

ISSN 2056-9890

Received 18 July 2019 Accepted 20 July 2019

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; ligand; dithiolene; metalloligand.

CCDC reference: 1941888

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

A molybdenum tris(dithiolene) complex coordinates to three bound cobalt centers in three different ways

Neilson Nguyen,^a Alan J. Lough^b and Ulrich Fekl^a*

^aDepartment of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada, and ^bDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada. *Correspondence e-mail: ulrich.fekl@utoronto.ca

The synthesis and structural characterization of the molecular compound (μ_3 benzene-1,2-dithiolato)hexacarbonylbis(μ_3 -1,1,1,4,4-hexafluorobut-2-ene-2,3dithiolato)tricobaltmolybdenum, $[Co_3Mo(C_4F_6S_2)_2(C_6H_4S_2)(CO)_6]$ or $Mo(tfd)_2$ -(bdt)(Co(CO)₂)₃ (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-dithiolate), are reported. The structure of the molecule contains the molybdenum tris(dithiolene) complex Mo(tfd)₂(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with $Co \cdots Mo$ distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) A. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different dithiolenes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris)dithiolene complex that coordinates to cobalt. The F atoms of two of the $-CF_3$ groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2).

1. Chemical context

Sulfur removal from crude petroleum is performed on a large industrial scale through a process called hydrodesulfurization. This involves use of hydrogen gas (the sulfur is removed as H_2S) and addition of a catalyst, typically cobalt-doped MoS₂ (Hinnemann *et al.*, 2008). MoS_2 is not a molecular compound but rather possesses an extended structure, consisting of closepacked sulfur layers between which molybdenum is sandwiched (Dickinson & Pauling, 1923). The coordination geometry around molybdenum is trigonal prismatic. Several attempts to model MoS₂ using molecular compounds have been made, often using dithiolene $(S_2C_2R_2)$ ligands, where some examples also contain the hydrodesulfurization-relevant addition of cobalt. Complexes containing molybdenum, cobalt, and one or two (but not three) dithiolenes are known. A molybdenum bis(dithiolene) that coordinates to two cobalt centers has been characterized crystallographically (Nihei et al., 1999; Murata et al., 2006). The study reports [Mo(bdt)₂(- $CO_2(CpCo)_2]$, where $bdt = o-C_6H_4S_2$ and $Cp = cyclo-C_5H_5$. The methylated analog $[Mo(bdt)_2(CO)_2(Cp^*Co)_2]$, where Cp^* = cyclo-C₅Me₅ was also structurally characterized (Muratsugu et al., 2011). An analogous [Mo(ddds)₂(CO)₂(CpCo)₂] was reported by a different group, where ddds is the unusual di-

research communications

thiolene 1,2-dicarba-closo-dodecaborane-1,2-disulfide (Chen et al., 2007). The above contribution also reported a molvbdenum mono(dithiolene) complex coordinated to a cobalt fragment, namely $[Mo(ddds)(CO)_2(py)_2(Cp*Co)]$, where py =pyridine. Coordinating to cobalt a molybdenum tris(dithioene), that is a compound where three dithiolenes are bound to molybdenum, would be interesting, because molybdenum tris(dithiolene)s mimic MoS₂ particularly well. Similar to MoS₂, they contain molybdenum coordinated to six sulfur atoms, and, also, depending on the oxidation state of the compound, the environment of molybdenum can sometimes be trigonal prismatic (Beswick et al., 2004). However, we could not find any structurally characterized example for how a molybdenum tris(dithiolene) complex can act as ligand for cobalt. Such an example is provided here. In 2007, the mixed dithiolene complex Mo(tfd)₂(bdt) [tfd = $S_2C_2(CF_3)_2$], an unsymmetrical tris(dithiolene), was reported for the first time (Harrison et al., 2007). Later, this complex, which contains two different dithiolenes, was used to create structural models for the active sites of MoS₂ hydrodesulfurization catalysts, albeit cobalt-free ones (Nguyen et al., 2010). In this current work, we have successfully linked three cobalt centers to one Mo(tfd)₂(bdt) molecule. Surprisingly, each of the three cobaltcontaining units [each one is a $Co(CO)_2$ fragment] is bound to the molybdenum tris(dithiolene) center in a different way.

2. Structural commentary

An anisotropic displacement plot showing the structure of the $Mo(tfd)_2(bdt)(Co(CO)_2)_3$ molecule is shown in Fig. 1. A good starting point for the structural description is considering the core Mo(tfd)₂(bdt) substructure first. Molybdenum is coordinated by six sulfur atoms, four from the two tfd ligands, two from the one bdt ligand. The Mo-S distances are fairly normal, ranging from 2.413 (1) Å (Mo1-S5) to 2.457 (1) Å (Mo1-S4). The appearance of the structure is 'approximately octahedral'. A more quantitative measure is obtained using the $X-M-X_{trans}$ criterion (Beswick *et al.*, 2004; Nguyen *et al.*, 2010), which indicates that the geometry around molybdenum is 71% octahedral (29% trigonal prismatic). The intra-ring C-C distance in the tfd ligand that is not π -coordinated to cobalt (C5-C6) is 1.335 (6) Å, indicating that description as an ene-dithiolate is appropriate (Hosking et al., 2009). The intra-ring C-C distance in the tfd ligand that is π -coordinated to cobalt (C1-C2) is much longer, at 1.439 (6) Å, but this elongation is expected as an effect of π -coordination to cobalt

A view of the molecular structure of $Mo(tfd)_2(bdt)(Co(CO)_2)_3$. Anisotropic displacement ellipsoids in this plot, generated with ORTEP-3 (Farrugia, 2012), are shown at the 30% level. Hydrogen atoms are shown as spheres of arbitrary radius. For the disordered fluorines on C7 and C8 only one orientation (major component) is shown.

(Co2). At this point it makes sense to discuss the way in which the Mo(tfd)₂(bdt) substructure coordinates to the three cobalt dicarbonyl fragments. Co1 is coordinated by two sulfurs from different dithiolenes (bdt and tfd) at bond lengths of 2.225 (1) Å (Co1-S1) and 2.241 (1) Å (Co1-S2), respectively. The C₂S₂ environment of Co1 is nearly tetrahedral, with very slight distortions. The S1-Co1-S2 angle is slightly wide, at $115.44(5)^{\circ}$, the C9–Co1–C10 angle is slightly narrow, at 98.4 (3)°. Co2, in contrast, is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd, where bond lengths are 2.256 (1) Å (Co2-S3), 2.010 (4) Å (Co2-C1), and 1.970(4) (Co2-C2). The coordination geometry of Co2 (not including Mo1 here) is, again, approximately tetrahedral, where the largest deviation from tetrahedral geometry are C11-Co2-C12, at 96.3 (2) $^{\circ}$ and the comparably wide 'bite' of the chelating substructure, with Ct1-Co2-S3 measuring 119.7°, where Ct1 is the mid-point between C11 and C12. Another sulfur atom, S4, is relatively close to Co2, but the interatomic distance, at 2.767 (1) Å, is considerably longer than the Co2-S3 bond, such that S4 is almost certainly not bonded. Finally, Co3 is coordinated by one sulfur from bdt and two sulfurs from tfd, at distances of 2.234(1) Å (Co3–S4), 2.239 (1) Å (Co3-S5), and 2.275 (1) Å (Co3-S6). Co3 is surrounded by these three sulfurs and two carbons in an approximately trigonal-bipyramidal fashion. C14 and S4 occupy axial positions, with the C14-Co3-S4 angle being 174.3 (2)°. The three angles in the trigonal plane are $115.38 (4)^{\circ} (S5-Co3-S6), 118.6 (2)^{\circ} (S5-Co3-C13), and$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C17-H17A\cdots O6^{i}$	0.95	2.57	3.353 (7)	140
$C17-H17A\cdots F11^{ii}$	0.95	2.62	3.461 (9)	148
$C17-H17A\cdots F10A^{ii}$	0.95	2.55	3.29 (2)	135

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

124.0 (2)° (S6–Co3–C13). While there is no doubt that the three cobalt atoms are bound by the heteroatoms (sulfur, carbon) of the Mo(tfd)₂(bdt) structure, each of the three cobalt atoms is also close to the central molybdenum, and these metal–metal contacts could possibly be bonding as well. The relevant distances are 2.7224 (7) Å (Co1–Mo1), 2.8058 (7) Å (Co2–Mo1), and 2.6320 (6) Å (Co3–Mo1). Such Mo–Co distances are typically considered of a range compatible with Mo–Co bonds (Chen *et al.*, 2007; Curtis *et al.*, 1997; Murata *et al.*, 2006; Muratsugu *et al.*, 2011).

3. Supramolecular features

Molecules of $Mo(tfd)_2(bdt)(Co(CO)_2)_3$ pack, without any solvent in the crystal, *via* contacting van der Waals surfaces. The packing pattern is shown in Fig. 2. Hydrogen atom H17*A* forms close intermolecular contacts to an oxygen atom from a neighboring carbonyl and to a fluorine atom of the major disorder component (F11), as well as to a fluorine atom of the minor disorder component (F10*A*). Details can be found in Table 1.

4. Database survey

The Cambridge Crystallographic Database (version 5.40, including updates up to May 2019; Groom *et al.*, 2016) was searched. The search was performed as a substructure search containing the most general dithiolene S–C–C–S substructure

Figure 2

Packing of molecules of $Mo(tfd)_2(bdt)(Co(CO)_2)_3$, viewed along the *b* axis.

(with any kind of bond allowed in the chain), plus a molybdenum and a cobalt atom. Since no specific requirement was imposed with regard to whether or in which way cobalt or molybdenum are bonded to the S-C-C-S structure, hits that do not contain a molybdenum dithiolene complex coordinated to cobalt where manually removed as follows. Seven hits were retrieved: EYUHIQ, JOQWIV, JOQWIV01, SEVMIQ, SEVMOW, TASDAT, OQAMEZ. Out of these, TASDAT and OQAMEZ are not relevant here, since they do not contain a molybdenum dithiolene unit that is directly bonded to cobalt. They contain, respectively, a cobalt-based counter-cation for an anionic molybdenum complex and a nickel bis(dithiolene) anion as a counter-anion for a molybdenum/cobalt sulfido cluster. The structures EYUHIQ, JOQWIV, JOQWIV01, SEVMIQ and SEVMOW are relevant, since they contain at least one molybdenum dithiolene unit that is directly bonded to cobalt. These structures are all discussed above in the Chemical context (Nihei et al., 1999; Murata et al., 2006; Muratsugu et al., 2011; Chen et al., 2007).

5. Synthesis and crystallization

Mo(tfd)₂(bdt)(Co(CO)₂)₃ was prepared from Mo(tfd)₂(bdt) (Harrison et al., 2007) and dicobaltoctacarbonyl (obtained from Sigma-Aldrich) as summarized in the Scheme, using airfree conditions and rigorously dried solvents. 48 mg of Mo(tfd)₂(bdt) (0.0697 mmol) were dissolved in 18 mL of hexane (dried over Na/benzophenone). 60 mg (0.175 mmol) of $(Co)_2(CO)_8$ dissolved in 2 mL of hexane were added and the mixture was shaken. The mixture was stored overnight at 243 K in the freezer of a nitrogen-filled glovebox. The supernatant was decanted off, and the black crystals of $Mo(tfd)_2(bdt)(Co(CO)_2)_3$ were washed twice with 5 mL of cold hexane. Total yield 27 mg (0.026 mmol, 37%). Analysis calculated for Mo₁S₆C₂₀H₄F₁₂Co₃O₆: C, 23.25; H, 0.39; O, 9.29; S, 18.62. Found: C, 23.70; H, 0.44; O, 9.70; S, 18.80. ¹H NMR (400 MHz, C_6D_6): δ 6.38 (m), 7.02 (m). The compound is paramagnetic. An estimate of the magnetic moment in solution (Evans method) yielded ca 0.9 BM, consistent with one unpaired electron. An EPR spectrum was also obtained, shown in Fig. 3.

Figure 3 X-band EPR spectrum of $Mo(tfd)_2(bdt)(Co(CO)_2)_3$ in hexane at 298 K; g = 2.010.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and included in a riding-motion approximation with $U_{iso}(H) = 1.2U_{eq}(C)$. The F atoms of the $-CF_3$ groups containing C7 and C8 were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2), respectively.

Acknowledgements

We thank Professors Wolfang Kaim and Biprajit Sarkar (University of Stuttgart) for the use of their EPR spectrometer for the spectrum shown in Fig. 3.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada ; University of Toronto.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Beswick, C. L., Schulman, J. M. & Stiefel, E. I. (2004). Prog. Inorg. Chem. 52, 55–110.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Chen, Y.-Q., Zhang, J., Cai, S., Hou, X.-F., Schumann, H. & Jin, G.-X. (2007). *Dalton Trans.* pp. 749–758.
- Curtis, D. M., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231–235.
- Dickinson, R. G. & Pauling, L. (1923). J. Am. Chem. Soc. 45, 1466–1471.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644–7647.
- Hinnemann, B., Moses, P. G. & Nørskov, J. K. (2008). J. Phys. Condens. Matter, 20, 064236–064244.
- Hosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759–m760.
- Murata, M., Habe, S., Araki, S., Namiki, K., Yamada, T., Nakagawa, N., Nankawa, T., Nihei, M., Mizutani, J., Kurihara, M. & Nishihara, H. (2006). *Inorg. Chem.* **45**, 1108–1116.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$[Co_3Mo(C_4F_6S_2)_2(C_6H_4S_2)(CO)_6]$
M _r	1033.32
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	150
a, b, c (Å)	22.7465 (5), 12.8779 (5), 23.6033 (6)
β (°)	115.3840 (16)
$V(Å^3)$	6246.5 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.47
Crystal size (mm)	$0.32 \times 0.12 \times 0.10$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan (SORTAV; Blessing, 1995)
T_{\min}, T_{\max}	0.686, 0.798
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21250, 7102, 5019
R _{int}	0.046
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.112, 1.07
No. of reflections	7102
No. of parameters	489
No. of restraints	210
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.09, -0.74

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008).

- Muratsugu, S., Sodeyama, K., Kitamura, F., Tsukada, S., Tada, M., Tsuneyuki, S. & Nishihara, H. (2011). *Chem. Sci.* 2, 1960–1968.
- Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). *Eur. J. Inorg. Chem.* pp. 3577–3585.
- Nihei, M., Nankawa, T., Kurihara, M. & Nishihara, H. (1999). Angew. Chem. Int. Ed. 38, 1098–1100.
- Nonius, B. (2002). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. London: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2019). E75, 1261-1264 [https://doi.org/10.1107/S2056989019010363]

A molybdenum tris(dithiolene) complex coordinates to three bound cobalt centers in three different ways

Neilson Nguyen, Alan J. Lough and Ulrich Fekl

Computing details

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

 $(\mu_3\text{-}Benzene-1,2\text{-}dithiolato) hexa carbonylbis (\mu_3-1,1,1,4,4,4\text{-}hexa fluorobut-2\text{-}ene-2,3\text{-}dithiolato) tricobaltmolybdenum$

Crystal data

 $[Co_{3}Mo(C_{4}F_{6}S_{2})_{2}(C_{6}H_{4}S_{2})(CO)_{6}]$ $M_{r} = 1033.32$ Monoclinic, C2/c a = 22.7465 (5) Å b = 12.8779 (5) Å c = 23.6033 (6) Å $\beta = 115.3840$ (16)° V = 6246.5 (3) Å³ Z = 8

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 9 pixels mm⁻¹ φ scans and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.686, T_{\max} = 0.798$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.112$ S = 1.077102 reflections 489 parameters 210 restraints F(000) = 3992 $D_x = 2.198 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 21250 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ T = 150 KNeedle, dark red $0.32 \times 0.12 \times 0.10 \text{ mm}$

21250 measured reflections 7102 independent reflections 5019 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.0^\circ$ $h = -29 \rightarrow 29$ $k = -16 \rightarrow 16$ $l = -30 \rightarrow 30$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.054P)^{2} + 5.1797P] \qquad \Delta \rho_{max} = 1.09 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.74 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	0.37011 (2)	0.67610(3)	0.12477 (2)	0.02586 (11)	
Co1	0.32882 (3)	0.85549 (5)	0.15702 (3)	0.03548 (16)	
Co2	0.33267 (3)	0.47117 (5)	0.13309 (3)	0.03083 (16)	
Co3	0.45749 (3)	0.63936 (5)	0.08184 (3)	0.02962 (15)	
S 1	0.32447 (5)	0.82941 (9)	0.06212 (5)	0.0297 (2)	
S2	0.36985 (5)	0.72385 (9)	0.22479 (5)	0.0331 (3)	
S3	0.26312 (5)	0.60667 (9)	0.10435 (5)	0.0296 (2)	
S4	0.45637 (5)	0.54398 (9)	0.16042 (5)	0.0301 (2)	
S5	0.35447 (5)	0.58534 (9)	0.02990 (5)	0.0295 (2)	
S6	0.47364 (5)	0.76648 (9)	0.15395 (5)	0.0307 (3)	
F1	0.26591 (12)	0.4072 (2)	-0.02994 (12)	0.0493 (7)	
F2	0.35969 (14)	0.3736 (2)	-0.02658 (12)	0.0484 (7)	
F3	0.32346 (13)	0.2830 (2)	0.02808 (12)	0.0456 (7)	
F4	0.41197 (15)	0.2522 (2)	0.14259 (14)	0.0581 (8)	
F5	0.46739 (15)	0.3033 (2)	0.09356 (15)	0.0588 (8)	
F6	0.49947 (14)	0.3377 (2)	0.19160 (14)	0.0635 (9)	
F7	0.2282 (2)	0.7313 (7)	0.2705 (2)	0.074 (2)	0.703 (7)
F8	0.3246 (3)	0.7860 (5)	0.3117 (3)	0.0698 (18)	0.703 (7)
F9	0.3064 (4)	0.6287 (4)	0.3225 (2)	0.0766 (19)	0.703 (7)
F7A	0.2573 (8)	0.7953 (11)	0.2754 (6)	0.072 (4)	0.297 (7)
F8A	0.3435 (5)	0.7165 (15)	0.3305 (4)	0.063 (3)	0.297 (7)
F9A	0.2537 (7)	0.6372 (10)	0.2967 (5)	0.063 (3)	0.297 (7)
F10	0.1632 (4)	0.5120 (8)	0.1246 (4)	0.055 (2)	0.72 (2)
F11	0.1431 (3)	0.6580 (6)	0.1565 (6)	0.066 (2)	0.72 (2)
F12	0.1944 (4)	0.5381 (9)	0.2222 (3)	0.068 (2)	0.72 (2)
F10A	0.1475 (9)	0.558 (2)	0.1103 (7)	0.057 (4)	0.28 (2)
F11A	0.1543 (10)	0.6471 (14)	0.1877 (12)	0.056 (4)	0.28 (2)
F12A	0.1972 (10)	0.4990 (14)	0.2037 (10)	0.057 (4)	0.28 (2)
O1	0.3951 (3)	1.0559 (4)	0.2075 (3)	0.112 (2)	
O2	0.19536 (19)	0.9067 (4)	0.1404 (2)	0.0771 (13)	
O3	0.37570 (16)	0.4528 (3)	0.26994 (14)	0.0486 (9)	
O4	0.23791 (19)	0.2999 (3)	0.09880 (16)	0.0587 (11)	
O5	0.56008 (17)	0.5074 (3)	0.07720 (17)	0.0586 (10)	
06	0.4473 (2)	0.7725 (3)	-0.02293 (17)	0.0610 (10)	
C1	0.35680 (19)	0.4568 (3)	0.06092 (19)	0.0304 (10)	
C2	0.41017 (19)	0.4338 (4)	0.1204 (2)	0.0323 (10)	

C3	0.3269 (2)	0.3798 (4)	0.0090 (2)	0.0372 (11)	
C4	0.4467 (2)	0.3306 (4)	0.1367 (2)	0.0423 (12)	
C5	0.29505 (19)	0.6793 (4)	0.22259 (18)	0.0309 (10)	
C6	0.25188 (19)	0.6280 (3)	0.17312 (19)	0.0304 (10)	
C7	0.2880 (2)	0.7059 (4)	0.2817 (2)	0.0437 (12)	
C8	0.1880 (2)	0.5842 (4)	0.1692 (2)	0.0435 (12)	
C9	0.3691 (3)	0.9805 (5)	0.1880 (3)	0.0646 (17)	
C10	0.2465 (3)	0.8898 (4)	0.1474 (2)	0.0495 (13)	
C11	0.3593 (2)	0.4622 (4)	0.2178 (2)	0.0354 (10)	
C12	0.2757 (2)	0.3625 (4)	0.1124 (2)	0.0409 (11)	
C13	0.5214 (2)	0.5607 (4)	0.0791 (2)	0.0370 (11)	
C14	0.4513 (2)	0.7229 (4)	0.0182 (2)	0.0410 (11)	
C15	0.45531 (19)	0.8839 (3)	0.11004 (19)	0.0296 (9)	
C16	0.5057 (2)	0.9503 (4)	0.1170 (2)	0.0398 (11)	
H16A	0.549037	0.934569	0.146045	0.048*	
C17	0.4928 (2)	1.0394 (4)	0.0814 (2)	0.0512 (14)	
H17A	0.527525	1.083894	0.085070	0.061*	
C18	0.4294 (2)	1.0649 (4)	0.0401 (2)	0.0442 (12)	
H18A	0.420821	1.127055	0.016168	0.053*	
C19	0.3788 (2)	0.9995 (4)	0.0339 (2)	0.0347 (10)	
H19A	0.335466	1.016576	0.005600	0.042*	
C20	0.39134 (19)	0.9089 (3)	0.06908 (19)	0.0291 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.02129 (18)	0.0321 (2)	0.02433 (19)	-0.00421 (15)	0.00990 (15)	-0.00087 (15)
Col	0.0354 (3)	0.0368 (4)	0.0387 (3)	-0.0013 (3)	0.0202 (3)	-0.0033 (3)
Co2	0.0325 (3)	0.0345 (4)	0.0287 (3)	-0.0072 (3)	0.0162 (3)	-0.0013 (2)
Co3	0.0259 (3)	0.0351 (4)	0.0308 (3)	-0.0016 (3)	0.0149 (2)	0.0027 (3)
S1	0.0216 (5)	0.0358 (6)	0.0311 (5)	-0.0030 (4)	0.0107 (4)	0.0019 (5)
S2	0.0278 (5)	0.0441 (7)	0.0269 (5)	-0.0067 (5)	0.0112 (4)	-0.0048 (5)
S3	0.0242 (5)	0.0394 (7)	0.0261 (5)	-0.0077 (5)	0.0117 (4)	-0.0025 (5)
S4	0.0286 (5)	0.0344 (6)	0.0283 (5)	-0.0017 (5)	0.0130 (4)	0.0029 (5)
S5	0.0275 (5)	0.0357 (6)	0.0269 (5)	-0.0036 (5)	0.0133 (4)	-0.0001 (5)
S6	0.0229 (5)	0.0362 (7)	0.0304 (5)	-0.0045 (4)	0.0088 (4)	0.0008 (5)
F1	0.0445 (15)	0.0509 (18)	0.0423 (15)	-0.0106 (14)	0.0088 (13)	-0.0117 (13)
F2	0.0626 (17)	0.0540 (19)	0.0453 (15)	-0.0151 (15)	0.0391 (14)	-0.0152 (13)
F3	0.0604 (17)	0.0358 (16)	0.0460 (15)	-0.0124 (13)	0.0281 (13)	-0.0079 (12)
F4	0.0690 (19)	0.0357 (17)	0.074 (2)	-0.0050 (15)	0.0343 (17)	0.0094 (15)
F5	0.073 (2)	0.0481 (19)	0.072 (2)	0.0172 (16)	0.0474 (18)	0.0034 (15)
F6	0.0556 (19)	0.0473 (19)	0.0605 (19)	0.0085 (15)	-0.0008 (16)	0.0074 (15)
F7	0.043 (3)	0.130 (6)	0.055 (3)	0.008 (3)	0.027 (2)	-0.032 (4)
F8	0.092 (4)	0.085 (4)	0.054 (3)	-0.038 (4)	0.051 (3)	-0.038 (3)
F9	0.124 (5)	0.081 (4)	0.033 (3)	0.019 (4)	0.041 (3)	0.012 (3)
F7A	0.097 (8)	0.077 (8)	0.052 (6)	0.022 (7)	0.042 (6)	-0.017 (6)
F8A	0.061 (6)	0.106 (9)	0.028 (5)	-0.005 (7)	0.025 (5)	-0.006 (6)
F9A	0.083 (8)	0.081 (7)	0.038 (6)	-0.025 (7)	0.038 (5)	-0.011 (5)

supporting information

F10	0.045 (4)	0.069 (5)	0.063 (4)	-0.029 (3)	0.035 (3)	-0.024 (3)
F11	0.030 (3)	0.084 (4)	0.084 (5)	0.006 (2)	0.024 (3)	-0.006 (4)
F12	0.062 (3)	0.099 (5)	0.053 (3)	-0.032 (4)	0.035 (3)	0.005 (4)
F10A	0.031 (6)	0.087 (10)	0.052 (7)	-0.023 (7)	0.017 (5)	-0.012 (7)
F11A	0.044 (7)	0.067 (7)	0.072 (9)	-0.008 (6)	0.039 (7)	-0.017 (7)
F12A	0.055 (6)	0.065 (8)	0.063 (8)	-0.014 (7)	0.036 (6)	0.005 (7)
01	0.183 (5)	0.076 (4)	0.116 (4)	-0.071 (4)	0.102 (4)	-0.047 (3)
O2	0.058 (2)	0.107 (4)	0.082 (3)	0.038 (3)	0.045 (2)	0.027 (3)
O3	0.053 (2)	0.063 (3)	0.0311 (18)	0.0045 (18)	0.0197 (16)	0.0060 (16)
O4	0.078 (3)	0.063 (3)	0.051 (2)	-0.042 (2)	0.043 (2)	-0.0207 (19)
05	0.052 (2)	0.068 (3)	0.069 (2)	0.020 (2)	0.0381 (19)	0.012 (2)
06	0.091 (3)	0.053 (2)	0.054 (2)	-0.002 (2)	0.045 (2)	0.0113 (19)
C1	0.031 (2)	0.030 (2)	0.034 (2)	-0.0034 (19)	0.0177 (19)	-0.0025 (19)
C2	0.033 (2)	0.034 (3)	0.035 (2)	-0.0041 (19)	0.0195 (19)	-0.0018 (19)
C3	0.039 (3)	0.041 (3)	0.037 (2)	-0.007 (2)	0.022 (2)	-0.003 (2)
C4	0.048 (3)	0.032 (3)	0.047 (3)	-0.007 (2)	0.021 (2)	0.000 (2)
C5	0.027 (2)	0.039 (3)	0.028 (2)	-0.0028 (19)	0.0126 (18)	0.0002 (19)
C6	0.027 (2)	0.036 (3)	0.031 (2)	0.0008 (19)	0.0146 (19)	0.0010 (19)
C7	0.044 (3)	0.061 (3)	0.032 (2)	-0.001 (3)	0.022 (2)	-0.006 (2)
C8	0.036 (2)	0.059 (3)	0.044 (3)	-0.010 (2)	0.024 (2)	-0.002 (2)
C9	0.098 (5)	0.056 (4)	0.065 (4)	-0.029 (4)	0.059 (4)	-0.022 (3)
C10	0.058 (3)	0.049 (3)	0.052 (3)	0.010 (3)	0.034 (3)	0.003 (3)
C11	0.036 (2)	0.034 (3)	0.039 (3)	-0.001 (2)	0.019 (2)	0.000 (2)
C12	0.053 (3)	0.046 (3)	0.032 (2)	-0.009 (3)	0.026 (2)	-0.008 (2)
C13	0.034 (2)	0.042 (3)	0.040 (3)	0.003 (2)	0.020 (2)	0.009 (2)
C14	0.039 (3)	0.045 (3)	0.045 (3)	-0.001 (2)	0.024 (2)	-0.005 (2)
C15	0.029 (2)	0.032 (3)	0.030 (2)	-0.0031 (18)	0.0144 (19)	-0.0032 (18)
C16	0.026 (2)	0.040 (3)	0.048 (3)	-0.008(2)	0.011 (2)	0.003 (2)
C17	0.045 (3)	0.042 (3)	0.064 (3)	-0.017 (2)	0.021 (3)	0.005 (3)
C18	0.043 (3)	0.035 (3)	0.050 (3)	-0.004 (2)	0.016 (2)	0.009 (2)
C19	0.029 (2)	0.036 (3)	0.037 (2)	-0.002 (2)	0.012 (2)	-0.003 (2)
C20	0.026 (2)	0.034 (3)	0.029 (2)	-0.0074 (18)	0.0129 (18)	-0.0057 (19)

Geometric parameters (Å, °)

Mo1—S5	2.4134 (11)	F6—C4	1.339 (5)
Mo1—S1	2.4179 (11)	F7—C7	1.312 (6)
Mo1—S3	2.4391 (10)	F8—C7	1.324 (6)
Mo1—S2	2.4420 (11)	F9—C7	1.321 (6)
Mo1—S6	2.4461 (11)	F7A—C7	1.322 (10)
Mo1—S4	2.4571 (11)	F8A—C7	1.300 (10)
Mo1—Co3	2.6320 (6)	F9A—C7	1.324 (9)
Mol-Col	2.7224 (7)	F10—C8	1.333 (7)
Mo1—Co2	2.8058 (7)	F11—C8	1.332 (7)
Co1-C10	1.840 (5)	F12—C8	1.336 (7)
Co1—C9	1.842 (6)	F10A—C8	1.341 (12)
Co1—S1	2.2247 (12)	F11A—C8	1.312 (12)
Co1—S2	2.2414 (13)	F12A—C8	1.329 (12)

Co2—C12	1.825 (5)	O1—C9	1.127 (7)
Co2—C11	1.827 (5)	O2—C10	1.125 (6)
Co2—C2	1.970 (4)	O3—C11	1.130 (5)
Co2—C1	2.010 (4)	O4—C12	1.122 (5)
Co2—S3	2.2556 (13)	O5—C13	1.131 (5)
Co2—S4	2.7671 (11)	O6—C14	1.133 (6)
Co3—C13	1.796 (5)	C1—C2	1.439 (6)
Co3—C14	1.803 (5)	C1—C3	1.494 (6)
Co3—S4	2.2338 (12)	C2—C4	1.528 (7)
Co3—S5	2.2395 (11)	C5—C6	1.335 (6)
Co3—S6	2.2749 (13)	С5—С7	1.509 (6)
S1—C20	1.782 (4)	C6—C8	1.524 (6)
S2—C5	1.775 (4)	C15—C16	1.383 (6)
S3—C6	1.770 (4)	C15—C20	1.396 (6)
S4—C2	1.777 (4)	C16—C17	1.377 (7)
S5-C1	1.801 (4)	C16—H16A	0.9500
S6-C15	1.779 (4)	C17—C18	1.390 (7)
F1-C3	1 341 (5)	C17—H17A	0.9500
F2-C3	1.344(5)	C18 - C19	1 381 (6)
$F_3 = C_3$	1 339 (5)	C18—H18A	0.9500
F4—C4	1.339(5)	C19-C20	1 389 (6)
F5—C4	1 340 (6)	C19—H19A	0.9500
15 04	1.540 (0)		0.9500
S5—Mo1—S1	88.52 (4)	C2—S4—Co3	102.26(15)
S5-Mo1-S3	84.34 (4)	C2—S4—Mo1	99.62 (14)
S1—Mo1—S3	92.75 (4)	Co3—S4—Mo1	68.07 (3)
S5—Mo1—S2	163.43 (4)	C2— $S4$ — $Co2$	45.16 (13)
S1—Mo1—S2	101.96 (4)	Co3—S4—Co2	111.42 (4)
S3—Mo1—S2	82.39 (4)	Mo1—S4—Co2	64.65 (3)
S5—Mo1—S6	103.47 (4)	C1—S5—Co3	102.78 (13)
S1—Mo1—S6	83.85 (4)	C1—S5—Mo1	95.79 (14)
S3—Mo1—S6	171.36 (4)	Co3 - S5 - Mo1	68.78 (3)
S2-Mo1-S6	90.52 (4)	C15 - S6 - Co3	104.69 (14)
S_{-Mo1}	76 17 (4)	C15 - S6 - Mo1	106 48 (13)
S1-Mo1-S4	147 71 (4)	C_{03} S6 Mol	67 65 (3)
S3-Mo1-S4	113 36 (4)	$C^2 - C^1 - C^3$	124 1 (4)
S2—Mo1—S4	110.30(1) 100.13(4)	$C_2 = C_1 = S_5$	12 1.1 (1) 116 8 (3)
S6-Mo1-S4	72 66 (4)	$C_{2} = C_{1} = S_{5}$	110.6(3)
S5-Mo1-Co3	52.66(1)	C^{2} C^{1} C^{2}	673(2)
S1-Mo1-Co3	96 23 (3)	$C_{2} = C_{1} = C_{0}^{2}$	1242(3)
S1_Mo1_Co3	135 41 (3)	$S_{5} - C_{1} - C_{0}^{2}$	124.2(3) 106.8(2)
S2-Mo1-Co3	137.11(3)	C1 - C2 - C4	100.0(2) 124 4 (4)
S6-Mo1-Co3	53 ()& (3)	C1 - C2 - S4	12
S4 - Mo1 - Co3	51.03 (3)	$C_1 = C_2 = S_4$	115 3 (3)
S5_Mo1_Co1	137.65 (3)	$C_{1} = C_{2} = C_{3}$	70.2(2)
S_{1} Mo1 C_{01}	50.87 (3)	$C_1 - C_2 - C_{02}$	126.8 (3)
$S_{-M01} = C_{01}$	86 08 (3)	$S_{4} = C_{2} = C_{02}$	120.0(3)
$S_{-M01} = C_{01}$	51 00 (3)	F_{3} C_{3} F_{1}	$\frac{93.1}{2}$
52-1VI01-C01	J1.07 (J)	1 J - UJ - 1 1	100.2 (3)

S6—Mo1—Co1	85.61 (3)	F3—C3—F2	106.4 (4)
S4—Mo1—Co1	144.34 (3)	F1—C3—F2	106.0 (3)
Co3—Mo1—Co1	131.93 (2)	F3—C3—C1	114.4 (4)
S5—Mo1—Co2	71.40 (3)	F1—C3—C1	111.2 (4)
S1—Mo1—Co2	138.35 (3)	F2—C3—C1	111.9 (4)
S3—Mo1—Co2	50.35 (3)	F4—C4—F6	106.2 (4)
S2—Mo1—Co2	92.44 (3)	F4—C4—F5	107.4 (4)
S6—Mo1—Co2	135.42 (3)	F6—C4—F5	107.0 (4)
S4—Mo1—Co2	63.03 (3)	F4—C4—C2	113.9 (4)
Co3—Mo1—Co2	99.20 (2)	F6—C4—C2	110.4 (4)
Co1—Mo1—Co2	128.84 (2)	F5—C4—C2	111.5 (4)
C10—Co1—C9	98.4 (3)	C6—C5—C7	126.2 (4)
C10—Co1—S1	107.95 (16)	C6—C5—S2	121.5 (3)
C9—Co1—S1	109.32 (18)	C7—C5—S2	112.3 (3)
C10—Co1—S2	111.11 (17)	C5—C6—C8	124.2 (4)
C9—Co1—S2	113.2 (2)	C5—C6—S3	122.6 (3)
\$1—Co1—\$2	115.44 (5)	C8—C6—S3	113.3 (3)
C10— $Co1$ —Mo1	128.61 (18)	F7—C7—F9	108.1 (5)
C9-Co1-Mo1	132.8 (2)	F8A-C7-F7A	105.8(10)
S1—Co1—Mo1	57 46 (3)	F7—C7—F8	105.8 (5)
S^2 —Co1—Mo1	57 97 (3)	F9—C7—F8	105.0(5) 105.4(5)
$C_{12} - C_{02} - C_{11}$	963(2)	F8A-C7-F9A	107.0 (9)
C12 - C02 - C2	110.5(2)	F7A—C7—F9A	107.0(9)
$C_{11} = C_{02} = C_{2}$	104 60 (18)	F8A - C7 - C5	113 3 (6)
$C_{12}^{$	97.04 (18)	F7-C7-C5	112.5(0) 112.5(4)
$C_{12} = C_{02} = C_{1}$	146 99 (18)	$F_{9} - C_{7} - C_{5}$	112.3(4) 112.2(4)
C_{2}^{2} C_{2}^{2} C_{1}^{2}	42 40 (16)	$F_{7} = C_{7} = C_{5}$	112.2(4) 110.7(6)
$C_2 = C_0 = C_1$	100.76(17)	F_{8}	110.7(0) 112.3(4)
$C_{12} = C_{02} = S_3$	103.81(15)	$F_{0} = C_{7} = C_{5}$	112.5 (+)
$C_{1}^{2} = C_{0}^{2} = S_{3}^{2}$	105.01(15) 134.51(14)	$F_{2} = C_{2} = C_{2}$	115.0(0) 105.5(11)
$C_2 = C_0 C_2 = S_3^2$	103.14(13)	$F_{11} = C_{0} = F_{12} = F_{12}$	103.3(11) 107.2(5)
$C12 C_{2} C_{3}$	103.14(13) 148.80(16)	$F_{11} = C_{0} = F_{10}$	107.2(3)
$C_{12} = C_{02} = S_4$	140.09(10) 86.51(14)	$F11 - C_0 - F12$ $F10 - C_8 - F12$	107.0 (0)
C11 - C02 - S4	30.31(14)	F10 - Co - F12	105.0(0) 105.2(11)
$C_2 = C_0 $	59.70 (15) 66.07 (12)	$F11A - C\delta - F10A$	103.2(11) 106.5(11)
$C_1 = C_0 - C_0 $	108.66(4)	F12A - Co - F10A	100.3(11) 115.2(0)
53-02-54	108.00 (4)	F11A = C8 = C6	115.5 (9)
C12 = C02 = M01	154.70(10)	$F12A - C\delta - C\delta$	111.9(9)
C11 = C02 = M01	99.05 (15)	F11 - C8 - C6	111.0(5)
$C_2 = C_0 C_2 = M_0 I$	84.29 (13)	F10 - C8 - C6	112.1(5)
C1 = Co2 = Mo1	79.96 (12)	F12 - C8 - C6	112.9 (5)
S3-Co2-Mol	56.37 (3)	F10A - C8 - C6	111.8 (9)
S4—Co2—Mol	52.32 (3)	01 - 09 - 001	1/8.5 (8)
C13 - C03 - C14	94.7 (2)	02 - C10 - C01	1/7.0 (6)
C13 - C03 - S4	91.03 (14)	U3-C11-C02	1/7.4 (4)
C14—C03—S4	1/4.25 (15)	04—C12—Co2	176.0 (5)
C13—C03—S5	118.60 (16)	U5-C13-C03	176.9 (4)
C14—Co3—S5	92.28 (15)	06—C14—Co3	177.6 (5)
S4—Co3—S5	84.38 (4)	C16—C15—C20	120.3 (4)

C13—Co3—S6	124.00 (15)	C16—C15—S6	118.8 (3)
C14—Co3—S6	97.07 (16)	C20—C15—S6	120.9 (3)
S4—Co3—S6	80.22 (4)	C17—C16—C15	119.5 (4)
S5—Co3—S6	115.38 (4)	C17—C16—H16A	120.2
C13—Co3—Mo1	150.72 (14)	C15—C16—H16A	120.2
C14—Co3—Mo1	114.26 (15)	C16—C17—C18	120.8 (4)
S4—Co3—Mo1	60.00 (3)	C16—C17—H17A	119.6
S5-Co3-Mo1	58.74 (3)	C18—C17—H17A	119.6
S6—Co3—Mo1	59.27 (3)	C19—C18—C17	119.7 (4)
C20— $S1$ — $Co1$	98 78 (14)	C19—C18—H18A	120.1
C_{20} S1 C_{10}	106 69 (15)	C17— $C18$ — $H18A$	120.1
Col—Sl—Mol	71 67 (4)	C_{18} C_{19} C_{20}	120.1 120.1(4)
C_{5} S_{2} C_{2}	71.07(4)	$C_{18} = C_{19} = C_{20}$	120.1 (4)
$C_{5} = S_{2} = C_{01}$	$\frac{97.03(13)}{106.95(14)}$	$C_{10} = C_{10} = H_{10A}$	120.0
$C_3 = S_2 = M_0 I$	100.83(14)	C_{20} C_{19} H_{19} C_{10} C_{10} C_{15}	120.0
$C_0 = S_2 = M_0 I$	70.94 (3)	C19 - C20 - C15	119.0 (4)
$C_{0} = S_{0} = C_{0} = C_{0}$	101.70 (15)	C19—C20—S1	118.7 (3)
C6—S3—Mo1	106.61 (14)	C15—C20—S1	121.8 (3)
Co2—S3—Mo1	73.29 (3)		
C_{0} S5 C1 C2	20.2(3)	C_{2} S3 C6 C5	70 7 (4)
$M_{01} = S_{01} = C_{1} = C_{2}$	20.2(3)	M_{01} S3 C6 C5	79.7(4)
101 - 53 - 01 - 02	-49.3(3)	M01 = 33 = 00 = 03	5.9(4)
C_{03} S_{-} C_{1} C_{3}	-129.4(3)	C_{02} S_{3} C_{0} C_{8}	-101.5(3)
Mo1-85-C1-C3	161.1 (3)	Mo1—S3—C6—C8	-1/.3(3)
Co3—S5—C1—Co2	92.78 (16)	C6—C5—C7—F8A	153.6 (10)
Mo1—S5—C1—Co2	23.27 (17)	S2—C5—C7—F8A	-26.0 (11)
C3—C1—C2—C4	4.9 (7)	C6—C5—C7—F7	-37.8 (8)
S5-C1-C2-C4	-140.2 (4)	S2—C5—C7—F7	142.6 (5)
Co2—C1—C2—C4	121.8 (4)	C6—C5—C7—F9	84.4 (7)
C3—C1—C2—S4	156.5 (3)	S2—C5—C7—F9	-95.2 (5)
S5-C1-C2-S4	11.4 (4)	C6—C5—C7—F7A	-87.7 (11)
Co2—C1—C2—S4	-86.6 (3)	S2—C5—C7—F7A	92.7 (10)
C3—C1—C2—Co2	-116.9 (4)	C6—C5—C7—F8	-157.0 (6)
S5-C1-C2-Co2	98.0 (3)	S2—C5—C7—F8	23.4 (6)
Co3—S4—C2—C1	-37.5 (3)	C6—C5—C7—F9A	31.1 (11)
Mo1—S4—C2—C1	32.0 (3)	S2—C5—C7—F9A	-148.5(9)
Co2—S4—C2—C1	70.6 (3)	C5—C6—C8—F11A	45.7 (14)
C_{03} <u>S4</u> <u>C2</u> <u>C4</u>	116.8 (3)	S3—C6—C8—F11A	-133.1(14)
M_{01} = $S4$ = $C2$ = $C4$	-1737(3)	C5-C6-C8-F12A	-74.8(13)
C_{0}^{2} 84 C_{2}^{2} C4	-1351(4)	S3-C6-C8-F12A	1064(13)
$C_{02} = S_{1} = C_{2} = C_{02}$	-108 11 (14)	C_{5} C_{6} C_{8} F_{11}	78 1 (8)
$M_{01} = \frac{S_4}{S_4} = \frac{C_2}{C_2} = \frac{C_0 2}{C_0 2}$	-38.65(16)	S3 C6 C8 F11	-100.7(7)
$C_{2} = C_{1} = C_{2} = C_{2}$	36.6 (6)	55-66-68 F10	-161.6(7)
$C_2 - C_1 - C_3 - F_3$	50.0(0)	C_{3} C_{6} C_{8} E_{10}	101.0(7)
53	-1/0.0(3)	53-00-08-F10	19.0 (8)
$C_2 = C_1 = C_2 = C_1$	-4/.0(5)	$C_{2} = C_{1} = C_{2} = C_{1}$	-42.4(9)
$\begin{array}{c} \mathbf{U}_{-} \mathbf{U}_{1} - \mathbf{U}_{3} - \mathbf{F}_{1} \\ \mathbf{U}_{5} - \mathbf{U}_{1} - \mathbf{U}_{3} - \mathbf{U}_{1} \\ \mathbf{U}_{5} - \mathbf{U}_{1} - \mathbf{U}_{1} \\ \mathbf{U}_{5} - \mathbf{U}_{1} \\ \mathbf{U}_{$	157.2 (4)	53-0-0	138.8 (/)
S5—C1—C3—F1	-55.9 (4)	C5—C6—C8—F10A	165.8 (14)
Co2—C1—C3—F1	/3.1 (5)	S3—C6—C8—F10A	-13.0 (14)
C2-C1-C3-F2	-84.5 (5)	Co3—S6—C15—C16	-108.6(3)

S5—C1—C3—F2	62.4 (4)	Mo1—S6—C15—C16	-179.2 (3)
Co2—C1—C3—F2	-168.6 (3)	Co3—S6—C15—C20	71.1 (4)
C1—C2—C4—F4	-69.7 (6)	Mo1-S6-C15-C20	0.5 (4)
S4—C2—C4—F4	138.9 (3)	C20-C15-C16-C17	-2.5 (7)
Co2—C2—C4—F4	20.4 (6)	S6-C15-C16-C17	177.3 (4)
C1—C2—C4—F6	170.9 (4)	C15—C16—C17—C18	2.0 (8)
S4—C2—C4—F6	19.5 (5)	C16—C17—C18—C19	-0.9 (8)
Co2—C2—C4—F6	-99.0 (4)	C17—C18—C19—C20	0.3 (7)
C1-C2-C4-F5	52.1 (6)	C18—C19—C20—C15	-0.8 (7)
S4—C2—C4—F5	-99.3 (4)	C18—C19—C20—S1	177.5 (4)
Co2—C2—C4—F5	142.3 (3)	C16—C15—C20—C19	1.9 (6)
Co1—S2—C5—C6	73.6 (4)	S6-C15-C20-C19	-177.9 (3)
Mo1—S2—C5—C6	1.4 (4)	C16—C15—C20—S1	-176.3 (3)
Co1—S2—C5—C7	-106.8 (3)	S6-C15-C20-S1	3.9 (5)
Mo1—S2—C5—C7	-178.9 (3)	Co1—S1—C20—C19	-111.0 (3)
C7—C5—C6—C8	-2.0 (7)	Mo1-S1-C20-C19	175.6 (3)
S2—C5—C6—C8	177.6 (3)	Co1—S1—C20—C15	67.2 (4)
C7—C5—C6—S3	176.7 (4)	Mo1-S1-C20-C15	-6.2 (4)
S2—C5—C6—S3	-3.7 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H··· A	
C17—H17 <i>A</i> ···O6 ⁱ	0.95	2.57	3.353 (7)	140	
C17—H17A…F11 ⁱⁱ	0.95	2.62	3.461 (9)	148	
C17—H17A…F10A ⁱⁱ	0.95	2.55	3.29 (2)	135	

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) *x*+1/2, *y*+1/2, *z*.