COMMUNICATIONS

ISSN 2056-9890

Received 5 August 2019
Accepted 27 August 2019

Edited by J. T. Mague, Tulane University, USA
Keywords: crystal structure; thiosemicarbazone; hydrogen bonding; Hirshfeld analysis.

CCDC reference: 1949697

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and redetermination of the crystal structure of salicylaldehyde $N(4)$-morpholinothiosemicarbazone

Dang Tran Buu, ${ }^{\text {a }}$ Vu Duong Ba, ${ }^{\text {a }}$ Minh Khoi Nguyen Hoang, ${ }^{\text {b }}$ Trung Vu Quoc, ${ }^{\text {c* }}{ }^{\text {* }}$ Linh Duong Khanh, ${ }^{\text {c }}$ Yen Oanh Doan Thi ${ }^{\text {d }}$ and Luc Van Meervelt ${ }^{\mathbf{e} *}$

${ }^{\text {a}}$ Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, ${ }^{\text {b }}$ Vietnam National University, Ho Chi Minh City High School for the Gifted, 153 Nguyen Chi Thanh, District 5, Ho Chi Minh City, Vietnam, ${ }^{\text {c }}$ Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, ${ }^{\text {dPublishing House for Science and Technology, } 18 \text { Hoang Quoc Viet, Cau Giay, Hanoi, }}$ Vietnam, and ${ }^{\mathbf{e}}$ Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium. *Correspondence e-mail: trungvq@hnue.edu.vn, luc.vanmeervelt@kuleuven.be

The structure of the title compound (systematic name: N-\{[(2-hydroxyphenyl)-methylidene]amino\}morpholine-4-carbothioamide), $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, was previously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supramolecular interactions. The molecular structure shows intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions. The configuration of the $\mathrm{C}=\mathrm{N}$ bond is E. The molecule is slightly twisted about the central $\mathrm{N}-\mathrm{N}$ bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17) ${ }^{\circ}$. In the crystal, the molecules are connected into chains by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are $\mathrm{H} \cdots \mathrm{H}$ contacts (51.6%), as concluded from a Hirshfeld surface analysis.

1. Chemical context

For many years, scientific studies on cancer have attracted a lot of attention, especially in the field of antitumor drugs. Cisplatin is well known as an effective therapy to prohibit the proliferation of tumor cells (Berners-Price, 2011). However, this drug has some unforeseen side effects with detrimental effects on the patient's health (Lévi et al., 2000; Go \& Adjei, 1999; Harbour et al., 1996). In a search for antitumour drugs with fewer harmful side effects, thiosemicarbazides were examined since this organic class of thiourea derivatives was known to possess a diversity of biological activities such as antitumoral, antibacterial, and antifungal activities owing to presence of the $\mathrm{N}-\mathrm{N}-\mathrm{C}=\mathrm{S}$ system (Dilović et al., 2008; Liberta \& West, 1992). Many mechanisms have been advanced to probe the role of this conjugated system. In general, thiosemicarbazones can bind to nucleotides of tumour cells by the nitrogen and sulfur atoms, which prevents the distorted DNA from translation and encryption for their growth (Dilović et al., 2008).

Thiosemicarbazones are synthesized by the condensation between an aldehyde or ketone and an $N(4)$-substituted thiosemicarbazide. Many reports have demonstrated that $N(4)$-aromatic or heterocyclic substituted thiosemicarbazides are biologically more active than thiosemicarbazones without
substituted groups (Dilović et al., 2008; Chen et al., 2004; Shi et al., 2009). In addition, salicylaldehyde is a key compound in the synthesis of a variety of potential therapeutic products (Bindu et al., 1998).

The crystal and molecular structure of salicylaldehyde $N(4)$ morpholinothiosemicarbazone was published previously (Koo et al., 1977) based on multiple-film equi-inclination Weissenberg data using $\mathrm{Cu} K \alpha$ radiation and refined to an R value of 0.11. In this study, we present the synthesis of salicylaldehyde $N(4)$-morpholinothiosemicarbazone (3) together with its structural characteristics and crystal structure redetermination using present-day technology.

2. Structural commentary

The title compound crystallizes in the orthorhombic space group $P n a 2_{1}$ with one molecule in the asymmetric unit (Fig. 1). The $\mathrm{N} 9-\mathrm{N} 10$ and $\mathrm{C} 11=\mathrm{N} 10$ bond lengths are 1.371 (3) and 1.275 (3) \AA, respectively (compared to 1.40 and $1.30 \AA$ in the previous structure determination; Koo et al., 1977). The configuration of the $\mathrm{C} 11=\mathrm{N} 10$ bond is E [the $\mathrm{N} 9-\mathrm{N} 10-$ $\mathrm{C} 11-\mathrm{C} 12$ torsion angle is $-179.9(3)^{\circ}$], which gives rise to an intramolecular O18-H18 $\cdots \mathrm{N} 10$ hydrogen bond with an $S_{1}^{1}(6)$ graph-set motif (Table 1). The planes of the phenyl ring (r.m.s. deviation $=0.0020 \AA$) and the thiosemicarbazone function $(\mathrm{N} 1 / \mathrm{C} 7-\mathrm{C} 11$; r.m.s. deviation $=0.0911 \AA$) make an angle of $16.26(5)^{\circ}$. The molecule is slightly twisted about the N9 - N10

Figure 1
A view of the molecular structure of (3), with atom labels and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii and the intramolecular O $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions, respectively, by blue and grey dashed lines.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N9-H9 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.86(3)$	$2.33(3)$	$3.141(3)$	$157(3)$
O18-H18 $\cdots \mathrm{N} 10$	$0.80(4)$	$1.91(5)$	$2.597(3)$	$145(4)$
C6-H6A \cdots S8	0.97	2.62	$3.121(3)$	112
C15-H15 $\cdots \mathrm{O} 18^{\mathrm{ii}}$	0.93	2.48	$3.404(4)$	176

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (ii) $x+\frac{1}{2},-y+\frac{3}{2}, z$.
bond [torsion angle $\mathrm{C} 7-\mathrm{N} 9-\mathrm{N} 10-\mathrm{C} 11$ is $162.4(3)^{\circ} ;+a p$ conformation].

The morpholino ring adopts a chair conformation [puckering parameters $Q=0.554$ (3) $\AA, \theta=173.2$ (3) ${ }^{\circ}$ and $\varphi=$ 214 (3) ${ }^{\circ}$] with the thiosemicarbazone function in an equatorial position. The plane of the phenyl ring forms a dihedral angle of $43.44(17)^{\circ}$ with the best plane through the morpholino ring. A second intramolecular $\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{~S} 8$ interaction is observed (Table 1).

Figure 2
Partial crystal packing of (3), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (red dashed lines) resulting in chain formation in the a-axis direction [see Table 1; symmetry code: (i) $\left.x+\frac{1}{2},-y+\frac{1}{2}, z\right]$.

3. Supramolecular features

The crystal packing of (3) is dominated by $\mathrm{N} 9-\mathrm{H} 9 \cdots \mathrm{O} 4$ hydrogen bonds (Table 1), resulting in the formation of chains of molecules with graph-set motif $C_{1}^{1}(7)$ propagating along the a-axis direction (Fig. 2). Furthermore, a second parallel chain of molecules with graph-set motif $C_{1}^{1}(5)$ running along the a axis direction is formed by $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 18$ interactions (Fig. 3). These two chain motifs combine to generate a sheet lying parallel to (002). No voids or $\pi-\pi$ stackings are observed in the crystal packing of (3).

A Hirshfeld surface analysis (Spackman \& Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed in order to further investigate the supramolecular network. The Hirshfeld surface calculated using CrystalExplorer (Turner et al., 2017) and mapped over $d_{\text {norm }}$ is given in Fig. 4. The bright-red spots near atoms O4 and N9 in Fig. $4 a$ refer to the $\mathrm{N} 9-\mathrm{H} 9 \cdots \mathrm{O} 4$ hydrogen bond, and near atoms C15 and O18 in Fig. $4 b$ to the $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 18$ hydrogen bond. The faint-red spots near atoms C5 and S8 illustrate a short contact in the crystal packing of (3) (H5B $\cdots \mathrm{S} 8=2.913 \AA)$. The fingerprint plots (Fig. 5) further indicate a major contribution by $\mathrm{H} \cdots \mathrm{H}$

Figure 3
Partial crystal packing of (3), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (red dashed lines) resulting in chain formation in the a-direction [see Table 1; symmetry code: (ii) $\left.x+\frac{1}{2},-y+\frac{3}{2}, z\right]$.

(a)
short H5B...S8

(b)

Figure 4
The Hirshfeld surface mapped over $d_{\text {norm }}$ for (3) in the range -0.3153 to 1.2662 a.u.
contacts, corresponding to 51.6% of the two-dimensional fingerprint plot (Fig. 5b). Significant contributions by reciprocal $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}(13.4 \%)$ and $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}(12.5 \%)$ contacts appear as two symmetrical spikes at $d_{\mathrm{e}}+d_{\mathrm{i}} \simeq 2.2$ and $2.8 \AA$, respectively (Fig. $5 c, d$). Smaller contributions are from C $\cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}(11.7 \%$, Fig. $5 e), \mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}(5.3 \%$, Fig. $5 f)$,

Figure 5
Full two-dimensional fingerprint plots for (3), showing (a) all interactions, and delineated into $(b) \mathrm{H} \cdots \mathrm{H}$, $(c) \mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O},(d) \mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S},(e)$ $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ and $(f) \mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}$ interactions. The d_{i} and d_{e} values are the closest internal and external distances (in \AA) from a given point on the Hirshfeld surface.
(a)

(b)

(c)

Figure 6
(a) Fragment used for a search in the CSD. (b),(c) Histograms of torsion angles τ_{1} and τ_{2}. The vertical pink lines show the torsion angle observed in (3).
$\mathrm{C} \cdots \mathrm{C}(3.2 \%), \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}(1.6 \%), \mathrm{C} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{C}(0.3 \%)$, $\mathrm{C} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{C}(0.3 \%)$ and $\mathrm{O} \cdots \mathrm{O}$ contacts (0.1%).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016) for the central $\mathrm{N}-\mathrm{C}(=\mathrm{S})-\mathrm{NH}-\mathrm{N}=\mathrm{C}$ moiety (Fig. $6 a$) present in the title compound gave 583 hits. Fig. $6 b, c$ illustrate the histograms of the distribution of torsion angles τ_{1} and τ_{2}. The histogram of τ_{1} shows a major preference for the $-s p /+s p$ (or cis) conformation and a minor preference for the $-a p /+a p$ (or trans) conformation. For torsion angle τ_{2}, only one region is preferred: a narrow spread in the region $-a p /+a p$ (or trans). For (3), the torsion angles τ_{1} and τ_{2} are both in the $+a p$ region [$\tau_{1}=173.8(3)$ and $\left.\tau_{2}=162.4(3)^{\circ}\right]$.

The most similar compound present in the CSD is the 2-hydroxynaphthaldehyde-based thiosemicarbazone (refcode IDEQAM; Aneesrahman et al., 2018). The asymmetric unit contains two molecules (one morpholino ring shows disorder). The mean plane of the non-disordered morpholino ring makes an angle of $36.9(7)^{\circ}$ with the naphthalene ring system. The

Figure 7
Reaction scheme for the synthesis of (3).
torsion angles $\tau_{1}\left[175.89(15)\right.$ and $\left.-175.97(15)^{\circ}\right]$ and τ_{2} [166.51 (16) and $-174.99(16)^{\circ}$] are similar to those observed for the title compound. An intramolecular hydrogen bond similar to $\mathrm{O} 18-\mathrm{H} 18 \cdots \mathrm{~N} 10$ is also observed.

5. Synthesis and crystallization

The reaction scheme for the synthesis of (3) is given in Fig. 7.
Synthesis of 2-((morpholine-4-carbonothioyl)thio)acetic acid (1):

A mixture consisting of carbon disulfide (0.2 mol) and concentrated ammonia (25 mL) was stirred to form a homogeneous solution at 278 K . Then, morpholine (0.2 mol) was added dropwise to this solution. The yellow solid that separated from the solution was filtered off and immediately dissolved in deionized water $(300 \mathrm{~mL})$ at room temperature to generate a yellow solution. Sodium chloroacetate (0.2 mol) was added to this solution and the reaction mixture maintained for 6 h at room temperature. The yellowish solution was acidified with concentrated hydrochloric acid and the resulting white precipitate was filtered off and recrystallized from ethanol.

Synthesis of N(4)-morpholinothiosemicarbazide (2):

A mixture composed of (1) (50 mmol), deionized water $(10 \mathrm{~mL})$ and hydrazine hydrate $(25 \mathrm{~mL})$ was refluxed for 30 minutes at 353 K . The white solid which precipitated from the transparent solution was filtered off and recrystallized from ethanol to give (2).

Synthesis of salicylaldehyde N(4)-morpholinothiosemicarbazone (3):

After dissolving (2) in hot ethanol, the solution was added to an equivalent amount of salicylaldehyde. The final solution was refluxed at 353 K for 2 h in the presence of acetic acid as a catalyst. The resulting solution was gradually reduced in volume at room temperature overnight. The needle-shaped crystals that formed were filtered off and recrystallized from ethanol to give (3) in the form of transparent crystals (yield $60 \%)$, m.p. $461-463$ K. FT-IR (cm^{-1}): $3436(\mathrm{O}-\mathrm{H}), 3279$ $(\mathrm{N}-\mathrm{H}), 1617\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right), 1540(\mathrm{C}=\mathrm{N}), 1061(\mathrm{~N}-\mathrm{N}), 1348$ and $959(\mathrm{C}=\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR [Bruker $500 \mathrm{MHz}, d_{6}$-DMSO, $\delta(\mathrm{ppm}), J$ $(\mathrm{Hz})]: 3.67(4 \mathrm{H}, t, \mathrm{H} 2$ and H 6$) ; 3.92(4 \mathrm{H}, t, \mathrm{H} 3$ and H 5$) ; 6.90$ (2H, $m, \mathrm{H} 14$ and H16); $7.28(1 \mathrm{H}, m, J=7.5, \mathrm{H} 15) ; 7.41(1 \mathrm{H}, d, J$ $=7.0, \mathrm{H} 17) ; 8.47(1 \mathrm{H}, s, \mathrm{H} 11) ; 11.49(1 \mathrm{H}, b r, \mathrm{~N}-\mathrm{H}) ; 11.55(1 \mathrm{H}$, $b r, \mathrm{O}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR [Bruker $125 \mathrm{MHz}, d_{6}$-DMSO, $\delta(\mathrm{ppm})$]: 49.4 (C 2 and C 6), 66.2 (C 3 and C 5), 117.0 (C 14), 118.9 (C 12), 119.5 (C16), 130.4 (C17), 131.3 (C15), 146.9 (C13), 157.6 (C11), 180.1 (C7). UV-Vis (ethanol, nm): $200\left(\pi \rightarrow \pi^{*}\right) ; 300$ and 350 ($\mathrm{n} \rightarrow \pi^{*}$).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Both H atoms H9 and H18 were located from difference electron density maps and refined freely. The other H atoms were placed in idealized positions and included as riding contributions with $U_{\text {iso }}(\mathrm{H})$ values $1.2 U_{\text {eq }}$ of the parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93
(aromatic, $\mathrm{CH}=\mathrm{N}$) and $0.97 \AA\left(\mathrm{CH}_{2}\right)$. In the final cycles of refinement, 4 outliers were omitted.

Acknowledgements

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

References

Aneesrahman, K. N., Rohini, G., Bhuvanesh, N. S. P., Sundararaj, S., Musthafa, M. \& Sreekanth, A. (2018). ChemistrySelect 3, 81188130.

Berners-Price, S. J. (2011). Angew. Chem. Int. Ed. 50, 804-805.
Bindu, P., Kurup, M. R. P. \& Satyakeerty, T. R. (1998). Polyhedron, 18, 321-331.
Chen, J., Huang, Y. W., Liu, G., Afrasiabi, Z., Sinn, E., Padhye, S. \& Ma, Y. (2004). Toxicol. Appl. Pharmacol. 197, 40-48.
Dilović, I., Rubcić, M., Vrdoljak, V., Kraljević Pavelić, S., Kralj, M., Piantanida, I. \& Cindrić, M. (2008). Bioorg. Med. Chem. 16, 51895198.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Go, R. S. \& Adjei, A. A. (1999). J. Clin. Oncol. 17, 409-422.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Harbour, J. W., Murray, T. G., Hamasaki, D., Cicciarelli, N., Hernández, E., Smith, B., Windle, J. \& O’Brien, J. M. (1996). Invest. Ophthalmol. Vis. Sci. 37, 1892-1898.
Koo, C. H., Kim, H. S. \& Ahn, C. H. (1977). J. Korean Chem. Soc. 21, 3-15.
Lévi, F., Metzger, G., Massari, C. \& Milano, G. (2000). Clin. Pharmacokinet. 38, 1-21.
Liberta, A. E. \& West, D. X. (1992). Biometals, 5, 121-126.
McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commun. 3814-3816.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shi, L., Mao, W. J., Yang, Y. \& Zhu, H. L. (2009). J. Coord. Chem. 62, 3471-3477.

Table 2
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer

Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

2565

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$

265.33

Orthorhombic, Pna2 ${ }_{1}$
293
11.7579 (4), 15.0584 (5), 7.1103 (3)
1258.92 (8)

4
Mo $K \alpha$
0.26
$0.5 \times 0.2 \times 0.1$

Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
0.483, 1.000

12278, 2565, 2314

```
0.025
```

0.625
$0.034,0.087,1.07$
171
1
H atoms treated by a mixture of independent and constrained refinement
$0.17,-0.17$
Flack x determined using 938 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)
0.02 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net

supporting information

Acta Cryst. (2019). E75, 1389-1393 [https://doi.org/10.1107/S2056989019011812]

Synthesis and redetermination of the crystal structure of salicylaldehyde $N(4)$ morpholinothiosemicarbazone

Dang Tran Buu, Vu Duong Ba, Minh Khoi Nguyen Hoang, Trung Vu Quoc, Linh Duong Khanh, Yen Oanh Doan Thi and Luc Van Meervelt

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
N-\{[(2-Hydroxyphenyl)methylidene]amino\}morpholine-4-carbothioamide

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=265.33$
Orthorhombic, Pna2 ${ }_{1}$
$a=11.7579$ (4) \AA
$b=15.0584(5) \AA$
$c=7.1103(3) \AA$
$V=1258.92(8) \AA^{3}$
$Z=4$
$F(000)=560$

Data collection

Rigaku Oxford Diffraction SuperNova, Single
source at offset/far, Eos
diffractometer
Radiation source: micro-focus sealed X-ray
tube, SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 15.9631 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.087$
$S=1.07$
2565 reflections
171 parameters
$D_{\mathrm{x}}=1.400 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5842 reflections
$\theta=3.2-27.3^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.5 \times 0.2 \times 0.1 \mathrm{~mm}$
$T_{\min }=0.483, T_{\text {max }}=1.000$
12278 measured reflections
2565 independent reflections
2314 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-14 \rightarrow 14$
$k=-18 \rightarrow 18$
$l=-8 \rightarrow 8$

1 restraint
Primary atom site location: dual space
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0434 P)^{2}+0.1653 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.17 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.17\) e \(\AA^{-3}\)
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0434 P)^{2}+0.1653 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {min }}=-0.17\) e \(\AA^{-3}\)
```

Absolute structure: Flack x determined using 938 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.02 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	0.12956 (17)	0.37994 (13)	0.5311 (5)	0.0441 (5)
C2	0.1602 (2)	0.28850 (18)	0.4815 (5)	0.0438 (7)
H2A	0.174911	0.254390	0.594672	0.053*
H2B	0.228621	0.288274	0.405192	0.053*
C3	0.0625 (3)	0.2474 (2)	0.3728 (5)	0.0552 (8)
H3A	0.050961	0.280351	0.257136	0.066*
H3B	0.081833	0.186795	0.339747	0.066*
O4	-0.04027 (17)	0.24774 (14)	0.4794 (3)	0.0545 (6)
C5	-0.0710 (2)	0.3379 (2)	0.5178 (7)	0.0615 (9)
H5A	-0.141436	0.338728	0.588879	0.074*
H5B	-0.084419	0.368531	0.399814	0.074*
C6	0.0177 (3)	0.3860 (2)	0.6249 (6)	0.0597 (9)
H6A	-0.003873	0.447934	0.636901	0.072*
H6B	0.023218	0.361089	0.750398	0.072*
C7	0.2028 (2)	0.44909 (15)	0.5299 (5)	0.0388 (6)
S8	0.16206 (6)	0.55578 (4)	0.54532 (17)	0.0552 (2)
N9	0.31482 (18)	0.42656 (14)	0.5168 (4)	0.0406 (6)
H9	0.337 (2)	0.3724 (19)	0.521 (6)	0.044 (8)*
N10	0.39379 (18)	0.49289 (14)	0.4965 (3)	0.0384 (6)
C11	0.4978 (2)	0.47549 (15)	0.5317 (5)	0.0366 (5)
H11	0.519030	0.418814	0.569994	0.044*
C12	0.5829 (2)	0.54502 (15)	0.5115 (4)	0.0353 (6)
C13	0.5532 (2)	0.63316 (17)	0.4666 (4)	0.0394 (6)
C14	0.6374 (3)	0.69733 (19)	0.4546 (5)	0.0512 (8)
H14	0.617815	0.755628	0.426000	0.061*
C15	0.7497 (3)	0.6758 (2)	0.4845 (4)	0.0542 (8)
H15	0.805097	0.719608	0.475521	0.065*
C16	0.7811 (2)	0.5896 (2)	0.5277 (6)	0.0537 (7)
H16	0.857037	0.575138	0.547403	0.064*
C17	0.6977 (2)	0.52566 (18)	0.5408 (6)	0.0466 (6)
H17	0.718495	0.467720	0.570242	0.056*
O18	0.44378 (18)	0.65822 (14)	0.4336 (4)	0.0513 (6)
H18	0.402 (3)	0.617 (3)	0.446 (6)	0.073 (13)*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0326(10)$	$0.0409(10)$	$0.0590(14)$	$-0.0031(9)$	$0.0038(14)$	$-0.0046(15)$
C2	$0.0354(13)$	$0.0407(13)$	$0.0551(19)$	$-0.0024(11)$	$0.0056(13)$	$-0.0046(13)$
C3	$0.0576(18)$	$0.0553(18)$	$0.0528(19)$	$-0.0181(15)$	$0.0075(16)$	$-0.0038(15)$
O4	$0.0436(11)$	$0.0530(11)$	$0.0670(16)$	$-0.0148(9)$	$0.0020(11)$	$0.0020(11)$
C5	$0.0376(14)$	$0.0584(17)$	$0.088(3)$	$-0.0044(13)$	$-0.0064(19)$	$0.014(2)$
C6	$0.0370(16)$	$0.0545(17)$	$0.088(3)$	$-0.0016(14)$	$0.0139(17)$	$-0.0090(18)$
C7	$0.0360(12)$	$0.0418(12)$	$0.0387(14)$	$-0.0009(10)$	$-0.0011(15)$	$0.0015(15)$
S8	$0.0481(4)$	$0.0396(3)$	$0.0780(6)$	$0.0056(3)$	$0.0010(5)$	$-0.0010(5)$
N9	$0.0333(11)$	$0.0329(10)$	$0.0556(16)$	$-0.0031(8)$	$0.0009(12)$	$0.0040(12)$
N10	$0.0336(11)$	$0.0359(10)$	$0.0458(15)$	$-0.0050(9)$	$-0.0004(10)$	$0.0032(10)$
C11	$0.0388(13)$	$0.0329(10)$	$0.0380(13)$	$-0.0003(9)$	$-0.0010(14)$	$0.0021(14)$
C12	$0.0353(12)$	$0.0354(11)$	$0.0353(16)$	$-0.0029(9)$	$0.0002(12)$	$-0.0007(12)$
C13	$0.0418(14)$	$0.0356(12)$	$0.0408(15)$	$0.0001(11)$	$0.0026(12)$	$-0.0019(12)$
C14	$0.0605(19)$	$0.0351(13)$	$0.0581(19)$	$-0.0111(13)$	$0.0005(16)$	$0.0001(14)$
C15	$0.0534(17)$	$0.0585(17)$	$0.0507(19)$	$-0.0249(15)$	$-0.0003(15)$	$-0.0007(15)$
C16	$0.0363(14)$	$0.0681(17)$	$0.0567(18)$	$-0.0104(13)$	$-0.0022(17)$	$0.0016(19)$
C17	$0.0389(14)$	$0.0465(13)$	$0.0545(16)$	$-0.0001(11)$	$-0.0039(18)$	$0.0019(18)$
O18	$0.0448(11)$	$0.0349(10)$	$0.0744(15)$	$0.0042(9)$	$-0.0019(11)$	$0.0049(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

N1-C2	1.466 (3)	N9-H9	0.86 (3)
N1-C6	1.478 (4)	N9-N10	1.371 (3)
N1-C7	1.351 (3)	N10-C11	1.275 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	C11-H11	0.9300
C2-H2B	0.9700	C11-C12	1.456 (3)
C2-C3	1.516 (4)	C12-C13	1.409 (3)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700	C12-C17	1.396 (4)
C3-H3B	0.9700	C13-C14	1.386 (4)
C3-O4	1.426 (3)	C13-O18	1.361 (3)
O4-C5	1.432 (4)	C14-H14	0.9300
C5-H5A	0.9700	C14-C15	1.376 (4)
C5-H5B	0.9700	C15-H15	0.9300
C5-C6	1.481 (5)	C15-C16	1.383 (4)
C6-H6A	0.9700	C16-H16	0.9300
C6-H6B	0.9700	C16-C17	1.377 (4)
C7-S8	1.680 (2)	C17-H17	0.9300
C7-N9	1.364 (3)	O18-H18	0.80 (4)
C2-N1-C6	112.7 (2)	N1-C7-N9	115.1 (2)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 2$	124.4 (2)	N9-C7-S8	121.17 (18)
C7-N1-C6	121.5 (2)	C7-N9-H9	121.8 (18)
N1-C2-H2A	110.0	C7-N9-N10	118.7 (2)
N1-C2-H2B	110.0	N10-N9-H9	119.5 (18)
N1-C2-C3	108.6 (2)	C11-N10-N9	118.6 (2)

$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.3
C2-C3-H3B	109.3
H3A-C3-H3B	107.9
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	111.7 (3)
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.3
O4-C3-H3B	109.3
C3-O4-C5	108.6 (2)
O4-C5-H5A	109.1
O4-C5-H5B	109.1
O4-C5-C6	112.6 (2)
H5A-C5-H5B	107.8
C6-C5-H5A	109.1
C6-C5-H5B	109.1
N1-C6-C5	111.4 (3)
N1-C6-H6A	109.4
N1-C6-H6B	109.4
C5-C6-H6A	109.4
C5-C6-H6B	109.4
H6A-C6-H6B	108.0
N1-C7-S8	123.73 (19)
N1-C2-C3-O4	-58.7 (4)
N1-C7-N9-N10	173.8 (3)
C2-N1-C6-C5	-50.2 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 8$	167.6 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 9$	-13.0 (5)
C2-C3-O4-C5	62.2 (4)
C3-O4-C5-C6	-59.5 (4)
O4-C5-C6-N1	53.7 (4)
C6-N1-C2-C3	51.7 (4)
C6-N1-C7-S8	-27.0 (5)
C6-N1-C7-N9	152.5 (3)
C7-N1-C2-C3	-141.7 (3)
C7-N1-C6-C5	142.7 (3)
C7-N9-N10-C11	162.4 (3)
S8-C7-N9-N10	-6.7 (4)

$\mathrm{N} 10-\mathrm{C} 11-\mathrm{H} 11$	120.3
$\mathrm{~N} 10-\mathrm{C} 11-\mathrm{C} 12$	$119.5(2)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	120.3
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$121.9(2)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 11$	$120.0(2)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13$	$118.1(2)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$119.5(3)$
$\mathrm{O} 18-\mathrm{C} 13-\mathrm{C} 12$	$122.3(2)$
$\mathrm{O} 18-\mathrm{C} 13-\mathrm{C} 14$	$118.1(3)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 14$	119.6
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$120.7(3)$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 14$	119.6
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 15$	119.6
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$120.8(3)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 15$	119.6
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 16$	120.6
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$118.7(3)$
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 16$	120.6
$\mathrm{C} 12-\mathrm{C} 17-\mathrm{H} 17$	118.9
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$122.1(3)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17$	118.9
$\mathrm{C} 13-\mathrm{O} 18-\mathrm{H} 18$	$110(3)$

$\mathrm{N} 9-\mathrm{N} 10-\mathrm{C} 11-\mathrm{C} 12$	$-179.9(3)$
$\mathrm{N} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$4.5(5)$
$\mathrm{N} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$	$-176.9(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$178.1(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 18$	$-2.1(4)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$-178.5(4)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$0.6(5)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$0.2(5)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-0.2(5)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-0.2(5)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$0.2(6)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.6(4)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 18$	$179.3(3)$
$\mathrm{O} 18-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-179.3(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N9—H9 $9 \cdots 4^{\mathrm{i}}$	$0.86(3)$	$2.33(3)$	$3.141(3)$	$157(3)$
O18-H18 $\cdots \mathrm{N} 10$	$0.80(4)$	$1.91(5)$	$2.597(3)$	$145(4)$

supporting information

$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{~S} 8$	0.97	2.62	$3.121(3)$	112
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 18^{\mathrm{ii}}$	0.93	2.48	$3.404(4)$	176

Symmetry codes: (i) $x+1 / 2,-y+1 / 2, z$; (ii) $x+1 / 2,-y+3 / 2, z$.

