

Received 9 August 2019 Accepted 12 August 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; silanol; steric hindrance; diphenylmethyl; benzhydryl; O— $H \cdots \pi$ interaction; C— $H \cdots \pi$ interaction.

CCDC references: 1946744; 1946743

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses and crystal structures of 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane and 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol

Alexandra Williams,^a Michelle Brown,^a Richard J. Staples,^b Shannon M. Biros^a and William R. Winchester^a*

^aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and ^bCenter for Crystallographic Research, Michigan State University, Department of Chemistry and Chemical Biology, East Lansing, MI 48824, USA. *Correspondence e-mail: winchesr@gvsu.edu

The sterically hindered silicon compound 2-methyl-1,1,2,3,3-pentaphenyl-2silapropane, $C_{33}H_{30}Si$ (I), was prepared *via* the reaction of two equivalents of diphenylmethyllithium (benzhydryllithium) and dichloromethylphenylsilane. This bisbenzhydryl-substituted silicon compound was then reacted with trifluoromethanesulfonic acid, followed by hydrolysis with water to give the silanol 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol, C₂₇H₂₆OSi (II). Key geometric features for I are the Si-C bond lengths that range from 1.867 (2) to 1.914 (2) Å and a τ_4 descriptor for fourfold coordination around the Si atom of 0.97 (indicating a nearly perfect tetrahedron). Key geometric features for compound II include Si-C bond lengths that range from 1.835 (4) to 1.905 (3) Å, a Si–O bond length of 1.665 (3) Å, and a τ_4 descriptor for fourfold coordination around the Si atom of 0.96. In compound II, there is an intramolecular $C-H \cdots O$ hydrogen bond present. In the crystal of I, molecules are linked by two pairs of $C-H \cdots \pi$ interactions, forming dimers that are linked into ribbons propagating along the *b*-axis direction. In the crystal of **II**, molecules are linked by $C-H\cdots\pi$ and $O-H\cdots\pi$ interactions that result in the formation of ribbons that run along the *a*-axis direction.

1. Chemical context

The benzhydryl substituent and its derivatives occur in many medicinal compounds, for example: diphenhydramine, modafinil and meclizine (Fig. 1). The addition of the benzhydryl group to a drug significantly increases its lipophilicity and the two aromatic rings add electron density and bulk. There is an active field looking at the switching of silicon for carbon to discover new medicinal compounds and there have been several recent publications and reviews in the area (Franz & Wilson, 2013; Geyer *et al.*, 2015; Ramesh & Reddy, 2018; Tacke & Doerrich, 2016). It seemed to us that another option is to replace the sulfoxide group with a silanol, in which the silicon has a size that is similar to sulfur and the alcohol will occupy the space of the sulfoxide oxygen. The conversion of a

Acta Cryst. (2019). E75, 1339–1343

OPEN ACCESS

research communications

phenylsilane to a silanol by the reaction with trifluoromethanesulfonic acid followed by hydrolysis has been used previously (Kira *et al.*, 2007; Shainyan *et al.*, 2017), and worked well for the introduction of the silanol in compound **II**, silanol 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol.

The steric bulk of the benzhydryl group has been used to advantage in several silyl reagents. It has been reported that the benzhydryldimethylsilylgroup is readily synthesized and undergoes facile oxidation with hydrogen peroxide to form alcohols (Peng & Woerpel, 2001). Yoshida and coworkers have started with a tris(diphenylmethyl)silane and further substituted aromatic rings using electrophilic aromatic substitution to produce the sterically demanding TEDAMS group (Terao *et al.*, 2010). Unno *et al.* (2006) have addressed the influence of bulky silyl groups on the ability of silanols to hydrogen bond, and found that $(i-Pr_3Si)_3SiOH$ exists as a monomer while $(t-BuMe_2Si)_3SiOH$ is a hydrogen-bonded dimer. Our observation that compound **II** is monomeric indicates that the silicon atom is very hindered by the presence of the two benzhydryl groups.

2. Structural commentary

The molecular structure of compound I is shown in Fig. 2. The Si-C bond lengths range from 1.867 (2) to 1.914 (2) Å, with the Si-C1 bond to the methyl group being the shortest. The τ_4 descriptor for fourfold coordination around Si1 is 0.97, indicating a nearly perfect tetrahedral geometry around this silicon atom (where 0 = square planar, 0.85 = trigonal pyramidal, and 1 = tetrahedral; Yang *et al.*, 2007). The Si1-C1 bond and aromatic ring (C4-C9) are nearly co-planar with a C1-Si1-C4-C5 torsion angle of 12.2 (2)°. The orientation of the benzhydryl group bonded to C2 is such that when the molecule is viewed down the C2-Si1 bond the methyl group (C1) is anti to H2 (torsion angle C1-Si1-C2-H2 is 169°), with the aromatic rings gauche. For the benzhydryl group containing C3, the hydrogen atom H3 is gauche to the methyl group (C1) with a C1-Si1-C3-H3 torsion angle of 69°, with the aromatic ring (C22-C27) occupying the anti position.

The molecular structure of compound II is shown in Fig. 3. The Si-C bond lengths range from 1.835 (4) to 1.905 (3) Å, with an Si-O bond length of 1.665 (3) Å. The τ_4 descriptor for fourfold coordination around Si1 is 0.96, again indicating an almost perfect tetrahedral geometry around this silicon atom. The orientation of the C2 benzhydryl group is such that

Figure 2

The molecular structure of compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. For clarity, the hydrogen atoms have been omitted.

the hydrogen atom H2 is *anti* to the methyl group (C1) with a C1–Si1–C2–H2 torsion angle of -165° . For the benzhydryl group containing C3, the hydrogen atom H3 is again *gauche* to the methyl group (C1) with a C1–Si1–C3–H3 torsion angle of 55°, and the aromatic ring C22–C27 occupies the *anti* position. An intramolecular C–H···O hydrogen bond is present between H27 and O1 with an H···A distance of 2.55 Å (Table 2).

3. Supramolecular features

In the crystal of **I**, molecules are linked by two pairs of intermolecular $C-H\cdots\pi$ interactions involving inversion-

The molecular structure of compound \mathbf{II} , with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. For clarity, the C-bound hydrogen atoms have been omitted.

research communications

Table 1Hydrogen-bond geometry (Å, °) for I.

Cg2 and Cg4 are the centroids of the C10–C15 and C22–C27 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$\begin{array}{c} C20 - H20 \cdots Cg4^{i} \\ C24 - H24 \cdots Cg2^{ii} \end{array}$	0.95	2.94	3.716 (2)	140
	0.95	2.75	3.696 (2)	175

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y + 1, -z.

Table 2Hydrogen-bond geometry (Å, °) for II.

Cg1 is the centroid of the C4–C9 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C27-H27\cdots O1$	0.93	2.55	3.237 (4)	131
$O1-H1\cdots Cg1^{i}$	0.75 (8)	2.70 (7)	3.416 (3)	162 (7)
$C24-H24\cdots Cg1^{ii}$	0.93	2.86	3.582 (4)	135

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z.

related compounds (Fig. 4 and Table 1). The result of these interactions is the formation of dimers that are linked to form ribbons along the *b*-axis direction (Fig. 5).

In the crystal of **II**, inversion-related molecules are linked by a pair of $O-H \cdots \pi$ interactions, forming dimers (Table 2, Fig. 6). Similar interactions between aryl groups and OH groups in silanols have been reported previously (Al-Juaid *et al.*, 1992). In the crystal of **II**, the dimers are linked by a pair of $C-H \cdots \pi$ interactions (Table 2), so forming ribbons that propagate along the *a*-axis direction (Fig. 7).

Figure 4

Intermolecular C-H··· π interactions present in the crystal of compound I; see Table 1 for details. Only hydrogen atoms H24 and H20 are shown for clarity, and the C-H··· π interactions are depicted as purple lines. Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y + 1, -z.

Figure 5

The crystal packing of compound **I**, viewed along the *a*-axis, showing the supramolecular ribbons formed by intermolecular $C-H\cdots\pi$ interactions (Table 1; shown as dashed purple lines). Only hydrogen atoms H20 and H24 are shown for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom *et al.*, 2016) gave only one hit for a structure in which a silicon atom is bonded to two benzhydryl groups, *viz.* bis(diethylamino)bis(diphenylmeth-yl)silane (CSD refcode YEPTUI; Huppmann, *et al.*, 1994). In

Figure 6

Intramolecular hydrogen bond (blue dotted lines) and intermolecular C-H··· π and O-H··· π interactions (Table 2; purple dashed lines) present in the crystal of compound **II**. For clarity, only hydrogen atoms H1, H24 and H27 have been included. Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z.

research communications

Figure 7

The crystal packing of compound \mathbf{II} , viewed along the *c*-axis, showing the supramolecular ribbons formed by $O-H\cdots\pi$ and $C-H\cdots\pi$ interactions (Table 2). For clarity, only hydrogen atoms H1, H24 and H27 have been included.

this compound, the silicon atom is also bonded to two diethylamino groups. There are four other structures in the CSD with a silicon atom bonded to one benzhydryl group and a different alkyl group (this count excludes organometallic compounds). These compounds include, tert-butyl 1'-acetyl-4-[(diphenylmethyl)(dimethyl)silyl]-5'-fluoro-2'-oxo-1',2'-dihydrospiro[cyclopentane-1,3'-indole]-2-carboxylate (SOSZIL; Ball-Jones et al., 2014), (3S,4R,5S)-4-[dimethyl-(diphenylmethyl)silyl]-5-{[dimethyl(phenyl)silyl]methyl}-3methyl-tetrahydrofuran-2-one (XICWUB; Peng & Woerpel, 2001), diphenyl(trimethylsilyl)methane (MOQWIY; Hill & Hitchcock, 2002) and diphenyl[t-butyl(dimethyl)silyl]methane (MOOWEU; Hill & Hitchcock, 2002). This search revealed zero structures in the CSD that contained a silanol group where the silicon atom is bonded to a benzhydryl group. However, the related structures (triphenylmethyl)silanetriol acetone solvate (GAWVUW; Kim, et al., 2005) and (triphenylmethyl)silanetriol tetrahydrofuran solvate (BAVQOF; Yoo, et al., 2001) are both silanetriols that bear a trityl group (-CPh₃) coordinated to the central silicon atom.

5. Synthesis and crystallization

Synthesis of 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane (I): Diphenylmethane (1.68 g, 10 mmol) was added to an ovendried, argon-flushed 100 ml Schlenk flask along with a magnetic stirbar. Anhydrous tetrahydrofuran (10 ml) was then added to the flask to dissolve the solid and the solution was cooled to 273 K. After the solution had cooled for 10 min, n-butyllithium (6.25 ml, 1.6 M in hexanes, 10 mmol) was added and the solution was stirred for 1 h. The reaction mixture was then cooled further to 195 K and dichloromethylphenylsilane was added (0.955g, 5 mmol). After warming to room temperature and stirring for 12 h, the solution was poured into hexanes (20 ml) and the organic layer was washed with water (20 ml), dilute hydrochloric acid (3 N, 10 ml), water (10 ml)

and finally brine (10 ml). The hexanes solution was dried over sodium sulfate, filtered and concentrated *in vacuo*. The product was purified by dissolving it in 20 ml hexane, cooling to 195 K and isolating the white crystals by filtration. The crystals were then washed with pentane and dried *in vacuo* (2.1 g, 93% yield). Colorless block-like crystals suitable for analysis by X-ray diffraction were grown by recrystallization of compound I (0.1 g) from hexanes (2 ml) with heating (0.08 g isolated yield). FT–IR (ν , cm⁻¹): 3057, 3019, 2869, 1597, 1493, 696; ¹H NMR (400 MHz, chloroform-*d*) δ 0.39 (*s*, 3H), 3.87 (*s*, 2H), 6.8–7.4 (*m*, 25H); ¹³C NMR (101 MHz, chloroform-*d*) δ -4.77, 42.70, 125.28, 125.67, 127.37, 128.14, 128.49, 129.21, 129.46, 129.81, 134.62, 135.99, 142.02, 142.14; ²⁹Si NMR (79 MHz, chloroform-*d*) δ -3.12.

Synthesis of 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol **(II)**: Bis(diphenylmethyl)methylphenylsilane (0.455 g, 1.0 mmol) was added to an oven-dried, argon-flushed 50 ml Schlenk flask along with a stirbar. Anhydrous toluene (5 ml) was added to dissolve the solid and the solution was cooled to 273 K. Trifluoromethanesulfonic acid was weighed in a vial (150 mg, 1 mmol) and then added to the Schlenk flask using a Pasteur pipette, at which point the solution went from colorless to a bright yellow. The solution was stirred for 2 h at room temperature after which time the solution went from cloudy to clear. At this point a mixture of water (40 mg, 2.2 mmol) and triethylamine (200 mg, 2.0 mmol) in ether (2 ml) was prepared and added to the rapidly stirring solution of the triflate in toluene, which caused the yellow solution to immediately turn colorless. After stirring for 1 h, the mixture was poured into hexanes (20 ml) and the organic layer was washed with water (20 ml), dilute hydrochloric acid (3 N, 10 ml), water (10 ml) and finally brine (10 ml). The hexanes solution was dried over sodium sulfate, filtered and the solvent was removed in vacuo. The crude product was then dissolved in 5 ml hexane and cooled to 195 K. The white crystals were isolated by vacuum filtration, washed with pentane and dried in vacuo (319 mg, 81% yield). Colourless block-like crystals suitable for analysis by X-ray diffraction were grown by recrystallization of compound II (0.4 g) from hexanes (5 ml) with heating (0.3 g isolated yield, m.p. (uncorrected) 375.8-376.2 K). FT-IR (v, cm⁻¹): 3591, 3057, 3024, 1597, 1491, 696; ¹H NMR (400 MHz, chloroform-d) δ 0.15 (s, 3H), 3.49 (s, 2H), 7.22 (m, 20H). ¹³C NMR (101 MHz, chloroform-d) δ -2.34, 44.44, 125.64, 125.68, 128.62, 129.06, 129.28, 141.20, 141.43. ²⁹Si NMR (79 MHz, chloroform-d) δ 7.98.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For both compounds, the hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C-H = 0.95-1.00 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms in compound I, and C-H = 0.93-0.98 Å with $1.2U_{eq}(C)$ in compound II. The hydrogen atom bonded to O1 (H1) in compound II was located in an electron-density difference map and freely refined.

Table 3Experimental details.

	I	П
Crystal data		
Chemical formula	$C_{33}H_{30}Si$	C27H26OSi
М.	454.66	394.57
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	173	173
a, b, c (Å)	10.3879 (7), 10.5037 (7), 13.6350 (9)	11.8576 (5), 13.2995 (6), 14.3948 (6)
α, β, γ (°)	68.8212 (7), 70.6364 (7), 84.7947 (8)	90, 110.363 (3), 90
$V(\dot{A}^3)$	1308.06 (15)	2128.20 (16)
Z	2	4
Radiation type	Μο Κα	Cu <i>Kα</i>
$\mu (\text{mm}^{-1})$	0.11	1.08
Crystal size (mm)	$0.21 \times 0.21 \times 0.17$	$0.10 \times 0.09 \times 0.08$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2013)	Multi-scan (SADABS; Bruker, 2013
T_{\min}, \hat{T}_{\max}	0.695, 0.745	0.624, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16773, 4803, 3734	11901, 4113, 2414
R _{int}	0.036	0.096
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.603	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.120, 1.08	0.062, 0.171, 0.97
No. of reflections	4803	4113
No. of parameters	308	267
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.34, -0.22	0.29, -0.36

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015) and CrystalMaker (Palmer, 2007).

Acknowledgements

The authors thank Pfizer, Inc., for the donation of a Varian INOVA 400 MHz NMR. The CCD-based diffractometers at Michigan State University were upgraded and/or replaced with departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE-1725699); Grand Valley State University (grant No. OURS, CSCE, Chemistry Department's Weldon Fund).

References

- Al-Juaid, S. S., Al-Nasr, A. K. A., Eaborn, C. & Hitchcock, P. B. (1992). J. Organomet. Chem. 429, C9–C13.
- Ball-Jones, N. R., Badillo, J. J., Tran, N. T. & Franz, A. K. (2014). Angew. Chem. Int. Ed. 53, 9462–9465.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2013). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc. Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

Franz, A. K. & Wilson, S. O. (2013). J. Med. Chem. 56, 388-405.

- Geyer, M., Wellner, E., Jurva, U., Saloman, S., Armstrong, D. & Tacke, R. (2015). *ChemMedChem*, **10**, 911–924.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 220-225.
- Huppmann, F., Noltemeyer, M. & Meller, A. (1994). J. Organomet. Chem. 483, 217–228.
- Kim, J. H., Han, J. S., Lee, M. E., Moon, D. H., Lah, M. S. & Yoo, B. R. (2005). J. Organomet. Chem. 690, 1372–1378.
- Kira, M., Kadowaki, T., Yin, D., Sakamoto, K., Iwamoto, T. & Kabuto, C. (2007). Organometallics, 26, 4890–4895.
- Palmer, D. (2007). *CrystalMaker*. CrystalMaker Software, Bicester, Oxfordshire , England.
- Peng, Z.-H. & Woerpel, K. A. (2001). Org. Lett. 3, 675-678.
- Ramesh, R. & Reddy, D. S. (2018). J. Med. Chem. 61, 3779-3798.
- Shainyan, B. A., Kirpichenko, S. V. & Kleinpeter, E. (2017). J. Org. Chem. 82, 13414–13422.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tacke, R. & Doerrich, S. (2016). Top. Med. Chem. 17, 29–59.
- Terao, K., Watanabe, T., Suehiro, T., Nokami, T. & Yoshida, J.-I. (2010). *Tetrahedron Lett.* 51, 4107–4109.
- Unno, M., Murakami, H., Kagawa, S. & Matsumoto, H. (2006). Silicon Chem. 3, 195-198.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.
- Yoo, B. R., Kim, J. H., Lee, M. E. & Jung, I. N. (2001). Phosphorus Sulfur Silicon, 169, 227–230.

Acta Cryst. (2019). E75, 1339-1343 [https://doi.org/10.1107/S2056989019011265]

Syntheses and crystal structures of 2-methyl-1,1,2,3,3-pentaphenyl-2-silapropane and 2-methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol

Alexandra Williams, Michelle Brown, Richard J. Staples, Shannon M. Biros and William R. Winchester

Computing details

For both structures, data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009; Bourhis *et al.*, 2015); software used to prepare material for publication: *CrystalMaker* (Palmer, 2007).

2-Methyl-1,1,2,3,3-pentaphenyl-2-silapropane (I)

Crystal data $C_{33}H_{30}Si$ $M_r = 454.66$ Triclinic, *P*1 a = 10.3879 (7) Å b = 10.5037 (7) Å c = 13.6350 (9) Å

 $\begin{aligned} \alpha &= 68.8212 \ (7)^{\circ} \\ \beta &= 70.6364 \ (7)^{\circ} \\ \gamma &= 84.7947 \ (8)^{\circ} \\ V &= 1308.06 \ (15) \ \text{\AA}^3 \end{aligned}$

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{\min} = 0.695$, $T_{\max} = 0.745$ 16773 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.120$ S = 1.084803 reflections 308 parameters 0 restraints Z = 2 F(000) = 484 $D_x = 1.154 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6620 reflections $\theta = 2.2-25.4^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.21 \times 0.21 \times 0.17 \text{ mm}$

4803 independent reflections 3734 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 0.3536P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.34 ~{\rm e}~{\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.22 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sil	0.75666 (5)	0.17147 (5)	0.27134 (4)	0.02998 (15)	
C1	0.58208 (18)	0.0942 (2)	0.31735 (16)	0.0399 (5)	
H1A	0.580675	0.040999	0.271655	0.060*	
H1B	0.516044	0.166936	0.309113	0.060*	
H1C	0.557892	0.034234	0.395435	0.060*	
C2	0.78889 (17)	0.32685 (18)	0.13751 (14)	0.0293 (4)	
H2	0.875549	0.371155	0.128137	0.035*	
C3	0.88432 (17)	0.03163 (18)	0.25388 (14)	0.0290 (4)	
Н3	0.879419	0.013883	0.187902	0.035*	
C4	0.77121 (19)	0.23587 (18)	0.37890 (15)	0.0337 (4)	
C5	0.6560 (2)	0.2462 (2)	0.46416 (16)	0.0436 (5)	
Н5	0.569129	0.220352	0.467114	0.052*	
C6	0.6643 (3)	0.2927 (2)	0.54426 (18)	0.0549 (6)	
H6	0.583678	0.298764	0.601188	0.066*	
C7	0.7882 (3)	0.3304 (2)	0.54221 (19)	0.0539 (6)	
H7	0.793896	0.361141	0.598221	0.065*	
C8	0.9045 (2)	0.3235 (2)	0.45856 (19)	0.0492 (6)	
H8	0.990631	0.350498	0.456297	0.059*	
C9	0.8961 (2)	0.2771 (2)	0.37750 (17)	0.0401 (5)	
H9	0.976882	0.273302	0.319904	0.048*	
C10	0.67921 (17)	0.43090 (18)	0.15447 (14)	0.0294 (4)	
C11	0.55994 (19)	0.4316 (2)	0.12873 (16)	0.0361 (4)	
H11	0.546285	0.365865	0.099890	0.043*	
C12	0.46085 (19)	0.5266 (2)	0.14451 (16)	0.0415 (5)	
H12	0.380019	0.525025	0.126874	0.050*	
C13	0.4791 (2)	0.6233 (2)	0.18562 (16)	0.0416 (5)	
H13	0.411325	0.688460	0.196376	0.050*	
C14	0.5969 (2)	0.6242 (2)	0.21100 (16)	0.0403 (5)	
H14	0.610168	0.690778	0.239220	0.048*	
C15	0.69603 (19)	0.52935 (19)	0.19580 (15)	0.0348 (4)	
H15	0.776475	0.531510	0.213801	0.042*	
C16	0.81390 (17)	0.30119 (18)	0.02966 (15)	0.0302 (4)	
C17	0.89389 (19)	0.3951 (2)	-0.06919 (16)	0.0395 (5)	
H17	0.929517	0.474662	-0.068264	0.047*	
C18	0.9227 (2)	0.3751 (2)	-0.16910 (17)	0.0481 (5)	
H18	0.977671	0.440845	-0.235724	0.058*	

C19	0.8724 (2)	0.2603 (2)	-0.17273 (17)	0.0458 (5)
H19	0.894110	0.245561	-0.241102	0.055*
C20	0.7903 (2)	0.1675 (2)	-0.07596 (18)	0.0454 (5)
H20	0.753497	0.089032	-0.077590	0.054*
C21	0.7611 (2)	0.1883 (2)	0.02404 (16)	0.0387 (5)
H21	0.703758	0.123685	0.090102	0.046*
C22	1.03391 (17)	0.06948 (17)	0.22632 (14)	0.0288 (4)
C23	1.10054 (19)	0.16811 (19)	0.12395 (15)	0.0365 (5)
H23	1.051484	0.211263	0.073556	0.044*
C24	1.2365 (2)	0.2044 (2)	0.09431 (17)	0.0438 (5)
H24	1.279369	0.272864	0.024624	0.053*
C25	1.3101 (2)	0.1413 (2)	0.16568 (18)	0.0446 (5)
H25	1.403699	0.165709	0.145408	0.054*
C26	1.2463 (2)	0.0427 (2)	0.26653 (17)	0.0421 (5)
H26	1.296597	-0.001657	0.315750	0.050*
C27	1.10940 (19)	0.00747 (19)	0.29711 (15)	0.0341 (4)
H27	1.066750	-0.060027	0.367444	0.041*
C28	0.82851 (17)	-0.09864 (18)	0.35234 (15)	0.0300 (4)
C29	0.80721 (19)	-0.10980 (19)	0.46160 (15)	0.0347 (4)
H29	0.833986	-0.035807	0.475796	0.042*
C30	0.74772 (19)	-0.2268 (2)	0.54981 (16)	0.0388 (5)
H30	0.734851	-0.232753	0.623661	0.047*
C31	0.7071 (2)	-0.3347 (2)	0.53092 (17)	0.0432 (5)
H31	0.664258	-0.414051	0.591663	0.052*
C32	0.7288 (2)	-0.3271 (2)	0.42349 (18)	0.0452 (5)
H32	0.702693	-0.401861	0.409890	0.054*
C33	0.78895 (19)	-0.20994 (19)	0.33547 (16)	0.0365 (4)
H33	0.803491	-0.205565	0.261749	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0258 (3)	0.0328 (3)	0.0277 (3)	0.0011 (2)	-0.0077 (2)	-0.0073 (2)
C1	0.0296 (10)	0.0442 (11)	0.0373 (11)	-0.0004 (9)	-0.0088 (9)	-0.0059 (9)
C2	0.0258 (9)	0.0315 (10)	0.0295 (10)	-0.0010 (7)	-0.0094 (8)	-0.0086 (8)
C3	0.0280 (9)	0.0321 (10)	0.0258 (9)	0.0014 (7)	-0.0088 (7)	-0.0092 (8)
C4	0.0377 (10)	0.0305 (10)	0.0282 (10)	0.0086 (8)	-0.0126 (8)	-0.0050 (8)
C5	0.0459 (12)	0.0458 (12)	0.0319 (11)	0.0053 (10)	-0.0075 (9)	-0.0111 (9)
C6	0.0677 (16)	0.0552 (14)	0.0333 (12)	0.0104 (12)	-0.0060 (11)	-0.0173 (11)
C7	0.0861 (19)	0.0466 (13)	0.0412 (13)	0.0236 (12)	-0.0339 (13)	-0.0222 (11)
C8	0.0592 (14)	0.0445 (12)	0.0609 (15)	0.0170 (11)	-0.0375 (12)	-0.0249 (11)
C9	0.0383 (11)	0.0410 (11)	0.0459 (12)	0.0115 (9)	-0.0176 (9)	-0.0196 (10)
C10	0.0282 (9)	0.0312 (9)	0.0241 (9)	-0.0005 (7)	-0.0076 (7)	-0.0048 (8)
C11	0.0328 (10)	0.0414 (11)	0.0353 (11)	0.0007 (8)	-0.0139 (8)	-0.0122 (9)
C12	0.0290 (10)	0.0557 (13)	0.0368 (11)	0.0079 (9)	-0.0134 (9)	-0.0120 (10)
C13	0.0374 (11)	0.0489 (12)	0.0340 (11)	0.0151 (9)	-0.0098 (9)	-0.0141 (10)
C14	0.0447 (12)	0.0412 (11)	0.0372 (11)	0.0068 (9)	-0.0121 (9)	-0.0184 (9)
C15	0.0340 (10)	0.0409 (11)	0.0305 (10)	0.0027 (8)	-0.0136 (8)	-0.0113 (9)

C16	0.0256 (9)	0.0351 (10)	0.0304 (10)	0.0053 (8)	-0.0119 (8)	-0.0106 (8)
C17	0.0360 (11)	0.0473 (12)	0.0336 (11)	-0.0033 (9)	-0.0106 (9)	-0.0121 (9)
C18	0.0414 (12)	0.0656 (15)	0.0312 (11)	-0.0012 (11)	-0.0091 (9)	-0.0118 (10)
C19	0.0427 (12)	0.0668 (15)	0.0368 (12)	0.0137 (11)	-0.0168 (10)	-0.0274 (11)
C20	0.0543 (13)	0.0442 (12)	0.0526 (14)	0.0126 (10)	-0.0287 (11)	-0.0263 (11)
C21	0.0429 (11)	0.0366 (11)	0.0365 (11)	0.0002 (9)	-0.0163 (9)	-0.0094 (9)
C22	0.0272 (9)	0.0292 (9)	0.0303 (10)	0.0055 (7)	-0.0085 (8)	-0.0126 (8)
C23	0.0324 (10)	0.0384 (11)	0.0302 (10)	0.0056 (8)	-0.0082 (8)	-0.0052 (9)
C24	0.0336 (11)	0.0433 (12)	0.0379 (12)	-0.0025 (9)	-0.0027 (9)	-0.0028 (9)
C25	0.0310 (11)	0.0460 (12)	0.0513 (13)	-0.0058 (9)	-0.0122 (10)	-0.0101 (10)
C26	0.0371 (11)	0.0444 (12)	0.0457 (12)	0.0000 (9)	-0.0211 (9)	-0.0096 (10)
C27	0.0350 (10)	0.0329 (10)	0.0317 (10)	-0.0004 (8)	-0.0112 (8)	-0.0075 (8)
C28	0.0239 (9)	0.0294 (9)	0.0328 (10)	0.0044 (7)	-0.0077 (8)	-0.0086 (8)
C29	0.0339 (10)	0.0343 (10)	0.0336 (10)	0.0046 (8)	-0.0097 (8)	-0.0112 (8)
C30	0.0337 (10)	0.0417 (11)	0.0306 (10)	0.0069 (9)	-0.0050 (8)	-0.0069 (9)
C31	0.0373 (11)	0.0367 (11)	0.0401 (12)	-0.0019 (9)	-0.0065 (9)	-0.0007 (9)
C32	0.0477 (12)	0.0345 (11)	0.0498 (13)	-0.0036 (9)	-0.0161 (10)	-0.0090 (10)
C33	0.0354 (10)	0.0367 (11)	0.0337 (11)	0.0015 (8)	-0.0090 (8)	-0.0104 (9)

Geometric parameters (Å, °)

Sil—Cl	1.8669 (18)	C15—H15	0.9500
Sil—C2	1.9099 (18)	C16—C17	1.388 (3)
Sil—C3	1.9138 (18)	C16—C21	1.387 (3)
Sil—C4	1.8744 (19)	C17—H17	0.9500
C1—H1A	0.9800	C17—C18	1.384 (3)
C1—H1B	0.9800	C18—H18	0.9500
C1—H1C	0.9800	C18—C19	1.380 (3)
C2—H2	1.0000	C19—H19	0.9500
C2-C10	1.526 (2)	C19—C20	1.376 (3)
C2-C16	1.524 (2)	C20—H20	0.9500
С3—Н3	1.0000	C20—C21	1.388 (3)
C3—C22	1.527 (2)	C21—H21	0.9500
C3—C28	1.520 (2)	C22—C23	1.395 (2)
C4—C5	1.393 (3)	C22—C27	1.388 (3)
С4—С9	1.396 (3)	C23—H23	0.9500
С5—Н5	0.9500	C23—C24	1.382 (3)
C5—C6	1.376 (3)	C24—H24	0.9500
С6—Н6	0.9500	C24—C25	1.381 (3)
С6—С7	1.369 (3)	С25—Н25	0.9500
С7—Н7	0.9500	C25—C26	1.376 (3)
С7—С8	1.377 (3)	C26—H26	0.9500
С8—Н8	0.9500	C26—C27	1.388 (3)
С8—С9	1.389 (3)	С27—Н27	0.9500
С9—Н9	0.9500	C28—C29	1.394 (3)
C10-C11	1.394 (2)	C28—C33	1.390 (3)
C10-C15	1.392 (3)	С29—Н29	0.9500
C11—H11	0.9500	C29—C30	1.384 (3)

C11—C12	1.387 (3)	С30—Н30	0.9500
C12—H12	0.9500	C30—C31	1.378 (3)
C12_C13	1 377 (3)	C31_H31	0.9500
C12 U12	0.0500		1.270(2)
C13—H13	0.9500	C31—C32	1.3/9(3)
C13—C14	1.380 (3)	С32—Н32	0.9500
C14—H14	0.9500	C32—C33	1.386 (3)
C14—C15	1.385 (3)	С33—Н33	0.9500
G1 G11 G2	111.24 (0)		110 (
C1 = S11 = C2	111.34 (8)	C10-C15-H15	119.6
C1—Si1—C3	107.30 (9)	C14—C15—C10	120.79 (18)
C1—Si1—C4	109.22 (9)	C14—C15—H15	119.6
C2—Si1—C3	111.98 (8)	C17—C16—C2	118.87 (16)
C_{4} Sil C_{2}	106.03 (8)	C_{21} C_{16} C_{2}	123 72 (16)
$C_{4} = S_{11} = C_{2}$	110.09 (8)	$C_{21} = C_{10} = C_{2}$	123.72(10)
C4—S11—C3	110.98 (8)	C21-C16-C17	117.42 (17)
Sil—C1—H1A	109.5	С16—С17—Н17	119.4
Sil—Cl—HlB	109.5	C18—C17—C16	121.26 (19)
Si1—C1—H1C	109.5	C18—C17—H17	119.4
H1A—C1—H1B	109.5	C17—C18—H18	1197
	100.5	C_{10} C_{18} C_{17}	120.5 (2)
	109.5		120.3 (2)
HIB-CI-HIC	109.5	C19—C18—H18	119.7
Si1—C2—H2	105.2	C18—C19—H19	120.5
C10—C2—Si1	109.56 (11)	C20—C19—C18	119.09 (19)
C10—C2—H2	105.2	С20—С19—Н19	120.5
C16—C2—Si1	117 65 (12)	C19—C20—H20	1199
C_{16} C_{2} H_{2}	105.2	C_{10} C_{20} C_{21}	120.20(10)
$C_{10} = C_{2} = C_{10}$	103.2	$C_{1}^{-1} = C_{2}^{-1} = C_{2}^{-1}$	120.20 (19)
	112.90 (14)	C21—C20—H20	119.9
S11—C3—H3	105.4	C16—C21—C20	121.47 (18)
C22—C3—Si1	116.07 (12)	C16—C21—H21	119.3
С22—С3—Н3	105.4	C20-C21-H21	119.3
C28—C3—Si1	107.51 (11)	C23—C22—C3	119.13 (16)
С28—С3—Н3	105.4	$C^{27} - C^{22} - C^{3}$	123 19 (16)
C_{20}^{20} C_{2}^{20} C_{22}^{20}	116.00 (14)	C_{27} C_{22} C_{23}	123.13(10)
$C_{20} = C_{3} = C_{22}$	110.09(14)	$C_{27} = C_{22} = C_{23}$	117.03 (10)
C5—C4—S11	120.97 (15)	С22—С23—Н23	119.3
C5—C4—C9	116.66 (18)	C24—C23—C22	121.36 (18)
C9—C4—Si1	122.36 (15)	C24—C23—H23	119.3
C4—C5—H5	119.0	С23—С24—Н24	119.9
C6—C5—C4	122.0 (2)	C25—C24—C23	120.21 (18)
С6С5Н5	119.0	C25_C24_H24	110.0
C_{5} C_{6} H_{6}	110.0	$C_{23} C_{24} H_{24}$	120.4
	119.9	С24—С25—П25	120.4
C/C6C5	120.3 (2)	C26—C25—C24	119.18 (18)
С7—С6—Н6	119.9	C26—C25—H25	120.4
С6—С7—Н7	120.2	C25—C26—H26	119.6
C6—C7—C8	119.7 (2)	C25—C26—C27	120.72 (19)
С8—С7—Н7	120.2	C27—C26—H26	119.6
C7 C8 H8	120.0	C_{22} C_{27} H_{27}	110.6
$C_{7} = C_{9} = C_{9}$	120.0 (2)	$C_{22} = C_{21} = H_{21}$	112.0
C/C8C9	120.0 (2)	120 - 12 / - 122	120.8/(1/)
С9—С8—Н8	120.0	С26—С27—Н27	119.6
С4—С9—Н9	119.3	C29—C28—C3	122.69 (16)

C8—C9—C4	121.4 (2)	C33—C28—C3	119.78 (16)
С8—С9—Н9	119.3	C33—C28—C29	117.43 (17)
C11—C10—C2	121.61 (16)	С28—С29—Н29	119.4
C15—C10—C2	120.62 (16)	C30—C29—C28	121.16 (18)
C15—C10—C11	117.78 (17)	С30—С29—Н29	119.4
C10—C11—H11	119.4	С29—С30—Н30	119.9
C12—C11—C10	121.14 (18)	C31—C30—C29	120.25 (19)
C12—C11—H11	119.4	С31—С30—Н30	119.9
C11—C12—H12	119.8	С30—С31—Н31	120.1
C13—C12—C11	120.32 (18)	C30—C31—C32	119.74 (18)
C13—C12—H12	119.8	С32—С31—Н31	120.1
C12—C13—H13	120.4	С31—С32—Н32	120.1
C12—C13—C14	119.21 (18)	C31—C32—C33	119.76 (19)
C14—C13—H13	120.4	С33—С32—Н32	120.1
C13—C14—H14	119.6	С28—С33—Н33	119.2
C13—C14—C15	120.76 (19)	C32—C33—C28	121.64 (19)
C15—C14—H14	119.6	С32—С33—Н33	119.2

Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C10–C15 and C22–C27 rings, respectively.

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C20—H20…Cg4 ⁱ	0.95	2.94	3.716 (2)	140
C24—H24…Cg2 ⁱⁱ	0.95	2.75	3.696 (2)	175

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+2, -*y*+1, -*z*.

2-Methyl-1,1,3,3-tetraphenyl-2-silapropan-2-ol (II)

Crystal data

C ₂₇ H ₂₆ OSi	F(000) = 840
$M_r = 394.57$	$D_{\rm x} = 1.231 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
a = 11.8576 (5) Å	Cell parameters from 1512 reflections
b = 13.2995 (6) Å	$\theta = 4.0-71.6^{\circ}$
c = 14.3948 (6) Å	$\mu = 1.08 \text{ mm}^{-1}$
$\beta = 110.363 \ (3)^{\circ}$	T = 173 K
$V = 2128.20 (16) Å^3$	Block, colourless
Z = 4	$0.10 \times 0.09 \times 0.08 \text{ mm}$
Data collection	
Bruker APFXII CCD	4113 independent reflections
diffractometer	2414 reflections with $I > 2\sigma(I)$
φ and φ scans	$R_{\rm int} = 0.096$
Absorption correction: multi-scan	$\theta_{\text{max}} = 72.1^{\circ}, \ \theta_{\text{min}} = 4.0^{\circ}$
(SADABS; Bruker, 2013	$h = -14 \rightarrow 14$
$T_{\min} = 0.624, T_{\max} = 0.754$	$k = -14 \rightarrow 16$
11901 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.171$ S = 0.97	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $m = 1/(r^2/T^2) + (0.0702D)^2$
267 parameters 0 restraints	where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.29 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \text{ e A}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Si1	0.37978 (7)	0.60730 (7)	0.11066 (6)	0.0322 (2)
O1	0.4586 (2)	0.5078 (2)	0.0982 (2)	0.0478 (7)
H1	0.525 (6)	0.511 (5)	0.125 (5)	0.14 (3)*
C1	0.4582 (3)	0.7247 (3)	0.1046 (3)	0.0496 (10)
H1A	0.538510	0.722512	0.152061	0.074*
H1B	0.415753	0.780473	0.119230	0.074*
H1C	0.461428	0.732630	0.039250	0.074*
C2	0.2251 (3)	0.5965 (3)	0.0102 (2)	0.0311 (7)
H2	0.186321	0.541154	0.032661	0.037*
C3	0.3493 (3)	0.6018 (3)	0.2320 (2)	0.0305 (7)
H3	0.304983	0.663543	0.233789	0.037*
C4	0.2310 (3)	0.5599 (3)	-0.0879 (2)	0.0314 (7)
C5	0.2221 (3)	0.4579 (3)	-0.1059 (3)	0.0465 (9)
Н5	0.212646	0.415105	-0.058001	0.056*
C6	0.2269 (4)	0.4173 (3)	-0.1928 (3)	0.0597 (12)
H6	0.220922	0.348044	-0.202343	0.072*
C7	0.2403 (4)	0.4783 (4)	-0.2651 (3)	0.0594 (12)
H7	0.242726	0.451111	-0.323899	0.071*
C8	0.2500 (4)	0.5796 (4)	-0.2490 (3)	0.0558 (11)
H8	0.259536	0.621704	-0.297355	0.067*
C9	0.2457 (3)	0.6210 (3)	-0.1611 (3)	0.0446 (9)
Н9	0.252840	0.690203	-0.151519	0.054*
C10	0.1461 (3)	0.6868 (3)	0.0079 (2)	0.0318 (7)
C11	0.1675 (3)	0.7822 (3)	-0.0220 (3)	0.0402 (8)
H11	0.233780	0.792719	-0.041198	0.048*
C12	0.0917 (3)	0.8616 (3)	-0.0236 (3)	0.0478 (9)
H12	0.106084	0.924134	-0.046117	0.057*
C13	-0.0053 (3)	0.8494 (3)	0.0078 (3)	0.0495 (10)

H13	-0.055857	0.903091	0.006978	0.059*
C14	-0.0253 (3)	0.7557 (3)	0.0404 (3)	0.0463 (9)
H14	-0.089227	0.746580	0.062864	0.056*
C15	0.0485 (3)	0.6755 (3)	0.0402 (2)	0.0379 (8)
H15	0.032870	0.612895	0.061775	0.046*
C16	0.4654 (3)	0.6075 (3)	0.3226 (2)	0.0330 (7)
C17	0.5172 (3)	0.7002 (3)	0.3555 (3)	0.0417 (9)
H17	0.482228	0.758048	0.321262	0.050*
C18	0.6206 (3)	0.7080 (3)	0.4391 (3)	0.0517 (10)
H18	0.655291	0.770730	0.459002	0.062*
C19	0.6718 (3)	0.6238 (3)	0.4923 (3)	0.0483 (10)
H19	0.739662	0.629258	0.549267	0.058*
C20	0.6213 (3)	0.5311 (3)	0.4603 (3)	0.0485 (10)
H20	0.656040	0.473577	0.495283	0.058*
C21	0.5185 (3)	0.5229 (3)	0.3757 (3)	0.0402 (8)
H21	0.485335	0.459927	0.354838	0.048*
C22	0.2661 (3)	0.5165 (3)	0.2345 (2)	0.0330 (7)
C23	0.1654 (3)	0.5350 (3)	0.2610 (2)	0.0401 (8)
H23	0.151976	0.599365	0.280198	0.048*
C24	0.0848 (3)	0.4581 (3)	0.2589 (3)	0.0503 (10)
H24	0.018734	0.471259	0.277708	0.060*
C25	0.1022 (3)	0.3627 (3)	0.2294 (3)	0.0507 (11)
H25	0.047234	0.311931	0.226694	0.061*
C26	0.2021 (4)	0.3430 (3)	0.2038 (3)	0.0459 (9)
H26	0.214929	0.278564	0.184382	0.055*
C27	0.2826 (3)	0.4188 (3)	0.2069 (2)	0.0401 (8)
H27	0.349762	0.404301	0.190084	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0319 (4)	0.0348 (5)	0.0275 (4)	0.0005 (4)	0.0074 (3)	0.0024 (4)
O1	0.0406 (14)	0.0544 (18)	0.0440 (15)	0.0134 (13)	0.0092 (12)	-0.0039 (13)
C1	0.056 (2)	0.052 (3)	0.0361 (19)	-0.0172 (19)	0.0088 (17)	0.0081 (19)
C2	0.0329 (15)	0.0312 (18)	0.0273 (15)	-0.0035 (14)	0.0080 (12)	0.0031 (15)
C3	0.0369 (15)	0.0296 (17)	0.0250 (15)	0.0011 (14)	0.0109 (13)	-0.0004 (14)
C4	0.0295 (14)	0.0357 (19)	0.0259 (15)	0.0000 (14)	0.0057 (12)	-0.0012 (15)
C5	0.057 (2)	0.038 (2)	0.044 (2)	0.0052 (18)	0.0170 (18)	-0.0050 (18)
C6	0.064 (3)	0.048 (3)	0.065 (3)	0.000 (2)	0.020 (2)	-0.020 (2)
C7	0.051 (2)	0.075 (3)	0.052 (2)	-0.009(2)	0.018 (2)	-0.030 (3)
C8	0.061 (2)	0.074 (3)	0.036 (2)	-0.016 (2)	0.0224 (18)	-0.008(2)
C9	0.056 (2)	0.043 (2)	0.0346 (18)	-0.0080 (18)	0.0161 (16)	-0.0049 (18)
C10	0.0341 (15)	0.0340 (19)	0.0224 (15)	0.0024 (14)	0.0035 (12)	0.0004 (14)
C11	0.0462 (18)	0.034 (2)	0.043 (2)	0.0005 (16)	0.0191 (16)	0.0010 (17)
C12	0.057 (2)	0.033 (2)	0.053 (2)	0.0039 (17)	0.0201 (19)	0.0022 (19)
C13	0.053 (2)	0.040 (2)	0.052 (2)	0.0144 (18)	0.0137 (19)	-0.0072 (19)
C14	0.0429 (19)	0.051 (3)	0.047 (2)	0.0037 (17)	0.0176 (17)	-0.0020 (19)
C15	0.0401 (17)	0.036 (2)	0.0361 (18)	0.0022 (15)	0.0110 (14)	0.0023 (16)

C16	0.0344 (15)	0.042 (2)	0.0239 (14)	0.0003 (15)	0.0117 (12)	0.0022 (15)	
C17	0.0471 (19)	0.039 (2)	0.0362 (18)	-0.0033 (16)	0.0111 (15)	-0.0015 (17)	
C18	0.052 (2)	0.060 (3)	0.038 (2)	-0.018 (2)	0.0100 (17)	-0.009(2)	
C19	0.0381 (17)	0.073 (3)	0.0287 (17)	-0.0061 (19)	0.0054 (14)	0.001 (2)	
C20	0.0407 (18)	0.063 (3)	0.0373 (19)	0.0030 (19)	0.0075 (16)	0.012 (2)	
C21	0.0386 (17)	0.043 (2)	0.0353 (18)	-0.0004 (16)	0.0085 (15)	0.0046 (17)	
C22	0.0366 (16)	0.0341 (19)	0.0239 (15)	-0.0030 (14)	0.0051 (13)	0.0058 (15)	
C23	0.0424 (18)	0.045 (2)	0.0290 (17)	0.0017 (16)	0.0072 (14)	0.0034 (16)	
C24	0.0377 (18)	0.070 (3)	0.039 (2)	-0.0073 (19)	0.0075 (16)	0.009 (2)	
C25	0.052 (2)	0.052 (3)	0.0356 (19)	-0.0222 (19)	-0.0008 (17)	0.0107 (18)	
C26	0.063 (2)	0.033 (2)	0.0337 (18)	-0.0076 (18)	0.0068 (17)	0.0041 (17)	
C27	0.0480 (19)	0.037 (2)	0.0341 (18)	0.0006 (16)	0.0128 (15)	0.0073 (16)	

Geometric parameters (Å, °)

Si1—O1	1.666 (3)	С12—Н12	0.9300
Sil—Cl	1.835 (4)	C12—C13	1.384 (5)
Sil—C2	1.905 (3)	C13—H13	0.9300
Sil—C3	1.904 (3)	C13—C14	1.380 (5)
O1—H1	0.75 (6)	C14—H14	0.9300
C1—H1A	0.9600	C14—C15	1.380 (5)
C1—H1B	0.9600	C15—H15	0.9300
C1—H1C	0.9600	C16—C17	1.385 (5)
C2—H2	0.9800	C16—C21	1.383 (5)
C2—C4	1.518 (4)	C17—H17	0.9300
C2-C10	1.517 (4)	C17—C18	1.391 (5)
С3—Н3	0.9800	C18—H18	0.9300
C3—C16	1.533 (4)	C18—C19	1.374 (5)
C3—C22	1.513 (4)	C19—H19	0.9300
C4—C5	1.378 (5)	C19—C20	1.378 (6)
C4—C9	1.389 (5)	C20—H20	0.9300
С5—Н5	0.9300	C20—C21	1.396 (5)
C5—C6	1.382 (5)	C21—H21	0.9300
С6—Н6	0.9300	C22—C23	1.396 (5)
С6—С7	1.372 (6)	C22—C27	1.392 (5)
С7—Н7	0.9300	С23—Н23	0.9300
C7—C8	1.366 (6)	C23—C24	1.394 (5)
С8—Н8	0.9300	C24—H24	0.9300
C8—C9	1.397 (5)	C24—C25	1.376 (6)
С9—Н9	0.9300	C25—H25	0.9300
C10-C11	1.391 (5)	C25—C26	1.383 (6)
C10—C15	1.397 (4)	C26—H26	0.9300
C11—H11	0.9300	C26—C27	1.378 (5)
C11—C12	1.381 (5)	С27—Н27	0.9300
O1—Si1—C1	111.00 (17)	C11—C12—H12	119.5
O1—Si1—C2	106.65 (15)	C11—C12—C13	121.0 (4)
O1—Si1—C3	111.15 (15)	C13—C12—H12	119.5

G1 G1 G2	112 16 (16)		100 5
C1 - S11 - C2	113.46 (16)	С12—С13—Н13	120.7
C1—Si1—C3	109.71 (16)	C14—C13—C12	118.5 (4)
C3—Si1—C2	104.69 (14)	C14—C13—H13	120.7
Sil—Ol—Hl	116 (5)	C13—C14—H14	119.6
Si1—C1—H1A	109.5	C15—C14—C13	120.8 (4)
Si1—C1—H1B	109.5	C15—C14—H14	119.6
Si1—C1—H1C	109.5	C10—C15—H15	119.4
H1A—C1—H1B	109.5	C14—C15—C10	121.1 (3)
H1A—C1—H1C	109.5	C14—C15—H15	119.4
H1B—C1—H1C	109.5	C17—C16—C3	119.7 (3)
Sil—C2—H2	104.2	C21—C16—C3	122.1 (3)
C4—C2—Si1	112.7 (2)	C21—C16—C17	118.2 (3)
C4-C2-H2	104.2	C_{16} C_{17} H_{17}	119.5
C10-C2-Si1	1124(2)	C_{16} C_{17} C_{18}	121.0(4)
C_{10} C_{2} H_{2}	104.2	C_{18} C_{17} H_{17}	110 5
$C_{10} = C_2 = C_4$	117.5 (3)	$C_{10} = C_{17} = H_{17}$	119.5
$C_{10} - C_{2} - C_{4}$	105 5	$C_{10} = C_{10} = C_{17}$	119.0
	103.5	C19 - C18 - U18	120.3 (4)
C16 - C3 - S11	112.2 (2)	C19-C18-H18	119.8
C10-C3-H3	105.5	C18—C19—H19	120.5
C22—C3—Sil	112.6 (2)	C18 - C19 - C20	119.1 (3)
С22—С3—Н3	105.5	С20—С19—Н19	120.5
C22—C3—C16	114.6 (3)	С19—С20—Н20	119.7
C5—C4—C2	117.7 (3)	C19—C20—C21	120.5 (4)
C5—C4—C9	117.1 (3)	C21—C20—H20	119.7
C9—C4—C2	125.2 (3)	C16—C21—C20	120.7 (4)
C4—C5—H5	119.0	C16—C21—H21	119.7
C4—C5—C6	122.0 (4)	C20—C21—H21	119.7
С6—С5—Н5	119.0	C23—C22—C3	120.1 (3)
С5—С6—Н6	119.7	C27—C22—C3	122.4 (3)
C7—C6—C5	120.5 (4)	C27—C22—C23	117.5 (3)
С7—С6—Н6	119.7	С22—С23—Н23	119.7
С6—С7—Н7	120.6	C24—C23—C22	120.7 (4)
C8—C7—C6	118.7 (4)	С24—С23—Н23	119.7
С8—С7—Н7	120.6	C23—C24—H24	119.7
C7—C8—H8	119.5	C_{25} C_{24} C_{23}	120.5 (4)
C7 - C8 - C9	121.0 (4)	$C_{25} = C_{24} = H_{24}$	119.7
C9-C8-H8	119.5	C_{24} C_{25} H_{25}	120.3
C_{1} C_{2} C_{3}	120.7(4)	C_{24} C_{25} C_{26}	120.5 110 5 (4)
$C_4 = C_9 = C_8$	120.7 (4)	$C_{24} = C_{25} = C_{20}$	119.5 (4)
$C^{2} = C^{2} = 119$	119.7	$C_{20} = C_{23} = H_{23}$	120.3
	119.7	$C_{23} = C_{20} = H_{20}$	120.0
CII = CI0 = C2	123.5 (3)	$C_2/-C_{26}-C_{25}$	120.0 (4)
$C_{11} - C_{10} - C_{15}$	117.5 (3)	$U_2/-U_20-H_20$	120.0
C15—C10—C2	119.0 (3)	C22—C27—H27	119.1
C10—C11—H11	119.5	C26—C27—C22	121.9 (4)
C12—C11—C10	121.0 (3)	С26—С27—Н27	119.1
C12—C11—H11	119.5		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C27—H27…O1	0.93	2.55	3.237 (4)	131
$O1$ — $H1$ ··· $Cg1^i$	0.75 (8)	2.70 (7)	3.416 (3)	162 (7)
C24—H24···· $Cg1^{ii}$	0.93	2.86	3.582 (4)	135

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*+1, -*z*.