42 \times 0.24$
Data collection				
Diffractometer	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur
Absorption correction	with Sapphire CCD Multi-scan (<i>CrysAlis RED</i> ;			
*	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)	Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.899, 0.969	0.879, 0.968	0.916, 0.993	0.816, 0.976
No. of measured, independent	6249, 3564, 2875	22154, 3593, 2616	8215, 4074, 2003	5828, 2419, 2053
and observed $[I > 2\sigma(I)]$ reflections				
R _{int}	0.014	0.028	0.038	0.018
$(\sin \theta / \lambda)$ $(Å^{-1})$	0.656	0.658	0.660	0.649
()/max (**)				
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.089, 1.05	0.048, 0.119, 1.04	0.066, 0.128, 1.03	0.043, 0.104, 1.14
No. of reflections	3564	3593	4074	2419
No. of parameters	228	215	281	233
No. of restraints	0	0	0	16

Table 2 (continued)				
	(V)	(VI)	(VII)	(VIII)
H-atom treatment $A_{2} = (a_{1}^{k} a_{2}^{-3})$	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A)$ Absolute structure	Flack x determined using 1011 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)			Flack x determined using 460 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-	-	-	-
	(IX)	(X)	(XI)	(XII)
Crystal data				
Chemical formula	$C_{11}H_{17}N_2O^+ \cdot C_4H_3O_4^-$	$C_{11}H_{17}N_2O^+ \cdot C_4H_3O_4^-$	$C_{11}H_{17}N_2O^+ \cdot C_2Cl_3O_2^-$	$\begin{array}{c} C_{11}H_{17}N_2O^+{\cdot}0.5C_6Cl_2O_4^{\ 2-}{\cdot}{\cdot}\\ H_2O \end{array}$
$M_{ m r}$	308.33	308.33	355.64	314.76
Crystal system, space group Temperature (K)	Orthorhombic, <i>Pna</i> 2 ₁ 296	Monoclinic, $P2_1/c$ 296	Orthorhombic, <i>Pca</i> 2 ₁ 296	Monoclinic, $P2_1/n$ 296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.069 (1), 28.528 (3), 5.8375 (9)	9.063 (1), 6.4956 (9), 26.093 (3)	10.6117 (11), 13.808 (1), 10.9137 (8)	9.1597 (5), 15.1434 (8), 10.8742 (6)
α, β, γ (°)	90, 90, 90	90, 93.18 (1), 90	90, 90, 90	90, 102.067 (5), 90
$V(\dot{A}^3)$	1510.3 (3)	1533.7 (3)	1599.1 (2)	1475.02 (14)
Z	4	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
μ (mm) Crystal size (mm)	0.10 $0.48 \times 0.48 \times 0.08$	0.10 $0.48 \times 0.44 \times 0.32$	0.58 $0.48 \times 0.48 \times 0.20$	0.28 $0.44 \times 0.24 \times 0.20$
Data collection				
Diffractometer	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur	Oxford Diffraction Xcalibur
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)
T_{\min} , T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	0.888, 0.992 5834, 2827, 2316	0.871, 0.968 6112, 3311, 2459	0.476, 0.892 6173, 2428, 2278	0.892, 0.947 9650, 9650, 7444
R _{int}	0.015	0.014	0.027	?
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.650	0.651	0.654	0.651
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.101, 1.05	0.040, 0.111, 1.05	0.032, 0.086, 1.08	0.039, 0.105, 1.02
No. of reflections	2827	3311	2428	9650
No. of parameters	221	210	198	204
No. of restraints	11	0	1	0
H-atom treatment $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	H atoms treated by a mixture of independent and constrained refinement 0.15, -0.14	H atoms treated by a mixture of independent and constrained refinement 0.21, -0.13	H atoms treated by a mixture of independent and constrained refinement 0.25, -0.31	H atoms treated by a mixture of independent and constrained refinement 0.23, -0.32
Absolute structure	Flack x determined using 769 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	_	Classical Flack method preferred over Parsons because s.u. lower	_
Absolute structure parameter	_	-	0.11 (7)	_

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

Funding information

HSY thanks the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship for three years, and HKK thanks the UGC-BSR for a stipend.

References

Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, 092-096.

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o245-o246.
- Arbo, M. D., Bastos, M. L. & Carmo, H. F. (2012). Drug Alcohol Depend. 122, 174-185.
- Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 5-11.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.
- Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.

- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). *Acta Cryst.* C61, o276–o280.
- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.
- Herschlag, D. & Pinney, M. M. (2018). Biochemistry, 57, 3338-3352.
- Ishida, H. (2004a). Acta Cryst. E60, 0974-0976.
- Ishida, H. (2004b). Acta Cryst. E60, o1900-o1901.
- Ishida, H. (2004c). Acta Cryst. E60, o2005-o2006.
- Ishida, H. (2004d). Acta Cryst. E60, o2506-o2508.
- Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406–413.
- Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, 01671.
- Kavitha, C. N., Yathirajan, H. S., Kaur, M., Hosten, E. C., Betz, R. & Glidewell, C. (2014). *Acta Cryst.* C70, 805–811.
- Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). *Acta Cryst.* C62, o165–o169.
- Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.
- Lu, Y.-X. (2007). Acta Cryst. E63, o3611.
- Nagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). *Eur. J. Pharmacol.* **559**, 132–137.

- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320–1325.
- Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513–1516.
- Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488–1492.
- Shaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292–298.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sovago, I., Thomas, L. H., Adam, M. S., Capelli, S. C., Wilson, C. C. & Farrugia, L. J. (2016). *CrystEngComm*, **18**, 5697–5709.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Staack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333-342.
- Staack, R. F. & Maurer, H. H. (2005). Curr. Drug Metab. 6, 259-274.
- Staack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). *Xenobiotica*, **34**, 179–192.
- Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976– 983.
- Wohlfarth, A., Weinmann, W. & Dresen, S. (2010). Anal. Bioanal. Chem. **396**, 2403–2414.
- Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
- Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.

Acta Cryst. (2019). E75, 1494-1506 [https://doi.org/10.1107/S2056989019012702]

Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in one, two and three dimensions

Haruvegowda Kiran Kumar, Hemmige S. Yathirajan, Sabine Foro and Christopher Glidewell

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b) and *PLATON* (Spek, 2009).

4-(4-Methoxyphenyl)piperazin-1-ium benzoate monohydrate (I)

Crystal data

 $\begin{array}{l} C_{11}H_{17}N_2O^+ \cdot C_7H_5O_2^- \cdot H_2O\\ M_r = 332.39\\ \text{Triclinic, } P\overline{1}\\ a = 6.215 (1) \text{ Å}\\ b = 7.547 (1) \text{ Å}\\ c = 18.716 (4) \text{ Å}\\ a = 84.34 (2)^{\circ}\\ \beta = 87.14 (2)^{\circ}\\ \gamma = 84.69 (2)^{\circ}\\ V = 869.1 (3) \text{ Å}^3 \end{array}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.834$, $T_{\max} = 0.996$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.134$ S = 1.023442 reflections 256 parameters Z = 2 F(000) = 356 $D_x = 1.270 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3742 reflections $\theta = 2.8-28.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.40 \times 0.24 \times 0.04 \text{ mm}$

5751 measured reflections 3442 independent reflections 1839 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.1^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -7 \rightarrow 7$ $k = -9 \rightarrow 9$ $l = -19 \rightarrow 23$

17 restraintsPrimary atom site location: difference Fourier mapHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2]$	$\Delta ho_{ m max} = 0.17 \ m e \ m \AA^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Experimental. Compound (I). IR (KBr , cm⁻¹) 3328 (OH), 3002 (H₂) 2841 (OCH₃), 1591 (COO). NMR (CDCl₃) δ (¹H) 3.22 (m, 4H, piperazine), 3.29 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.86 (m, 4H, methoxyphenyl), 7.39 (m, 2H, phenyl), 7.46 (m, 1H, phenyl), 8.05 (m, 2H, phenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.7874 (3)	0.7435 (3)	0.44989 (10)	0.0482 (5)	
H11	0.834 (3)	0.766 (3)	0.4926 (13)	0.058*	
H12	0.748 (3)	0.621 (3)	0.4555 (11)	0.058*	
C2	0.9747 (3)	0.7530 (3)	0.39809 (12)	0.0519 (6)	
H2A	1.0940	0.6709	0.4157	0.062*	
H2B	1.0215	0.8729	0.3934	0.062*	
C3	0.9144 (3)	0.7056 (3)	0.32596 (12)	0.0497 (6)	
H3A	1.0363	0.7191	0.2921	0.060*	
H3B	0.8837	0.5812	0.3301	0.060*	
N4	0.7262 (2)	0.8168 (2)	0.29814 (9)	0.0394 (4)	
C5	0.5425 (3)	0.8133 (3)	0.35024 (11)	0.0463 (5)	
H5A	0.4932	0.6943	0.3561	0.056*	
H5B	0.4244	0.8957	0.3320	0.056*	
C6	0.6019 (3)	0.8640 (3)	0.42214 (12)	0.0513 (6)	
H6A	0.6397	0.9866	0.4173	0.062*	
H6B	0.4789	0.8557	0.4559	0.062*	
C21	0.677 (2)	0.782 (2)	0.2275 (6)	0.034 (2)	0.66 (2)
C22	0.8134 (13)	0.6810 (17)	0.1831 (5)	0.0450 (18)	0.66 (2)
H22	0.9414	0.6235	0.2007	0.054*	0.66 (2)
C23	0.7627 (13)	0.6649 (18)	0.1132 (5)	0.053 (2)	0.66 (2)
H23	0.8602	0.6005	0.0841	0.064*	0.66 (2)
C24	0.5725 (14)	0.7413 (16)	0.0858 (5)	0.0438 (17)	0.66 (2)
C25	0.438 (2)	0.846 (3)	0.1278 (8)	0.0599 (10)	0.66 (2)
H25	0.3145	0.9097	0.1088	0.072*	0.66 (2)
C26	0.486 (3)	0.858 (3)	0.1984 (8)	0.054 (2)	0.66 (2)
H26	0.3857	0.9191	0.2276	0.064*	0.66 (2)
O24	0.541 (3)	0.720 (3)	0.0149 (7)	0.078 (3)	0.66 (2)
C27	0.335 (3)	0.773 (4)	-0.0122 (11)	0.090 (2)	0.66 (2)
H27A	0.2297	0.7017	0.0128	0.135*	0.66 (2)
H27B	0.3373	0.7580	-0.0626	0.135*	0.66 (2)
H27C	0.2962	0.8970	-0.0053	0.135*	0.66 (2)
C51	0.669 (5)	0.815 (5)	0.2258 (12)	0.034 (2)	0.34 (2)
C52	0.817 (3)	0.735 (2)	0.1784 (11)	0.0450 (18)	0.34 (2)

H52	0.9535	0.6917	0.1937	0.054*	0.34 (2)
C53	0.764 (3)	0.718 (3)	0.1087 (10)	0.053 (2)	0.34 (2)
H53	0.8615	0.6555	0.0790	0.064*	0.34 (2)
C54	0.571 (3)	0.792 (2)	0.0828 (10)	0.0438 (17)	0.34 (2)
C55	0.414 (4)	0.854 (7)	0.1309 (15)	0.0599 (10)	0.34 (2)
H55	0.2702	0.8738	0.1184	0.072*	0.34 (2)
C56	0.474 (5)	0.886 (7)	0.1983 (15)	0.054 (2)	0.34 (2)
H56	0.3803	0.9570	0.2260	0.064*	0.34 (2)
O54	0.528 (6)	0.756 (7)	0.0142 (14)	0.078 (3)	0.34 (2)
C57	0.310 (6)	0.780 (9)	-0.006 (2)	0.090 (2)	0.34 (2)
H57A	0.2919	0.7103	-0.0451	0.135*	0.34 (2)
H57B	0.2718	0.9042	-0.0207	0.135*	0.34 (2)
H57C	0.2171	0.7422	0.0342	0.135*	0.34 (2)
C31	0.8112 (3)	0.7289 (3)	0.70824 (12)	0.0441 (5)	
C32	0.6694 (4)	0.6501 (3)	0.75905 (17)	0.0642 (7)	
H32	0.5518	0.5977	0.7441	0.077*	
C33	0.7024 (5)	0.6491 (3)	0.83138 (17)	0.0777 (9)	
H33	0.6070	0.5956	0.8649	0.093*	
C34	0.8735 (5)	0.7259 (3)	0.85422 (15)	0.0741 (8)	
H34	0.8935	0.7264	0.9031	0.089*	
C35	1.0147 (4)	0.8017 (3)	0.80535 (14)	0.0631 (7)	
H35	1.1322	0.8530	0.8209	0.076*	
C36	0.9850 (3)	0.8032 (3)	0.73275 (13)	0.0483 (6)	
H36	1.0835	0.8550	0.6999	0.058*	
C37	0.7750 (4)	0.7325 (3)	0.62925 (15)	0.0563 (6)	
031	0.9017 (3)	0.8122 (2)	0.58536 (9)	0.0664 (5)	
O32	0.6242 (3)	0.6520(3)	0.61161 (12)	0.1072 (8)	
O41	0.7231 (3)	0.3783 (2)	0.45956 (10)	0.0657 (5)	
H41	0.607 (5)	0.372 (4)	0.4354 (16)	0.099*	
H42	0.839 (5)	0.318 (4)	0.4391 (16)	0.099*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0614 (13)	0.0460 (11)	0.0394 (12)	-0.0089 (9)	-0.0119 (10)	-0.0069 (9)
C2	0.0452 (14)	0.0584 (14)	0.0529 (16)	-0.0018 (11)	-0.0116 (11)	-0.0075 (12)
C3	0.0424 (13)	0.0583 (14)	0.0483 (15)	0.0016 (10)	-0.0047 (10)	-0.0084 (11)
N4	0.0391 (10)	0.0403 (10)	0.0386 (11)	0.0002 (7)	-0.0018 (8)	-0.0064 (8)
C5	0.0414 (12)	0.0553 (13)	0.0413 (14)	0.0022 (10)	-0.0001 (10)	-0.0072 (10)
C6	0.0561 (14)	0.0529 (14)	0.0438 (15)	0.0044 (11)	-0.0012 (11)	-0.0083 (11)
C21	0.0428 (15)	0.022 (6)	0.0377 (14)	-0.001 (3)	-0.0009 (10)	-0.002 (2)
C22	0.0449 (14)	0.041 (5)	0.048 (2)	0.005 (3)	-0.0021 (13)	-0.007 (3)
C23	0.0575 (16)	0.053 (6)	0.048 (2)	0.008 (3)	0.0060 (13)	-0.015 (3)
C24	0.0628 (16)	0.031 (5)	0.0378 (17)	-0.004 (3)	-0.0012 (13)	-0.002 (3)
C25	0.057 (3)	0.072 (2)	0.047 (2)	0.020 (3)	-0.013 (2)	-0.0097 (16)
C26	0.057 (2)	0.054 (7)	0.0477 (16)	0.022 (2)	-0.0054 (14)	-0.014 (3)
O24	0.083 (2)	0.110 (10)	0.0410 (12)	0.009 (3)	-0.0107 (11)	-0.023 (3)
C27	0.081 (5)	0.140 (3)	0.052 (3)	-0.008 (4)	-0.018 (4)	-0.020 (4)

C51	0.0428 (15)	0.022 (6)	0.0377 (14)	-0.001 (3)	-0.0009 (10)	-0.002 (2)
C52	0.0449 (14)	0.041 (5)	0.048 (2)	0.005 (3)	-0.0021 (13)	-0.007 (3)
C53	0.0575 (16)	0.053 (6)	0.048 (2)	0.008 (3)	0.0060 (13)	-0.015 (3)
C54	0.0628 (16)	0.031 (5)	0.0378 (17)	-0.004 (3)	-0.0012 (13)	-0.002 (3)
C55	0.057 (3)	0.072 (2)	0.047 (2)	0.020 (3)	-0.013 (2)	-0.0097 (16)
C56	0.057 (2)	0.054 (7)	0.0477 (16)	0.022 (2)	-0.0054 (14)	-0.014 (3)
O54	0.083 (2)	0.110 (10)	0.0410 (12)	0.009 (3)	-0.0107 (11)	-0.023 (3)
C57	0.081 (5)	0.140 (3)	0.052 (3)	-0.008 (4)	-0.018 (4)	-0.020 (4)
C31	0.0428 (12)	0.0353 (11)	0.0550 (15)	0.0023 (10)	-0.0041 (11)	-0.0117 (10)
C32	0.0510 (15)	0.0506 (15)	0.092 (2)	-0.0061 (11)	0.0098 (14)	-0.0174 (14)
C33	0.091 (2)	0.0614 (17)	0.073 (2)	0.0018 (15)	0.0343 (17)	0.0038 (15)
C34	0.099 (2)	0.0639 (17)	0.0554 (19)	0.0101 (16)	-0.0013 (17)	-0.0025 (14)
C35	0.0746 (18)	0.0624 (16)	0.0530 (18)	-0.0031 (13)	-0.0179 (14)	-0.0044 (13)
C36	0.0509 (13)	0.0454 (13)	0.0492 (16)	-0.0057 (10)	-0.0079 (11)	-0.0023 (10)
C37	0.0540 (15)	0.0504 (15)	0.0680 (19)	0.0062 (12)	-0.0207 (13)	-0.0233 (13)
O31	0.0856 (13)	0.0687 (11)	0.0468 (11)	-0.0072 (10)	-0.0138 (9)	-0.0092 (9)
O32	0.0869 (14)	0.1422 (19)	0.1065 (18)	-0.0380 (13)	-0.0368 (12)	-0.0380 (15)
O41	0.0653 (12)	0.0631 (11)	0.0715 (14)	-0.0142 (9)	-0.0198 (9)	-0.0044 (9)

Geometric parameters (Å, °)

N1—C2	1.480 (3)	C27—H27C	0.9600
N1—C6	1.483 (3)	C51—C56	1.381 (7)
N1—H11	0.90 (2)	C51—C52	1.385 (7)
N1—H12	0.97 (2)	C52—C53	1.380 (7)
C2—C3	1.504 (3)	С52—Н52	0.9300
C2—H2A	0.9700	C53—C54	1.368 (7)
C2—H2B	0.9700	С53—Н53	0.9300
C3—N4	1.461 (2)	C54—C55	1.374 (9)
С3—НЗА	0.9700	C54—O54	1.380 (7)
С3—Н3В	0.9700	C55—C56	1.383 (9)
N4—C51	1.42 (2)	С55—Н55	0.9300
N4—C21	1.428 (10)	С56—Н56	0.9300
N4—C5	1.464 (2)	O54—C57	1.415 (9)
C5—C6	1.507 (3)	С57—Н57А	0.9600
С5—Н5А	0.9700	С57—Н57В	0.9600
С5—Н5В	0.9700	С57—Н57С	0.9600
С6—Н6А	0.9700	C31—C36	1.380 (3)
С6—Н6В	0.9700	C31—C32	1.391 (3)
C21—C26	1.382 (4)	C31—C37	1.504 (3)
C21—C22	1.386 (4)	C32—C33	1.378 (4)
C22—C23	1.380 (4)	С32—Н32	0.9300
С22—Н22	0.9300	C33—C34	1.363 (4)
C23—C24	1.367 (4)	С33—Н33	0.9300
С23—Н23	0.9300	C34—C35	1.358 (3)
C24—C25	1.372 (7)	C34—H34	0.9300
C24—O24	1.378 (4)	C35—C36	1.379 (3)
C25—C26	1.382 (5)	С35—Н35	0.9300

C25—H25	0.9300	C36—H36	0.9300
C26—H26	0.9300	$C_{37} - C_{32}$	1238(3)
024 - C27	1 413 (6)	$C_{37} = 0.31$	1.258(3)
C_{27} H27A	0.9600	041 - H41	0.88(3)
C27_H27B	0.9600	041 - H42	0.00(3)
C27—1127B	0.9000	0+1-11+2	0.91 (3)
C2—N1—C6	109.95 (18)	O24—C27—H27A	109.5
C2—N1—H11	106.8 (14)	O24—C27—H27B	109.5
C6—N1—H11	115.6 (14)	H27A—C27—H27B	109.5
C2—N1—H12	108.2 (12)	O24—C27—H27C	109.5
C6—N1—H12	109.2 (12)	H27A—C27—H27C	109.5
H11—N1—H12	106.8 (18)	H27B—C27—H27C	109.5
N1—C2—C3	110.23 (17)	C56—C51—C52	116.4 (9)
N1—C2—H2A	109.6	C56—C51—N4	125.0 (16)
C3—C2—H2A	109.6	C52—C51—N4	118.6 (16)
N1—C2—H2B	109.6	C53—C52—C51	121.0 (9)
C3—C2—H2B	109.6	С53—С52—Н52	119.5
H2A—C2—H2B	108.1	С51—С52—Н52	119.5
N4—C3—C2	112.64 (17)	C54—C53—C52	121.0 (9)
N4—C3—H3A	109.1	С54—С53—Н53	119.5
C2—C3—H3A	109.1	С52—С53—Н53	119.5
N4—C3—H3B	109.1	C53—C54—C55	118.1 (9)
C2-C3-H3B	109.1	C53—C54—O54	116.3 (10)
H3A—C3—H3B	107.8	C55—C54—O54	123.3 (12)
C51—N4—C3	120.7 (9)	C54—C55—C56	118.8 (13)
C21—N4—C3	113.1 (5)	С54—С55—Н55	120.6
C51—N4—C5	114.2 (13)	С56—С55—Н55	120.6
C21—N4—C5	114.4 (6)	C51—C56—C55	122.1 (10)
C3—N4—C5	111.20 (16)	С51—С56—Н56	119.0
N4—C5—C6	111.63 (17)	С55—С56—Н56	119.0
N4—C5—H5A	109.3	C54—O54—C57	117.7 (12)
С6—С5—Н5А	109.3	О54—С57—Н57А	109.5
N4—C5—H5B	109.3	O54—C57—H57B	109.5
C6—C5—H5B	109.3	Н57А—С57—Н57В	109.5
H5A—C5—H5B	108.0	O54—C57—H57C	109.5
N1—C6—C5	110.23 (17)	Н57А—С57—Н57С	109.5
N1—C6—H6A	109.6	H57B—C57—H57C	109.5
С5—С6—Н6А	109.6	C36—C31—C32	117.9 (2)
N1—C6—H6B	109.6	C36—C31—C37	121.4 (2)
С5—С6—Н6В	109.6	C32—C31—C37	120.8 (2)
H6A—C6—H6B	108.1	C33—C32—C31	120.4 (2)
C26—C21—C22	116.0 (4)	С33—С32—Н32	119.8
C26—C21—N4	119.5 (8)	С31—С32—Н32	119.8
C22—C21—N4	124.4 (8)	C34—C33—C32	120.6 (3)
C23—C22—C21	121.2 (4)	С34—С33—Н33	119.7
C23—C22—H22	119.4	С32—С33—Н33	119.7
C21—C22—H22	119.4	C35—C34—C33	119.8 (3)
C24—C23—C22	121.5 (4)	С35—С34—Н34	120.1

C24—C23—H23	119.3	С33—С34—Н34	120.1
С22—С23—Н23	119.3	C34—C35—C36	120.5 (2)
C23—C24—C25	118.5 (4)	С34—С35—Н35	119.7
C23—C24—O24	116.6 (5)	С36—С35—Н35	119.7
C25—C24—O24	124.6 (6)	C35—C36—C31	120.9 (2)
C24—C25—C26	119.5 (7)	С35—С36—Н36	119.6
C24—C25—H25	120.3	С31—С36—Н36	119.6
C26—C25—H25	120.3	O32—C37—O31	124.1 (3)
C21—C26—C25	122.9 (5)	O32—C37—C31	117.3 (3)
C21—C26—H26	118.5	O31—C37—C31	118.6 (2)
С25—С26—Н26	118.5	H41—O41—H42	111 (3)
C24—O24—C27	118.1 (6)		
C6—N1—C2—C3	-57.3 (2)	C3—N4—C51—C56	166 (4)
N1-C2-C3-N4	55.6 (2)	C5—N4—C51—C56	30 (5)
C2-C3-N4-C51	168.3 (19)	C21—N4—C51—C52	-56 (9)
C2-C3-N4-C21	175.8 (8)	C3—N4—C51—C52	-13 (4)
C2-C3-N4-C5	-53.8 (2)	C5—N4—C51—C52	-149 (2)
C51—N4—C5—C6	-164.9 (15)	C56—C51—C52—C53	-4 (5)
C21—N4—C5—C6	-176.0 (7)	N4—C51—C52—C53	175 (2)
C3—N4—C5—C6	54.3 (2)	C51—C52—C53—C54	5 (3)
C2—N1—C6—C5	58.3 (2)	C52—C53—C54—C55	-12 (4)
N4—C5—C6—N1	-57.0 (2)	C52—C53—C54—O54	-176 (3)
C51—N4—C21—C26	-49 (10)	C53—C54—C55—C56	18 (6)
C3—N4—C21—C26	170.7 (16)	O54—C54—C55—C56	-180 (5)
C5—N4—C21—C26	42 (2)	C52—C51—C56—C55	10 (7)
C51—N4—C21—C22	128 (12)	N4—C51—C56—C55	-169 (4)
C3—N4—C21—C22	-12.5 (17)	C54—C55—C56—C51	-17 (8)
C5—N4—C21—C22	-141.2 (12)	C53—C54—O54—C57	161 (4)
C26—C21—C22—C23	2 (2)	C55—C54—O54—C57	-2 (7)
N4—C21—C22—C23	-174.5 (11)	C36—C31—C32—C33	0.7 (3)
C21—C22—C23—C24	-2.6 (14)	C37—C31—C32—C33	-179.3 (2)
C22—C23—C24—C25	4.6 (17)	C31—C32—C33—C34	0.3 (4)
C22—C23—C24—O24	178.6 (15)	C32—C33—C34—C35	-1.0 (4)
C23—C24—C25—C26	-6 (3)	C33—C34—C35—C36	0.7 (4)
O24—C24—C25—C26	-180 (2)	C34—C35—C36—C31	0.4 (3)
C22—C21—C26—C25	-4 (3)	C32—C31—C36—C35	-1.0 (3)
N4—C21—C26—C25	173 (2)	C37—C31—C36—C35	178.9 (2)
C24—C25—C26—C21	7 (4)	C36—C31—C37—O32	175.1 (2)
C23—C24—O24—C27	171 (2)	C32—C31—C37—O32	-5.0 (3)
C25—C24—O24—C27	-16 (3)	C36—C31—C37—O31	-3.1 (3)
C21—N4—C51—C56	123 (14)	C32—C31—C37—O31	176.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H11…O31	0.90 (2)	1.88 (2)	2.777 (3)	174.1 (19)
N1—H12…O41	0.97 (2)	1.85 (2)	2.808 (3)	169.7 (18)

0.88 (3)	1.75 (3)	2.631 (3)	177 (3)
0.91 (3)	1.87 (3)	2.763 (3)	169 (3)
0.97	2.54	3.485 (3)	165
0.93	2.85	3.603 (3)	139
0.93	2.90	3.62 (2)	135
0.93	2.64	3.41 (5)	141
	0.88 (3) 0.91 (3) 0.97 0.93 0.93 0.93	0.88 (3)1.75 (3)0.91 (3)1.87 (3)0.972.540.932.850.932.900.932.64	0.88 (3)1.75 (3)2.631 (3)0.91 (3)1.87 (3)2.763 (3)0.972.543.485 (3)0.932.853.603 (3)0.932.903.62 (2)0.932.643.41 (5)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1.

4-(4-Methoxyphenyl)piperazin-1-ium 4-fluorobenzoate monohydrate (II)

Crystal data

$C_{11}H_{17}N_2O^+ C_7H_4FO_2^- H_2O$	Z = 2
$M_r = 350.38$	F(000) = 372
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.314 {\rm Mg} {\rm m}^{-3}$
a = 6.256(1) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 7.489(1) Å	Cell parameters from 3771 reflections
c = 19.097 (2) Å	$\theta = 2.9 - 27.9^{\circ}$
$\alpha = 84.19 (1)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 86.98(2)^{\circ}$	T = 293 K
$\gamma = 84.62 \ (2)^{\circ}$	Plate, colourless
V = 885.4 (2) Å ³	$0.40 \times 0.24 \times 0.04 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur with Sapphire CCD	5760 measured reflections
diffractometer	3477 independent reflections
Radiation source: Enhance (Mo) X-ray Source	1355 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
ω scans	$\theta_{\rm max} = 26.1^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -7 \longrightarrow 6$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -9 \rightarrow 9$
$T_{\min} = 0.973, T_{\max} = 0.996$	$l = -23 \rightarrow 22$
Refinement	
Refinement on F^2	Primary atom site location: difference Fourier
Least-squares matrix: full	map

Itemative for a function of a function of

Special details

Experimental. Compound (II). IR (KBr , cm⁻¹) 3317 (OH), 3011 (NH₂), 2838 (OCH₃), 1588 (COO), 1365 (CF) NMR (CDCl₃) δ ⁽¹H) 3.23 (m, 4H, piperazine), 3.29 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.86 (m, 4H, methoxyphenyl), 7.05 (m, 2H, fluorophenyl), 8.05 (m, 2H, fluorophenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.7813 (5)	0.7442 (3)	0.45140 (15)	0.0536 (8)	
H11	0.823 (4)	0.778 (3)	0.5031 (15)	0.064*	
H12	0.749 (4)	0.634 (4)	0.4565 (14)	0.064*	
C2	0.9661 (5)	0.7540 (4)	0.39966 (16)	0.0599 (9)	
H2A	1.0848	0.6706	0.4164	0.072*	
H2B	1.0131	0.8746	0.3952	0.072*	
C3	0.9056 (5)	0.7083 (4)	0.32889 (15)	0.0574 (9)	
H3A	1.0264	0.7229	0.2955	0.069*	
H3B	0.8755	0.5829	0.3326	0.069*	
N4	0.7185 (4)	0.8206 (3)	0.30227 (12)	0.0444 (6)	
C5	0.5377 (5)	0.8151 (4)	0.35391 (14)	0.0527 (8)	
H5A	0.4900	0.6947	0.3596	0.063*	
H5B	0.4192	0.8977	0.3365	0.063*	
C6	0.5960 (5)	0.8649 (4)	0.42410 (14)	0.0567 (9)	
H6A	0.6324	0.9887	0.4194	0.068*	
H6B	0.4736	0.8556	0.4572	0.068*	
C21	0.670 (3)	0.795 (6)	0.2319 (6)	0.0442 (18)	0.81 (3)
C22	0.8062 (12)	0.6932 (18)	0.1883 (4)	0.064 (2)	0.81 (3)
H22	0.9351	0.6378	0.2053	0.077*	0.81 (3)
C23	0.7544 (9)	0.673 (2)	0.1207 (3)	0.069 (3)	0.81 (3)
H23	0.8520	0.6083	0.0923	0.083*	0.81 (3)
C24	0.5644 (10)	0.7455 (18)	0.0942 (3)	0.058 (2)	0.81 (3)
C25	0.4255 (15)	0.846 (3)	0.1357 (5)	0.0680 (18)	0.81 (3)
H25	0.2967	0.9002	0.1182	0.082*	0.81 (3)
C26	0.4782 (18)	0.866 (3)	0.2037 (5)	0.062 (2)	0.81 (3)
H26	0.3798	0.9313	0.2317	0.074*	0.81 (3)
O24	0.5299 (13)	0.7159 (19)	0.0261 (3)	0.095 (2)	0.81 (3)
C27	0.3282 (18)	0.772 (3)	-0.0015 (6)	0.107 (4)	0.81 (3)
H27A	0.2181	0.7178	0.0279	0.160*	0.81 (3)
H27B	0.3249	0.7366	-0.0483	0.160*	0.81 (3)
H27C	0.3035	0.9011	-0.0029	0.160*	0.81 (3)
C51	0.655 (11)	0.79 (3)	0.236 (2)	0.0442 (18)	0.19 (3)
C52	0.810 (6)	0.754 (6)	0.1833 (17)	0.064 (2)	0.19 (3)
H52	0.9531	0.7290	0.1949	0.077*	0.19 (3)
C53	0.756 (4)	0.752 (6)	0.1146 (15)	0.069 (3)	0.19 (3)
H53	0.8593	0.7106	0.0818	0.083*	0.19 (3)
C54	0.554 (4)	0.808 (5)	0.0936 (13)	0.058 (2)	0.19 (3)
C55	0.396 (6)	0.842 (13)	0.144 (2)	0.0680 (18)	0.19 (3)
H55	0.2524	0.8581	0.1327	0.082*	0.19 (3)
C56	0.453 (7)	0.851 (13)	0.213 (2)	0.062 (2)	0.19 (3)
H56	0.3509	0.8987	0.2444	0.074*	0.19 (3)
O54	0.512 (5)	0.786 (6)	0.0251 (14)	0.095 (2)	0.19 (3)
C57	0.300 (7)	0.827 (12)	0.004 (3)	0.107 (4)	0.19 (3)
H57A	0.2472	0.9444	0.0166	0.160*	0.19 (3)
H57B	0.2101	0.7391	0.0266	0.160*	0.19 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H57C	0.2965	0.8256	-0.0463	0.160*	0.19 (3)
C31	0.8132 (5)	0.7284 (4)	0.70495 (17)	0.0485 (8)	
C32	0.6742 (5)	0.6533 (4)	0.7564 (2)	0.0676 (10)	
H32	0.5542	0.6028	0.7431	0.081*	
C33	0.7114 (6)	0.6527 (5)	0.8267 (2)	0.0798 (11)	
H33	0.6181	0.6022	0.8611	0.096*	
C34	0.8883 (7)	0.7278 (5)	0.8448 (2)	0.0752 (11)	
F34	0.9236 (3)	0.7291 (3)	0.91437 (11)	0.1208 (9)	
C35	1.0294 (5)	0.8010 (4)	0.7961 (2)	0.0658 (10)	
H35	1.1495	0.8505	0.8100	0.079*	
C36	0.9911 (5)	0.8003 (4)	0.72606 (17)	0.0542 (9)	
H36	1.0870	0.8494	0.6922	0.065*	
C37	0.7690 (6)	0.7297 (5)	0.6289 (2)	0.0614 (10)	
O31	0.8943 (4)	0.8069 (3)	0.58380 (12)	0.0715 (7)	
O32	0.6112 (4)	0.6566 (4)	0.61332 (13)	0.1091 (10)	
O41	0.7239 (4)	0.3737 (3)	0.46049 (12)	0.0700 (8)	
H41	0.615 (6)	0.356 (5)	0.4356 (17)	0.105*	
H42	0.835 (6)	0.312 (5)	0.4379 (18)	0.105*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.065 (2)	0.0429 (18)	0.0550 (18)	-0.0089 (16)	-0.0145 (16)	-0.0061 (15)
C2	0.050(2)	0.060 (3)	0.070 (2)	-0.0047 (18)	-0.0107 (19)	-0.0069 (18)
C3	0.049 (2)	0.065 (2)	0.059 (2)	-0.0019 (18)	-0.0035 (17)	-0.0091 (18)
N4	0.0405 (16)	0.0437 (17)	0.0483 (16)	0.0016 (13)	-0.0044 (13)	-0.0054 (12)
C5	0.049 (2)	0.057 (2)	0.052 (2)	-0.0005 (16)	-0.0015 (17)	-0.0083 (16)
C6	0.059 (2)	0.057 (2)	0.053 (2)	0.0029 (18)	-0.0011 (17)	-0.0049 (17)
C21	0.044 (3)	0.042 (3)	0.047 (2)	-0.004 (4)	0.001 (2)	-0.008 (3)
C22	0.055 (2)	0.070 (7)	0.068 (3)	0.009 (3)	-0.005(2)	-0.020(3)
C23	0.063 (3)	0.080 (8)	0.067 (3)	0.009 (3)	0.004 (2)	-0.030 (4)
C24	0.066 (3)	0.058 (6)	0.053 (3)	-0.007 (3)	-0.003 (2)	-0.017 (3)
C25	0.061 (3)	0.087 (3)	0.054 (4)	0.012 (4)	-0.009(3)	-0.009 (4)
C26	0.056 (3)	0.070 (5)	0.056 (3)	0.016 (4)	-0.001 (2)	-0.013 (4)
O24	0.094 (3)	0.129 (7)	0.0660 (19)	0.008 (4)	-0.0132 (16)	-0.039 (3)
C27	0.102 (5)	0.156 (14)	0.067 (4)	-0.004(5)	-0.027 (4)	-0.023 (4)
C51	0.044 (3)	0.042 (3)	0.047 (2)	-0.004 (4)	0.001 (2)	-0.008 (3)
C52	0.055 (2)	0.070 (7)	0.068 (3)	0.009 (3)	-0.005 (2)	-0.020(3)
C53	0.063 (3)	0.080 (8)	0.067 (3)	0.009 (3)	0.004 (2)	-0.030 (4)
C54	0.066 (3)	0.058 (6)	0.053 (3)	-0.007 (3)	-0.003(2)	-0.017 (3)
C55	0.061 (3)	0.087 (3)	0.054 (4)	0.012 (4)	-0.009 (3)	-0.009 (4)
C56	0.056 (3)	0.070 (5)	0.056 (3)	0.016 (4)	-0.001 (2)	-0.013 (4)
O54	0.094 (3)	0.129 (7)	0.0660 (19)	0.008 (4)	-0.0132 (16)	-0.039 (3)
C57	0.102 (5)	0.156 (14)	0.067 (4)	-0.004 (5)	-0.027 (4)	-0.023 (4)
C31	0.045 (2)	0.039 (2)	0.063 (2)	0.0008 (16)	-0.0084 (18)	-0.0119 (16)
C32	0.051 (2)	0.055 (3)	0.099 (3)	-0.0062 (18)	-0.002 (2)	-0.017 (2)
C33	0.072 (3)	0.073 (3)	0.089 (3)	-0.004 (2)	0.020 (2)	-0.001 (2)
C34	0.083 (3)	0.084 (3)	0.057 (3)	0.003 (2)	-0.009 (2)	-0.004 (2)

F34 C35 C36	0.131 (2) 0.059 (2) 0.056 (2)	0.164 (2) 0.068 (3) 0.052 (2)	0.0633 (15) 0.072 (3) 0.056 (2)	0.0008 (17) -0.0106 (19) -0.0059 (18)	-0.0068 (13) -0.011 (2) -0.0122 (17)	-0.0036 (14) -0.006 (2) -0.0070 (16)
C37	0.057 (3)	0.042(2) 0.0686(18)	0.087(3) 0.0638(17)	0.0070(19) -0.0057(15)	-0.022(2) -0.0208(14)	-0.019(2) -0.0123(13)
O32	0.0871 (19)	0.129 (3)	0.124 (2)	-0.0362(18)	-0.0427(16)	-0.0343(17)
041	0.0693 (17)	0.0628 (18)	0.0816 (18)	-0.0137(14)	-0.0227(13)	-0.0073(13)

Geometric parameters (Å, °)

N1—C2	1.483 (4)	С27—Н27С	0.9600
N1—C6	1.485 (4)	C51—C56	1.380 (9)
N1—H11	1.09 (3)	C51—C52	1.390 (19)
N1—H12	0.87 (3)	C52—C53	1.374 (9)
C2—C3	1.503 (3)	С52—Н52	0.9300
C2—H2A	0.9700	C53—C54	1.362 (9)
C2—H2B	0.9700	С53—Н53	0.9300
C3—N4	1.458 (3)	C54—C55	1.370 (13)
C3—H3A	0.9700	C54—O54	1.377 (9)
С3—Н3В	0.9700	C55—C56	1.383 (9)
N4—C51	1.39 (5)	С55—Н55	0.9300
N4—C21	1.429 (10)	С56—Н56	0.9300
N4—C5	1.462 (3)	O54—C57	1.408 (10)
C5—C6	1.499 (3)	С57—Н57А	0.9600
С5—Н5А	0.9700	С57—Н57В	0.9600
C5—H5B	0.9700	С57—Н57С	0.9600
С6—Н6А	0.9700	C31—C36	1.377 (3)
C6—H6B	0.9700	C31—C32	1.388 (4)
C21—C26	1.379 (6)	C31—C37	1.491 (4)
C21—C22	1.389 (15)	C32—C33	1.374 (4)
C22—C23	1.374 (4)	С32—Н32	0.9300
С22—Н22	0.9300	C33—C34	1.363 (4)
C23—C24	1.361 (5)	С33—Н33	0.9300
С23—Н23	0.9300	C34—C35	1.358 (4)
C24—C25	1.369 (9)	C34—F34	1.360 (4)
C24—O24	1.373 (4)	C35—C36	1.373 (4)
C25—C26	1.383 (5)	С35—Н35	0.9300
C25—H25	0.9300	С36—Н36	0.9300
C26—H26	0.9300	C37—O32	1.236 (3)
O24—C27	1.405 (4)	C37—O31	1.266 (4)
С27—Н27А	0.9600	O41—H41	0.88 (3)
C27—H27B	0.9600	O41—H42	0.91 (4)
C2—N1—C6	109.5 (2)	O24—C27—H27A	109.5
C2—N1—H11	111.6 (13)	O24—C27—H27B	109.5
C6—N1—H11	111.1 (13)	Н27А—С27—Н27В	109.5
C2—N1—H12	107 (2)	O24—C27—H27C	109.5
C6—N1—H12	110.0 (19)	H27A—C27—H27C	109.5

H11—N1—H12	107 (2)	H27B—C27—H27C	109.5
N1—C2—C3	110.9 (2)	C56—C51—C52	115.3 (18)
N1—C2—H2A	109.5	C56—C51—N4	122 (4)
C3—C2—H2A	109.5	C52—C51—N4	120 (5)
N1—C2—H2B	109.5	C53—C52—C51	121.2 (14)
C3—C2—H2B	109.5	С53—С52—Н52	119.4
H2A—C2—H2B	108.1	C51—C52—H52	119.4
N4—C3—C2	112.7 (2)	C54—C53—C52	121.5 (11)
N4—C3—H3A	109.0	С54—С53—Н53	119.3
С2—С3—НЗА	109.0	С52—С53—Н53	119.3
N4—C3—H3B	109.0	C53—C54—C55	118.3 (12)
С2—С3—Н3В	109.0	C53—C54—O54	116.6 (13)
НЗА—СЗ—НЗВ	107.8	C55—C54—O54	123.2 (15)
C51—N4—C3	117 (4)	C54—C55—C56	119.0 (16)
C21—N4—C3	114.4 (9)	С54—С55—Н55	120.5
C51—N4—C5	111 (4)	С56—С55—Н55	120.5
C21—N4—C5	115.5 (10)	C51—C56—C55	122.8 (13)
C3—N4—C5	110.9 (2)	С51—С56—Н56	118.6
N4—C5—C6	112.1 (2)	С55—С56—Н56	118.6
N4—C5—H5A	109.2	C54—O54—C57	117.8 (15)
С6—С5—Н5А	109.2	О54—С57—Н57А	109.5
N4—C5—H5B	109.2	O54—C57—H57B	109.5
С6—С5—Н5В	109.2	H57A—C57—H57B	109.5
H5A—C5—H5B	107.9	О54—С57—Н57С	109.5
N1—C6—C5	110.6 (2)	Н57А—С57—Н57С	109.5
N1—C6—H6A	109.5	Н57В—С57—Н57С	109.5
С5—С6—Н6А	109.5	C36—C31—C32	118.3 (3)
N1—C6—H6B	109.5	C36—C31—C37	121.4 (3)
С5—С6—Н6В	109.5	C32—C31—C37	120.2 (3)
H6A—C6—H6B	108.1	C33—C32—C31	121.0 (3)
C26—C21—C22	115.6 (7)	С33—С32—Н32	119.5
C26—C21—N4	121.3 (11)	C31—C32—H32	119.5
C22—C21—N4	123.1 (9)	C34—C33—C32	118.3 (4)
C23—C22—C21	121.3 (4)	С34—С33—Н33	120.8
C23—C22—H22	119.4	С32—С33—Н33	120.8
C21—C22—H22	119.4	C35—C34—F34	119.1 (4)
C24—C23—C22	121.8 (4)	C35—C34—C33	122.6 (4)
С24—С23—Н23	119.1	F34—C34—C33	118.3 (4)
С22—С23—Н23	119.1	C34—C35—C36	118.6 (3)
C23—C24—C25	118.5 (4)	С34—С35—Н35	120.7
C23—C24—O24	116.6 (4)	С36—С35—Н35	120.7
C25—C24—O24	124.8 (4)	C35—C36—C31	121.2 (3)
C24—C25—C26	119.5 (6)	С35—С36—Н36	119.4
C24—C25—H25	120.2	С31—С36—Н36	119.4
C26—C25—H25	120.2	O32—C37—O31	123.5 (4)
C21—C26—C25	123.2 (6)	O32—C37—C31	118.3 (4)
C21—C26—H26	118.4	O31—C37—C31	118.2 (3)
C25—C26—H26	118.4	H41—O41—H42	101 (3)

C24—O24—C27	118.8 (4)		
C6 N1 C2 C3	-56.2(3)	C2 N/ C51 C52	-38(10)
$C_0 - N_1 - C_2 - C_3$	-50.5(5)	$C_{5} = N_{4} = C_{51} = C_{52}$	-38(19)
N1 - C2 - C3 - N4	55.5 (5) 178 (0)	C_{3} C_{14} C_{31} C_{32} C_{52} C_{53}	-100(12)
$C_2 = C_3 = N_4 = C_3 I$	178 (9)	$C_{50} = C_{51} = C_{52} = C_{53}$	-9(19)
$C_2 = C_3 = N_4 = C_2 I$	1/4 (2)	N4—C51—C52—C53	-1/0(10)
C2—C3—N4—C5	-53.7 (3)	051-052-053-054	8 (11)
C51—N4—C5—C6	-174 (8)	C52—C53—C54—C55	-10(7)
C21—N4—C5—C6	-173 (2)	C52—C53—C54—O54	-175 (4)
C3—N4—C5—C6	54.6 (3)	C53—C54—C55—C56	12 (11)
C2—N1—C6—C5	57.4 (3)	O54—C54—C55—C56	176 (7)
N4—C5—C6—N1	-57.2 (3)	N4—C51—C56—C55	172 (13)
C3—N4—C21—C26	169 (3)	C54—C55—C56—C51	-14 (15)
C5—N4—C21—C26	38 (4)	C53—C54—O54—C57	174 (5)
C3—N4—C21—C22	-10 (5)	C55—C54—O54—C57	10 (8)
C5—N4—C21—C22	-140 (3)	C36—C31—C32—C33	0.8 (4)
C26—C21—C22—C23	2 (4)	C37—C31—C32—C33	-179.3 (3)
N4—C21—C22—C23	-179 (2)	C31—C32—C33—C34	0.1 (5)
C21—C22—C23—C24	-3 (2)	C32—C33—C34—C35	-0.7 (5)
C22—C23—C24—C25	2.3 (13)	C32—C33—C34—F34	179.2 (3)
C22—C23—C24—O24	-179.7 (6)	F34—C34—C35—C36	-179.4 (3)
C23—C24—C25—C26	-2 (2)	C33—C34—C35—C36	0.5 (5)
O24—C24—C25—C26	-179.9 (14)	C34—C35—C36—C31	0.4 (5)
C22—C21—C26—C25	-2 (4)	C32—C31—C36—C35	-1.0 (4)
N4—C21—C26—C25	179 (3)	C37—C31—C36—C35	179.1 (3)
C24—C25—C26—C21	2 (3)	C36—C31—C37—O32	177.2 (3)
C23—C24—O24—C27	173.8 (10)	C32—C31—C37—O32	-2.7 (4)
C25—C24—O24—C27	-8.4 (16)	C36—C31—C37—O31	-3.3 (4)
C3—N4—C51—C56	162 (12)	C32—C31—C37—O31	176.8 (3)
C5—N4—C51—C56	34 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H11…O31	1.09 (3)	1.67 (3)	2.758 (4)	174.1 (19)
N1—H12…O41	0.86 (3)	1.96 (3)	2.818 (4)	170 (3)
O41—H41…O32 ⁱ	0.86 (4)	1.75 (4)	2.627 (4)	174 (4)
O41—H42…O31 ⁱⁱ	0.91 (4)	1.88 (4)	2.768 (3)	163 (3)
C2—H2 <i>B</i> ···O31 ⁱⁱⁱ	0.97	2.58	3.529 (4)	166
C6—H6 <i>B</i> ···O41 ⁱ	0.97	2.57	3.386 (4)	142
C22—H22···· $Cg1^{ii}$	0.93	2.93	3.664 (12)	137
C26—H26···· $Cg1^{iv}$	0.93	2.81	3.56 (2)	138
C56—H56···· $Cg1^{iv}$	0.93	2.96	3.55 (9)	123

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1.

4-(4-Methoxyphenyl)piperazin-1-ium 4-chlorobenzoate monohydrate (III)

Crystal data

 $C_{11}H_{17}N_2O^+ \cdot C_7H_4ClO_2^- \cdot H_2O$ $M_r = 366.83$ Triclinic, $P\overline{1}$ a = 6.211 (1) Åb = 7.481(1) Å c = 20.144 (4) Å $\alpha = 84.90 \ (2)^{\circ}$ $\beta = 87.48 \ (2)^{\circ}$ $\gamma = 85.19 (2)^{\circ}$ V = 928.4 (3) Å³

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD	5883 measured reflections
diffractometer	3454 independent reflections
Radiation source: Enhance (Mo) X-ray Source	1343 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
ω scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -9 \longrightarrow 8$
$T_{\min} = 0.951, \ T_{\max} = 0.995$	$l = -24 \rightarrow 22$
Refinement	

Refinement on F^2	Primary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: mixed
$wR(F^2) = 0.135$	H atoms treated by a mixture of independent
S = 0.94	and constrained refinement
3454 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2]$
265 parameters	where $P = (F_o^2 + 2F_c^2)/3$
17 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
	$\Delta ho_{ m max} = 0.24 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Experimental, Compound (III), IR (KBr, cm⁻¹) 3320 (OH), 3003 (NH₂), 2837 (OCH₃), 1582 (COO), 772(CCl), NMR (CDCl₃) δ (¹H) 3.23 (m, 4H, piperazine), 3.28 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.86 (m, 4H, methoxyphenyl), 7.36 (d, J = 8.4 Hz, 2H, chlorophenyl), 7.98 (d, J = 8.4 Hz, 2H, chlorophenyl).

Z = 2

F(000) = 388

 $\theta = 2.8 - 28.8^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$

Plate, colourless

 $0.20 \times 0.16 \times 0.02 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.312 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3962 reflections

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.7833 (5)	0.7442 (4)	0.45388 (15)	0.0536 (9)	
H11	0.827 (5)	0.777 (4)	0.5028 (16)	0.064*	
H12	0.760 (5)	0.636 (4)	0.4593 (16)	0.064*	
C2	0.9718 (6)	0.7498 (5)	0.40636 (16)	0.0570 (10)	
H2A	1.0888	0.6667	0.4234	0.068*	

H2B	1.0216	0.8699	0.4020	0.068*	
C3	0.9136 (6)	0.6998 (4)	0.33895 (16)	0.0545 (10)	
H3A	1.0371	0.7116	0.3082	0.065*	
H3B	0.8803	0.5749	0.3427	0.065*	
N4	0.7287 (4)	0.8126 (3)	0.31215 (12)	0.0433 (7)	
C5	0.5425 (5)	0.8110 (4)	0.35968 (15)	0.0516 (9)	
H5A	0.4918	0.6912	0.3650	0.062*	
H5B	0.4260	0.8935	0.3420	0.062*	
C6	0.5992 (6)	0.8644 (4)	0.42667 (15)	0.0551 (10)	
H6A	0.6377	0.9880	0.4222	0.066*	
H6B	0.4747	0.8569	0.4573	0.066*	
C21	0.685 (4)	0.783 (9)	0 2449 (9)	0.000	0.73(2)
C22	0.8261(13)	0.6777(19)	0.2052(4)	0.060(3)	0.73(2)
H22	0.9523	0.6211	0.2032 (1)	0.072*	0.73(2)
C23	0.7808 (13)	0.657(2)	0.1401 (4)	0.072	0.73(2)
H23	0.8807	0.5916	0.1141	0.074 (5)	0.73(2)
C24	0.5073 (18)	0.3910	0.1141	0.065 (4)	0.73(2) 0.73(2)
C24	0.3923(10)	0.730(3)	0.1130(3)	0.005(4)	0.73(2) 0.73(2)
U25	0.430 (2)	0.828 (5)	0.1310 (8)	0.075 (5)	0.73(2) 0.73(2)
1125 C26	0.3190	0.8781	0.1341	0.089°	0.73(2) 0.73(2)
U20	0.490 (2)	0.034 (3)	0.2102 (0)	0.000 (3)	0.73(2) 0.73(2)
024	0.5958	0.9221	0.2413	0.072°	0.73(2) 0.73(2)
C27	0.304(2)	0.097(2) 0.743(2)	0.0482(0) 0.0203(7)	0.104(4)	0.73(2) 0.73(2)
	0.302(3)	0.743(2)	0.0203 (7)	0.101(4) 0.152*	0.75(2)
П2/А 1127D	0.2517	0.0892	0.0465	0.152*	0.75(2)
П27Б	0.3023	0.0989	-0.0231	0.152*	0.75(2) 0.72(2)
П2/С С51	0.5551	0.8/15	0.0104	0.132°	0.75(2)
C51	0.008(10)	0.79(3)	0.247(2)	0.0446(14)	0.27(2)
C52	0.833 (4)	0.755 (4)	0.1991 (13)	0.060 (3)	0.27(2)
H52	0.9701	0.7415	0.2112	0.072^{*}	0.27(2)
C55	0.783 (4)	0.739 (4)	0.1340 (12)	0.074 (3)	0.27(2)
H53	0.8924	0.7021	0.1039	0.088*	0.27(2)
C54	0.577(5)	0.775(9)	0.1126 (15)	0.065 (4)	0.27(2)
C55	0.418 (6)	0.825 (15)	0.158 (2)	0.075 (3)	0.27(2)
HSS	0.2775	0.8534	0.1437	0.089*	0.27(2)
C56	0.464 (5)	0.834 (8)	0.2235 (18)	0.060 (3)	0.27(2)
H56	0.3532	0.8701	0.2531	0.072*	0.27 (2)
054	0.548 (7)	0.751(7)	0.0468 (16)	0.104 (4)	0.27(2)
C57	0.351 (8)	0.814 (6)	0.018 (2)	0.101 (4)	0.27 (2)
H57A	0.2346	0.7622	0.0438	0.152*	0.27 (2)
H57B	0.3518	0.7814	-0.0267	0.152*	0.27 (2)
H57C	0.3326	0.9432	0.0182	0.152*	0.27 (2)
C31	0.8074 (6)	0.7372 (4)	0.69495 (18)	0.0470 (9)	
C32	0.6605 (7)	0.6665 (5)	0.7412 (2)	0.0704 (11)	
H32	0.5407	0.6164	0.7267	0.084*	
C33	0.6886 (8)	0.6688 (5)	0.8091 (2)	0.0834 (13)	
H33	0.5883	0.6212	0.8400	0.100*	
C34	0.8662 (9)	0.7424 (6)	0.8301 (2)	0.0770 (13)	
Cl34	0.8970 (3)	0.74735 (19)	0.91487 (5)	0.1383 (7)	

C35	1.0144 (7)	0.8114 (5)	0.7851 (2)	0.0695 (11)
H35	1.1350	0.8601	0.7997	0.083*
C36	0.9845 (6)	0.8084 (4)	0.71778 (17)	0.0543 (10)
H36	1.0861	0.8555	0.6872	0.065*
C37	0.7721 (7)	0.7351 (5)	0.6222 (2)	0.0581 (11)
O31	0.9006 (5)	0.8125 (3)	0.58079 (12)	0.0697 (8)
O32	0.6183 (5)	0.6568 (4)	0.60573 (15)	0.1085 (11)
O41	0.7230 (5)	0.3744 (3)	0.46334 (13)	0.0683 (8)
H41	0.614 (7)	0.363 (5)	0.4360 (19)	0.102*
H42	0.846 (7)	0.315 (5)	0.4434 (19)	0.102*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.065 (2)	0.0467 (18)	0.0505 (19)	-0.0043 (19)	-0.0122 (18)	-0.0079 (17)
C2	0.044 (2)	0.069 (3)	0.057 (2)	-0.003 (2)	-0.008 (2)	-0.0023 (19)
C3	0.043 (2)	0.065 (2)	0.053 (2)	0.007 (2)	-0.0072 (19)	-0.0050 (18)
N4	0.0390 (19)	0.0473 (17)	0.0432 (17)	0.0009 (15)	-0.0023 (15)	-0.0044 (13)
C5	0.049 (2)	0.055 (2)	0.049 (2)	0.0054 (19)	0.0007 (19)	-0.0041 (18)
C6	0.057 (3)	0.056 (2)	0.051 (2)	0.006 (2)	-0.0009 (19)	-0.0052 (18)
C21	0.038 (4)	0.046 (7)	0.049 (3)	0.001 (5)	0.001 (3)	-0.005 (2)
C22	0.054 (3)	0.064 (8)	0.059 (3)	0.021 (4)	-0.007 (2)	-0.011 (4)
C23	0.073 (4)	0.084 (9)	0.059 (3)	0.035 (5)	-0.002 (3)	-0.020 (5)
C24	0.074 (4)	0.077 (12)	0.043 (2)	0.008 (3)	-0.004(2)	-0.016 (4)
C25	0.064 (5)	0.104 (4)	0.053 (4)	0.021 (7)	-0.013 (4)	-0.013 (5)
C26	0.048 (4)	0.081 (6)	0.049 (4)	0.012 (5)	0.003 (3)	-0.012 (4)
O24	0.104 (3)	0.148 (12)	0.059 (2)	0.039 (5)	-0.0194 (19)	-0.038 (4)
C27	0.109 (5)	0.125 (13)	0.070 (3)	0.022 (7)	-0.034 (3)	-0.025 (7)
C51	0.038 (4)	0.046 (7)	0.049 (3)	0.001 (5)	0.001 (3)	-0.005 (2)
C52	0.054 (3)	0.064 (8)	0.059 (3)	0.021 (4)	-0.007 (2)	-0.011 (4)
C53	0.073 (4)	0.084 (9)	0.059 (3)	0.035 (5)	-0.002 (3)	-0.020 (5)
C54	0.074 (4)	0.077 (12)	0.043 (2)	0.008 (3)	-0.004 (2)	-0.016 (4)
C55	0.064 (5)	0.104 (4)	0.053 (4)	0.021 (7)	-0.013 (4)	-0.013 (5)
C56	0.048 (4)	0.081 (6)	0.049 (4)	0.012 (5)	0.003 (3)	-0.012 (4)
O54	0.104 (3)	0.148 (12)	0.059 (2)	0.039 (5)	-0.0194 (19)	-0.038 (4)
C57	0.109 (5)	0.125 (13)	0.070 (3)	0.022 (7)	-0.034 (3)	-0.025 (7)
C31	0.042 (2)	0.040 (2)	0.059 (2)	0.0033 (19)	-0.006 (2)	-0.0082 (18)
C32	0.061 (3)	0.061 (3)	0.090 (3)	-0.008 (2)	0.005 (3)	-0.012 (2)
C33	0.080 (4)	0.085 (3)	0.080 (4)	-0.001 (3)	0.029 (3)	0.002 (3)
C34	0.089 (4)	0.078 (3)	0.060 (3)	0.017 (3)	-0.007 (3)	-0.005 (2)
Cl34	0.1856 (16)	0.1630 (13)	0.0572 (8)	0.0402 (11)	-0.0065 (8)	-0.0083 (8)
C35	0.070 (3)	0.077 (3)	0.062 (3)	-0.002 (2)	-0.015 (3)	-0.010 (2)
C36	0.054 (3)	0.054 (2)	0.055 (3)	-0.007 (2)	-0.007 (2)	-0.0026 (18)
C37	0.056 (3)	0.044 (2)	0.075 (3)	0.007 (2)	-0.017 (3)	-0.017 (2)
O31	0.087 (2)	0.0683 (18)	0.0553 (17)	-0.0048 (16)	-0.0119 (16)	-0.0086 (14)
O32	0.095 (2)	0.132 (3)	0.110 (2)	-0.033 (2)	-0.040 (2)	-0.0309 (19)
O41	0.068 (2)	0.0661 (17)	0.0737 (19)	-0.0116 (16)	-0.0191 (15)	-0.0057 (14)

Geometric parameters (Å, °)

N1—C2	1.481 (4)	С27—Н27С	0.9600
N1—C6	1.487 (4)	C51—C56	1.376 (12)
N1—H11	1.09 (3)	C51—C52	1.40 (2)
N1—H12	0.83 (3)	C52—C53	1.378 (9)
C2—C3	1.507 (4)	С52—Н52	0.9300
C2—H2A	0.9700	C53—C54	1.366 (9)
C2—H2B	0.9700	С53—Н53	0.9300
C3—N4	1.461 (4)	C54—C55	1.363 (14)
С3—НЗА	0.9700	C54—O54	1.373 (8)
С3—Н3В	0.9700	C55—C56	1.380 (9)
N4—C51	1.40 (3)	С55—Н55	0.9300
N4—C21	1.434 (12)	С56—Н56	0.9300
N4—C5	1.468 (4)	O54—C57	1.401 (9)
C5—C6	1.505 (4)	С57—Н57А	0.9600
С5—Н5А	0.9700	C57—H57B	0.9600
C5—H5B	0.9700	С57—Н57С	0.9600
С6—Н6А	0.9700	C31—C36	1.376 (4)
С6—Н6В	0.9700	C31—C32	1.378 (5)
C21—C26	1.376 (12)	C31—C37	1.494 (5)
C21—C22	1.40 (2)	C32—C33	1.389 (5)
C22—C23	1.378 (5)	C32—H32	0.9300
C22—H22	0.9300	C33—C34	1.372 (5)
C23—C24	1.366 (6)	С33—Н33	0.9300
C23—H23	0.9300	C34—C35	1.363 (5)
C24—C25	1.363 (12)	C34—Cl34	1.731 (4)
C24—O24	1.373 (5)	C35—C36	1.379 (4)
C25—C26	1.380 (6)	C35—H35	0.9300
C25—H25	0.9300	C36—H36	0.9300
C26—H26	0.9300	C37—O32	1.233 (4)
O24—C27	1.400 (6)	C37—O31	1.265 (4)
С27—Н27А	0.9600	O41—H41	0.91 (4)
C27—H27B	0.9600	O41—H42	0.94 (4)
C2—N1—C6	110.0 (3)	O24—C27—H27A	109.5
C2—N1—H11	110.7 (16)	O24—C27—H27B	109.5
C6—N1—H11	112.6 (15)	H27A—C27—H27B	109.5
C2—N1—H12	105 (2)	O24—C27—H27C	109.5
C6—N1—H12	114 (2)	H27A—C27—H27C	109.5
H11—N1—H12	105 (3)	H27B—C27—H27C	109.5
N1—C2—C3	110.9 (3)	C56—C51—C52	116.1 (16)
N1—C2—H2A	109.5	C56—C51—N4	125 (2)
C3—C2—H2A	109.5	C52—C51—N4	118 (4)
N1—C2—H2B	109.5	C53—C52—C51	120.5 (14)
C3—C2—H2B	109.5	С53—С52—Н52	119.7
H2A—C2—H2B	108.1	C51—C52—H52	119.7
N4—C3—C2	112.4 (3)	C54—C53—C52	121.5 (11)

	100.1	C54 C53 H53	110.2
$C_2 = C_3 = H_3 A$	109.1	C52—C53—H53	119.2
N4_C3_H3B	109.1	$C_{52} = C_{53} = M_{53}$	119.2 118.5 (10)
$C_2 C_3 H_3 B$	100.1	$C_{55} = C_{54} = C_{55}$	110.5(10) 125.5(13)
$L_2 = C_3 = H_3 D$	107.0	$C_{33} = C_{34} = 0_{54}$	125.5(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3	$C_{55} - C_{54} - C_{54} - C_{54}$	110.0(12)
C_{21} N4 C_{2}	110(4) 1127(12)	$C_{54} = C_{55} = C_{56}$	120.3 (12)
$C_{21} = 104 = C_{3}$	113.7 (13)	С54—С55—Н55	119.8
C_{21} N4 C_{5}	112(4)	C50-C55-H55	119.8
$C_2 I = IN4 = C_5$	115.8 (14)	C51_C56_C55	122.4 (12)
C3—N4—C5	111.1 (2)	С51—С56—Н56	118.8
N4—C5—C6	111.8 (3)	С55—С56—Н56	118.8
N4—C5—H5A	109.3	C54—O54—C57	119.2 (14)
C6—C5—H5A	109.3	О54—С57—Н57А	109.5
N4—C5—H5B	109.3	O54—C57—H57B	109.5
C6—C5—H5B	109.3	Н57А—С57—Н57В	109.5
H5A—C5—H5B	107.9	O54—C57—H57C	109.5
N1—C6—C5	110.5 (3)	Н57А—С57—Н57С	109.5
N1—C6—H6A	109.6	Н57В—С57—Н57С	109.5
С5—С6—Н6А	109.6	C36—C31—C32	118.3 (3)
N1—C6—H6B	109.6	C36—C31—C37	121.7 (4)
С5—С6—Н6В	109.6	C32—C31—C37	120.0 (4)
H6A—C6—H6B	108.1	C31—C32—C33	121.0 (4)
C26—C21—C22	116.2 (8)	С31—С32—Н32	119.5
C26—C21—N4	121.0 (15)	С33—С32—Н32	119.5
C22—C21—N4	122.8 (12)	C34—C33—C32	119.1 (4)
C23—C22—C21	120.9 (6)	С34—С33—Н33	120.4
C23—C22—H22	119.5	С32—С33—Н33	120.4
C21—C22—H22	119.5	C35—C34—C33	120.7 (4)
C24—C23—C22	121.4 (5)	C35—C34—Cl34	120.7 (4)
С24—С23—Н23	119.3	C33—C34—Cl34	118.6 (4)
С22—С23—Н23	119.3	C34—C35—C36	119.6 (4)
C25—C24—C23	118.5 (5)	С34—С35—Н35	120.2
C25—C24—O24	125.6 (6)	С36—С35—Н35	120.2
C_{23} C_{24} O_{24}	115.9 (6)	$C_{31} - C_{36} - C_{35}$	121.3 (4)
C_{24} C_{25} C_{26}	120 7 (8)	C31—C36—H36	119.4
C_{24} C_{25} H_{25}	1197	C35—C36—H36	119.4
$C_{26} = C_{25} = H_{25}$	119.7	032 - 037 - 031	123 5 (4)
$C_{20} = C_{20} = C_{20}$	122.3 (10)	032 - 037 - 031	123.3(1) 117.7(4)
$C_{21} = C_{26} = H_{26}$	118.8	031 - 037 - 031	117.7(4) 118 7 (4)
C25 C26 H26	118.8	$H_{41} = 0.01 H_{42}$	105(3)
$C_{23} = C_{20} = H_{20}$	110.3 (6)	1141-041-1142	105 (5)
024-024-027	119.5 (0)		
C6—N1—C2—C3	-56.4 (3)	C3—N4—C51—C52	-37 (18)
N1—C2—C3—N4	55.4 (4)	C5—N4—C51—C52	-168 (11)
C2—C3—N4—C51	175 (9)	C56—C51—C52—C53	-9 (19)
C2—C3—N4—C21	173 (3)	N4—C51—C52—C53	-178 (9)
C2—C3—N4—C5	-54.1 (3)	C51—C52—C53—C54	7 (11)
$C_{51} - N_{4} - C_{5} - C_{6}$	-171 (8)	C52—C53—C54—C55	-1(10)
	(0)		1 (10)

CO1)14 CE C(152 (2)	ara ara ara ara	150 (5)
C21—N4—C5—C6	-173(3)	C52—C53—C54—O54	-179 (5)
C3—N4—C5—C6	54.8 (3)	C53—C54—C55—C56	-2 (14)
C2—N1—C6—C5	57.2 (3)	O54—C54—C55—C56	176 (8)
N4—C5—C6—N1	-56.8 (4)	C52—C51—C56—C55	6 (20)
C3—N4—C21—C26	169 (4)	N4—C51—C56—C55	174 (13)
C5—N4—C21—C26	38 (7)	C54—C55—C56—C51	-1 (17)
C3—N4—C21—C22	-10 (7)	C55—C54—O54—C57	13 (13)
C5—N4—C21—C22	-140 (4)	C53—C54—O54—C57	-169 (5)
C26—C21—C22—C23	3 (7)	C36—C31—C32—C33	0.8 (5)
N4—C21—C22—C23	-178 (4)	C37—C31—C32—C33	-179.2 (3)
C21—C22—C23—C24	-3 (4)	C31—C32—C33—C34	-0.3 (6)
C22—C23—C24—C25	1 (3)	C32—C33—C34—C35	-0.4 (6)
C22—C23—C24—O24	-178.6 (14)	C32—C33—C34—Cl34	179.1 (3)
C23—C24—C25—C26	1 (5)	C33—C34—C35—C36	0.5 (6)
O24—C24—C25—C26	-180 (3)	Cl34—C34—C35—C36	-179.0 (3)
C22—C21—C26—C25	-2 (7)	C32—C31—C36—C35	-0.7 (5)
N4—C21—C26—C25	180 (4)	C37—C31—C36—C35	179.3 (3)
C24—C25—C26—C21	0 (6)	C34—C35—C36—C31	0.1 (5)
C25—C24—O24—C27	-10 (4)	C36—C31—C37—O32	174.6 (3)
C23—C24—O24—C27	169.9 (15)	C32—C31—C37—O32	-5.3 (5)
C3—N4—C51—C56	155 (12)	C36—C31—C37—O31	-5.1 (5)
C5—N4—C51—C56	24 (19)	C32—C31—C37—O31	174.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H11…O31	1.09 (3)	1.71 (3)	2.790 (4)	176 (3)
N1—H12…O41	0.83 (3)	1.98 (3)	2.811 (4)	174 (3)
O41—H41…O32 ⁱ	0.91 (4)	1.73 (4)	2.624 (4)	172 (4)
O41—H42···O31 ⁱⁱ	0.94 (4)	1.84 (4)	2.775 (4)	170 (4)
C2—H2 <i>B</i> ···O31 ⁱⁱⁱ	0.97	2.52	3.467 (4)	165
C6—H6B····O41 ⁱ	0.97	2.60	3.408 (4)	141
C22—H22···Cg1 ^{iv}	0.93	2.89	3.631 (13)	137
C26—H26····Cg1 ^{iv}	0.93	2.81	3.58 (2)	141

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1.

4-(4-Methoxyphenyl)piperazin-1-ium 4-bromobenzoate monohydrate (IV)

Crystal data	
$C_{11}H_{17}N_2O^+\cdot C_7H_4BrO_2^-\cdot H_2O$	Z = 2
$M_r = 411.28$	F(000) = 424
Triclinic, P1	$D_{\rm x} = 1.450 { m Mg} { m m}^{-3}$
a = 6.2004 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 7.4957 (9) Å	Cell parameters from 3927 reflections
c = 20.440 (2) Å	$\theta = 2.8 - 27.9^{\circ}$
$\alpha = 85.08 \ (1)^{\circ}$	$\mu = 2.21 \text{ mm}^{-1}$
$\beta = 87.37 \ (1)^{\circ}$	T = 293 K
$\gamma = 85.00 \ (1)^{\circ}$	Plate, colourless
$V = 942.17 (19) \text{ Å}^3$	$0.48 \times 0.44 \times 0.16 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{min} = 0.536, T_{max} = 0.719$	6176 measured reflections 3818 independent reflections 2063 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 26.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 9$ $l = -23 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.197$ S = 1.06 3818 reflections 265 parameters 17 restraints	Primary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0819P)^2 + 0.9249P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.94$ e Å ⁻³ $\Delta\rho_{min} = -0.64$ e Å ⁻³

Special details

Experimental. Compound (IV). IR (KBr, cm⁻¹) 3319 (OH), 3001 (NH₂), 2836 (OCH₃), 1580 (COO), 600(CBr). NMR (CDCl₃) δ ⁽¹H)) 3.23 (m, 4H, piperazine), 3.30 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.85 (m, 4H, methoxyphenyl), 7.51 (d, J = 8.4 Hz, 2H, bromophenyl), 7.90 (d, J = 8.4 Hz, 2H, bromophenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	U_{iso}^*/U_{eq}	Occ. (<1)
N1	0.7803 (6)	0.7425 (5)	0.45428 (17)	0.0475 (9)	
H11	0.813 (7)	0.770 (6)	0.488(2)	0.057*	
H12	0.753 (7)	0.620 (7)	0.461 (2)	0.057*	
C2	0.9709 (7)	0.7508 (6)	0.4079 (2)	0.0530(11)	
H2A	1.0899	0.6702	0.4250	0.064*	
H2B	1.0169	0.8718	0.4034	0.064*	
C3	0.9143 (6)	0.6978 (6)	0.3414 (2)	0.0502 (10)	
H3A	1.0382	0.7086	0.3110	0.060*	
H3B	0.8808	0.5732	0.3454	0.060*	
N4	0.7286 (5)	0.8112 (4)	0.31535 (14)	0.0389(7)	
C5	0.5420 (6)	0.8089 (6)	0.36137 (18)	0.0454 (10)	
H5A	0.4924	0.6891	0.3665	0.055*	
H5B	0.4249	0.8909	0.3438	0.055*	
C6	0.5976 (7)	0.8631 (6)	0.42775 (19)	0.0485 (10)	
H6A	0.6368	0.9862	0.4234	0.058*	
H6B	0.4723	0.8565	0.4578	0.058*	
C21	0.6845 (19)	0.784 (6)	0.2485 (4)	0.0421 (11)	0.80(2)
	· · ·	× /	× /	× /	. /

C22	0.8313 (11)	0.6853 (18)	0.2086 (3)	0.066 (3)	0.80(2)
H22	0.9604	0.6325	0.2256	0.079*	0.80(2)
C23	0.7862 (12)	0.666 (2)	0.1442 (3)	0.084 (4)	0.80(2)
H23	0.8895	0.6040	0.1183	0.101*	0.80(2)
C24	0.5980 (13)	0.7331 (16)	0.1174 (4)	0.062 (3)	0.80(2)
C25	0.4512 (15)	0.826 (5)	0.1561 (6)	0.080 (4)	0.80(2)
H25	0.3201	0.8733	0.1390	0.096*	0.80(2)
C26	0.4941 (16)	0.850 (3)	0.2209 (4)	0.064 (4)	0.80(2)
H26	0.3899	0.9127	0.2462	0.077*	0.80(2)
O24	0.5730 (16)	0.7011 (17)	0.0530(3)	0.101 (3)	0.80(2)
C27	0.373 (2)	0.743 (3)	0.0258 (6)	0.114 (6)	0.80(2)
H27A	0.2623	0.6966	0.0551	0.171*	0.80(2)
H27B	0.3717	0.6905	-0.0154	0.171*	0.80(2)
H27C	0.3464	0.8712	0.0186	0.171*	0.80(2)
C51	0.672 (7)	0.79 (2)	0.2512 (15)	0.0421 (11)	0.20(2)
C52	0.838 (5)	0.786 (6)	0.2026 (13)	0.066 (3)	0.20(2)
H52	0.9785	0.8027	0.2134	0.079*	0.20(2)
C53	0.795 (5)	0.760(7)	0.1384 (13)	0.084 (4)	0.20(2)
H53	0.9078	0.7242	0.1096	0.101*	0.20(2)
C54	0,590 (5)	0.787(9)	0 1169 (14)	0.062(3)	0.20(2)
C55	0.590(5) 0.426(6)	0.81 (2)	0.163(2)	0.002(3)	0.20(2)
H55	0.2833	0.8234	0.1492	0.096*	0.20(2)
C56	0.466 (6)	0.818 (13)	0.2286(19)	0.064 (4)	0.20(2) 0.20(2)
H56	0.3515	0.8441	0.2581	0.077*	0.20(2)
054	0.5515	0.773(7)	0.2501 0.0512(15)	0.077 0.101 (3)	0.20(2) 0.20(2)
C57	0.364(9)	0.773(7)	0.0312(13)	0.101 (5)	0.20(2) 0.20(2)
H57A	0.304(9)	0.7740	0.025(3)	0.171*	0.20(2)
H57R	0.3582	0.7635	-0.0157	0.171*	0.20(2) 0.20(2)
H57C	0.3404	0.9457	0.0173	0.171*	0.20(2)
C31	0.3404	0.9437	0.0173 0.6032(2)	0.171 0.0436 (0)	0.20 (2)
C32	0.6590 (8)	0.7592(3)	0.0932(2) 0.7386(3)	0.0450(0)	
U32	0.0390 (8)	0.6102	0.7380 (3)	0.0001 (15)	
C33	0.5588	0.0192	0.7243	0.073° 0.0832 (17)	
U22	0.0890 (10)	0.6724 (8)	0.8055 (5)	0.0032 (17)	
C34	0.3888	0.0239	0.8300	0.100°	
C34 Dr24	0.8082(10)	0.7430(8)	0.8230(2)	0.0802(10)	
DI 34	1.90280(17)	0.75220(15) 0.8124(7)	0.91703(3)	0.1491(3) 0.0683(14)	
C35	1.0170 (9)	0.8124 (7)	0.7814(2)	0.0003 (14)	
П33	1.1303	0.8399	0.7939 0.7146 (2)	0.062°	
C30	0.9870(7)	0.8100 (0)	0.7140(2)	0.0500 (10)	
H30	1.0884	0.8301	0.0843	0.000°	
021	0.7721(7)	0.7557(0)	0.6201(2)	0.0528(11)	
031	0.0909(0)	0.6120(4)	0.3/9/0(13)	0.0051(9)	
032	0.0100(7)	0.0378(0) 0.2742(5)	0.0044(2) 0.46251(17)	0.0999(14)	
U41	0.7233(0) 0.620(10)	0.3743(3)	0.40531(17)	0.0055 (9)	
П41 1142	0.020(10)	0.333(8) 0.212(0)	0.445(3)	0.095*	
1142	0.020 (11)	0.515 (9)	0.449 (3)	0.095	

Atomic	displacement	parameters	$(Å^2)$)
--------	--------------	------------	---------	---

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
N1	0.062 (2)	0.048 (2)	0.0349 (17)	-0.0089 (18)	-0.0128 (16)	-0.0048 (16)
C2	0.044 (2)	0.067 (3)	0.049 (2)	-0.004 (2)	-0.0092 (19)	-0.004 (2)
C3	0.037 (2)	0.067 (3)	0.046 (2)	0.002 (2)	-0.0018 (18)	-0.003 (2)
N4	0.0365 (17)	0.047 (2)	0.0333 (15)	-0.0045 (14)	0.0000 (13)	-0.0017 (14)
C5	0.039 (2)	0.059 (3)	0.038 (2)	0.0005 (19)	-0.0004 (17)	-0.0020 (19)
C6	0.055 (3)	0.052 (3)	0.037 (2)	0.003 (2)	0.0016 (18)	-0.0034 (18)
C21	0.044 (3)	0.048 (3)	0.034 (2)	-0.006 (3)	0.0000 (19)	-0.002 (3)
C22	0.053 (3)	0.093 (9)	0.048 (3)	0.025 (4)	-0.009 (2)	-0.017 (4)
C23	0.076 (4)	0.122 (10)	0.049 (3)	0.036 (5)	0.001 (3)	-0.031 (5)
C24	0.072 (3)	0.079 (9)	0.036 (2)	0.009 (4)	-0.007 (2)	-0.018 (3)
C25	0.058 (4)	0.133 (10)	0.046 (4)	0.015 (7)	-0.015 (3)	-0.008 (6)
C26	0.055 (4)	0.099 (10)	0.036 (3)	0.015 (5)	-0.001 (2)	-0.015 (5)
O24	0.108 (3)	0.148 (10)	0.046 (2)	0.033 (5)	-0.019 (2)	-0.037 (4)
C27	0.108 (5)	0.181 (19)	0.058 (4)	0.008 (7)	-0.030 (4)	-0.038 (7)
C51	0.044 (3)	0.048 (3)	0.034 (2)	-0.006 (3)	0.0000 (19)	-0.002 (3)
C52	0.053 (3)	0.093 (9)	0.048 (3)	0.025 (4)	-0.009(2)	-0.017 (4)
C53	0.076 (4)	0.122 (10)	0.049 (3)	0.036 (5)	0.001 (3)	-0.031 (5)
C54	0.072 (3)	0.079 (9)	0.036 (2)	0.009 (4)	-0.007 (2)	-0.018 (3)
C55	0.058 (4)	0.133 (10)	0.046 (4)	0.015 (7)	-0.015 (3)	-0.008 (6)
C56	0.055 (4)	0.099 (10)	0.036 (3)	0.015 (5)	-0.001 (2)	-0.015 (5)
O54	0.108 (3)	0.148 (10)	0.046 (2)	0.033 (5)	-0.019 (2)	-0.037 (4)
C57	0.108 (5)	0.181 (19)	0.058 (4)	0.008 (7)	-0.030 (4)	-0.038 (7)
C31	0.041 (2)	0.040 (2)	0.049 (2)	0.0019 (18)	-0.0051 (18)	-0.0056 (18)
C32	0.052 (3)	0.070 (3)	0.076 (3)	-0.009 (2)	0.001 (2)	-0.005 (3)
C33	0.082 (4)	0.098 (4)	0.063 (3)	-0.002 (3)	0.023 (3)	0.011 (3)
C34	0.089 (4)	0.100 (4)	0.048 (3)	0.001 (3)	-0.006 (3)	0.004 (3)
Br34	0.1950 (10)	0.2001 (11)	0.0444 (4)	0.0349 (8)	-0.0150 (4)	-0.0114 (4)
C35	0.073 (3)	0.082 (4)	0.053 (3)	-0.006 (3)	-0.021 (3)	-0.010 (3)
C36	0.049 (2)	0.056 (3)	0.046 (2)	-0.010 (2)	-0.0083 (19)	0.000 (2)
C37	0.051 (3)	0.045 (3)	0.063 (3)	0.006 (2)	-0.020 (2)	-0.012 (2)
O31	0.083 (2)	0.063 (2)	0.0446 (17)	-0.0054 (18)	-0.0124 (17)	-0.0053 (15)
O32	0.087 (3)	0.130 (4)	0.094 (3)	-0.037 (3)	-0.038 (2)	-0.024 (3)
O41	0.064 (2)	0.065 (2)	0.064 (2)	-0.0133 (17)	-0.0210 (17)	-0.0029 (17)

Geometric parameters (Å, °)

N1—C6	1.479 (5)	С27—Н27С	0.9600
N1—C2	1.483 (6)	C51—C56	1.369 (11)
N1—H11	0.78 (5)	C51—C52	1.40 (2)
N1—H12	0.95 (5)	C52—C53	1.383 (11)
С2—С3	1.513 (6)	C52—H52	0.9300
C2—H2A	0.9700	C53—C54	1.353 (11)
C2—H2B	0.9700	С53—Н53	0.9300
C3—N4	1.463 (5)	C54—C55	1.362 (19)
С3—НЗА	0.9700	C54—O54	1.374 (10)

С3—Н3В	0.9700	C55—C56	1.392 (11)
N4—C51	1.40 (4)	С55—Н55	0.9300
N4—C21	1.441 (10)	С56—Н56	0.9300
N4—C5	1.458 (5)	O54—C57	1.383 (12)
C5—C6	1 512 (5)	C57—H57A	0.9600
C5 H5A	0.9700	C57 H57B	0.9600
C5 H5P	0.9700	C57_H57C	0.9000
	0.9700	C_{21} C_{22}	0.9000
Сб—НбА	0.9700	$C_{31} = C_{32}$	1.377 (6)
С6—Н6В	0.9/00	031-036	1.385 (5)
C21—C26	1.367 (10)	C31—C37	1.521 (6)
C21—C22	1.399 (19)	C32—C33	1.387 (7)
C22—C23	1.380 (7)	С32—Н32	0.9300
С22—Н22	0.9300	C33—C34	1.375 (8)
C23—C24	1.351 (8)	С33—Н33	0.9300
С23—Н23	0.9300	C34—C35	1.360 (8)
C24—C25	1.362 (16)	C34—Br34	1.897 (5)
C24—O24	1.374 (6)	C35—C36	1.388 (6)
C_{25} C_{26}	1 392 (8)	C35—H35	0.9300
C25_H25	0.9300	C36—H36	0.9300
C26 H26	0.0300	C_{30} C_{30} C_{30} C_{30}	1.221(5)
C20—H20	1,292 (9)	$C_{37} = O_{32}$	1.251(3)
024-027	1.363 (6)		1.232 (0)
$C_2/-H_2/A$	0.9600	041—H41	0.79(6)
C27—H27B	0.9600	O41—H42	0.79 (7)
	100 5 (2)		100 5
C6—N1—C2	109.7 (3)	024—C27—H27A	109.5
C6—N1—H11	111 (3)	O24—C27—H27B	109.5
C2—N1—H11	108 (3)	H27A—C27—H27B	109.5
C6—N1—H12	115 (3)	O24—C27—H27C	109.5
C2—N1—H12	106 (3)	H27A—C27—H27C	109.5
H11—N1—H12	106 (4)	H27B—C27—H27C	109.5
N1—C2—C3	110.1 (3)	C56—C51—C52	115 (2)
N1—C2—H2A	109.6	C56—C51—N4	125 (3)
C3—C2—H2A	109.6	G	. ,
N1—C2—H2B	107.0	C52—C51—N4	117 (4)
C_{2} C_{2} $U_{2}D$	109.6	C52—C51—N4 C53—C52—C51	117 (4) 120.4 (19)
$U_3 = U_2 = H_2 B$	109.6 109.6	C52—C51—N4 C53—C52—C51 C53—C52—H52	117 (4) 120.4 (19) 119.8
С3—С2—H2B H2A—С2—H2B	109.6 109.6 108.1	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52	117 (4) 120.4 (19) 119.8 119.8
H2A-C2-H2B N4-C3-C2	109.6 109.6 108.1 111.3 (3)	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52	117 (4) 120.4 (19) 119.8 119.8 120.8 (13)
H2A-C2-H2B N4-C3-C2 N4 C3 H3A	109.6 109.6 108.1 111.3 (3)	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53	117 (4) 120.4 (19) 119.8 119.8 120.8 (13)
H2A-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C2-H2A	109.6 109.6 108.1 111.3 (3) 109.4	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A	109.6 109.6 108.1 111.3 (3) 109.4 109.4	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B	109.6 109.6 108.1 111.3 (3) 109.4 109.4	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53 C53—C54—C55	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 117.8 (11)
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B C2-C3-H3B	109.6 109.6 108.1 111.3 (3) 109.4 109.4 109.4	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53 C53—C54—C55 C53—C54—O54	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 119.6 117.8 (11) 116.7 (13)
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B C2-C3-H3B H3A-C3-H3B	109.6 109.6 108.1 111.3 (3) 109.4 109.4 109.4 109.4 109.4	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53 C53—C54—C55 C53—C54—O54 C55—C54—O54	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 117.8 (11) 116.7 (13) 125.2 (15)
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B C2-C3-H3B H3A-C3-H3B C51-N4-C5	109.6 109.6 108.1 111.3 (3) 109.4 109.4 109.4 109.4 109.4 108.0 112 (2)	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53 C53—C54—C55 C53—C54—O54 C55—C54—O54 C54—C55—C56	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 117.8 (11) 116.7 (13) 125.2 (15) 121.2 (16)
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B C2-C3-H3B H3A-C3-H3B C51-N4-C5 C21-N4-C5	109.6 109.6 108.1 111.3 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.4 108.0 112 (2) 115.3 (7)	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53 C53—C54—C55 C53—C54—O54 C55—C54—O54 C54—C55—C56 C54—C55—H55	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 117.8 (11) 116.7 (13) 125.2 (15) 121.2 (16) 119.4
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B C2-C3-H3B H3A-C3-H3B C51-N4-C5 C21-N4-C3	109.6 109.6 108.1 111.3 (3) 109.4 109.4 109.4 109.4 109.4 109.4 109.4 108.0 112 (2) 115.3 (7) 117 (4)	C52—C51—N4 C53—C52—C51 C53—C52—H52 C51—C52—H52 C54—C53—C52 C54—C53—H53 C52—C53—H53 C53—C54—C55 C53—C54—O54 C55—C54—O54 C54—C55—C56 C54—C55—H55	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 117.8 (11) 116.7 (13) 125.2 (15) 121.2 (16) 119.4 119.4
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B C2-C3-H3B H3A-C3-H3B C51-N4-C5 C51-N4-C3 C21-N4-C3	109.6 109.6 108.1 111.3 (3) 109.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 117.8 (11) 116.7 (13) 125.2 (15) 121.2 (16) 119.4 119.4 121.4 (12)
C3-C2-H2B H2A-C2-H2B N4-C3-C2 N4-C3-H3A C2-C3-H3A N4-C3-H3B C2-C3-H3B H3A-C3-H3B C51-N4-C5 C21-N4-C3 C2-N4-C3 C5-N4-C3	109.6 109.6 109.6 108.1 111.3 (3) 109.4 108.0 112 (2) 115.3 (7) 117 (4) 114.0 (11) 111.5 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117 (4) 120.4 (19) 119.8 119.8 120.8 (13) 119.6 119.6 117.8 (11) 116.7 (13) 125.2 (15) 121.2 (16) 119.4 119.4 119.4 121.4 (12) 119.3

N4—C5—H5A	109.4	C54—O54—C57	119.3 (17)
С6—С5—Н5А	109.4	О54—С57—Н57А	109.5
N4—C5—H5B	109.4	О54—С57—Н57В	109.5
С6—С5—Н5В	109.4	Н57А—С57—Н57В	109.5
H5A—C5—H5B	108.0	O54—C57—H57C	109.5
N1—C6—C5	110.0 (3)	Н57А—С57—Н57С	109.5
N1—C6—H6A	109.7	H57B-C57-H57C	109.5
C5—C6—H6A	109.7	$C_{32} - C_{31} - C_{36}$	119 5 (4)
N1—C6—H6B	109.7	C_{32} C_{31} C_{37}	1200(4)
C5-C6-H6B	109.7	$C_{36} - C_{31} - C_{37}$	120.5(4)
H6A - C6 - H6B	108.2	C_{31} C_{32} C_{33}	120.3(1)
$C_{26} = C_{21} = C_{22}$	116.1 (7)	$C_{31} = C_{32} = H_{32}$	110.9
$C_{26} = C_{21} = C_{22}$	121.7(13)	C_{33} C_{32} H_{32}	110.0
$C_{20} = C_{21} = N_4$	121.7(13) 122.2(10)	C_{34} C_{32} C	119.4 (5)
$C_{22} = C_{21} = R_{4}$	122.2(10)	$C_{34} = C_{33} = C_{32}$	119.4 (3)
$C_{23} = C_{22} = C_{21}$	120.0 (0)	$C_{34} = C_{33} = H_{33}$	120.3
$C_{23} = C_{22} = H_{22}$	119.7	$C_{32} = C_{33} = 1155$	120.3
$C_{21} = C_{22} = H_{22}$	119.7	$C_{35} = C_{34} = C_{35}$	121.1(3)
$C_{24} = C_{23} = C_{22}$	122.0 (5)	$C_{33} = C_{34} = B_{134}$	120.3(5)
C24—C23—H23	118.7	C33—C34—Br34	118.6 (4)
C22—C23—H23	118.7	$C_{34} = C_{35} = C_{36}$	119.7 (5)
C23—C24—C25	117.4 (5)	C34—C35—H35	120.2
C23—C24—O24	116.5 (5)	С36—С35—Н35	120.2
C25—C24—O24	126.1 (6)	C31—C36—C35	120.1 (4)
C24—C25—C26	121.1 (10)	C31—C36—H36	119.9
C24—C25—H25	119.5	С35—С36—Н36	119.9
C26—C25—H25	119.5	O32—C37—O31	124.0 (5)
C21—C26—C25	122.1 (10)	O32—C37—C31	117.1 (5)
C21—C26—H26	119.0	O31—C37—C31	118.9 (4)
C25—C26—H26	119.0	H41—O41—H42	105 (6)
C24—O24—C27	119.2 (5)		
C6—N1—C2—C3	-58.3 (5)	C5—N4—C51—C52	-180(9)
N1—C2—C3—N4	56.7 (5)	C3—N4—C51—C52	-49 (14)
C2—C3—N4—C51	174 (7)	C56—C51—C52—C53	-20(15)
C2-C3-N4-C21	172.1 (16)	N4—C51—C52—C53	179 (8)
C2-C3-N4-C5	-55.2 (4)	C51—C52—C53—C54	19 (9)
C51—N4—C5—C6	-171(8)	C52—C53—C54—C55	-10(12)
$C_{21} - N_{4} - C_{5} - C_{6}$	-172.5(19)	C52—C53—C54—O54	175 (5)
C3—N4—C5—C6	55.6 (4)	C53-C54-C55-C56	3 (19)
C_{2} N1 – C6 – C5	58 6 (4)	054 - C54 - C55 - C56	178 (10)
N4-C5-C6-N1	-574(4)	C_{52} C_{51} C_{56} C_{55}	13 (18)
$C_{5}-N_{4}-C_{21}-C_{26}$	36 (4)	N4-C51-C56-C55	173 (14)
$C_3 - N_4 - C_{21} - C_{26}$	166 (2)	C_{54} C_{55} C_{56} C_{51}	-5(21)
C_{5} N4 C_{21} C_{22}	-143(2)	C_{53} C_{54} C_{54} C_{57}	-173(6)
$C_3 - N_4 - C_{21} - C_{22}$	-12(4)	C_{55} C_{54} C_{54} C_{57}	12 (14)
C_{26} C_{21} C_{22} C_{23}	3 (4)	C_{36} C_{31} C_{32} C_{33}	12(17)
N4-C21-C22-C23	-178 (2)	C_{37} C_{31} C_{32} C_{33}	-179.8(5)
$C_{21} = C_{22} = C_{23} = C_{24}$	-3(2)	C_{31} C_{32} C_{33} C_{34}	-0.5(8)
021 022 023 - 027	5 (4)	051 052 055-054	0.5 (0)
$C^{22} - C^{23} - C^{24} - C^{25}$	1(2)	C_{32} C_{33} C_{34} C_{35}	-0.4(9)
-------------------------------------	------------	-------------------------------------	------------
	1 (2)		0.4 ())
C22 - C23 - C24 - O24	-178.9(9)	C32—C33—C34—Br34	178.8 (4)
C23—C24—C25—C26	0 (4)	C33—C34—C35—C36	0.7 (9)
O24—C24—C25—C26	180 (2)	Br34—C34—C35—C36	-178.5 (4)
C22—C21—C26—C25	-2 (4)	C32—C31—C36—C35	-0.9 (6)
N4—C21—C26—C25	179 (3)	C37—C31—C36—C35	-179.9 (4)
C24—C25—C26—C21	1 (4)	C34—C35—C36—C31	0.0 (7)
C23—C24—O24—C27	170.6 (12)	C32—C31—C37—O32	-4.8 (6)
C25—C24—O24—C27	-9 (3)	C36—C31—C37—O32	174.2 (4)
C5—N4—C51—C56	21 (16)	C32—C31—C37—O31	174.5 (4)
C3—N4—C51—C56	151 (11)	C36—C31—C37—O31	-6.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H11…O31	0.78 (4)	2.03 (4)	2.805 (5)	174 (5)
N1—H12…O41	0.95 (5)	1.86 (5)	2.802 (5)	172 (4)
O41—H41…O32 ⁱ	0.79 (6)	1.84 (6)	2.623 (6)	170 (6)
O41—H42…O31 ⁱⁱ	0.79 (7)	2.00(7)	2.772 (5)	169 (6)
C2—H2 <i>B</i> ···O31 ⁱⁱⁱ	0.97	2.52	3.471 (5)	166
C22—H22…Cg1 ⁱⁱ	0.93	2.52	3.471 (5)	166
C26—H26··· <i>Cg</i> 1 ^{iv}	0.93	2.84	3.58 (2)	137

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1.

4-(4-Methoxyphenyl)piperazin-1-ium 2-hydroxybenzoate (V)

Crystal data

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD 6249 measured reflections diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator $R_{\rm int} = 0.014$ ω scans $h = -6 \rightarrow 8$ Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $k = -10 \rightarrow 6$ $T_{\rm min} = 0.899, T_{\rm max} = 0.969$ $l = -38 \rightarrow 41$

 $D_{\rm x} = 1.317 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3564 reflections $\theta = 2.5 - 27.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.42\times0.42\times0.34~mm$

3564 independent reflections 2875 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 27.8^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.0299P)^2 + 0.3737P]$
$wR(F^2) = 0.089$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3564 reflections	$\Delta ho_{ m max} = 0.14 \ m e \ m \AA^{-3}$
228 parameters	$\Delta \rho_{\rm min} = -0.13 \ { m e} \ { m \AA}^{-3}$
0 restraints	Extinction correction: SHELXL,
Primary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0244 (17)
Hydrogen site location: mixed	Absolute structure: Flack x determined using
	1011 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et
	<i>al.</i> 2013)

Special details

Experimental. Compound (V). IR (KBr , cm⁻¹) 3650 (OH), 3040 (NH₂), 2835 (OCH₃), 1571 (COO). NMR (CDCl₃) δ (¹H) 3.31 (m, 8H, piperazine), 3.77 (s, 3H, OCH₃), 6.85 (m, 5H, hydroxyphenyl and methoxyphenyl), 6.92 (m, 1H, hydroxyphenyl), 7.35 (t, 1H, hydroxyphenyl), 7.87 (m, 1H, hydroxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.5261 (3)	0.3567 (3)	0.21309 (7)	0.0468 (5)	
H11	0.616 (4)	0.369 (4)	0.2367 (9)	0.056*	
H12	0.452 (4)	0.254 (4)	0.2144 (8)	0.056*	
C2	0.6568 (4)	0.3607 (4)	0.17563 (8)	0.0488 (6)	
H2A	0.7532	0.2680	0.1765	0.059*	
H2B	0.7353	0.4642	0.1753	0.059*	
C3	0.5299 (4)	0.3490 (3)	0.13672 (8)	0.0443 (6)	
H3A	0.6189	0.3643	0.1128	0.053*	
H3B	0.4705	0.2377	0.1349	0.053*	
N4	0.3654 (3)	0.4727 (3)	0.13512 (6)	0.0381 (5)	
C5	0.2422 (4)	0.4788 (3)	0.17339 (7)	0.0426 (6)	
H5A	0.1606	0.3773	0.1755	0.051*	
H5B	0.1485	0.5733	0.1720	0.051*	
C6	0.3752 (4)	0.4953 (3)	0.21130 (8)	0.0460 (6)	
H6A	0.4472	0.6018	0.2106	0.055*	
H6B	0.2898	0.4933	0.2360	0.055*	
C21	0.2490 (4)	0.4737 (3)	0.09771 (7)	0.0373 (5)	
C22	0.3077 (4)	0.3820 (4)	0.06280 (8)	0.0515 (7)	
H22	0.4232	0.3134	0.0642	0.062*	
C23	0.1976 (5)	0.3911 (4)	0.02617 (8)	0.0544 (7)	
H23	0.2412	0.3295	0.0033	0.065*	
C24	0.0260 (4)	0.4886 (3)	0.02292 (8)	0.0460 (6)	
C25	-0.0385 (4)	0.5770 (4)	0.05738 (8)	0.0529 (7)	

H25	-0.1573	0.6418	0.0560	0.063*
C26	0.0728 (4)	0.5697 (4)	0.09394 (8)	0.0503 (7)
H26	0.0277	0.6312	0.1168	0.060*
O24	-0.0704 (3)	0.4899 (3)	-0.01523 (5)	0.0638 (6)
C27	-0.2374 (6)	0.6009 (5)	-0.02052 (10)	0.0833 (11)
H27A	-0.2851	0.5953	-0.0487	0.125*
H27B	-0.1938	0.7133	-0.0144	0.125*
H27C	-0.3469	0.5697	-0.0020	0.125*
C31	0.9904 (4)	0.4542 (3)	0.32938 (7)	0.0370 (5)
C32	1.1705 (4)	0.3584 (3)	0.32627 (7)	0.0394 (5)
C33	1.3127 (4)	0.3600 (4)	0.35834 (8)	0.0501 (7)
H33	1.4324	0.2967	0.3561	0.060*
C34	1.2782 (5)	0.4544 (4)	0.39334 (8)	0.0557 (7)
H34	1.3746	0.4546	0.4147	0.067*
C35	1.1023 (5)	0.5484 (4)	0.39698 (8)	0.0584 (8)
H35	1.0790	0.6119	0.4208	0.070*
C36	0.9613 (4)	0.5480 (3)	0.36539 (8)	0.0501 (7)
H36	0.8427	0.6123	0.3681	0.060*
O33	1.2074 (3)	0.2609 (2)	0.29254 (6)	0.0548 (5)
H33A	1.082 (5)	0.275 (4)	0.2766 (10)	0.082*
C37	0.8348 (4)	0.4561 (3)	0.29516 (8)	0.0453 (6)
O31	0.8614 (3)	0.3519 (3)	0.26569 (6)	0.0601 (6)
O32	0.6867 (3)	0.5531 (3)	0.29674 (7)	0.0682 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
N1	0.0464 (13)	0.0489 (12)	0.0452 (12)	-0.0102 (11)	-0.0143 (11)	0.0037 (11)
C2	0.0363 (13)	0.0520 (15)	0.0581 (15)	-0.0003 (12)	-0.0058 (13)	-0.0004 (14)
C3	0.0364 (13)	0.0475 (14)	0.0489 (14)	0.0030 (12)	0.0007 (11)	-0.0024 (12)
N4	0.0353 (10)	0.0416 (11)	0.0374 (10)	0.0037 (9)	-0.0007 (8)	-0.0024 (9)
C5	0.0388 (12)	0.0494 (14)	0.0395 (12)	0.0027 (12)	0.0008 (11)	-0.0041 (11)
C6	0.0484 (14)	0.0492 (15)	0.0404 (13)	-0.0030 (13)	0.0000 (12)	-0.0022 (12)
C21	0.0396 (12)	0.0350 (12)	0.0374 (12)	-0.0018 (11)	0.0015 (10)	-0.0011 (10)
C22	0.0559 (16)	0.0543 (16)	0.0444 (14)	0.0172 (14)	0.0005 (13)	-0.0062 (13)
C23	0.0699 (19)	0.0551 (17)	0.0381 (13)	0.0109 (15)	0.0013 (14)	-0.0102 (12)
C24	0.0555 (15)	0.0431 (14)	0.0393 (13)	-0.0032 (13)	-0.0070 (12)	0.0005 (11)
C25	0.0501 (15)	0.0582 (17)	0.0503 (16)	0.0139 (14)	-0.0088 (13)	-0.0047 (13)
C26	0.0523 (15)	0.0567 (17)	0.0418 (14)	0.0153 (14)	-0.0030 (12)	-0.0121 (12)
O24	0.0793 (14)	0.0684 (14)	0.0435 (10)	0.0051 (12)	-0.0190 (10)	-0.0036 (9)
C27	0.080 (2)	0.102 (3)	0.068 (2)	0.014 (2)	-0.0331 (19)	0.000 (2)
C31	0.0382 (12)	0.0331 (12)	0.0396 (13)	-0.0030 (10)	-0.0004 (10)	0.0076 (10)
C32	0.0416 (12)	0.0353 (12)	0.0413 (13)	-0.0017 (11)	-0.0006 (12)	0.0047 (11)
C33	0.0398 (14)	0.0552 (16)	0.0554 (16)	0.0006 (13)	-0.0092 (13)	0.0093 (14)
C34	0.0586 (17)	0.0642 (18)	0.0442 (15)	-0.0139 (16)	-0.0139 (14)	0.0084 (14)
C35	0.076 (2)	0.0595 (18)	0.0401 (15)	-0.0090 (17)	0.0015 (14)	-0.0046 (13)
C36	0.0524 (15)	0.0472 (15)	0.0506 (15)	0.0064 (14)	0.0064 (13)	0.0028 (12)
O33	0.0547 (12)	0.0555 (12)	0.0542 (11)	0.0139 (10)	-0.0054 (10)	-0.0087 (9)

C37	0.0431 (14)	0.0409 (14)	0.0517 (15)	-0.0037 (13)	-0.0069 (12)	0.0127 (12)
031	0.0639 (13)	0.0586 (12)	0.0580 (12)	0.0036 (11)	-0.0245 (10)	-0.0057 (10)
O32	0.0524 (11)	0.0730 (14)	0.0793 (14)	0.0200 (11)	-0.0115 (11)	0.0136 (11)

	ic parameters (Å, °)
--	----------------------

N1—C2	1.474 (3)	C24—C25	1.379 (4)
N1—C6	1.479 (3)	C25—C26	1.382 (4)
N1—H11	0.96 (3)	C25—H25	0.9300
N1—H12	0.95 (3)	C26—H26	0.9300
C2—C3	1.502 (3)	O24—C27	1.411 (4)
C2—H2A	0.9700	C27—H27A	0.9600
C2—H2B	0.9700	C27—H27B	0.9600
C3—N4	1.456 (3)	C27—H27C	0.9600
С3—НЗА	0.9700	C31—C36	1.391 (3)
С3—Н3В	0.9700	C31—C32	1.401 (3)
N4—C21	1.421 (3)	C31—C37	1.495 (3)
N4—C5	1.469 (3)	C32—O33	1.356 (3)
C5—C6	1.500 (3)	C32—C33	1.385 (3)
C5—H5A	0.9700	C33—C34	1.372 (4)
C5—H5B	0.9700	С33—Н33	0.9300
С6—Н6А	0.9700	C34—C35	1.372 (4)
С6—Н6В	0.9700	C34—H34	0.9300
C21—C26	1.383 (3)	C35—C36	1.368 (4)
C21—C22	1.393 (3)	С35—Н35	0.9300
C22—C23	1.380 (4)	С36—Н36	0.9300
С22—Н22	0.9300	O33—H33A	0.97 (3)
C23—C24	1.364 (4)	C37—O32	1.236 (3)
С23—Н23	0.9300	C37—O31	1.272 (3)
C24—O24	1.378 (3)		
C2—N1—C6	109.5 (2)	C24—C23—H23	119.3
C2—N1—H11	107.1 (16)	C22—C23—H23	119.3
C6—N1—H11	110.9 (17)	C23—C24—O24	116.4 (2)
C2—N1—H12	110.3 (16)	C23—C24—C25	118.6 (2)
C6—N1—H12	108.2 (16)	O24—C24—C25	125.0 (2)
H11—N1—H12	111 (2)	C24—C25—C26	120.2 (2)
N1-C2-C3	111.3 (2)	C24—C25—H25	119.9
N1—C2—H2A	109.4	C26—C25—H25	119.9
C3—C2—H2A	109.4	C25—C26—C21	122.1 (2)
N1—C2—H2B	109.4	C25—C26—H26	118.9
C3—C2—H2B	109.4	C21—C26—H26	118.9
H2A—C2—H2B	108.0	C24—O24—C27	117.5 (2)
N4—C3—C2	113.0 (2)	O24—C27—H27A	109.5
N4—C3—H3A	109.0	O24—C27—H27B	109.5
С2—С3—НЗА	109.0	H27A—C27—H27B	109.5
N4—C3—H3B	109.0	O24—C27—H27C	109.5
С2—С3—Н3В	109.0	H27A—C27—H27C	109.5

H3A—C3—H3B	107.8	H27B—C27—H27C	109.5
C21—N4—C3	115.14 (18)	C36—C31—C32	117.8 (2)
C21—N4—C5	114.77 (18)	C36—C31—C37	121.0 (2)
C3—N4—C5	113.17 (19)	C32—C31—C37	121.2 (2)
N4—C5—C6	111.69 (19)	O33—C32—C33	118.8 (2)
N4—C5—H5A	109.3	O33—C32—C31	121.2 (2)
С6—С5—Н5А	109.3	C33—C32—C31	120.0 (2)
N4—C5—H5B	109.3	C34—C33—C32	120.4 (3)
C6—C5—H5B	109.3	С34—С33—Н33	119.8
H5A—C5—H5B	107.9	С32—С33—Н33	119.8
N1—C6—C5	110.4 (2)	C35—C34—C33	120.4 (3)
N1—C6—H6A	109.6	С35—С34—Н34	119.8
С5—С6—Н6А	109.6	С33—С34—Н34	119.8
N1—C6—H6B	109.6	C36—C35—C34	119.6 (3)
С5—С6—Н6В	109.6	С36—С35—Н35	120.2
H6A—C6—H6B	108.1	С34—С35—Н35	120.2
C26—C21—C22	116.5 (2)	C35—C36—C31	121.9 (3)
C26—C21—N4	121.2 (2)	С35—С36—Н36	119.1
C22—C21—N4	122.2 (2)	С31—С36—Н36	119.1
C23—C22—C21	121.2 (3)	С32—О33—Н33А	102 (2)
C23—C22—H22	119.4	O32—C37—O31	123.0 (2)
C21—C22—H22	119.4	O32—C37—C31	120.2 (3)
C24—C23—C22	121.3 (2)	O31—C37—C31	116.7 (2)
C6—N1—C2—C3	-57.5 (3)	C22—C21—C26—C25	-1.0 (4)
N1-C2-C3-N4	52.5 (3)	N4—C21—C26—C25	177.7 (3)
C2-C3-N4-C21	176.2 (2)	C23—C24—O24—C27	-174.6 (3)
C2—C3—N4—C5	-49.1 (3)	C25—C24—O24—C27	5.7 (4)
C21—N4—C5—C6	-174.1 (2)	C36—C31—C32—O33	178.5 (2)
C3—N4—C5—C6	51.0 (3)	C37—C31—C32—O33	-1.6 (3)
C2—N1—C6—C5	59.7 (3)	C36—C31—C32—C33	-0.3 (3)
N4—C5—C6—N1	-56.4 (3)	C37—C31—C32—C33	179.5 (2)
C3—N4—C21—C26	171.8 (2)	O33—C32—C33—C34	-178.6 (2)
C5—N4—C21—C26	37.8 (3)	C31—C32—C33—C34	0.3 (4)
C3—N4—C21—C22	-9.6 (3)	C32—C33—C34—C35	0.0 (4)
C5—N4—C21—C22	-143.6 (2)	C33—C34—C35—C36	-0.2 (4)
C26—C21—C22—C23	1.7 (4)	C34—C35—C36—C31	0.2 (4)
N4—C21—C22—C23	-176.9 (3)	C32—C31—C36—C35	0.1 (4)
C21—C22—C23—C24	-0.8 (4)	C37—C31—C36—C35	-179.8 (2)
C22—C23—C24—O24	179.2 (3)	C36—C31—C37—O32	6.6 (4)
C22—C23—C24—C25	-1.0 (4)	C32—C31—C37—O32	-173.2 (2)
C23—C24—C25—C26	1.8 (4)	C36—C31—C37—O31	-171.9 (2)
O24—C24—C25—C26	-178.5 (3)	C32—C31—C37—O31	8.3 (3)
C24—C25—C26—C21	-0.7 (5)		

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H11…O31	0.96 (3)	1.85 (3)	2.759 (3)	156 (3)
N1—H11…O32	0.96 (3)	2.47 (3)	3.283 (3)	142 (2)
N1—H12····O32 ⁱ	0.95 (3)	1.87 (3)	2.806 (3)	166 (2)
O33—H33A····O31	0.97 (3)	1.60 (3)	2.516 (3)	156 (3)
С6—Н6А…О33 ^{іі}	0.97	2.58	3.444 (3)	148
C2— $H2A$ ···· $Cg1$ ⁱⁱⁱ	0.97	2.88	3.711 (3)	144
C26—H26…Cg1 ^{iv}	0.93	2.87	3.642 (3)	141

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+2, y+1/2, -z+1/2; (iii) -x+2, y-1/2, -z+1/2; (iv) -x+1, y+1/2, -z+1/2.

4-(4-Methoxyphenyl)piperazin-1-ium pyridine-3-carboxylate (VI)

Crystal data

 $C_{11}H_{17}N_2O^+C_6H_4NO_2^-M_r = 315.37$ Orthorhombic, *Pbca* a = 9.2817 (7) Å b = 11.2905 (7) Å c = 30.309 (2) Å V = 3176.2 (4) Å³ Z = 8F(000) = 1344

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.879, T_{\max} = 0.968$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.119$ S = 1.033593 reflections 215 parameters 0 restraints Primary atom site location: difference Fourier map Hydrogen site location: mixed $D_x = 1.319 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3593 reflections $\theta = 2.6-27.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.46 \times 0.42 \times 0.36 \text{ mm}$

22154 measured reflections 3593 independent reflections 2616 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -11 \rightarrow 11$ $k = -14 \rightarrow 13$ $l = -38 \rightarrow 35$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 1.5726P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}Extinction coefficient: 0.0074 (6)

Special details

Experimental. Compound (VI). IR (KBr, cm⁻¹) 3040 (NH₂), 2829 (OCH₃), 1584 (COO). NMR (CDCl₃) δ ⁽¹H) 3.27 (m, 4H, piperazine), 3.34 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.90 (m, 4H, methoxyphenyl), 7.33 (m, 1H, nicotinate), 8.67 (m, 2H, nicotinate), 9.24 (m, 1H, nicotinate).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.66467 (17)	0.63416 (13)	0.53807 (5)	0.0405 (4)	
H12	0.711 (2)	0.5701 (18)	0.5241 (6)	0.049*	
H11	0.650 (2)	0.6962 (17)	0.5161 (6)	0.049*	
C2	0.52299 (18)	0.59306 (15)	0.55418 (6)	0.0401 (4)	
H2A	0.4642	0.5684	0.5294	0.048*	
H2B	0.4739	0.6577	0.5690	0.048*	
C3	0.54099 (18)	0.49095 (14)	0.58566 (5)	0.0368 (4)	
H3A	0.4473	0.4669	0.5967	0.044*	
H3B	0.5831	0.4242	0.5702	0.044*	
N4	0.63342 (14)	0.52403 (11)	0.62269 (4)	0.0337 (3)	
C5	0.77180 (19)	0.57192 (16)	0.60810 (6)	0.0440 (4)	
H5A	0.8273	0.5094	0.5942	0.053*	
H5B	0.8255	0.5995	0.6336	0.053*	
C6	0.7534 (2)	0.67296 (16)	0.57600 (6)	0.0479 (5)	
H6A	0.7070	0.7391	0.5907	0.058*	
H6B	0.8470	0.6990	0.5656	0.058*	
C21	0.63956 (17)	0.44215 (13)	0.65799 (5)	0.0317 (3)	
C22	0.5429 (2)	0.35039 (16)	0.66255 (6)	0.0449 (4)	
H22	0.4750	0.3379	0.6405	0.054*	
C23	0.5436 (2)	0.27603 (15)	0.69898 (6)	0.0464 (5)	
H23	0.4759	0.2155	0.7010	0.056*	
C24	0.64245 (19)	0.29057 (14)	0.73195 (5)	0.0391 (4)	
C25	0.7405 (2)	0.38118 (18)	0.72806 (6)	0.0558 (5)	
H25	0.8087	0.3926	0.7501	0.067*	
C26	0.7395 (2)	0.45523 (17)	0.69203 (6)	0.0523 (5)	
H26	0.8073	0.5157	0.6903	0.063*	
O24	0.65388 (16)	0.22083 (12)	0.76910 (4)	0.0551 (4)	
C27	0.5378 (3)	0.14351 (19)	0.77845 (7)	0.0632 (6)	
H27A	0.5581	0.0999	0.8049	0.095*	
H27B	0.4512	0.1888	0.7824	0.095*	
H27C	0.5252	0.0893	0.7544	0.095*	
N31	0.6143 (2)	1.14730 (14)	0.39733 (6)	0.0587 (5)	
C32	0.6210 (2)	1.07950 (15)	0.43309 (6)	0.0439 (4)	
H32	0.6092	1.1158	0.4604	0.053*	
C33	0.64434 (17)	0.95882 (13)	0.43243 (5)	0.0332 (4)	
C34	0.66384 (19)	0.90618 (16)	0.39174 (6)	0.0419 (4)	
H34	0.6786	0.8249	0.3896	0.050*	
C35	0.6611 (2)	0.97549 (19)	0.35436 (6)	0.0517 (5)	
H35	0.6767	0.9422	0.3267	0.062*	
C36	0.6353 (2)	1.09376 (19)	0.35863 (7)	0.0588 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H36	0.6321	1.1397	0.3332	0.071*	
C37	0.64844 (18)	0.88736 (15)	0.47434 (6)	0.0378 (4)	
O31	0.60454 (17)	0.78319 (11)	0.47188 (4)	0.0589 (4)	
O32	0.69492 (15)	0.93503 (12)	0.50849 (4)	0.0543 (4)	

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
N1	0.0484 (9)	0.0353 (7)	0.0379 (8)	0.0052 (7)	0.0025 (7)	0.0083 (6)
C2	0.0387 (9)	0.0413 (9)	0.0403 (9)	0.0052 (7)	-0.0030 (7)	0.0026 (8)
C3	0.0337 (9)	0.0384 (9)	0.0383 (9)	-0.0016 (7)	-0.0021 (7)	0.0027 (7)
N4	0.0313 (7)	0.0354 (7)	0.0344 (7)	-0.0020 (6)	0.0001 (6)	0.0032 (6)
C5	0.0382 (9)	0.0509 (10)	0.0428 (9)	-0.0112 (8)	-0.0039 (8)	0.0099 (8)
C6	0.0515 (11)	0.0435 (10)	0.0488 (11)	-0.0119 (8)	-0.0021 (9)	0.0082 (8)
C21	0.0315 (8)	0.0321 (8)	0.0314 (8)	0.0024 (6)	0.0031 (6)	-0.0009 (6)
C22	0.0483 (11)	0.0452 (10)	0.0413 (10)	-0.0135 (8)	-0.0089 (8)	0.0042 (8)
C23	0.0536 (11)	0.0405 (9)	0.0452 (10)	-0.0153 (8)	0.0004 (8)	0.0044 (8)
C24	0.0465 (10)	0.0363 (8)	0.0345 (8)	0.0008 (8)	0.0049 (7)	0.0038 (7)
C25	0.0547 (12)	0.0632 (12)	0.0495 (11)	-0.0151 (10)	-0.0169 (9)	0.0159 (10)
C26	0.0487 (11)	0.0556 (11)	0.0526 (11)	-0.0201 (9)	-0.0122 (9)	0.0165 (9)
O24	0.0657 (9)	0.0559 (8)	0.0436 (7)	-0.0092 (7)	-0.0005 (6)	0.0169 (6)
C27	0.0701 (14)	0.0575 (12)	0.0620 (13)	-0.0050 (11)	0.0117 (11)	0.0232 (10)
N31	0.0794 (13)	0.0393 (8)	0.0573 (10)	-0.0007 (9)	-0.0084 (9)	0.0127 (8)
C32	0.0537 (11)	0.0356 (9)	0.0425 (10)	0.0018 (8)	-0.0021 (8)	0.0007 (8)
C33	0.0283 (8)	0.0318 (8)	0.0396 (9)	-0.0024 (6)	-0.0031 (7)	0.0036 (6)
C34	0.0434 (10)	0.0364 (9)	0.0458 (10)	0.0001 (8)	-0.0040 (8)	-0.0040 (8)
C35	0.0523 (12)	0.0664 (13)	0.0363 (10)	-0.0086 (10)	-0.0004 (8)	-0.0028 (9)
C36	0.0712 (14)	0.0595 (13)	0.0458 (11)	-0.0115 (11)	-0.0079 (10)	0.0195 (10)
C37	0.0343 (9)	0.0377 (9)	0.0415 (9)	-0.0008 (7)	-0.0032 (7)	0.0065 (7)
O31	0.0833 (11)	0.0368 (7)	0.0566 (8)	-0.0120 (7)	-0.0157 (7)	0.0144 (6)
O32	0.0670 (9)	0.0575 (8)	0.0385 (7)	-0.0166 (7)	-0.0106 (6)	0.0060 (6)

N1—C2	1.477 (2)	C24—C25	1.375 (3)
N1—C6	1.480 (2)	C24—O24	1.3781 (19)
N1—H12	0.94 (2)	C25—C26	1.375 (2)
N1—H11	0.97 (2)	C25—H25	0.9300
С2—С3	1.506 (2)	C26—H26	0.9300
C2—H2A	0.9700	O24—C27	1.416 (2)
C2—H2B	0.9700	C27—H27A	0.9600
C3—N4	1.461 (2)	C27—H27B	0.9600
С3—НЗА	0.9700	C27—H27C	0.9600
С3—Н3В	0.9700	N31—C32	1.328 (2)
N4—C21	1.4152 (19)	N31—C36	1.334 (3)
N4—C5	1.462 (2)	C32—C33	1.380 (2)
С5—С6	1.509 (2)	С32—Н32	0.9300
С5—Н5А	0.9700	C33—C34	1.381 (2)

С5—Н5В	0.9700	C33—C37	1.505 (2)
С6—Н6А	0.9700	C34—C35	1.377 (3)
С6—Н6В	0.9700	С34—Н34	0.9300
C21—C22	1.377 (2)	C35—C36	1.363 (3)
C21—C26	1.395 (2)	С35—Н35	0.9300
C22—C23	1.387 (2)	C36—H36	0.9300
С22—Н22	0.9300	$C_{37} - C_{32}$	1 244 (2)
C^{23} C^{24}	1 366 (3)	$C_{37} = 0.31$	1.211(2) 1.247(2)
C23—H23	0.9300	057 051	1.247 (2)
625-1125	0.7500		
C2_N1_C6	109 37 (13)	C_{24} C_{23} C_{22}	120.82 (16)
$C_2 = N_1 = C_0$	109.57(13) 108.5(12)	$C_{24} = C_{23} = C_{22}$	120.82 (10)
C6 N1 H12	108.5(12) 108.6(12)	$C_{24} = C_{23} = H_{23}$	119.0
$C_0 = N_1 = H_{12}$	106.0(12) 100.1(11)	$C_{22} = C_{23} = C_{23} = C_{23}$	119.0
C2-NI-HII	109.1(11)	$C_{23} = C_{24} = C_{23}$	118.14(10)
C6—NI—HII	113.2 (11)	$C_{23} = C_{24} = O_{24}$	125.48 (16)
	107.9 (15)	$C_{25} = C_{24} = O_{24}$	116.38 (16)
N1—C2—C3	110.55 (13)	C24—C25—C26	121.05 (17)
N1—C2—H2A	109.5	C24—C25—H25	119.5
C3—C2—H2A	109.5	С26—С25—Н25	119.5
N1—C2—H2B	109.5	C25—C26—C21	121.82 (17)
C3—C2—H2B	109.5	C25—C26—H26	119.1
H2A—C2—H2B	108.1	C21—C26—H26	119.1
N4—C3—C2	110.87 (13)	C24—O24—C27	117.22 (15)
N4—C3—H3A	109.5	O24—C27—H27A	109.5
С2—С3—НЗА	109.5	O24—C27—H27B	109.5
N4—C3—H3B	109.5	H27A—C27—H27B	109.5
С2—С3—Н3В	109.5	O24—C27—H27C	109.5
НЗА—СЗ—НЗВ	108.1	H27A—C27—H27C	109.5
C21—N4—C3	115.94 (13)	H27B—C27—H27C	109.5
C21—N4—C5	115.77 (13)	C_{32} N31 $-C_{36}$	116.71 (16)
C3-N4-C5	112 21 (13)	N31—C32—C33	124 38 (17)
N4-C5-C6	112.21(15) 112.02(15)	N31_C32_H32	117.8
N4-C5-H5A	109.2	C_{33} C_{32} H_{32}	117.8
C6 C5 H5A	109.2	C_{32} C_{32} C_{34}	117.20 (16)
NA C5 H5B	109.2	$C_{32} = C_{33} = C_{34}$	117.29(10) 121.41(15)
C6 C5 U5P	109.2	$C_{32} = C_{33} = C_{37}$	121.41(13) 121.21(14)
	107.0	$C_{34} = C_{33} = C_{37}$	121.31(14)
NI C(C5	107.9	$C_{35} = C_{34} = C_{35}$	119.20 (17)
	109.88 (14)	C33—C34—H34	120.4
NI—Co—H6A	109.7	C33—C34—H34	120.4
С5—С6—Н6А	109.7	C36—C35—C34	118.80 (18)
N1—C6—H6B	109.7	С36—С35—Н35	120.6
С5—С6—Н6В	109.7	С34—С35—Н35	120.6
H6A—C6—H6B	108.2	N31—C36—C35	123.59 (18)
C22—C21—C26	116.02 (15)	N31—C36—H36	118.2
C22—C21—N4	122.74 (15)	C35—C36—H36	118.2
C26—C21—N4	121.11 (14)	O32—C37—O31	124.84 (16)
C21—C22—C23	122.14 (16)	O32—C37—C33	118.62 (15)
C21—C22—H22	118.9	O31—C37—C33	116.54 (15)

С23—С22—Н22	118.9		
C6—N1—C2—C3	-59.85 (18)	O24—C24—C25—C26	179.32 (18)
N1-C2-C3-N4	57.18 (18)	C24—C25—C26—C21	0.1 (3)
C2-C3-N4-C21	170.15 (13)	C22—C21—C26—C25	-0.4 (3)
C2-C3-N4-C5	-53.72 (18)	N4—C21—C26—C25	175.52 (18)
C21—N4—C5—C6	-170.28 (14)	C23—C24—O24—C27	-13.4 (3)
C3—N4—C5—C6	53.52 (19)	C25—C24—O24—C27	167.31 (18)
C2—N1—C6—C5	58.59 (19)	C36—N31—C32—C33	-1.7 (3)
N4—C5—C6—N1	-55.7 (2)	N31—C32—C33—C34	0.9 (3)
C3—N4—C21—C22	-13.9 (2)	N31—C32—C33—C37	-179.08 (17)
C5—N4—C21—C22	-148.45 (17)	C32—C33—C34—C35	0.9 (3)
C3—N4—C21—C26	170.48 (16)	C37—C33—C34—C35	-179.12 (16)
C5—N4—C21—C26	35.9 (2)	C33—C34—C35—C36	-1.8 (3)
C26—C21—C22—C23	0.7 (3)	C32—N31—C36—C35	0.7 (3)
N4—C21—C22—C23	-175.17 (16)	C34—C35—C36—N31	1.0 (3)
C21—C22—C23—C24	-0.6 (3)	C32—C33—C37—O32	-32.1 (2)
C22—C23—C24—C25	0.3 (3)	C34—C33—C37—O32	147.86 (17)
C22—C23—C24—O24	-178.99 (17)	C32—C33—C37—O31	148.09 (18)
C23—C24—C25—C26	0.0 (3)	C34—C33—C37—O31	-31.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H11…O31	0.976 (19)	1.714 (19)	2.677 (2)	168.2 (18)
N1—H12…O32 ⁱ	0.94 (2)	1.82 (2)	2.749 (2)	168.3 (17)
C2—H2 <i>B</i> ···N31 ⁱⁱ	0.97	2.56	3.518 (2)	169
C36—H36…O24 ⁱⁱⁱ	0.93	2.51	3.432 (2)	172
C3—H3 <i>A</i> ··· <i>Cg</i> 1 ^{iv}	0.97	2.97	3.775 (2)	156

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) *x*, -*y*+3/2, *z*-1/2; (iv) *x*-1/2, -*y*+3/2, -*z*+1.

4-(4-Methoxyphenyl)piperazin-1-ium 2-hydroxy-3,5-dinitrobenzoate (VII)

Crystal data	
$C_7H_3N_2O_7^+ \cdot C_{11}H_{17}N_2O^-$	F(000) = 880
$M_r = 420.38$	$D_{\rm x} = 1.478 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.5500 (9) Å	Cell parameters from 4078 reflections
b = 7.6489 (9) Å	$\theta = 2.7 - 28.0^{\circ}$
c = 32.719 (6) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 91.30 \ (1)^{\circ}$	T = 296 K
$V = 1889.0 (5) Å^3$	Block, colourless
<i>Z</i> = 4	$0.18 \times 0.12 \times 0.06 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur with Sapphire CCD	Absorption correction: multi-scan
Padiation source: Enhance (Mo) Y ray Source	T = 0.016 $T = 0.003$
Granhita monochromator	$T_{\min} = 0.910, T_{\max} = 0.995$
	4074 independent reflections
w scans	4074 macpendent renections

2003 reflections with $I > 2\sigma(I)$	$h = -9 \rightarrow 5$
$R_{\rm int} = 0.038$	$k = -9 \rightarrow 9$
$\theta_{\rm max} = 28.0^\circ, \theta_{\rm min} = 2.7^\circ$	$l = -42 \rightarrow 41$
Refinement	
Refinement on F^2	Primary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: mixed
$wR(F^2) = 0.128$	H atoms treated by a mixture of independent
<i>S</i> = 1.03	and constrained refinement
4074 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2 + 0.4471P]$
281 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. Compound (VII). IR (KBr, cm⁻¹) 3084 (NH₂), 2834 (OCH₃), 1568 (COO), 1499 (NO₂). NMR (CDCl₃) δ ⁽¹H) 3.05 (m, 4H, piperazine), 3.37 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.85 (m, 4H, methoxyphenyl), 7.52 (s, 1H, 3,5-dinitrosalicylate), 8.09 (s, 1H, 3,5-dinitrosalicylate), 8.99 (s, 1H, 3,5-dinitrosalicylate).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.6215 (3)	0.5723 (4)	0.61103 (8)	0.0465 (7)	
0.703 (4)	0.587 (4)	0.5906 (9)	0.056*	
0.533 (4)	0.494 (4)	0.6028 (9)	0.056*	
0.5349 (4)	0.7433 (4)	0.61776 (9)	0.0531 (9)	
0.4783	0.7826	0.5925	0.064*	
0.6235	0.8292	0.6258	0.064*	
0.3982 (4)	0.7294 (4)	0.65055 (9)	0.0489 (8)	
0.3504	0.8446	0.6559	0.059*	
0.3016	0.6558	0.6407	0.059*	
0.4712 (3)	0.6567 (3)	0.68854 (7)	0.0399 (6)	
0.5669 (4)	0.4924 (4)	0.68187 (9)	0.0483 (8)	
0.4832	0.4024	0.6734	0.058*	
0.6233	0.4554	0.7074	0.058*	
0.7057 (4)	0.5118 (4)	0.64972 (8)	0.0505 (8)	
0.7947	0.5955	0.6588	0.061*	
0.7637	0.4003	0.6454	0.061*	
0.3501 (4)	0.6515 (4)	0.72152 (9)	0.0382 (7)	
0.1878 (4)	0.7370 (4)	0.72002 (10)	0.0510 (8)	
0.1538	0.7966	0.6963	0.061*	
0.0745 (4)	0.7358 (4)	0.75303 (10)	0.0522 (8)	
-0.0327	0.7954	0.7512	0.063*	
0.1201 (4)	0.6473 (4)	0.78814 (9)	0.0455 (8)	
0.2807 (4)	0.5624 (4)	0.79002 (9)	0.0547 (9)	
	x 0.6215 (3) 0.703 (4) 0.533 (4) 0.533 (4) 0.533 (4) 0.533 (4) 0.533 (4) 0.533 (4) 0.4783 0.6235 0.3982 (4) 0.3504 0.3016 0.4712 (3) 0.5669 (4) 0.4832 0.6233 0.7057 (4) 0.7947 0.7637 0.3501 (4) 0.1878 (4) 0.1538 0.0745 (4) -0.0327 0.1201 (4) 0.2807 (4)	xy 0.6215 (3) 0.5723 (4) 0.703 (4) 0.587 (4) 0.533 (4) 0.494 (4) 0.533 (4) 0.7433 (4) 0.5349 (4) 0.7433 (4) 0.4783 0.7826 0.6235 0.8292 0.3982 (4) 0.7294 (4) 0.3504 0.8446 0.3016 0.6558 0.4712 (3) 0.6567 (3) 0.5669 (4) 0.4924 (4) 0.4832 0.4024 0.6233 0.4554 0.7057 (4) 0.5118 (4) 0.7947 0.5955 0.7637 0.4003 0.3501 (4) 0.6515 (4) 0.1878 (4) 0.7370 (4) 0.1538 0.7966 0.0745 (4) 0.7358 (4) -0.0327 0.7954 0.1201 (4) 0.6473 (4) 0.2807 (4) 0.5624 (4)	xyz $0.6215 (3)$ $0.5723 (4)$ $0.61103 (8)$ $0.703 (4)$ $0.587 (4)$ $0.5906 (9)$ $0.533 (4)$ $0.494 (4)$ $0.6028 (9)$ $0.533 (4)$ $0.7433 (4)$ $0.61776 (9)$ 0.4783 0.7826 0.5925 0.6235 0.8292 0.6258 $0.3982 (4)$ $0.7294 (4)$ $0.65055 (9)$ 0.3504 0.8446 0.6559 0.3016 $0.6567 (3)$ $0.68854 (7)$ $0.4712 (3)$ $0.6567 (3)$ $0.68854 (7)$ $0.5669 (4)$ $0.4924 (4)$ 0.6734 0.6233 0.4554 0.7074 $0.7057 (4)$ $0.5118 (4)$ $0.64972 (8)$ 0.7947 0.5955 0.6588 0.7637 0.4003 0.6454 $0.3501 (4)$ $0.7370 (4)$ $0.72152 (9)$ $0.1878 (4)$ $0.7358 (4)$ $0.75303 (10)$ -0.0327 0.7954 0.7512 $0.1201 (4)$ $0.6473 (4)$ $0.78814 (9)$ $0.2807 (4)$ $0.5624 (4)$ $0.79002 (9)$	xyz $U_{bo}*/U_{eq}$ 0.6215 (3)0.5723 (4)0.61103 (8)0.0465 (7)0.703 (4)0.587 (4)0.5906 (9)0.056*0.533 (4)0.494 (4)0.6028 (9)0.056*0.5349 (4)0.7433 (4)0.61776 (9)0.0531 (9)0.47830.78260.59250.064*0.62350.82920.62580.064*0.3982 (4)0.7294 (4)0.65055 (9)0.0489 (8)0.35040.84460.65590.059*0.30160.65580.64070.059*0.30160.6557 (3)0.68854 (7)0.0399 (6)0.5669 (4)0.4924 (4)0.68187 (9)0.0483 (8)0.48320.40240.67340.058*0.62330.45540.70740.058*0.62330.45540.70740.058*0.62330.45540.70740.058*0.7057 (4)0.5118 (4)0.64972 (8)0.0505 (8)0.79470.59550.65880.061*0.76370.40030.64540.061*0.3501 (4)0.6515 (4)0.72152 (9)0.0382 (7)0.1878 (4)0.7370 (4)0.72002 (10)0.0510 (8)0.15380.79660.69630.061*0.0745 (4)0.7358 (4)0.75303 (10)0.0522 (8)-0.03270.79540.75120.063*0.1201 (4)0.6473 (4)0.78814 (9)0.0455 (8)0.2807 (4)0.5624 (4)0.79002 (9)0.0547 (9)

H25	0.3138	0.5028	0.8138	0.066*
C26	0.3934 (4)	0.5636 (4)	0.75758 (9)	0.0499 (8)
H26	0.5008	0.5044	0.7598	0.060*
O24	0.0184 (3)	0.6354 (3)	0.82246 (6)	0.0640 (7)
C27	-0.1485 (4)	0.7203 (5)	0.82152 (11)	0.0745 (11)
H27A	-0.2061	0.7017	0.8470	0.112*
H27B	-0.2206	0.6733	0.7996	0.112*
H27C	-0.1318	0.8433	0.8173	0.112*
C31	0.8836 (3)	0.6893 (4)	0.46865 (8)	0.0355 (7)
C32	0.8864 (3)	0.7026 (4)	0.51247 (9)	0.0374 (7)
C33	1.0424 (3)	0.7812 (4)	0.52995 (8)	0.0352 (7)
C34	1.1812 (3)	0.8371 (4)	0.50706 (8)	0.0372 (7)
H34	1.2797	0.8892	0.5195	0.045*
C35	1.1728 (3)	0.8150 (4)	0.46526 (9)	0.0368 (7)
C36	1.0252 (3)	0.7425 (4)	0.44590 (9)	0.0383 (7)
H36	1.0217	0.7298	0.4176	0.046*
C37	0.7243 (4)	0.6189 (4)	0.44690 (10)	0.0446 (8)
031	0.7120 (3)	0.6063 (3)	0.40978 (6)	0.0609 (7)
O32	0.5931 (2)	0.5689 (3)	0.46961 (7)	0.0626 (7)
H32	0.638 (4)	0.590 (5)	0.4996 (12)	0.094*
033	0.7553 (2)	0.6499 (3)	0.53332 (6)	0.0530 (6)
N33	1.0576 (3)	0.8102 (4)	0.57403 (8)	0.0481 (7)
O34	0.9695 (3)	0.7215 (4)	0.59704 (7)	0.0868 (9)
O35	1.1628 (3)	0.9203 (3)	0.58660 (6)	0.0627 (7)
N35	1.3207 (3)	0.8725 (3)	0.44092 (9)	0.0492 (7)
O36	1.4399 (3)	0.9552 (3)	0.45754 (7)	0.0715 (7)
O37	1.3199 (3)	0.8357 (3)	0.40434 (7)	0.0687 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0429 (15)	0.061 (2)	0.0360 (15)	-0.0125 (14)	0.0016 (11)	-0.0055 (14)
C2	0.064 (2)	0.053 (2)	0.0417 (19)	-0.0007 (17)	0.0004 (16)	0.0075 (17)
C3	0.0565 (19)	0.053 (2)	0.0371 (18)	0.0086 (16)	0.0021 (15)	0.0053 (16)
N4	0.0438 (13)	0.0416 (16)	0.0342 (14)	0.0040 (11)	-0.0003 (11)	0.0033 (12)
C5	0.0505 (18)	0.055 (2)	0.0397 (19)	0.0108 (16)	0.0033 (14)	0.0063 (16)
C6	0.0477 (18)	0.066 (2)	0.0374 (18)	0.0033 (16)	-0.0019 (14)	-0.0007 (17)
C21	0.0430 (16)	0.0340 (18)	0.0375 (17)	-0.0001 (13)	-0.0035 (13)	-0.0012 (14)
C22	0.0511 (19)	0.057 (2)	0.045 (2)	0.0118 (16)	0.0001 (15)	0.0135 (17)
C23	0.0480 (18)	0.053 (2)	0.056 (2)	0.0132 (15)	0.0034 (16)	0.0039 (18)
C24	0.0482 (18)	0.045 (2)	0.044 (2)	0.0021 (15)	0.0057 (15)	-0.0026 (16)
C25	0.062 (2)	0.064 (2)	0.0382 (19)	0.0154 (18)	-0.0005 (15)	0.0126 (18)
C26	0.0490 (18)	0.059 (2)	0.0417 (19)	0.0167 (16)	-0.0010 (15)	0.0055 (17)
O24	0.0614 (15)	0.0814 (18)	0.0497 (14)	0.0129 (12)	0.0142 (11)	0.0028 (13)
C27	0.057 (2)	0.096 (3)	0.071 (3)	0.014 (2)	0.0207 (19)	-0.007 (2)
C31	0.0344 (15)	0.0352 (17)	0.0366 (17)	-0.0028 (13)	-0.0008 (13)	-0.0002 (14)
C32	0.0318 (15)	0.0367 (18)	0.0437 (18)	0.0004 (13)	0.0011 (13)	0.0046 (15)
C33	0.0367 (16)	0.0371 (18)	0.0315 (16)	0.0003 (13)	-0.0022 (13)	0.0003 (14)

C34	0.0352 (15)	0.0340 (18)	0.0422 (18)	-0.0016 (13)	-0.0053 (13)	-0.0020 (15)
C35	0.0316 (15)	0.0345 (17)	0.0443 (19)	-0.0064 (13)	0.0036 (13)	0.0017 (15)
C36	0.0405 (16)	0.0355 (17)	0.0388 (17)	-0.0019 (13)	0.0018 (13)	-0.0015 (14)
C37	0.0397 (17)	0.048 (2)	0.046 (2)	-0.0086 (14)	-0.0020 (15)	0.0005 (16)
O31	0.0570 (13)	0.0868 (19)	0.0389 (14)	-0.0254 (12)	-0.0012 (10)	-0.0093 (13)
O32	0.0429 (13)	0.099 (2)	0.0455 (13)	-0.0297 (12)	-0.0024 (10)	0.0073 (14)
O33	0.0396 (12)	0.0793 (17)	0.0404 (13)	-0.0153 (11)	0.0032 (10)	0.0039 (12)
N33	0.0381 (14)	0.063 (2)	0.0424 (17)	0.0001 (13)	-0.0041 (12)	0.0013 (15)
O34	0.0712 (16)	0.146 (3)	0.0427 (15)	-0.0443 (16)	0.0011 (12)	0.0102 (16)
O35	0.0688 (15)	0.0690 (17)	0.0495 (14)	-0.0132 (13)	-0.0138 (11)	-0.0063 (13)
N35	0.0460 (16)	0.0512 (18)	0.0505 (18)	-0.0110 (13)	0.0022 (13)	0.0012 (15)
O36	0.0604 (14)	0.092 (2)	0.0616 (16)	-0.0425 (13)	0.0006 (12)	-0.0031 (14)
O37	0.0643 (15)	0.095 (2)	0.0474 (15)	-0.0258 (13)	0.0132 (11)	-0.0123 (15)

Geometric parameters (Å, °)

N1—C6	1.478 (4)	C25—H25	0.9300
N1—C2	1.481 (4)	C26—H26	0.9300
N1—H11	0.93 (3)	O24—C27	1.417 (3)
N1—H12	0.93 (3)	C27—H27A	0.9600
C2—C3	1.509 (4)	C27—H27B	0.9600
C2—H2A	0.9700	C27—H27C	0.9600
C2—H2B	0.9700	C31—C36	1.378 (4)
C3—N4	1.458 (3)	C31—C32	1.437 (4)
С3—НЗА	0.9700	C31—C37	1.485 (4)
С3—Н3В	0.9700	C32—O33	1.280 (3)
N4—C21	1.431 (3)	C32—C33	1.430 (4)
N4—C5	1.469 (3)	C33—C34	1.370 (3)
C5—C6	1.509 (4)	C33—N33	1.461 (3)
С5—Н5А	0.9700	C34—C35	1.378 (4)
С5—Н5В	0.9700	C34—H34	0.9300
С6—Н6А	0.9700	C35—C36	1.385 (4)
С6—Н6В	0.9700	C35—N35	1.455 (3)
C21—C22	1.389 (4)	C36—H36	0.9300
C21—C26	1.391 (4)	C37—O31	1.220 (3)
C22—C23	1.393 (4)	C37—O32	1.309 (3)
С22—Н22	0.9300	O32—H32	1.04 (4)
C23—C24	1.371 (4)	N33—O34	1.222 (3)
С23—Н23	0.9300	N33—O35	1.223 (3)
C24—C25	1.376 (4)	N35—O36	1.218 (3)
C24—O24	1.378 (3)	N35—O37	1.229 (3)
C25—C26	1.375 (4)		
C6N1C2	1094(2)	C_{25} C_{24} O_{24}	116 1 (3)
$C_{0} = N_{1} = C_{2}$	112 1 (18)	$C_{25} - C_{24} - C_{24}$	121 5 (3)
C_{2} N1_H11	112.1(10) 107.5(18)	$C_{20} = C_{23} = C_{24}$	110.2
$C_{$	109.6 (18)	$C_{20} = C_{23} = H_{23}$	119.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0(10) 107.2(18)	$C_{24} = C_{25} = M_{25}$	117.2 121.3 (3)
$C_2 = 101 = 1112$	107.2 (10)	$C_{23} - C_{20} - C_{21}$	121.5 (5)

H11—N1—H12	111 (3)	C25—C26—H26	119.3
N1—C2—C3	110.8 (2)	C21—C26—H26	119.3
N1—C2—H2A	109.5	C24—O24—C27	117.6 (3)
C3—C2—H2A	109.5	O24—C27—H27A	109.5
N1—C2—H2B	109.5	O24—C27—H27B	109.5
C3—C2—H2B	109.5	H27A—C27—H27B	109.5
H2A—C2—H2B	108.1	O24—C27—H27C	109.5
N4—C3—C2	112.4 (2)	H27A—C27—H27C	109.5
N4—C3—H3A	109.1	H27B—C27—H27C	109.5
C2—C3—H3A	109.1	C_{36} C_{31} C_{32}	121.6 (2)
N4—C3—H3B	109.1	$C_{36} - C_{31} - C_{37}$	118.6 (3)
C2-C3-H3B	109.1	C_{32} C_{31} C_{37}	110.0(3) 119.8(2)
H_{3A} C_{3} H_{3B}	107.8	033 - C32 - C33	124.0(3)
C_{21} N4 C_{3}	114 7 (2)	033 - C32 - C31	121.0(2)
$C_{21} = N_{4} = C_{5}$	1144(2)	C_{33} C_{32} C_{31}	121.0(2) 1150(2)
$C_3 - N_4 - C_5$	1122(2)	C_{34} C_{33} C_{32}	123.1(3)
N4-C5-C6	112.2(2) 111.8(3)	C_{34} C_{33} N_{33}	125.1(3) 1167(2)
N4-C5-H5A	109.3	C_{32} C_{33} N_{33}	120.3(2)
C6-C5-H5A	109.3	C_{33} C_{34} C_{35}	120.3(2) 1190(2)
N4-C5-H5B	109.3	C33—C34—H34	120.5
C6-C5-H5B	109.3	C35—C34—H34	120.5
$H_{5}A = C_{5} = H_{5}B$	107.9	C_{34} C_{35} C_{36} C	120.5 121.5(2)
N1 - C6 - C5	109.6 (2)	$C_{34} = C_{35} = C_{30}$	121.3(2) 1192(2)
N1-C6-H6A	109.0 (2)	C_{36} C_{35} N_{35}	119.2(2) 119.4(3)
C5-C6-H6A	109.7	$C_{31} - C_{36} - C_{35}$	119.4(3) 119.8(3)
N1-C6-H6B	109.7	$C_{31} = C_{36} = H_{36}$	120.1
C5-C6-H6B	109.7	C35-C36-H36	120.1
нба—С6—Н6В	108.2	031 - 037 - 032	120.1 120.1(3)
C^{22} C^{21} C^{26}	116.6 (3)	031 - 037 - 032	120.1(3) 123.2(3)
$C_{22} = C_{21} = C_{20}$	122.6 (3)	032 - 037 - 031	125.2(3) 1167(3)
$C_{22} = C_{21} = N_4$	122.0(3) 120.8(2)	$C_{37} = C_{37} = C_{31}$	104.6(18)
$C_{20} = C_{21} = C_{23}$	120.0(2) 121.8(3)	$C_{32} = O_{33} = H_{32}$	990(13)
$C_{21} = C_{22} = C_{23}$	110 1	034—N33—035	1223(3)
$C_{21} = C_{22} = H_{22}$	110.1	O_{34} N_{33} C_{33}	122.5(3)
$C_{23} = C_{22} = 1122$	119.1 120.4(3)	035 - N33 - C33	119.3(3) 118.2(3)
$C_{24} = C_{23} = C_{22}$	110.8	036—N35—037	110.2(3) 122.8(2)
$C_{22} = C_{23} = H_{23}$	119.8	036 - N35 - C35	122.0(2) 118.8(3)
$C_{22} = C_{23} = H_{23}$	119.8	037 - N35 - C35	118.5(3)
$C_{23} = C_{24} = C_{23}$	110.4 (3)	037-1135-035	110.5 (2)
025-024-024	125.0 (5)		
C6—N1—C2—C3	-58.5 (3)	C36—C31—C32—C33	2.6 (4)
N1—C2—C3—N4	54.3 (3)	C37—C31—C32—C33	-176.6 (2)
C2—C3—N4—C21	176.0 (2)	O33—C32—C33—C34	-179.8 (3)
C2—C3—N4—C5	-51.2 (3)	C31—C32—C33—C34	-1.3 (4)
C21—N4—C5—C6	-174.0 (2)	O33—C32—C33—N33	-1.6 (4)
C3—N4—C5—C6	53.0 (3)	C31—C32—C33—N33	176.9 (3)
C2—N1—C6—C5	60.0 (3)	C32—C33—C34—C35	-0.9 (4)
N4—C5—C6—N1	-57.5 (3)	N33—C33—C34—C35	-179.2 (2)

C2)14 C21 C22	11.2 (4)	G22 G24 G25 G26	2.0.(1)
C3—N4—C21—C22	-11.2 (4)	$C_{33} - C_{34} - C_{35} - C_{36}$	2.0 (4)
C5—N4—C21—C22	-142.9 (3)	C33—C34—C35—N35	-179.4 (2)
C3—N4—C21—C26	170.9 (3)	C32—C31—C36—C35	-1.7 (4)
C5—N4—C21—C26	39.2 (4)	C37—C31—C36—C35	177.5 (3)
C26—C21—C22—C23	0.4 (5)	C34—C35—C36—C31	-0.6 (4)
N4—C21—C22—C23	-177.6 (3)	N35-C35-C36-C31	-179.3 (2)
C21—C22—C23—C24	-0.8 (5)	C36—C31—C37—O31	-0.3 (5)
C22—C23—C24—C25	0.9 (5)	C32—C31—C37—O31	179.0 (3)
C22—C23—C24—O24	-179.3 (3)	C36—C31—C37—O32	179.6 (3)
C23—C24—C25—C26	-0.6 (5)	C32—C31—C37—O32	-1.1 (4)
O24—C24—C25—C26	179.5 (3)	C34—C33—N33—O34	-158.4 (3)
C24—C25—C26—C21	0.3 (5)	C32—C33—N33—O34	23.3 (4)
C22—C21—C26—C25	-0.2 (5)	C34—C33—N33—O35	19.6 (4)
N4—C21—C26—C25	177.9 (3)	C32—C33—N33—O35	-158.7 (3)
C23—C24—O24—C27	0.6 (5)	C34—C35—N35—O36	-7.6 (4)
C25—C24—O24—C27	-179.6 (3)	C36—C35—N35—O36	171.1 (3)
C36—C31—C32—O33	-178.8 (3)	C34—C35—N35—O37	172.5 (3)
C37—C31—C32—O33	2.0 (4)	C36—C35—N35—O37	-8.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
O32—H32…O33	1.04 (4)	1.47 (4)	2.472 (3)	158 (3)
N1—H11…O33	0.93 (3)	1.98 (3)	2.820 (3)	150 (3)
N1—H11…O34	0.93 (3)	2.27 (3)	2.910 (3)	126 (2)
N1—H12…O31 ⁱ	0.93 (3)	2.04 (3)	2.931 (3)	160 (3)
N1—H12…O32 ⁱ	0.93 (3)	2.58 (3)	3.250 (3)	129 (2)
C34—H34…O36 ⁱⁱ	0.93	2.53	3.449 (3)	171
С5—Н5 <i>В</i> … <i>С</i> д2 ^{ііі}	0.97	2.84	3.639 (3)	140

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+3, -*y*+2, -*z*+1; (iii) -*x*+1, *y*-1/2, -*z*+3/2.

4-(4-Methoxyphenyl)piperazin-1-ium hydrogensuccinate (VIII)

Crystal data	
$C_{11}H_{17}N_2O^+ \cdot C_4H_5O_4^-$	$D_{\rm x} = 1.344 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 310.35$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, <i>Pna</i> 2 ₁	Cell parameters from 2423 reflections
a = 9.3225 (9) Å	$\theta = 2.6 - 27.8^{\circ}$
b = 28.261 (3) Å	$\mu = 0.10 \; \mathrm{mm^{-1}}$
c = 5.8228 (8) Å	T = 296 K
$V = 1534.1 (3) Å^3$	Block, colourless
Z = 4	$0.44 \times 0.42 \times 0.24 \text{ mm}$
F(000) = 664	
Data collection	
Oxford Diffraction Xcalibur with Sapphire CCD	Absorption correction: multi-scan
diffractometer	(CrysAlis RED; Oxford Diffraction, 2009)
Radiation source: Enhance (Mo) X-ray Source	$T_{\rm min} = 0.816, \ T_{\rm max} = 0.976$
Graphite monochromator	5828 measured reflections
ω scans	2419 independent reflections

2053 reflections with $I > 2\sigma(I)$	$h = -6 \rightarrow 11$
$R_{\rm int} = 0.018$	$k = -36 \rightarrow 27$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.6^{\circ}$	$l = -7 \rightarrow 5$
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2 + 0.356P]$
$wR(F^2) = 0.104$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.14	$(\Delta/\sigma)_{\rm max} < 0.001$
2419 reflections	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
233 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
16 restraints	Absolute structure: Flack x determined using
Primary atom site location: difference Fourier	460 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> ,
map	2013)
Hydrogen site location: mixed	

Special details

Experimental. Compound (VIII). IR (KBr, cm⁻¹) 3135 (NH₂), 2836 (OCH₃), 1562 (COO). NMR (CDCl₃) δ (¹H)) 2.66 (s, 4H, succinate), 3.32 (m, 4H, piperazine), 3.35 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.90 (m, 4H, methoxyphenyl). **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.5210 (3)	0.66867 (8)	0.5428 (5)	0.0395 (6)	
H11	0.580 (3)	0.6921 (11)	0.556 (7)	0.047*	
H12	0.435 (3)	0.6801 (10)	0.623 (7)	0.047*	
C2	0.5853 (3)	0.62541 (9)	0.6443 (7)	0.0435 (7)	
H2A	0.6135	0.6317	0.8018	0.052*	
H2B	0.6704	0.6167	0.5586	0.052*	
C3	0.4786 (3)	0.58515 (9)	0.6388 (6)	0.0414 (7)	
H3A	0.5238	0.5568	0.6992	0.050*	
H3B	0.3981	0.5929	0.7374	0.050*	
N4	0.4259 (2)	0.57556 (7)	0.4075 (5)	0.0347 (5)	
C5	0.3676 (3)	0.61875 (9)	0.3026 (6)	0.0439 (7)	
H5A	0.2824	0.6284	0.3859	0.053*	
H5B	0.3397	0.6120	0.1454	0.053*	
C6	0.4745 (3)	0.65878 (10)	0.3038 (6)	0.0479 (8)	
H6A	0.5570	0.6503	0.2110	0.058*	
H6B	0.4312	0.6869	0.2380	0.058*	
C21	0.3353 (3)	0.53502 (9)	0.3862 (5)	0.0331 (6)	
C22	0.3336 (3)	0.49886 (9)	0.5496 (6)	0.0394 (7)	
H22	0.3926	0.5011	0.6779	0.047*	
C23	0.2451 (3)	0.45967 (10)	0.5241 (6)	0.0440 (7)	
H23	0.2456	0.4361	0.6354	0.053*	
C24	0.1567 (3)	0.45534 (9)	0.3356 (6)	0.0407 (7)	

C25	0.1589 (3)	0.48988 (10)	0.1703 (7)	0.0484 (8)	
H25	0.1013	0.4870	0.0406	0.058*	
C26	0.2469 (3)	0.52924 (10)	0.1961 (6)	0.0464 (8)	
H26	0.2466	0.5524	0.0826	0.056*	
O24	0.0728 (2)	0.41532 (8)	0.3280 (5)	0.0620 (8)	
C27	-0.0230 (4)	0.41098 (13)	0.1399 (9)	0.0729 (12)	
H27A	-0.0790	0.3827	0.1572	0.109*	
H27B	0.0307	0.4094	-0.0005	0.109*	
H27C	-0.0856	0.4379	0.1358	0.109*	
C31	0.7061 (15)	0.7714 (3)	0.797 (3)	0.0296 (18)	0.660 (15)
O31	0.7173 (15)	0.7375 (5)	0.655 (3)	0.0463 (18)	0.660 (15)
O32	0.7811 (18)	0.8079 (5)	0.790 (4)	0.0443 (15)	0.660 (15)
C32	0.5909 (9)	0.7663 (3)	0.9790 (16)	0.0375 (16)	0.660 (15)
H32A	0.6331	0.7517	1.1138	0.045*	0.660 (15)
H32B	0.5175	0.7450	0.9216	0.045*	0.660 (15)
C33	0.5200 (11)	0.8123 (3)	1.0509 (19)	0.056 (3)	0.660 (15)
H33A	0.5933	0.8339	1.1050	0.067*	0.660 (15)
H33B	0.4747	0.8265	0.9178	0.067*	0.660 (15)
C34	0.4093 (16)	0.8060 (6)	1.237 (3)	0.0468 (19)	0.660 (15)
O33	0.3172 (11)	0.8361 (3)	1.279 (2)	0.086 (3)	0.660 (15)
O34	0.4253 (19)	0.7688 (5)	1.359 (2)	0.065 (3)	0.660 (15)
H34	0.3533	0.7647	1.4378	0.098*	0.660 (15)
C41	0.702 (3)	0.7808 (8)	0.792 (6)	0.0296 (18)	0.340 (15)
O41	0.736 (3)	0.7440 (11)	0.678 (7)	0.0463 (18)	0.340 (15)
O42	0.782 (4)	0.8158 (10)	0.816 (8)	0.0443 (15)	0.340 (15)
C42	0.567 (2)	0.7768 (6)	0.934 (3)	0.0375 (16)	0.340 (15)
H42A	0.4853	0.7819	0.8332	0.045*	0.340 (15)
H42B	0.5601	0.7447	0.9916	0.045*	0.340 (15)
C43	0.555 (2)	0.8103 (7)	1.134 (3)	0.056 (3)	0.340 (15)
H43A	0.5570	0.8425	1.0770	0.067*	0.340 (15)
H43B	0.6369	0.8060	1.2337	0.067*	0.340 (15)
C44	0.419 (3)	0.8032 (11)	1.272 (5)	0.0468 (19)	0.340 (15)
O43	0.304 (2)	0.8221 (6)	1.225 (5)	0.086 (3)	0.340 (15)
O44	0.425 (4)	0.7694 (12)	1.418 (5)	0.065 (3)	0.340 (15)
H44	0.3490	0.7681	1.4892	0.098*	0.340 (15)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0367 (12)	0.0305 (11)	0.0512 (17)	-0.0052 (10)	0.0144 (13)	-0.0049 (11)
C2	0.0389 (14)	0.0366 (13)	0.055 (2)	-0.0012 (11)	-0.0002 (16)	-0.0023 (14)
C3	0.0440 (15)	0.0361 (13)	0.0440 (18)	-0.0024 (11)	-0.0032 (15)	0.0033 (13)
N4	0.0388 (12)	0.0296 (10)	0.0357 (13)	-0.0015 (9)	0.0050 (11)	-0.0003 (10)
C5	0.0592 (17)	0.0331 (12)	0.0395 (17)	-0.0042 (12)	-0.0014 (16)	0.0044 (13)
C6	0.0606 (18)	0.0386 (14)	0.0446 (19)	-0.0070 (13)	0.0126 (18)	0.0056 (14)
C21	0.0345 (13)	0.0314 (12)	0.0333 (16)	0.0023 (10)	0.0055 (12)	-0.0008 (11)
C22	0.0421 (15)	0.0354 (13)	0.0406 (17)	0.0004 (11)	-0.0064 (14)	0.0037 (13)
C23	0.0483 (16)	0.0366 (14)	0.0472 (19)	-0.0025 (12)	-0.0064 (16)	0.0123 (13)

C24	0.0370 (13)	0.0332 (12)	0.052 (2)	-0.0019 (11)	-0.0022 (15)	0.0026 (13)
C25	0.0533 (17)	0.0456 (15)	0.046 (2)	-0.0059 (13)	-0.0156 (17)	0.0056 (15)
C26	0.0587 (18)	0.0414 (14)	0.0391 (19)	-0.0073 (13)	-0.0055 (16)	0.0104 (14)
O24	0.0604 (13)	0.0480 (11)	0.078 (2)	-0.0194 (10)	-0.0266 (15)	0.0143 (12)
C27	0.067 (2)	0.061 (2)	0.090 (3)	-0.0233 (17)	-0.036 (2)	0.011 (2)
C31	0.0307 (14)	0.020 (4)	0.0377 (18)	0.002 (3)	0.0121 (15)	0.002 (4)
O31	0.039 (4)	0.043 (4)	0.056 (4)	-0.018 (2)	0.025 (4)	-0.025 (2)
O32	0.0467 (11)	0.029 (4)	0.057 (5)	-0.011 (3)	0.027 (2)	-0.014 (3)
C32	0.043 (3)	0.025 (3)	0.045 (4)	0.002 (2)	0.019 (3)	0.004 (2)
C33	0.069 (5)	0.0348 (18)	0.064 (7)	0.008 (3)	0.043 (5)	0.009 (4)
C34	0.053 (3)	0.032 (2)	0.055 (5)	0.0033 (16)	0.031 (3)	-0.001 (2)
O33	0.097 (3)	0.054 (5)	0.107 (7)	0.039 (4)	0.067 (4)	0.016 (4)
O34	0.0654 (15)	0.0655 (15)	0.065 (8)	0.0228 (12)	0.054 (5)	0.026 (4)
C41	0.0307 (14)	0.020 (4)	0.0377 (18)	0.002 (3)	0.0121 (15)	0.002 (4)
O41	0.039 (4)	0.043 (4)	0.056 (4)	-0.018 (2)	0.025 (4)	-0.025 (2)
O42	0.0467 (11)	0.029 (4)	0.057 (5)	-0.011 (3)	0.027 (2)	-0.014 (3)
C42	0.043 (3)	0.025 (3)	0.045 (4)	0.002 (2)	0.019 (3)	0.004 (2)
C43	0.069 (5)	0.0348 (18)	0.064 (7)	0.008 (3)	0.043 (5)	0.009 (4)
C44	0.053 (3)	0.032 (2)	0.055 (5)	0.0033 (16)	0.031 (3)	-0.001 (2)
O43	0.097 (3)	0.054 (5)	0.107 (7)	0.039 (4)	0.067 (4)	0.016 (4)
O44	0.0654 (15)	0.0655 (15)	0.065 (8)	0.0228 (12)	0.054 (5)	0.026 (4)

N1—C6	1.484 (5)	O24—C27	1.419 (5)
N1-C2	1.484 (4)	C27—H27A	0.9600
N1—H11	0.86 (3)	C27—H27B	0.9600
N1—H12	0.98 (3)	C27—H27C	0.9600
C2—C3	1.512 (4)	C31—O32	1.247 (5)
C2—H2A	0.9700	C31—O31	1.270 (7)
C2—H2B	0.9700	C31—C32	1.513 (6)
C3—N4	1.459 (4)	C32—C33	1.517 (7)
С3—НЗА	0.9700	C32—H32A	0.9700
С3—Н3В	0.9700	C32—H32B	0.9700
N4—C21	1.429 (3)	C33—C34	1.505 (6)
N4—C5	1.469 (3)	C33—H33A	0.9700
C5—C6	1.508 (4)	C33—H33B	0.9700
C5—H5A	0.9700	C34—O33	1.233 (9)
С5—Н5В	0.9700	C34—O34	1.280 (6)
С6—Н6А	0.9700	O34—H34	0.8200
C6—H6B	0.9700	C41—O42	1.247 (9)
C21—C26	1.390 (4)	C41—O41	1.271 (10)
C21—C22	1.396 (4)	C41—C42	1.514 (9)
C22—C23	1.388 (4)	C42—C43	1.507 (11)
С22—Н22	0.9300	C42—H42A	0.9700
C23—C24	1.378 (5)	C42—H42B	0.9700
С23—Н23	0.9300	C43—C44	1.508 (10)
C24—C25	1.371 (4)	C43—H43A	0.9700

C24—O24	1.376 (3)	C43—H43B	0.9700
C25—C26	1.390 (4)	C44—O43	1.235 (13)
С25—Н25	0.9300	C44—O44	1.282 (9)
С26—Н26	0.9300	O44—H44	0.8200
C6—N1—C2	109.6 (2)	C21—C26—C25	122.0 (3)
C6—N1—H11	114 (3)	С21—С26—Н26	119.0
C2—N1—H11	110 (2)	С25—С26—Н26	119.0
C6—N1—H12	106 (2)	C24—O24—C27	117.0 (3)
C2—N1—H12	114 (2)	O24—C27—H27A	109.5
H11—N1—H12	103 (3)	O24—C27—H27B	109.5
N1—C2—C3	110.2 (2)	Н27А—С27—Н27В	109.5
N1—C2—H2A	109.6	O24—C27—H27C	109.5
C3—C2—H2A	109.6	Н27А—С27—Н27С	109.5
N1—C2—H2B	109.6	H27B—C27—H27C	109.5
C3—C2—H2B	109.6	O32—C31—O31	123.7 (8)
H2A—C2—H2B	108.1	O32—C31—C32	120.0 (6)
N4—C3—C2	112.4 (3)	O31—C31—C32	116.3 (6)
N4—C3—H3A	109.1	C31—C32—C33	114.8 (6)
С2—С3—НЗА	109.1	С31—С32—Н32А	108.6
N4—C3—H3B	109.1	С33—С32—Н32А	108.6
С2—С3—Н3В	109.1	С31—С32—Н32В	108.6
НЗА—СЗ—НЗВ	107.9	С33—С32—Н32В	108.6
C21—N4—C3	115.3 (2)	H32A—C32—H32B	107.5
C21—N4—C5	114.3 (2)	C34—C33—C32	113.3 (6)
C3—N4—C5	110.7 (2)	С34—С33—Н33А	108.9
N4—C5—C6	112.1 (2)	С32—С33—Н33А	108.9
N4—C5—H5A	109.2	С34—С33—Н33В	108.9
С6—С5—Н5А	109.2	С32—С33—Н33В	108.9
N4—C5—H5B	109.2	H33A—C33—H33B	107.7
С6—С5—Н5В	109.2	O33—C34—O34	122.3 (7)
H5A—C5—H5B	107.9	O33—C34—C33	122.8 (7)
N1—C6—C5	109.8 (3)	O34—C34—C33	114.7 (6)
N1—C6—H6A	109.7	С34—О34—Н34	109.5
С5—С6—Н6А	109.7	O42—C41—O41	124.3 (15)
N1—C6—H6B	109.7	O42—C41—C42	119.7 (12)
С5—С6—Н6В	109.7	O41—C41—C42	115.3 (12)
H6A—C6—H6B	108.2	C43—C42—C41	116.0 (12)
C26—C21—C22	116.7 (2)	C43—C42—H42A	108.3
C26—C21—N4	120.9 (3)	C41—C42—H42A	108.3
C22—C21—N4	122.3 (3)	C43—C42—H42B	108.3
C23—C22—C21	121.2 (3)	C41—C42—H42B	108.3
C23—C22—H22	119.4	H42A—C42—H42B	107.4
C21—C22—H22	119.4	C42—C43—C44	113.1 (15)
C24—C23—C22	120.8 (3)	C42—C43—H43A	109.0
C24—C23—H23	119.6	C44—C43—H43A	109.0
С22—С23—Н23	119.6	C42—C43—H43B	109.0
C25—C24—O24	124.8 (3)	C44—C43—H43B	109.0

C25—C24—C23	119.1 (3)	H43A—C43—H43B	107.8
O24—C24—C23	116.0 (3)	O43—C44—O44	120.3 (16)
C24—C25—C26	120.2 (3)	O43—C44—C43	123.7 (14)
С24—С25—Н25	119.9	O44—C44—C43	114.8 (12)
C26—C25—H25	119.9	C44—O44—H44	109.5
C6N1C2C3	-57 9 (3)	024-024-025-026	179 3 (3)
N1 - C2 - C3 - N4	56.2 (3)	C23-C24-C25-C26	-1.5(5)
C2-C3-N4-C21	174.2 (2)	C22—C21—C26—C25	1.0 (4)
C2—C3—N4—C5	-54.0 (3)	N4—C21—C26—C25	179.3 (3)
C21—N4—C5—C6	-172.9 (3)	C24—C25—C26—C21	0.4 (5)
C3—N4—C5—C6	54.8 (3)	C25—C24—O24—C27	-3.1 (5)
C2—N1—C6—C5	58.5 (3)	C23—C24—O24—C27	177.7 (3)
N4-C5-C6-N1	-57.4 (3)	O32—C31—C32—C33	32 (2)
C3—N4—C21—C26	161.9 (3)	O31—C31—C32—C33	-146 (2)
C5—N4—C21—C26	31.8 (4)	C31—C32—C33—C34	-178.3 (12)
C3—N4—C21—C22	-19.9 (4)	C32—C33—C34—O33	-162 (2)
C5—N4—C21—C22	-150.0 (3)	C32—C33—C34—O34	23 (2)
C26—C21—C22—C23	-1.3 (4)	O42—C41—C42—C43	-13 (5)
N4—C21—C22—C23	-179.6 (3)	O41—C41—C42—C43	157 (4)
C21—C22—C23—C24	0.2 (5)	C41—C42—C43—C44	-178 (2)
C22—C23—C24—C25	1.2 (5)	C42—C43—C44—O43	-86 (4)
C22—C23—C24—O24	-179.5 (3)	C42—C43—C44—O44	82 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H11…O31	0.86 (3)	1.90 (3)	2.750 (15)	167 (4)
N1—H12···O32 ⁱ	0.98 (3)	1.77 (4)	2.741 (19)	171 (3)
O34—H34…O31 ⁱⁱ	0.82	1.79	2.60 (2)	168
N1—H11…O41	0.86 (3)	2.18 (4)	3.03 (3)	165 (4)
N1—H12…O42 ⁱ	0.98 (3)	1.82 (5)	2.77 (4)	163 (3)
O44—H44…O41 ⁱⁱ	0.82	1.56	2.35 (2)	161
C3—H3 <i>A</i> ··· <i>C</i> g2 ⁱⁱⁱ	0.97	2.76	3.652 (3)	154

Symmetry codes: (i) x-1/2, -y+3/2, z; (ii) x-1/2, -y+3/2, z+1; (iii) -x+1, -y+1, z+1/2.

4-(4-Methoxyphenyl)piperazin-1-ium hydrogenfumarate (IX)

Crystal data $C_{11}H_{17}N_2O^+C_4H_3O_4^-M_r = 308.33$ Orthorhombic, *Pna2*₁ a = 9.069 (1) Å b = 28.528 (3) Å c = 5.8375 (9) Å V = 1510.3 (3) Å³ Z = 4F(000) = 656

 $D_x = 1.356 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2829 reflections $\theta = 2.7-27.7^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.48 \times 0.48 \times 0.08 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{min} = 0.888, T_{max} = 0.992$ Refinement	5834 measured reflections 2827 independent reflections 2316 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -8 \rightarrow 11$ $k = -32 \rightarrow 35$ $l = -7 \rightarrow 6$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.101$ S = 1.05 2827 reflections 221 parameters 11 restraints Primary atom site location: difference Fourier map Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.4265P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³ $\Delta\rho_{min} = -0.14$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 769 quotients [(<i>I</i> ⁺)-(<i>I</i>)]/[(<i>I</i> ⁺)+(<i>I</i>)] (Parsons <i>et al.</i> , 2013)

Special details

Experimental. Compound (IX). IR (KBr , cm⁻¹) 3001 (NH₂), 2839 (OCH₃), 1562 (COO). NMR (CDCl₃) δ (¹H)) 3.09 (m, 4H, piperazine), 3.35 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.26 (s, 2H, fumarate), 6.90 (m, 4H, methoxyphenyl). **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
N1	0.5253 (3)	0.66688 (8)	0.5154 (5)	0.0448 (6)	
H11	0.588 (4)	0.6872 (12)	0.518 (6)	0.054*	
H12	0.440 (4)	0.6776 (11)	0.596 (6)	0.054*	
C2	0.5885 (3)	0.62425 (10)	0.6244 (6)	0.0490 (8)	
H2A	0.6182	0.6315	0.7801	0.059*	
H2B	0.6753	0.6144	0.5403	0.059*	
C3	0.4771 (3)	0.58500 (9)	0.6274 (6)	0.0449 (7)	
H3A	0.5225	0.5572	0.6916	0.054*	
H3B	0.3952	0.5937	0.7254	0.054*	
N4	0.4215 (3)	0.57432 (7)	0.3988 (4)	0.0395 (6)	
C5	0.3637 (4)	0.61653 (10)	0.2869 (6)	0.0505 (8)	
H5A	0.2767	0.6272	0.3685	0.061*	
H5B	0.3344	0.6089	0.1315	0.061*	
C6	0.4751 (4)	0.65530 (10)	0.2808 (6)	0.0540 (9)	
H6A	0.5589	0.6458	0.1886	0.065*	
H6B	0.4317	0.6829	0.2106	0.065*	
C21	0.3300 (3)	0.53374 (9)	0.3824 (5)	0.0372 (6)	

C22	0.3313 (3)	0.49854 (9)	0.5482 (6)	0.0441 (7)	
H22	0.3919	0.5017	0.6758	0.053*	
C23	0.2439 (3)	0.45907 (10)	0.5261 (7)	0.0485 (8)	
H23	0.2468	0.4361	0.6393	0.058*	
C24	0.1529 (3)	0.45301 (10)	0.3401 (6)	0.0456 (8)	
C25	0.1521 (4)	0.48719 (10)	0.1732 (6)	0.0518 (8)	
H25	0.0924	0.4836	0.0448	0.062*	
C26	0.2391 (4)	0.52673 (11)	0.1945 (6)	0.0509 (8)	
H26	0.2366	0.5493	0.0796	0.061*	
O24	0.0698 (3)	0.41291 (8)	0.3349 (5)	0.0668 (8)	
C27	-0.0259 (4)	0.40672 (14)	0.1473 (9)	0.0804 (13)	
H27A	-0.0819	0.3785	0.1680	0.121*	
H27B	0.0307	0.4045	0.0088	0.121*	
H27C	-0.0918	0.4330	0.1373	0.121*	
C31	0.7171 (3)	0.77494 (10)	0.8023 (6)	0.0452 (7)	
O31	0.7323 (3)	0.73835 (7)	0.6832 (5)	0.0673 (8)	
O32	0.7875 (3)	0.81180 (7)	0.7776 (5)	0.0595 (7)	
C32	0.6095 (4)	0.77182 (10)	0.9941 (6)	0.0526 (9)	0.906 (9)
H32	0.5993	0.7427	1.0643	0.063*	0.906 (9)
C33	0.5305 (7)	0.80489 (15)	1.0714 (12)	0.0607 (11)	0.906 (9)
H33	0.5456	0.8345	1.0089	0.073*	0.906 (9)
C34	0.4163 (5)	0.80084 (15)	1.2518 (8)	0.0518 (9)	0.906 (9)
O33	0.3241 (5)	0.83097 (16)	1.2845 (8)	0.0992 (18)	0.906 (9)
O34	0.4218 (4)	0.76290 (13)	1.3671 (8)	0.0734 (13)	0.906 (9)
H34	0.3526	0.7621	1.4574	0.110*	0.906 (9)
C42	0.6095 (4)	0.77182 (10)	0.9941 (6)	0.0526 (9)	0.094 (9)
H42	0.5982	0.7421	1.0566	0.063*	0.094 (9)
C43	0.531 (6)	0.8035 (9)	1.086 (10)	0.0607 (11)	0.094 (9)
H43	0.5533	0.8343	1.0477	0.073*	0.094 (9)
C44	0.407 (4)	0.7961 (12)	1.247 (6)	0.0518 (9)	0.094 (9)
O43	0.280 (4)	0.8058 (15)	1.203 (7)	0.0992 (18)	0.094 (9)
O44	0.444 (4)	0.7801 (13)	1.442 (6)	0.0734 (13)	0.094 (9)
H44	0.3697	0.7743	1.5169	0.110*	0.094 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0436 (14)	0.0378 (12)	0.0531 (18)	-0.0049 (10)	0.0167 (13)	-0.0020 (12)
C2	0.0444 (16)	0.0431 (15)	0.060(2)	0.0018 (12)	0.0054 (16)	-0.0042 (15)
C3	0.0482 (17)	0.0398 (14)	0.047 (2)	-0.0019 (13)	-0.0013 (15)	0.0052 (13)
N4	0.0466 (13)	0.0348 (11)	0.0371 (14)	0.0016 (10)	0.0048 (12)	-0.0005 (10)
C5	0.072 (2)	0.0403 (14)	0.0396 (19)	-0.0043 (14)	-0.0015 (17)	0.0079 (14)
C6	0.077 (2)	0.0423 (14)	0.043 (2)	-0.0044 (15)	0.0172 (18)	0.0048 (15)
C21	0.0398 (15)	0.0355 (13)	0.0363 (17)	0.0060 (11)	0.0060 (14)	0.0009 (12)
C22	0.0484 (17)	0.0402 (14)	0.0437 (19)	0.0029 (12)	-0.0071 (15)	0.0040 (14)
C23	0.0532 (18)	0.0413 (15)	0.0510 (19)	0.0005 (13)	-0.0054 (17)	0.0123 (15)
C24	0.0391 (15)	0.0409 (14)	0.057 (2)	0.0015 (12)	-0.0036 (15)	0.0009 (14)
C25	0.0560 (19)	0.0519 (17)	0.048 (2)	-0.0013 (15)	-0.0160 (17)	0.0035 (16)

C26	0.065 (2)	0.0455 (15)	0.042 (2)	-0.0041 (14)	-0.0061 (16)	0.0115 (14)
O24	0.0633 (15)	0.0532 (12)	0.084 (2)	-0.0163 (11)	-0.0224 (15)	0.0125 (13)
C27	0.064 (2)	0.070 (2)	0.107 (4)	-0.0205 (19)	-0.034 (3)	0.012 (2)
C31	0.0431 (16)	0.0435 (15)	0.049 (2)	0.0003 (12)	0.0227 (15)	-0.0016 (14)
O31	0.0655 (15)	0.0577 (13)	0.079 (2)	-0.0153 (11)	0.0428 (14)	-0.0234 (13)
O32	0.0632 (14)	0.0469 (11)	0.0684 (17)	-0.0123 (10)	0.0369 (13)	-0.0050 (11)
C32	0.0564 (19)	0.0380 (14)	0.063 (2)	-0.0018 (14)	0.0321 (18)	-0.0001 (15)
C33	0.067 (2)	0.0474 (16)	0.067 (3)	0.0048 (16)	0.034 (2)	0.0065 (17)
C34	0.0558 (19)	0.0416 (18)	0.058 (2)	0.0052 (15)	0.0280 (18)	-0.0037 (15)
033	0.115 (3)	0.064 (2)	0.119 (3)	0.045 (2)	0.081 (3)	0.028 (2)
O34	0.081 (2)	0.0502 (19)	0.089 (3)	0.0215 (17)	0.061 (2)	0.0185 (17)
C42	0.0564 (19)	0.0380 (14)	0.063 (2)	-0.0018 (14)	0.0321 (18)	-0.0001 (15)
C43	0.067 (2)	0.0474 (16)	0.067 (3)	0.0048 (16)	0.034 (2)	0.0065 (17)
C44	0.0558 (19)	0.0416 (18)	0.058 (2)	0.0052 (15)	0.0280 (18)	-0.0037 (15)
O43	0.115 (3)	0.064 (2)	0.119 (3)	0.045 (2)	0.081 (3)	0.028 (2)
O44	0.081 (2)	0.0502 (19)	0.089 (3)	0.0215 (17)	0.061 (2)	0.0185 (17)

N1—C6	1.481 (4)	C24—C25	1.378 (4)
N1—C2	1.487 (4)	C25—C26	1.382 (4)
N1—H11	0.81 (3)	C25—H25	0.9300
N1—H12	0.96 (4)	C26—H26	0.9300
С2—С3	1.508 (4)	O24—C27	1.409 (5)
C2—H2A	0.9700	C27—H27A	0.9600
C2—H2B	0.9700	C27—H27B	0.9600
C3—N4	1.459 (4)	C27—H27C	0.9600
С3—НЗА	0.9700	C31—O32	1.239 (3)
С3—Н3В	0.9700	C31—O31	1.262 (4)
N4—C21	1.428 (3)	C31—C32	1.488 (4)
N4—C5	1.467 (4)	C32—C33	1.268 (4)
С5—С6	1.499 (4)	С32—Н32	0.9300
C5—H5A	0.9700	C33—C34	1.481 (5)
С5—Н5В	0.9700	С33—Н33	0.9300
С6—Н6А	0.9700	C34—O33	1.214 (4)
C6—H6B	0.9700	C34—O34	1.276 (5)
C21—C26	1.387 (4)	O34—H34	0.8200
C21—C22	1.395 (4)	C43—C44	1.479 (12)
C22—C23	1.383 (4)	C43—H43	0.9300
С22—Н22	0.9300	C44—O43	1.212 (12)
C23—C24	1.375 (5)	C44—O44	1.274 (12)
С23—Н23	0.9300	O44—H44	0.8200
C24—O24	1.370 (3)		
			110.4
C6—N1—C2	109.4 (2)	C21—C22—H22	119.4
C6—N1—H11	113 (3)	C24—C23—C22	121.3 (3)
C2—N1—H11	108 (2)	C24—C23—H23	119.3
C6—N1—H12	106 (2)	C22—C23—H23	119.3

C2—N1—H12	111 (2)	O24—C24—C23	116.9 (3)
H11—N1—H12	109 (3)	O24—C24—C25	124.9 (3)
N1—C2—C3	110.7 (3)	C23—C24—C25	118.2 (3)
N1—C2—H2A	109.5	C24—C25—C26	120.7 (3)
C3—C2—H2A	109.5	C24—C25—H25	119.7
N1—C2—H2B	109.5	C26—C25—H25	119.7
C3—C2—H2B	109.5	C25—C26—C21	121.9 (3)
H2A—C2—H2B	108.1	C25—C26—H26	119.0
N4—C3—C2	112.1 (3)	C21—C26—H26	119.0
N4—C3—H3A	109.2	C24—O24—C27	117.4 (3)
С2—С3—НЗА	109.2	024—C27—H27A	109.5
N4—C3—H3B	109.2	O24— $C27$ — $H27B$	109.5
C2-C3-H3B	109.2	H27A - C27 - H27B	109.5
H_{3A} C_{3} H_{3B}	107.9	024-C27-H27C	109.5
C_{21} N4 C_{3}	115.6(2)	H27A - C27 - H27C	109.5
C_{21} N4 C_{5}	115.8(2) 115.3(2)	H27B-C27-H27C	109.5
$C_3 - N_4 - C_5$	11111(2)	032-031-031	125.6 (3)
N4	1120(3)	032 - 031 - 031	123.0(3) 1185(3)
N4-C5-H5A	109.2	031 - 031 - 032	115.9(2)
C6-C5-H5A	109.2	C_{33} C_{32} C_{31}	115.9(2) 126.4(3)
N4-C5-H5B	109.2	C_{33} C_{32} H_{32}	116.8
C6-C5-H5B	109.2	C_{31} C_{32} H_{32}	116.8
H_{5A} C_{5} H_{5B}	107.9	C_{32} C_{33} C_{34}	126.2 (4)
N1-C6-C5	107.9 110.5 (3)	C_{32} C_{33} H_{33}	116.9
N1 - C6 - H6A	109.6	C_{34} C_{33} H_{33}	116.9
C_{5}	109.6	033-034-034	123.0(4)
N1 C6 H6B	109.6	033 C34 C33	123.0(4) 122.5(4)
C5-C6-H6B	109.6	033 - 034 - 033	122.5(4) 114.5(3)
	109.0	$C_{34} = C_{34} = C_{33}$	109.5
C_{26}	1167(3)	C44 - C43 - H43	116.8
$C_{20} = C_{21} = C_{22}$	110.7(3) 1210(3)	043 - C44 - 044	121.3 (18)
$C_{20} = C_{21} = N_{4}$	121.0(3) 122.2(3)	043 - C44 - C43	121.3(10) 124(2)
$C_{22} = C_{21} = 104$	122.2(3) 1211(3)	043 - C44 - C43	124(2) 1149(18)
C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	119.4	C44 - C44 - C43	109 5
025 022 1122	117.4		109.5
C6-N1-C2-C3	-572(3)	$C^{22} - C^{23} - C^{24} - O^{24}$	-1794(3)
$N_1 - C_2 - C_3 - N_4$	55 8 (3)	$C_{22} = C_{23} = C_{24} = C_{24}$	0.8(5)
$C_2 = C_3 = N_4 = C_2 I_1$	1723(2)	024 - 025 - 025 - 025	1794(3)
$C_2 = C_3 = N_4 = C_5$	-53.8(3)	$C_{24} = C_{24} = C_{25} = C_{26}$	-0.9(5)
$C_{2} = C_{3} = C_{4} = C_{5}$	-1714(3)	$C_{23} = C_{24} = C_{23} = C_{20} = C_{20}$	0.9(5)
$C_{21} = N_{4} = C_{5} = C_{6}$	547(3)	$C_{24} = C_{25} = C_{26} = C_{21}$	0.0(5)
$C_2 = N_1 = C_2 = C_2$	57.9 (3)	$N4 - C^{21} - C^{26} - C^{25}$	178.6(3)
N4-C5-C6-N1	-57.2(4)	C^{23} C^{24} C^{24} C^{27}	178 8 (3)
$C_3 - N_4 - C_{21} - C_{26}$	162 4 (3)	C_{25} C_{24} C_{24} C_{24} C_{27} C_{27} C_{24} C_{27} C_{27}	-14(5)
C_{5} N4 C_{21} C_{20}	305(4)	032 - 031 - 032 - 023	347(7)
$C_3 - N_4 - C_{21} - C_{22}$	-201(4)	031 - 031 - 032 - 033	-1480(6)
C_{5} N4 C_{21} C_{22}	-1519(3)	$C_{31} - C_{32} - C_{33} - C_{34}$	175 5 (5)
C_{26} C_{21} C_{27} C_{23}	-0.9(4)	C_{32} C_{33} C_{34} C_{33}	-1641(8)
	V+2 (1)		10111(0)

N4—C21—C22—C23 C21—C22—C23—C24	-178.6 (3) 0.1 (5)	C32—C33—C34—O34	14.9 (10)
Hydrogen-bond geometry (Å, °)			
		ат тт (

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H11…O31	0.81 (4)	2.18 (3)	2.940 (4)	155 (3)
N1—H12···O32 ⁱ	0.96 (4)	1.77 (4)	2.714 (4)	169 (3)
O34—H34…O31 ⁱⁱ	0.82	1.71	2.522 (5)	170
O44—H44…O31 ⁱⁱ	0.82	1.62	2.44 (2)	175
C3—H3 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.97	2.76	3.650 (3)	153

Symmetry codes: (i) x-1/2, -y+3/2, z; (ii) x-1/2, -y+3/2, z+1; (iii) -x+1, -y+1, z+1/2.

4-(4-Methoxyphenyl)piperazin-1-ium hydrogenmaleate (X)

Crystal data

 $C_{11}H_{17}N_2O^+ \cdot C_4H_3O_4^- M_r = 308.33$ Monoclinic, $P2_1/c$ a = 9.063 (1) Å b = 6.4956 (9) Å c = 26.093 (3) Å $\beta = 93.18$ (1)° V = 1533.7 (3) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.871, T_{\max} = 0.968$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.111$ S = 1.053311 reflections 210 parameters 0 restraints Primary atom site location: difference Fourier map Hydrogen site location: mixed F(000) = 656 $D_x = 1.335 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3315 reflections $\theta = 2.7-27.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.48 \times 0.44 \times 0.32 \text{ mm}$

6112 measured reflections 3311 independent reflections 2459 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -6 \rightarrow 8$ $l = -26 \rightarrow 33$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 0.3046P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.21$ e Å⁻³ $\Delta\rho_{min} = -0.13$ e Å⁻³ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0192 (18)

Special details

Experimental. Compound (X). IR (KBr , cm⁻¹) 3073 (NH₂), 2836 (OCH₃), 1565 (COO). NMR (CDCl₃) δ (¹H)) 3.34 (m, 4H, piperazine), 3.41 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.29 (s, 2H, maleate), 6.90 (m, 4H, methoxyphenyl). **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.54059 (15)	0.1806 (2)	0.56144 (5)	0.0431 (3)	
H11	0.6147 (19)	0.166 (3)	0.5393 (6)	0.052*	
H12	0.452 (2)	0.174 (3)	0.5426 (7)	0.052*	
C2	0.5537 (2)	0.3928 (3)	0.58165 (6)	0.0531 (4)	
H2A	0.5428	0.4903	0.5535	0.064*	
H2B	0.6506	0.4121	0.5986	0.064*	
C3	0.43600 (18)	0.4321 (2)	0.61930 (6)	0.0468 (4)	
H3A	0.4472	0.5706	0.6329	0.056*	
H3B	0.3392	0.4222	0.6016	0.056*	
N4	0.44597 (13)	0.28484 (17)	0.66144 (4)	0.0362 (3)	
C5	0.43395 (19)	0.0748 (2)	0.64123 (6)	0.0481 (4)	
H5A	0.3370	0.0559	0.6243	0.058*	
H5B	0.4438	-0.0222	0.6695	0.058*	
C6	0.55084 (18)	0.0302 (2)	0.60367 (6)	0.0468 (4)	
H6A	0.6480	0.0377	0.6211	0.056*	
H6B	0.5373	-0.1077	0.5900	0.056*	
C21	0.35362 (15)	0.3268 (2)	0.70263 (5)	0.0354 (3)	
C22	0.26577 (18)	0.5006 (2)	0.70426 (6)	0.0481 (4)	
H22	0.2632	0.5920	0.6768	0.058*	
C23	0.18120 (18)	0.5421 (3)	0.74593 (6)	0.0530 (4)	
H23	0.1247	0.6616	0.7463	0.064*	
C24	0.18071 (17)	0.4076 (3)	0.78649 (5)	0.0489 (4)	
C25	0.2673 (2)	0.2332 (3)	0.78540 (6)	0.0537 (4)	
H25	0.2679	0.1410	0.8127	0.064*	
C26	0.35276 (18)	0.1936 (3)	0.74451 (6)	0.0464 (4)	
H326	0.4110	0.0757	0.7448	0.056*	
O24	0.10103 (14)	0.4323 (2)	0.82944 (4)	0.0706 (4)	
C27	0.0207 (2)	0.6185 (4)	0.83401 (7)	0.0844 (7)	
H27A	-0.0231	0.6219	0.8667	0.127*	
H27B	-0.0556	0.6260	0.8070	0.127*	
H27C	0.0864	0.7334	0.8314	0.127*	
C31	0.81864 (16)	0.2456 (2)	0.48041 (7)	0.0439 (4)	
C32	0.93279 (17)	0.2644 (2)	0.44164 (6)	0.0460 (4)	
H32	0.8951	0.2815	0.4080	0.055*	
C33	1.07926 (16)	0.2605 (2)	0.44719 (6)	0.0429 (4)	
H33	1.1274	0.2743	0.4168	0.052*	
C34	1.17846 (15)	0.2380 (2)	0.49393 (6)	0.0370 (3)	

0.68826 (12)	0.23449 (19)	0.46522 (5)	0.0627 (4)
0.85878 (12)	0.23939 (18)	0.52832 (4)	0.0520 (3)
1.12495 (12)	0.23595 (18)	0.53839 (4)	0.0488 (3)
0.996 (2)	0.240 (3)	0.5354 (8)	0.073*
1.31216 (11)	0.22095 (17)	0.48789 (4)	0.0495 (3)
	0.68826 (12) 0.85878 (12) 1.12495 (12) 0.996 (2) 1.31216 (11)	0.68826 (12)0.23449 (19)0.85878 (12)0.23939 (18)1.12495 (12)0.23595 (18)0.996 (2)0.240 (3)1.31216 (11)0.22095 (17)	0.68826 (12)0.23449 (19)0.46522 (5)0.85878 (12)0.23939 (18)0.52832 (4)1.12495 (12)0.23595 (18)0.53839 (4)0.996 (2)0.240 (3)0.5354 (8)1.31216 (11)0.22095 (17)0.48789 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0357 (6)	0.0568 (8)	0.0375 (7)	0.0007 (6)	0.0084 (5)	-0.0023 (6)
C2	0.0645 (10)	0.0474 (9)	0.0493 (9)	-0.0055 (8)	0.0214 (8)	0.0037 (7)
C3	0.0590 (10)	0.0388 (8)	0.0440 (8)	0.0018 (7)	0.0146 (7)	0.0034 (7)
N4	0.0396 (6)	0.0349 (6)	0.0346 (6)	0.0002 (5)	0.0054 (5)	0.0009 (5)
C5	0.0591 (10)	0.0385 (8)	0.0484 (9)	-0.0012 (7)	0.0186 (7)	0.0000 (7)
C6	0.0507 (9)	0.0450 (9)	0.0454 (8)	0.0080 (7)	0.0087 (7)	-0.0013 (7)
C21	0.0340 (7)	0.0391 (7)	0.0329 (7)	-0.0023 (6)	0.0007 (5)	-0.0016 (6)
C22	0.0550 (9)	0.0482 (9)	0.0419 (8)	0.0101 (7)	0.0106 (7)	0.0080(7)
C23	0.0539 (10)	0.0584 (10)	0.0472 (9)	0.0176 (8)	0.0085 (7)	0.0009 (8)
C24	0.0435 (8)	0.0715 (11)	0.0316 (7)	0.0060 (8)	0.0023 (6)	-0.0037 (7)
C25	0.0645 (10)	0.0662 (11)	0.0305 (7)	0.0109 (9)	0.0042 (7)	0.0111 (7)
C26	0.0525 (9)	0.0508 (9)	0.0358 (8)	0.0120 (7)	0.0001 (6)	0.0044 (6)
O24	0.0722 (8)	0.1024 (11)	0.0386 (6)	0.0251 (7)	0.0175 (6)	0.0033 (6)
C27	0.0759 (13)	0.126 (2)	0.0528 (11)	0.0418 (14)	0.0177 (10)	-0.0042 (12)
C31	0.0357 (8)	0.0337 (8)	0.0631 (10)	0.0035 (6)	0.0104 (7)	0.0045 (7)
C32	0.0425 (8)	0.0529 (9)	0.0427 (8)	0.0026 (7)	0.0035 (6)	0.0069 (7)
C33	0.0411 (8)	0.0493 (9)	0.0395 (8)	0.0003 (7)	0.0118 (6)	0.0033 (7)
C34	0.0352 (7)	0.0300 (7)	0.0463 (8)	-0.0020 (6)	0.0071 (6)	-0.0005 (6)
O31	0.0334 (6)	0.0690 (8)	0.0858 (9)	0.0036 (5)	0.0040 (6)	0.0110 (7)
O32	0.0418 (6)	0.0641 (8)	0.0517 (7)	0.0009 (5)	0.0172 (5)	0.0003 (5)
O33	0.0427 (6)	0.0647 (8)	0.0393 (6)	0.0007 (5)	0.0056 (4)	-0.0020 (5)
O34	0.0337 (5)	0.0572 (7)	0.0580 (7)	-0.0010 (5)	0.0069 (5)	0.0012 (5)

N1—C6	1.472 (2)	С23—Н23	0.9300
N1—C2	1.478 (2)	C24—O24	1.3759 (17)
N1—H11	0.915 (17)	C24—C25	1.379 (2)
N1—H12	0.917 (18)	C25—C26	1.377 (2)
C2—C3	1.511 (2)	C25—H25	0.9300
C2—H2A	0.9700	C26—H326	0.9300
C2—H2B	0.9700	O24—C27	1.420 (3)
C3—N4	1.4567 (18)	C27—H27A	0.9600
С3—НЗА	0.9700	C27—H27B	0.9600
С3—Н3В	0.9700	C27—H27C	0.9600
N4—C21	1.4248 (17)	C31—O31	1.2274 (19)
N4—C5	1.4645 (19)	C31—O32	1.283 (2)
C5—C6	1.511 (2)	C31—C32	1.492 (2)
С5—Н5А	0.9700	C32—C33	1.328 (2)

~		~~~	
С5—Н5В	0.9700	С32—Н32	0.9300
С6—Н6А	0.9700	C33—C34	1.482 (2)
С6—Н6В	0.9700	С33—Н33	0.9300
C21—C22	1.383 (2)	C34—O34	1.2355 (17)
C21—C26	1 394 (2)	$C_{34} - 0_{33}$	12820(17)
C_{21} C_{20}	1.394(2) 1.201(2)	O_{22} H_{22} A	1.2020(17)
C22—C23	1.391 (2)	032—H33A	1.23(2)
C22—H22	0.9300	033—H33A	1.17(2)
C23—C24	1.373 (2)		
C6 N1 C2	110 57 (12)	C21 C22 C23	121.70(14)
$C_0 = N_1 = C_2$	110.37(12)	C21-C22-C23	121.70 (14)
C6—N1—H11	112.8 (11)	C21—C22—H22	119.2
C2—N1—H11	105.8 (11)	C23—C22—H22	119.2
C6—N1—H12	112.6 (11)	C24—C23—C22	120.31 (15)
C2—N1—H12	106.8 (11)	С24—С23—Н23	119.8
H11—N1—H12	107.8 (15)	С22—С23—Н23	119.8
N1—C2—C3	110.13 (13)	C23—C24—O24	125.33 (15)
N1—C2—H2A	109.6	C^{23} C^{24} C^{25}	118 74 (14)
C3-C2-H2A	109.6	024 - C24 - C25	115.93 (14)
N1—C2—H2B	109.6	C26-C25-C24	120.98 (15)
C3—C2—H2B	109.6	C26—C25—H25	119.5
H2A—C2—H2B	108.1	C24—C25—H25	119.5
N4—C3—C2	111.29 (13)	C25—C26—C21	121.25 (15)
N4—C3—H3A	109.4	C25—C26—H326	119.4
С2—С3—НЗА	109.4	C21—C26—H326	119.4
N4—C3—H3B	109.4	$C_{24} = 0.24 = C_{27}$	117 53 (15)
C2—C3—H3B	109.4	024 027 $H27A$	109.5
H_{3A} $-C_{3}$ $-H_{3B}$	108.0	024—C27—H27B	109.5
$C_{21} - N_{4} - C_{3}$	115.42 (11)	H27A—C27—H27B	109.5
C21—N4—C5	114.50 (11)	024—C27—H27C	109.5
$C_3 - N_4 - C_5$	109.87 (12)	H_{27A} C_{27} H_{27C}	109.5
N4—C5—C6	111.79 (12)	H27B— $C27$ — $H27C$	109.5
N4—C5—H5A	109.3	031 - 031 - 032	121.90 (14)
C6—C5—H5A	109.3	031—C31—C32	118.52 (15)
N4—C5—H5B	109.3	032—C31—C32	119.57 (14)
C6—C5—H5B	109.3	C_{33} C_{32} C_{31}	130.65 (15)
H5A—C5—H5B	107.9	C33—C32—H32	114.7
N1-C6-C5	109.95 (13)	C31—C32—H32	114.7
N1—C6—H6A	109.7	C32—C33—C34	130.48 (13)
С5—С6—Н6А	109.7	С32—С33—Н33	114.8
N1—C6—H6B	109.7	С34—С33—Н33	114.8
С5—С6—Н6В	109.7	O34—C34—O33	122.51 (14)
H6A—C6—H6B	108.2	O34—C34—C33	117.29 (13)
C22—C21—C26	117.01 (13)	O33—C34—C33	120.20 (12)
C22—C21—N4	122.86 (13)	С31—О32—Н33А	111.7 (9)
C26—C21—N4	120.09 (13)	C34—O33—H33A	111.5 (10)
			. /
C6—N1—C2—C3	-57.07 (18)	C22—C23—C24—O24	-179.65 (16)
N1—C2—C3—N4	57.68 (18)	C22—C23—C24—C25	1.0 (3)

C2-C3-N4-C21 C2-C3-N4-C5 C21-N4-C5-C6 C3-N4-C5-C6 C2-N1-C6-C5 N4-C5-C6-N1 C3-N4-C21-C22 C5-N4-C21-C22 C3-N4-C21-C26	171.43 (13) -57.26 (17) -171.06 (12) 57.15 (17) 56.57 (17) -57.02 (18) -3.3 (2) -132.32 (16) 178.91 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.1 (3) \\ -179.42 (16) \\ -0.7 (3) \\ 0.4 (2) \\ 178.39 (14) \\ -4.6 (3) \\ 174.67 (18) \\ -173.24 (17) \\ 6.0 (2) \\ 0.5 (2) \end{array}$
C5—N4—C21—C22 C3—N4—C21—C26	-132.32 (16) 178.91 (14)	O31—C31—C32—C33 O32—C31—C32—C33	-173.24 (17) 6.0 (2)
C5—N4—C21—C26	49.85 (18)	C31—C32—C33—C34	-0.5 (3)
C26—C21—C22—C23 N4—C21—C22—C23 C21—C22—C23—C24	0.6 (2) -177.33 (14) -1.3 (3)	C32—C33—C34—O34 C32—C33—C34—O33	173.69 (16) -6.1 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	D···A	D—H…A
1.167 (18)	1.247 (18)	2.4121 (16)	175 (2)
0.915 (17)	2.126 (16)	2.9309 (19)	146.2 (15)
0.915 (17)	2.296 (17)	3.0798 (18)	143.5 (14)
0.919 (18)	1.881 (18)	2.7563 (17)	158.5 (17)
0.97	2.56	3.363 (2)	140
	<i>D</i> —H 1.167 (18) 0.915 (17) 0.915 (17) 0.919 (18) 0.97	$\begin{array}{c cccc} D & & & & & \\ \hline D & - H & & & & \\ \hline 1.167 (18) & & 1.247 (18) \\ 0.915 (17) & & 2.126 (16) \\ 0.915 (17) & & 2.296 (17) \\ 0.919 (18) & & 1.881 (18) \\ 0.97 & & 2.56 \end{array}$	D—HH···A D ···A1.167 (18)1.247 (18)2.4121 (16)0.915 (17)2.126 (16)2.9309 (19)0.915 (17)2.296 (17)3.0798 (18)0.919 (18)1.881 (18)2.7563 (17)0.972.563.363 (2)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+1.

4-(4-Methoxyphenyl)piperazin-1-ium trichloroacetate (XI)

Crystal data

 $C_{11}H_{17}N_2O^+C_2Cl_3O_2^-M_r = 355.64$ Orthorhombic, *Pca2*₁ a = 10.6117 (11) Å b = 13.808 (1) Å c = 10.9137 (8) Å V = 1599.1 (2) Å³ Z = 4F(000) = 736

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.476, T_{\max} = 0.892$ $D_x = 1.477 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2428 reflections $\theta = 3.0-27.7^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.48 \times 0.48 \times 0.20 \text{ mm}$

6173 measured reflections 2428 independent reflections 2278 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 27.7^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -5 \rightarrow 13$ $k = -16 \rightarrow 17$ $l = -14 \rightarrow 5$ Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.3843P]$
$wR(F^2) = 0.086$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
2428 reflections	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
198 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: SHELXL,
Primary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.023 (2)
Hydrogen site location: mixed	Absolute structure: Classical Flack method
	preferred over Parsons because s.u. lower
	Absolute structure parameter: 0.11 (7)

Special details

Experimental. Compound (XI). IR (KBr, cm⁻¹) 3073 (NH₂), 2829 (OCH₃), 1561 (COO). NMR (CDCl₃) δ (¹H)) 3.07 (m, 4H, piperazine), 3.19 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.89 (m, 4H, methoxyphenyl). **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.1394 (2)	0.44188 (17)	0.2473 (3)	0.0301 (5)	
H11	0.168 (3)	0.495 (3)	0.204 (3)	0.036*	
H12	0.061 (3)	0.426 (3)	0.206 (4)	0.036*	
C2	0.1158 (3)	0.4667 (2)	0.3775 (3)	0.0343 (7)	
H2A	0.0542	0.5185	0.3822	0.041*	
H2B	0.1933	0.4895	0.4148	0.041*	
C3	0.0680 (3)	0.37961 (19)	0.4468 (3)	0.0320 (6)	
H3A	0.0546	0.3967	0.5320	0.038*	
H3B	-0.0121	0.3591	0.4126	0.038*	
N4	0.1586 (2)	0.30039 (15)	0.4389 (2)	0.0261 (5)	
C5	0.1815 (3)	0.2750 (2)	0.3106 (3)	0.0311 (6)	
H5A	0.1037	0.2523	0.2738	0.037*	
H5B	0.2424	0.2227	0.3067	0.037*	
C6	0.2304 (2)	0.3607 (2)	0.2392 (3)	0.0324 (6)	
H6A	0.3112	0.3808	0.2721	0.039*	
H6B	0.2423	0.3426	0.1541	0.039*	
C21	0.1350 (2)	0.22071 (19)	0.5194 (3)	0.0269 (6)	
C22	0.0345 (3)	0.2170 (2)	0.5993 (3)	0.0347 (6)	
H22	-0.0265	0.2653	0.5959	0.042*	
C23	0.0216 (3)	0.1433 (2)	0.6846 (3)	0.0396 (7)	
H23	-0.0468	0.1430	0.7379	0.048*	
C24	0.1103 (3)	0.0700 (2)	0.6906 (3)	0.0398 (7)	
C25	0.2088 (3)	0.0707 (2)	0.6074 (4)	0.0388 (7)	
H25	0.2671	0.0205	0.6083	0.047*	

C26	0.2220 (3)	0.14432 (19)	0.5235 (3)	0.0324 (6)	
H26	0.2892	0.1434	0.4689	0.039*	
O24	0.1108 (3)	-0.00368 (18)	0.7747 (3)	0.0587 (8)	
C27	0.0095 (6)	-0.0086 (4)	0.8579 (5)	0.0733 (13)	
H27A	0.0234	-0.0608	0.9145	0.110*	
H27B	-0.0675	-0.0197	0.8138	0.110*	
H27C	0.0035	0.0513	0.9022	0.110*	
C31	0.3163 (2)	0.61757 (18)	0.1132 (3)	0.0266 (5)	
O31	0.20314 (18)	0.60081 (16)	0.1045 (3)	0.0444 (6)	
O32	0.39463 (19)	0.57402 (18)	0.1749 (3)	0.0464 (6)	
C32	0.3653 (3)	0.7076 (2)	0.0383 (3)	0.0304 (6)	
Cl1	0.52532 (7)	0.69160 (6)	-0.00662 (9)	0.0426 (2)	
Cl2	0.35730 (10)	0.80958 (5)	0.13523 (10)	0.0505 (3)	
C13	0.27618 (8)	0.72790 (7)	-0.09480 (9)	0.0540 (3)	

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0286 (11)	0.0228 (11)	0.0389 (15)	-0.0020 (8)	-0.0003 (11)	0.0038 (11)
C2	0.0433 (14)	0.0199 (13)	0.0398 (18)	0.0022 (11)	-0.0004 (14)	-0.0032 (12)
C3	0.0354 (13)	0.0242 (13)	0.0364 (16)	0.0059 (11)	0.0060 (12)	-0.0015 (12)
N4	0.0304 (11)	0.0178 (10)	0.0300 (13)	0.0008 (8)	0.0049 (9)	-0.0026 (9)
C5	0.0370 (14)	0.0234 (13)	0.0331 (15)	0.0034 (11)	0.0027 (13)	-0.0025 (12)
C6	0.0308 (14)	0.0307 (14)	0.0356 (16)	0.0041 (10)	0.0064 (13)	0.0002 (13)
C21	0.0295 (11)	0.0196 (11)	0.0316 (16)	-0.0051 (9)	0.0001 (11)	-0.0022 (11)
C22	0.0335 (13)	0.0295 (13)	0.0411 (18)	-0.0016 (11)	0.0036 (13)	-0.0032 (13)
C23	0.0455 (15)	0.0342 (15)	0.0392 (19)	-0.0102 (13)	0.0117 (14)	-0.0011 (14)
C24	0.0628 (19)	0.0206 (12)	0.0361 (18)	-0.0128 (13)	-0.0005 (15)	-0.0005 (13)
C25	0.0487 (15)	0.0198 (12)	0.048 (2)	0.0005 (11)	-0.0002 (16)	0.0004 (13)
C26	0.0336 (13)	0.0229 (13)	0.0408 (18)	-0.0009 (10)	0.0034 (12)	-0.0015 (13)
O24	0.0943 (19)	0.0332 (12)	0.0485 (17)	-0.0085 (13)	0.0079 (15)	0.0129 (13)
C27	0.095 (3)	0.064 (3)	0.061 (3)	-0.028 (2)	0.008 (3)	0.023 (2)
C31	0.0303 (12)	0.0190 (11)	0.0305 (15)	-0.0017 (9)	0.0033 (12)	0.0005 (11)
O31	0.0301 (9)	0.0391 (11)	0.0640 (17)	-0.0070 (8)	-0.0039 (11)	0.0214 (12)
O32	0.0328 (11)	0.0421 (12)	0.0643 (18)	-0.0046 (9)	-0.0072 (11)	0.0244 (12)
C32	0.0320 (12)	0.0260 (13)	0.0332 (15)	-0.0049 (10)	-0.0009 (12)	0.0029 (12)
Cl1	0.0343 (3)	0.0457 (4)	0.0478 (5)	-0.0125 (3)	0.0085 (3)	-0.0007 (4)
C12	0.0714 (6)	0.0236 (3)	0.0565 (6)	-0.0017 (3)	0.0089 (5)	-0.0065 (4)
C13	0.0514 (5)	0.0652 (6)	0.0455 (5)	-0.0134 (4)	-0.0124 (4)	0.0233 (5)

N1—C6	1.482 (3)	C22—C23	1.386 (5)	
N1-C2	1.484 (4)	C22—H22	0.9300	
N1—H11	0.92 (4)	C23—C24	1.383 (5)	
N1—H12	0.97 (3)	С23—Н23	0.9300	
C2—C3	1.509 (4)	C24—O24	1.370 (4)	
C2—H2A	0.9700	C24—C25	1.385 (5)	

C2—H2B	0.9700	C25—C26	1.375 (4)
C3—N4	1.459 (3)	C25—H25	0.9300
С3—НЗА	0.9700	C26—H26	0.9300
С3—Н3В	0.9700	O24—C27	1.410 (6)
N4—C21	1.430 (4)	С27—Н27А	0.9600
N4—C5	1.464 (4)	С27—Н27В	0.9600
C5—C6	1.509 (4)	С27—Н27С	0.9600
С5—Н5А	0.9700	C31—O31	1.227 (3)
C5—H5B	0.9700	C31—O32	1.227 (4)
C6—H6A	0.9700	C31—C32	1.576 (4)
C6—H6B	0.9700	C32—Cl3	1.756 (3)
$C_{21} - C_{22}$	1.379 (4)	C_{32} C_{12}	1.763 (3)
$C_{21} - C_{26}$	1 402 (4)	C32—C11	1.781(3)
021 020	1.102 (1)	052 011	1.701 (5)
C6—N1—C2	110.0 (2)	C22—C21—N4	123.5 (3)
C6—N1—H11	111 (2)	C26—C21—N4	118.9 (2)
C2—N1—H11	111 (2)	C21—C22—C23	121.9 (3)
C6—N1—H12	111 (2)	C21—C22—H22	119.0
C2—N1—H12	111 (2)	C23—C22—H22	119.0
H11—N1—H12	103 (3)	C24—C23—C22	120.1 (3)
N1—C2—C3	110.6 (2)	C24—C23—H23	119.9
N1—C2—H2A	109.5	С22—С23—Н23	119.9
C3—C2—H2A	109.5	O24—C24—C23	125.3 (3)
N1—C2—H2B	109.5	O24—C24—C25	116.2 (3)
C3—C2—H2B	109.5	C23—C24—C25	118.5 (3)
H2A—C2—H2B	108.1	C26—C25—C24	121.3 (3)
N4—C3—C2	110.3 (2)	C26—C25—H25	119.4
N4—C3—H3A	109.6	С24—С25—Н25	119.4
С2—С3—НЗА	109.6	C25—C26—C21	120.7 (3)
N4—C3—H3B	109.6	C25—C26—H26	119.7
С2—С3—Н3В	109.6	C21—C26—H26	119.7
НЗА—СЗ—НЗВ	108.1	C24—O24—C27	117.7 (3)
C21—N4—C3	115.2 (2)	O24—C27—H27A	109.5
C21—N4—C5	115.6 (2)	O24—C27—H27B	109.5
C3—N4—C5	110.2 (2)	H27A—C27—H27B	109.5
N4—C5—C6	111.3 (2)	O24—C27—H27C	109.5
N4—C5—H5A	109.4	H27A—C27—H27C	109.5
С6—С5—Н5А	109.4	H27B—C27—H27C	109.5
N4—C5—H5B	109.4	O31—C31—O32	127.8 (3)
C6—C5—H5B	109.4	O31—C31—C32	115.6 (2)
H5A—C5—H5B	108.0	O32—C31—C32	116.6 (2)
N1—C6—C5	109.8 (2)	C31—C32—Cl3	112.15 (19)
N1—C6—H6A	109.7	C31—C32—C12	107.6 (2)
С5—С6—Н6А	109.7	Cl3—C32—Cl2	110.05 (16)
N1—C6—H6B	109.7	C31—C32—C11	111.06 (19)
С5—С6—Н6В	109.7	Cl3—C32—Cl1	107.82 (18)
Н6А—С6—Н6В	108.2	Cl2—C32—Cl1	108.08 (15)
C22—C21—C26	117.4 (3)		- (-)
	× /		

C6—N1—C2—C3	-57.4 (3)	C22—C23—C24—O24	176.6 (3)
N1-C2-C3-N4	58.2 (3)	C22—C23—C24—C25	-2.1 (5)
C2-C3-N4-C21	168.8 (3)	O24—C24—C25—C26	-176.2 (3)
C2-C3-N4-C5	-58.2 (3)	C23—C24—C25—C26	2.6 (5)
C21—N4—C5—C6	-168.7 (2)	C24—C25—C26—C21	-0.4 (5)
C3—N4—C5—C6	58.5 (3)	C22—C21—C26—C25	-2.3 (4)
C2—N1—C6—C5	56.6 (3)	N4—C21—C26—C25	174.1 (3)
N4-C5-C6-N1	-57.6 (3)	C23—C24—O24—C27	3.5 (5)
C3—N4—C21—C22	0.2 (4)	C25—C24—O24—C27	-177.7 (4)
C5—N4—C21—C22	-130.3 (3)	O31—C31—C32—Cl3	-29.9 (3)
C3—N4—C21—C26	-175.9 (3)	O32—C31—C32—Cl3	151.5 (3)
C5—N4—C21—C26	53.6 (3)	O31—C31—C32—Cl2	91.3 (3)
C26—C21—C22—C23	2.8 (5)	O32—C31—C32—Cl2	-87.3 (3)
N4—C21—C22—C23	-173.3 (3)	O31—C31—C32—Cl1	-150.6 (2)
C21—C22—C23—C24	-0.7 (5)	O32—C31—C32—Cl1	30.8 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D…A	D—H…A
N1—H11…O31	0.92 (4)	1.86 (4)	2.775 (4)	172 (3)
$N1$ — $H12$ ···O 32^{i}	0.97 (3)	1.80 (3)	2.724 (3)	158 (3)

Symmetry code: (i) x-1/2, -y+1, z.

Bis(4-(4-methoxyphenyl)piperazin-1-ium) chloranilate(2-) dihydrate (XII)

Crystal data

$C_{11}H_{17}N_2O^+ \cdot 0.5C_6Cl_2O_4{}^{2-} \cdot H_2O$	F(000) = 664
$M_r = 314.76$	$D_{\rm x} = 1.417 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.1597 (5) Å	Cell parameters from 3253 reflections
b = 15.1434 (8) Å	$\theta = 2.6 - 28.0^{\circ}$
c = 10.8742 (6) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 102.067 \ (5)^{\circ}$	T = 296 K
$V = 1475.02 (14) Å^3$	Block, colourless
Z = 4	$0.44 \times 0.24 \times 0.20 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD 9650 measured reflections 9650 independent reflections diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator $h = -11 \rightarrow 11$ ω scans $k = -19 \rightarrow 19$ Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $l = -13 \rightarrow 14$ $T_{\rm min} = 0.892, T_{\rm max} = 0.947$ Refinement Refinement on F^2 Least-squares matrix: full S = 1.02

7444 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$

> $wR(F^2) = 0.105$ 9650 reflections

 $R[F^2 > 2\sigma(F^2)] = 0.039$

204 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0573P)^2 + 0.263P]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Compound (XII). IR (KBr , cm⁻¹) 3311 (OH), 3073 (NH₂), 2825 (OCH₃), 1561 (COO), 793 and 741 (CCl) . NMR (CDCl₃) δ (¹H)) 3.11 (m, 4H, piperazine), 3.40 (m, 4H, piperazine), 3.77 (s, 3H, OCH₃), 6.88 (m, 4H, methoxyphenyl).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.4381 (2)	0.32824 (14)	0.35576 (19)	0.0420 (5)
H11	0.437 (2)	0.3477 (15)	0.278 (3)	0.050*
H12	0.420 (3)	0.3725 (16)	0.405 (2)	0.050*
C2	0.5890 (2)	0.29024 (17)	0.4015 (2)	0.0472 (6)
H2A	0.6629	0.3370	0.4125	0.057*
H2B	0.6115	0.2490	0.3397	0.057*
C3	0.5965 (2)	0.24346 (16)	0.5241 (2)	0.0427 (6)
H3A	0.6939	0.2164	0.5509	0.051*
H3B	0.5827	0.2856	0.5878	0.051*
N4	0.48097 (19)	0.17569 (13)	0.51047 (18)	0.0398 (5)
C5	0.3334 (2)	0.21513 (17)	0.4745 (2)	0.0455 (6)
H5A	0.3186	0.2572	0.5381	0.055*
H5B	0.2576	0.1696	0.4681	0.055*
C6	0.3188 (2)	0.26139 (16)	0.3494 (2)	0.0454 (6)
H6A	0.3256	0.2184	0.2847	0.054*
H6B	0.2221	0.2899	0.3271	0.054*
C21	0.5025 (2)	0.10929 (15)	0.6041 (2)	0.0357 (5)
C22	0.6331 (2)	0.05976 (16)	0.6228 (2)	0.0432 (6)
H22	0.7033	0.0719	0.5744	0.052*
C23	0.6610 (2)	-0.00626 (16)	0.7103 (2)	0.0457 (6)
H23	0.7503	-0.0375	0.7222	0.055*
C24	0.5565 (2)	-0.02672 (15)	0.7812 (2)	0.0418 (6)
C25	0.4243 (2)	0.01896 (16)	0.7614 (2)	0.0452 (6)
H25	0.3516	0.0040	0.8059	0.054*
C26	0.3991 (2)	0.08760 (16)	0.6747 (2)	0.0419 (6)
H26	0.3106	0.1195	0.6641	0.050*
O24	0.59700 (19)	-0.09318 (12)	0.86827 (19)	0.0615 (5)
C27	0.4842 (3)	-0.12833 (17)	0.9257 (3)	0.0577 (7)
H27A	0.5208	-0.1806	0.9720	0.086*
H27B	0.3980	-0.1429	0.8621	0.086*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H27C	0.4573	-0.0853	0.9820	0.086*	
C31	0.4846 (2)	0.41334 (14)	0.0515 (2)	0.0301 (5)	
O31	0.46952 (17)	0.34242 (10)	0.10569 (14)	0.0429 (4)	
C32	0.4674 (2)	0.42353 (14)	-0.0785 (2)	0.0313 (5)	
Cl32	0.42518 (7)	0.33070 (4)	-0.17371 (6)	0.04725 (19)	
O33	0.54043 (16)	0.48217 (10)	0.25106 (14)	0.0419 (4)	
C33	0.5224 (2)	0.49523 (14)	0.13592 (19)	0.0297 (5)	
O41	0.3458 (2)	0.45297 (16)	0.5134 (2)	0.0698 (6)	
H41	0.383 (4)	0.464 (2)	0.589 (4)	0.105*	
H42	0.295 (4)	0.497 (2)	0.492 (3)	0.105*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0531 (12)	0.0465 (13)	0.0271 (11)	0.0008 (11)	0.0101 (9)	0.0103 (10)
C2	0.0458 (13)	0.0526 (15)	0.0447 (15)	-0.0023 (12)	0.0132 (11)	0.0145 (13)
C3	0.0397 (12)	0.0497 (14)	0.0362 (14)	-0.0084 (12)	0.0026 (10)	0.0099 (12)
N4	0.0358 (10)	0.0461 (11)	0.0344 (11)	-0.0073 (9)	0.0003 (8)	0.0123 (9)
C5	0.0372 (12)	0.0559 (16)	0.0411 (14)	-0.0077 (12)	0.0028 (10)	0.0152 (13)
C6	0.0462 (13)	0.0509 (15)	0.0343 (14)	-0.0037 (12)	-0.0026 (10)	0.0082 (12)
C21	0.0368 (12)	0.0404 (13)	0.0280 (12)	-0.0096 (11)	0.0027 (9)	0.0032 (10)
C22	0.0374 (13)	0.0471 (15)	0.0472 (15)	-0.0058 (11)	0.0139 (11)	0.0057 (12)
C23	0.0358 (12)	0.0451 (14)	0.0566 (17)	0.0018 (11)	0.0103 (11)	0.0088 (13)
C24	0.0462 (13)	0.0399 (14)	0.0375 (14)	-0.0005 (12)	0.0043 (10)	0.0093 (11)
C25	0.0429 (13)	0.0540 (16)	0.0413 (15)	-0.0008 (12)	0.0146 (10)	0.0123 (12)
C26	0.0358 (12)	0.0498 (15)	0.0398 (14)	0.0045 (11)	0.0070 (10)	0.0125 (12)
O24	0.0567 (11)	0.0620 (12)	0.0673 (14)	0.0079 (9)	0.0164 (9)	0.0339 (11)
C27	0.0752 (18)	0.0480 (16)	0.0522 (18)	-0.0012 (15)	0.0190 (14)	0.0151 (14)
C31	0.0292 (10)	0.0331 (12)	0.0290 (12)	0.0005 (9)	0.0083 (8)	0.0032 (10)
O31	0.0612 (10)	0.0355 (9)	0.0327 (9)	-0.0024 (8)	0.0115 (7)	0.0066 (7)
C32	0.0368 (11)	0.0315 (11)	0.0256 (11)	-0.0004 (10)	0.0060 (8)	-0.0010 (9)
Cl32	0.0648 (4)	0.0407 (3)	0.0347 (3)	-0.0058 (3)	0.0068 (3)	-0.0065 (3)
O33	0.0582 (9)	0.0456 (10)	0.0215 (8)	-0.0073 (8)	0.0073 (7)	0.0036 (7)
C33	0.0282 (10)	0.0381 (12)	0.0232 (11)	0.0019 (9)	0.0065 (8)	0.0014 (9)
O41	0.0876 (16)	0.0781 (15)	0.0408 (12)	0.0001 (12)	0.0066 (10)	-0.0146 (12)

N1—C6	1.481 (3)	C23—C24	1.384 (3)
N1C2	1.484 (3)	С23—Н23	0.9300
N1—H11	0.89 (3)	C24—C25	1.372 (3)
N1—H12	0.89 (2)	C24—O24	1.379 (3)
C2—C3	1.498 (3)	C25—C26	1.390 (3)
C2—H2A	0.9700	C25—H25	0.9300
C2—H2B	0.9700	C26—H26	0.9300
C3—N4	1.459 (3)	O24—C27	1.419 (3)
С3—НЗА	0.9700	C27—H27A	0.9600
С3—Н3В	0.9700	C27—H27B	0.9600

N4—C21	1,415 (3)	С27—Н27С	0.9600
N4—C5	1.455 (3)	C31—O31	1.246 (2)
C5—C6	1.511 (3)	C31—C32	1.398 (3)
C5—H5A	0.9700	C31—C33	1 539 (3)
C5—H5B	0.9700	$C_{32} = C_{33^{i}}$	1 392 (3)
C6—H6A	0.9700	C_{32} C_{32} C_{132}	1.392(3) 1 741(2)
C6—H6B	0.9700	033-033	1.741(2) 1 244(2)
C_{21} C_{26}	1 378 (3)	$C_{33}^{33} C_{32}^{33}$	1.244(2) 1 302(3)
$C_{21} = C_{20}$	1.378 (3)	041 H41	1.392(3)
$C_{21} = C_{22}$	1.390(3) 1.367(3)	041 - 1141	0.83(4)
$C_{22} = C_{23}$	1.507 (5)	041—1142	0.82 (3)
C22—n22	0.9300		
C6—N1—C2	112.16 (18)	C26—C21—N4	124.1 (2)
C6—N1—H11	108.7 (15)	C22—C21—N4	118.3 (2)
C2—N1—H11	105.7 (14)	C23—C22—C21	121.7 (2)
C6—N1—H12	108.2 (15)	C23—C22—H22	119.1
C_2 —N1—H12	111.7 (16)	C21—C22—H22	119.1
H11—N1—H12	110 (2)	C^{22} C^{23} C^{24}	1201(2)
N1-C2-C3	110 (2)	$C_{22} = C_{23} = H_{23}$	120.1 (2)
N1 - C2 - H2A	109.6	C_{24} C_{23} H_{23}	120.0
$C_3 = C_2 = H_2 A$	109.6	$C_{24} = C_{23} = C_{24} = C$	125.3(2)
N1-C2-H2B	109.6	$C_{25} = C_{24} = C_{23}$	129.3(2) 119.4(2)
$C_3 - C_2 - H_2B$	109.6	024 - 024 - 023	117.4(2) 115.3(2)
$H_{2A} = C_2 = H_{2B}$	109.0	$C_{24} = C_{25} = C_{25}$	113.3(2)
$M_{12} = C_2 = M_{22} = M_{22}$	110.20 (10)	$C_{24} = C_{25} = C_{20}$	120.0(2)
N4 C2 H2A	100.6	$C_{24} = C_{25} = H_{25}$	120.0
N4 - C3 - H3A	109.0	$C_{20} = C_{23} = H_{23}$	120.0
$C_2 = C_3 = H_3 A$	109.0	$C_{21} = C_{20} = C_{23}$	121.5 (2)
N4-C3-H3B	109.6	$C_{21} = C_{20} = H_{20}$	119.4
$C_2 = C_3 = H_3 B$	109.0	$C_{25} = C_{20} = H_{20}$	119.4
H3A - C3 - H3B	108.1	$C_{24} = 0_{24} = C_{27}$	117.40 (19)
C21—N4—C5	117.85 (18)	024 - C2/ - H2/A	109.5
C21—N4—C3	115.96 (17)	024—C27—H27B	109.5
C5—N4—C3	110.60 (18)	H2/A—C2/—H2/B	109.5
N4—C5—C6	109.54 (18)	024—C27—H27C	109.5
N4—C5—H5A	109.8	Н27А—С27—Н27С	109.5
C6—C5—H5A	109.8	Н27В—С27—Н27С	109.5
N4—C5—H5B	109.8	O31—C31—C32	125.0 (2)
C6—C5—H5B	109.8	O31—C31—C33	116.47 (18)
H5A—C5—H5B	108.2	C32—C31—C33	118.55 (18)
N1—C6—C5	110.47 (18)	$C31-C32-C33^{i}$	123.2 (2)
N1—C6—H6A	109.6	C31—C32—Cl32	118.45 (17)
С5—С6—Н6А	109.6	C33 ⁱ —C32—Cl32	118.31 (16)
N1—C6—H6B	109.6	O33—C33—C32 ⁱ	125.8 (2)
С5—С6—Н6В	109.6	O33—C33—C31	115.99 (19)
Н6А—С6—Н6В	108.1	C32 ⁱ —C33—C31	118.20 (17)
C26—C21—C22	117.5 (2)	H41—O41—H42	102 (3)
	52 5 (2)		170.0 (2)
$C_0 - N_1 - C_2 - C_3$	-53.5 (3)	C22—C23—C24—O24	-178.8(2)
N1-C2-C3-N4	56.5 (3)	O24—C24—C25—C26	176.9 (2)
-----------------	------------	------------------------------	--------------
C2-C3-N4-C21	161.1 (2)	C23—C24—C25—C26	-2.8 (4)
C2-C3-N4-C5	-61.3 (3)	C22—C21—C26—C25	0.1 (3)
C21—N4—C5—C6	-162.3 (2)	N4-C21-C26-C25	177.1 (2)
C3—N4—C5—C6	61.0 (3)	C24—C25—C26—C21	2.3 (4)
C2—N1—C6—C5	53.7 (3)	C25—C24—O24—C27	12.2 (4)
N4—C5—C6—N1	-56.7 (3)	C23—C24—O24—C27	-168.1 (2)
C5—N4—C21—C26	-8.7 (3)	O31—C31—C32—C33 ⁱ	176.5 (2)
C3—N4—C21—C26	125.7 (2)	C33—C31—C32—C33 ⁱ	-2.4 (3)
C5—N4—C21—C22	168.2 (2)	O31—C31—C32—Cl32	-1.3 (3)
C3—N4—C21—C22	-57.4 (3)	C33—C31—C32—Cl32	179.81 (14)
C26—C21—C22—C23	-2.0 (3)	O31—C31—C33—O33	2.8 (3)
N4—C21—C22—C23	-179.1 (2)	C32—C31—C33—O33	-178.16 (18)
C21—C22—C23—C24	1.5 (4)	O31—C31—C33—C32 ⁱ	-176.76 (18)
C22—C23—C24—C25	0.9 (4)	C32—C31—C33—C32 ⁱ	2.2 (3)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H11…O31	0.89 (3)	1.96 (3)	2.802 (3)	157 (2)
N1—H11…O33	0.89 (3)	2.29 (2)	2.838 (3)	119 (2)
N1—H12…O41	0.90 (2)	1.92 (2)	2.798 (3)	168 (3)
O41—H41…O33 ⁱⁱ	0.84 (4)	1.92 (4)	2.738 (3)	166 (3)
O41—H42···O24 ⁱⁱⁱ	0.82 (3)	2.49 (3)	3.269 (3)	160 (3)

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1/2, -*y*+1/2, *z*-1/2.