

Received 17 July 2019 Accepted 24 July 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; manganese(II) bromide; pyridine *N*-oxide ligand; complex; offset π -stacking; hydrogen bonding.

CCDC references: 1942967; 1942966; 1942965; 1942964

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of four dimeric manganese(II) bromide coordination complexes with various derivatives of pyridine *N*-oxide

Sheridan Lynch, Genevieve Lynch, Will E. Lynch and Clifford W. Padgett*

Georgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA. *Correspondence e-mail: cpadgett@georgiasouthern.edu

Four manganese(II) bromide coordination complexes have been prepared with four pyridine N-oxides, viz. pyridine N-oxide (PNO), 2-methylpyridine N-oxide (2MePNO), 3-methylpyridine N-oxide (3MePNO), and 4-methylpyridine Noxide (4MePNO). The compounds are $bis(\mu$ -pyridine N-oxide)bis[aquadibromido(pyridine N-oxide)manganese(II)], $[Mn_2Br_4(C_5H_5NO)_4(H_2O)_2]$ (I), bis(μ -2-methylpyridine N-oxide)bis[diaquadibromidomanganese(II)]-2-methylpyridine N-oxide (1/2), $[Mn_2Br_4(C_6H_7NO)_2(H_2O)_4] \cdot 2C_6H_7NO$ (II), bis(μ -3-methylpyridine N-oxide)bis[aquadibromido(3-methylpyridine Noxide)manganese(II)], $[Mn_2Br_4(C_6H_7NO)_4(H_2O)_2]$ (III), and bis(μ -4-methylpyridine N-oxide)bis[dibromidomethanol(4-methylpyridine N-oxide)manganese(II)], $[Mn_2Br_4(C_6H_7NO)_4(CH_3OH)_2]$ (IV). All the compounds have one unique Mn^{II} atom and form a dimeric complex that contains two Mn^{II} atoms related by a crystallographic inversion center. Pseudo-octahedral six-coordinate manganese(II) centers are found in all four compounds. All four compounds form dimers of Mn atoms bridged by the oxygen atom of the PNO ligand. Compounds I, II and III exhibit a bound water of solvation, whereas compound IV contains a bound methanol molecule of solvation. Compounds I, III and IV exhibit the same arrangement of molecules around each manganese atom, ligated by two bromide ions, oxygen atoms of two PNO ligands and one solvent molecule, whereas in compound II each manganese atom is ligated by two bromide ions, one O atom of a PNO ligand and two water molecules with a second PNO molecule interacting with the complex via hydrogen bonding through the bound water molecules. All of the compounds form extended hydrogen-bonding networks, and compounds I, II, and IV exhibit offset π stacking between PNO ligands of neighboring dimers.

OPEN 3 ACCESS

1. Chemical context

N-oxides have interesting binding modes that facilitate the growth of unique coordination structures. Their utility to facilitate organic oxotransfer reactions has been well documented over the years (see, for example, Eppenson, 2003). Many of these reactions are actually catalyzed by transitionmetal interactions with the *N*-oxide ligands (see, for example, Moustafa *et al.*, 2014). Herein, we report four coordination dimers; however, many of these types of structures extend to the formation of coordination polymers. A recent report shows the utility of pyridine *N*-oxide to facilitate coordination polymer formation with both zinc(II) and manganese(II) metal ions with a single bifunctional ligand containing an acetate and *N*-oxide moiety (Ren *et al.*, 2018). These have been reported by us (Lynch *et al.*, 2018; Kang *et al.*, 2017) and others (Sarma *et al.*, 2008, 2009; Sarma & Baruah, 2011).

Herein, we report the synthesis and solid-state structures of four pyridine *N*-oxide manganese(II) dimeric complexes, using pyridine *N*-oxide (PNO) and its mono-methyl-substituted forms, 2-methylpyridine *N*-oxide (2MePNO), 3-methylpyridine *N*-oxide (3MePNO), and 4-methylpyridine *N*-oxide (4MePNO). This was done to study the impact of substitution of the pyridine on the two- and three-dimensional solid-state structures, and to compare them to previous structures in which the bromide ions are replaced with chloride ions.

Figure 2

A view of compound **II**, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 2, -y + 1, -z + 1]

2. Structural commentary

General structural details

The pyridine *N*-oxide complexes form dimers consisting of two Mn^{II} atoms related by an inversion center; the dimer contains a six-coordinate metal center at each Mn^{II} ion with four donor oxygen atoms and two bromides. The $Mn1 \cdots Mn1'$ dimer is bound *trans* by two μ_2 -1,1-PNO ligands, and the octahedral environment is completed by a water molecule of hydration or a solvent molecule, non-bridging PNO ligands,

Figure 3

A view of compound **III**, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y + 1, -z]

Figure 1

A view of compound **I**, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]

research communications

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for I.								
$D-H\cdots A$ $D-H$	Η	$H \cdot \cdot \cdot A$		$D \cdots A$		D-		

$O3-H3B\cdots Br1^{ii}$	0.84 (4)	2.66 (4)	3.
Symmetry codes: (i) -	x + 1, -y + 1, -	z + 1; (ii) $x - 1$, v, z.

0.83(2)

and bromide ions. The dimer is constructed from symmetryrelated atoms and molecules using a crystallographic inversion center of the space group $(P\overline{1} \text{ and } P2_1/n)$. The molecular structures of compounds I, II, III and IV are given in Figs. 1, 2, 3 and 4, respectively.

2.58(2)

3.372 (3)

3.473 (4)

Specific structural details

O3-H3A···Br1ⁱ

O3−H3B···Br1ⁱⁱ

Compound I (Fig. 1) crystallizes in the monoclinic space group $P2_1/n$. The Mn-O bond lengths in compound I for the bridging PNO ligand are 2.172 (2) and 2.235 (2) Å for Mn1 -O1 and $Mn1-O1^{i}$, respectively, which is unremarkable for compounds of Mn^{II} and pyridine *N*-oxide (Sniekers *et al.*, 2017; Mondal et al., 2012). The non-bridging Mn1-O2 bond length is 2.099 (3) Å and the bound water Mn1–O3 bond length is 2.312 (3) Å. The bound bromide ions have bond lengths of Mn1-Br1 = 2.7212 (13) Å and Mn1-Br2 = 2.5813 (13) Å; the Mn1–Br1 bond length is significantly longer than Mn1-Br2 as a result of hydrogen-bonding interactions that exist with Br1 but not with Br2 (Table 1). The bridging Mn1 to Mn1ⁱ distance is 3.617 (16) Å. The octahedral geometry around the Mn atoms is significantly distorted with the O1-Mn1-O1ⁱ bond angle measuring 69.66 (9)°; the other bond angles are within $ca 9^{\circ}$ of 90° . These bond angles and bond lengths are similar to those for other Mn^{II} halide PNO structures (Kang et al., 2017). The dimer also forms an intramolecular hydrogen bond involving the water O atom,

Figure 4

A view of compound IV, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]

Table 2	
Hydrogen-bond geometry $(Å, \circ)$ for II .	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$O3-H3A\cdots O2$	0.85 (2)	1.89 (2)	2.731 (4)	171 (4)
$O3-H3B\cdots Br1^{i}$	0.86 (2)	2.44 (2)	3.282 (3)	168 (4)
$O4-H4A\cdots O2^{ii}$	0.85 (2)	1.91 (3)	2.721 (4)	161 (5)
$O4-H4B\cdots Br2^{ii}$	0.83 (4)	2.59 (4)	3.403 (3)	167 (4)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Table 3 Hydrogen-bond geometry (Å, °) for III

 $H \cdot \cdot \cdot A$

159 (4)

163 (4)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$O3-H3A\cdots Br1^{i}$	0.83 (2)	2.60 (2)	3.410 (3)	164 (4)		
$O3-H3B\cdots Br1^{ii}$	0.84 (2)	2.55 (2)	3.386 (3)	172 (5)		

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 1, -z.

O3, and atom Br1ⁱ, with a hydrogen bond distance of 2.58 (2) Å [Table 1; symmetry code: (i) -x + 1, -y + 1, -z + 1].

Compound II (Fig. 2) crystallizes in the triclinic space group $P\overline{1}$. The bond distances observed in compound II at Mn1 for the bridging 2MePNO are 2.214 (2) and 2.321 (2) Å for Mn1 -O1 and Mn1-O1ⁱ, respectively. The two bound water molecules have Mn-O bond lengths of 2.237 (3) and 2.157 (3) Å for Mn1-O3 and Mn1-O4, respectively, and are similar to those reported previously (Mondal, et al., 2012; Lynch, et al., 2018; Kang et al., 2017). The bound bromide ions have bond distances of Mn1-Br1 = 2.7009(7) Å and Mn1-Br2 = 2.6340 (7) Å. In compound II both bromide atoms are involved in hydrogen-bonding interactions (Table 2). The Mn1 to Mn1ⁱ distance is 3.6128 (11) Å. Once again the octahedral geometry around the Mn atoms is significantly distorted with the O1-Mn1-O1ⁱ bond angle measuring 74.40 (9)°. The other bond angles are within $ca 11^{\circ}$ of 90°. The dimer forms an intramolecular hydrogen bond between O3 and Br1ⁱ with a hydrogen-bond distance of 2.44 (2) Å [Table 2; symmetry code: (i) -x + 2, -y + 1, -z + 1]. In the asymmetric unit there is a second PNO molecule interacting with the complex via hydrogen bonding through the bound water molecules (Table 2).

Compound III (Fig. 3) crystallizes in the triclinic space group $P\overline{1}$ and is very similar to compound I. The bond distances observed in compound III at Mn1 for the bridging 3MePNO are 2.211 (3) and 2.219 (3) Å for Mn1-O2 and $Mn1-O2^{i}$, respectively. The non-bridging Mn1-O1 bond is 2.129 (3) Å, and the bound water Mn1-O3 bond distance is 2.245 (3) Å. The bound bromide ions have bond distances of Mn1-Br1 = 2.7237 (7) Å and Mn1-Br2 = 2.5687 (7) Å; again the difference in Mn-Br bond distances can be attributed to the hydrogen-bonding interactions that exist with Br1 but not with Br2 (Table 3). The Mn1 to Mn1ⁱ distance is 3.6497 (13) Å. The octahedral geometry around the Mn atoms is significantly distorted with the $O2-Mn1-O2^{i}$ bond angle measuring $69.05 (11)^{\circ}$ the other bond angles are within *ca* 11° of 90° . The dimer forms an intramolecular hydrogen bond between O3 and Br1ⁱⁱ with a hydrogen-bond distance of 2.55 (2) Å [Table 3; symmetry code: (ii) -x, -y + 1, -z].

Table 4Hydrogen-bond geometry (Å, °) for IV.

$O_3 = H_3 \cdots Br_1^i$ 0.86 (1) 2.41 (2) 3.255 (3) 166 (3)	· · · /	$\cdot \cdot A$	$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
)	$3 \cdots Br1^i$	$O3-H3\cdots Br1^{i}$	0.86 (1)	2.41 (2)	3.255 (3)	166 (3)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Compound IV (Fig. 4) crystallizes in the monoclinic space group $P2_1/n$. The bond distances observed in compound IV at Mn1 for the bridging 4MePNO are 2.201 (2) and 2.230 (3) Å for Mn1-O2 and Mn1-O2ⁱ, respectively. The non-bridging Mn1-O1 bond is 2.116 (3) Å, and the bound methanol Mn1-O3 bond distance is 2.225 (3) Å. The bound bromide ions have bond distances of Mn1-Br1 = 2.7181 (7) Å and Mn1–Br2 2.5806 (7) Å, again the difference in Mn–Br bond distance can be attributed to the hydrogen-bonding interactions (Table 4). The Mn1 to Mn1ⁱ distance is 3.61254 (12) Å. The octahedral geometry around the Mn atoms is significantly distorted with the O2-Mn1-O2ⁱ bond angle measuring 70.77 (11)° the other bond angles are within 13° of 90° . The dimer forms an intramolecular hydrogen bond between O3 and Br1ⁱ with a hydrogen-bond distance of 2.41 (2) Å [Table 4; symmetry code: (i) -x + 1, -y + 1, -z + 1].

3. Supramolecular features

In the crystal of compound I, the dimers are linked by O_{water} - $H \cdots Br$ hydrogen bonds, forming chains parallel to the [100]

Figure 5

Crystal packing diagram of compound I, viewed down the *a* axis. C-bound H atoms have been omitted for clarity. Hydrogen-bonding interactions are indicated by dashed lines (Table 1).

Crystal packing diagram of compound \mathbf{II} , viewed down the *c* axis. Cbound H atoms have been omitted for clarity. Hydrogen-bonding interactions are indicated by dashed lines (Table 2).

direction; see Table 1. The chains are linked by offset $\pi - \pi$ interactions between inversion-related non-bridging PNO ligands [ring N2/C6–C10; inter-centroid distance = 3.663 (5) Å; offset = 1.399 Å], forming layers parallel to the *ac* plane (Fig. 5).

Compound II is a dimer with two water molecules bound to each Mn^{II} atom and to only one 2MePNO ligand. The structure has a second 2MePNO molecule not bound to an Mn atom. This unbound 2MePNO is hydrogen-bonded to the bound water molecules of two different dimers, $O3 \cdots O2 =$ 2.731 (4) Å and $O4 \cdots O2^{ii} = 2.721$ (4) Å (Table 2). Neighboring dimers also form hydrogen bonds between bound water molecules and bromide ions, $O3-H3B\cdots Br1^{i}$ with a distance of 2.44 (2) Å (Fig. 6; see Table 2 for hydrogen-bond details and symmetry codes). Combined, these interactions form a hydrogen-bonded chain running parallel to the *a* axis. Neighboring chains are held together through offset π stacking between the non-bonded 2MePNO ligands (ring N2/ C7-C11), with an inter-centroid distance of the stacked aromatic rings of 3.516(4) Å, so forming layers parallel to the ac plane (Fig. 6).

The packing in **III** is similar to that for compound **I**; however, the aromatic inter-centroid distance is longer than in the other two compounds, 4.545 (5) Å, with a significant centroid shift of 3.221 (9) Å preventing π -stacking. Neighboring dimers are linked by O–H···Br hydrogen-bonds forming chains parallel to the *a* axis. There are two observed interactions, O3–H3A···Br1ⁱ with a distance of 2.60 (2) Å and O3–H3B···Br1ⁱⁱ with a distance of 2.55 (2) Å (Fig. 7; see Table 3 for hydrogen-bond details and symmetry codes).

Compound IV, a dimeric structure with a bound molecule of methanol replacing the bound water molecule of compound I to each of the Mn^{II} atoms, packs very similarly to compound I

Figure 7

Crystal packing diagram of compound **III**, viewed looking down the b axis. C-bound H atoms have been omitted for clarity. Hydrogen-bonding interactions are indicated by dashed lines (Table 3).

(Fig. 8 and Table 4). The inter-centroid distance of the offset π -stacked aromatic rings is 3.824 (5) Å between bridging 4MePNO molecules and non-bridging 4MePNO molecules. This results in the formation of chains running parallel to the *b* axis (Fig. 8). There is no hydrogen-bonding observed between neighboring dimers in this structure.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.40, November 2018 update; Groom *et al.*, 2016) for aromatic

Figure 8

Crystal packing diagram of compound **IV**, viewed along direction [111]. C-bound H atoms have been omitted for clarity. Hydrogen-bonding interactions are indicated by dashed lines (Table 4). N-oxides and halogen ligands bound to manganese returned six entries (five chlorides and one iodide). Five of these structures contain derivatives of pyridine N-oxides and one of them is a 4,4'-dipyridal N,N'-dioxide (CSD refcode PALYEH; Ghosh et al., 2005). Three of these structures are the chloride analogs of compounds presented here. viz. $[MnCl_2(PNO)(H_2O)]_n$, $[MnCl_2(2MPNO)(H_2O)]_n$, and $[MnCl_2(3MPNO)(H_2O)_2]_2$ (VEJLUU, VEJMAB, and VEJMEF, respectively; Kang et al., 2017), and one is an iodide analog [Mn₂(PNO)₂(H₂O)₆I₂]I₂ (GIWQAF; Shi et al., 2007). The other two involve functionalized pyridine N-oxides; 2-amino (MIRGID; Niu et al., 2001) and 4-carboxylic acid (OROZUR; Liu et al., 2010).

5. Synthesis and crystallization

Compound I: Manganese(II) bromide tetrahydrate (0.320 g, 1.12 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of pyridine *N*-oxide (PNO; 0.212 g, 2.23 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce X-ray quality crystals (yield 0.219 g, 46.4%). Selected IR bands (ATR, FT–IR, KBr composite, cm⁻¹) 3470 (*m*, *br*), 1471 (*s*), 1216 (*s*), 833 (*s*) 773 (*m*), 669 (*m*), 558 (*m*). Analysis calculated for $C_{20}H_{24}N_4Mn_2Br_4O_6$: C, 28.40; H, 2.86; N, 6.62%. Found: C, 28.13; H, 2.86; N, 6.50%.

Compound II: Manganese(II) bromide tetrahydrate (0.302 g, 1.05 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 2-methylpyridine *N*-oxide (2MPNO; 0.230 g, 2.11 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce X-ray quality crystals (yield: 0.212 g, 42.9%). Selected IR bands (ATR, FT–IR, KBr composite, cm⁻¹) 3349 (*m*, *br*), 1600 (*m*), 1461 (*s*), 1195 (*s*) 842 (*m*), 772 (*s*), 557 (*m*). Analysis calculated for $C_{24}H_{36}N_4Mn_2Br_4O_8$: C, 30.73; H, 3.87; N, 5.97%. Found: C, 30.30; H, 3.62; N, 6.17%.

Compound III: Manganese(II) bromide tetrahydrate (0.312 g, 1.09 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 3-methylpyridine *N*-oxide (3MPNO; 0.230 g, 2.12 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce a powder (yield: 0.243 g, 49.5%). X-ray quality crystals were grown by recrystallizing a second time by slow evaporation from methanol. Selected IR bands (ATR, FT–IR, KBr composite, cm⁻¹) 3373 (*m*, *br*), 1631 (*s*), 1492 (*m*), 1260 (*m*), 1163(*s*), 943 (*m*), 802 (*m*).

Compound IV: Manganese(II) bromide tetrahydrate (0.302 g; 1.05 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 4-methylpyridine *N*-oxide (4MPNO; 0.230 g, 2.11 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce a powder (yield: 0.215 g, 44.1%). X-ray quality crystals were grown by recrystallizing a second time from

Table 5Experimental details.

	I	II	III	IV
Crystal data				
Chemical formula	$[Mn_{2}Br_{4}(C_{5}H_{5}NO)_{4}(H_{2}O)_{2}]$	$[Mn_2Br_4(C_6H_7NO)_2(H_2O)_4] - 2C_6H_7NO$	$[Mn_{2}Br_{4}(C_{6}H_{7}NO)_{4}(H_{2}O)_{2}]$	$[\mathrm{Mn_2Br_4(C_6H_7NO)_4(CH_4O)_2}]$
Mr	845.95	938.09	902.05	930.11
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	170	170	170	170
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.736 (4), 15.179 (7), 12.528 (6)	8.9560 (8), 9.7922 (9), 10.2945 (8)	7.6354 (5), 9.9700 (8), 11.898 (1)	13.5384 (7), 9.5354 (4), 13.7292 (7)
$lpha,eta,\gamma(^\circ)$	90, 100.055 (4), 90	110.048 (8), 90.336 (7), 98.052 (7)	111.980 (7), 100.360 (6), 97.737 (6)	90, 103.112 (5), 90
$V(\text{\AA}^3)$	1448.5 (12)	838.34 (13)	805.71 (12)	1726.15 (15)
Z	2	1	1	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	6.43	5.57	5.79	5.40
Crystal size (mm)	$0.5 \times 0.5 \times 0.2$	$0.2 \times 0.2 \times 0.1$	$0.45 \times 0.4 \times 0.2$	$0.4 \times 0.4 \times 0.4$
Data collection				
Diffractometer	Rigaku Mini template	Rigaku XtaLAB mini	Rigaku XtaLAB mini	Rigaku XtaLAB mini
Absorption correction	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2018)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2018)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2018)
T_{\min}, T_{\max}	0.066, 0.114	0.580, 1.000	0.319, 1.000	0.659, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15117, 3305, 3024	8918, 3838, 2931	8460, 3672, 2875	17754, 3964, 3175
R _{int}	0.178	0.053	0.036	0.061
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650	0.649	0.649	0.649
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.110, 1.13	0.037, 0.080, 1.00	0.040, 0.098, 1.02	0.043, 0.112, 1.03
No. of reflections	3305	3838	3672	3964
No. of parameters	172	208	191	196
No. of restraints	2	4	2	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (c A)$	1.45, -1.15	0.72, -0.02	1.00, -0.04	1.04, -0.74

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

methanol with a slower evaporation rate. Selected IR bands (ATR, FT–IR, KBr composite, cm⁻¹) 3227 (*m*, *br*), 3004 (*m*), 1670 (*m*), 1494(*s*), 1213 (*s*), 852(*s*), 763(*s*).

Compounds I and II have been reported analytically pure, whereas III and IV were not isolated analytically pure. The FT–IR spectra of the four *N*-oxide complexes all exhibit broad absorbances in the $3500-3100 \text{ cm}^{-1}$ region characteristic of the $\nu(O-H)$ of the coordinated water or methanol molecules. In addition, the $\nu(N-O)$ stretching frequency that is due to the *N*-oxide pyridyl moiety is observed in the region between 1260 and 1195 cm⁻¹, as noted previously (Mautner *et al.*, 2017).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. In order to ensure chemically meaningful O—H distances for the bound water molecules in compounds I–III, the O—H distances were restrained to 0.84 (2) Å and refined with $U_{iso}(H) = 1.5U_{eq}(O)$. In compound IV, the hydroxyl H atom was located in a difference-Fourier map and refined with O–H distance restrained to 0.85 (1) Å and with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$. All carbon-bound H atoms were positioned geometrically and refined as riding: C–H = 0.95–0.98 Å with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C}\text{-methyl})$ and $1.2U_{\rm eq}({\rm C})$ for other H atoms.

Funding information

The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.
- Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2005). *Inorg. Chem.* 44, 1786–1793.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434–1438.
- Liu, F.-C., Xue, M., Wang, H.-C. & Ou-Yang, J. (2010). J. Solid State Chem. 183, 1949–1954.

research communications

- Lynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405–1410.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2017). *Polyhedron*, **134**, 126–134.
- Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169–174.
- Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.
- Niu, D.-Z., Lu, Z.-S., Sun, B.-W. & Song, B.-L. (2001). *Jiegou Huaxue*, **20**, 180.
- Ren, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145–151.

- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku Oxford Diffraction (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England.
- Sarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692-1700.
- Sarma, R., Karmakar, A. & Baruah, J. B. (2008). *Inorg. Chim. Acta*, **361**, 2081–2086.
- Sarma, R., Perumal, A. & Baruah, J. B. (2009). J. Coord. Chem. 62, 1513–1524.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, J.-M., Liu, Z., Li, W.-N., Zhao, H. Y. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1077–1082.
- Sniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). *Dalton Trans.* **46**, 2497–2509.

Acta Cryst. (2019). E75, 1284-1290 [https://doi.org/10.1107/S2056989019010557]

Crystal structures of four dimeric manganese(II) bromide coordination complexes with various derivatives of pyridine *N*-oxide

Sheridan Lynch, Genevieve Lynch, Will E. Lynch and Clifford W. Padgett

Computing details

For all structures, data collection: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2018); cell refinement: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2018); data reduction: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Bis(µ-pyridine N-oxide)bis[aquadibromido(pyridine N-oxide)manganese(II)] (I)

Crystal data

 $[Mn_2Br_4(C_5H_5NO)_4(H_2O)_2]$ $M_r = 845.95$ Monoclinic, $P2_1/n$ a = 7.736 (4) Å b = 15.179 (7) Å c = 12.528 (6) Å $\beta = 100.055$ (4)° V = 1448.5 (12) Å³ Z = 2

Data collection

Rigaku Mini template diffractometer Radiation source: Sealed Tube Graphite Monochromator monochromator Detector resolution: 13.6612 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.066, T_{\max} = 0.114$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.110$ S = 1.133305 reflections 172 parameters 2 restraints F(000) = 820 $D_x = 1.940 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 4250 reflections $\theta = 2.1-27.5^{\circ}$ $\mu = 6.43 \text{ mm}^{-1}$ T = 170 KPrism, colorless $0.5 \times 0.5 \times 0.2 \text{ mm}$

15117 measured reflections 3305 independent reflections 3024 reflections with $I > 2\sigma(I)$ $R_{int} = 0.178$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 2.1^\circ$ $h = -10 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -16 \rightarrow 16$

Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 0.4786P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.43$ e Å⁻³ $\Delta \rho_{\rm min} = -1.15 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: (SHELXL-2018/1; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0140 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.88172 (4)	0.48605 (2)	0.66632 (3)	0.02264 (14)	
C1	0.4849 (5)	0.3093 (3)	0.3370 (3)	0.0303 (8)	
H1	0.363028	0.310997	0.339833	0.036*	
Mn1	0.54254 (7)	0.43050 (3)	0.61896 (4)	0.01589 (16)	
01	0.5247 (3)	0.43379 (14)	0.44408 (17)	0.0171 (5)	
N1	0.5922 (4)	0.36998 (16)	0.3881 (2)	0.0160 (5)	
Br2	0.61302 (5)	0.26431 (2)	0.63521 (3)	0.02396 (15)	
N2	0.5951 (4)	0.4668 (2)	0.8619 (2)	0.0250 (6)	
O2	0.4813 (4)	0.46894 (19)	0.7689 (2)	0.0296 (6)	
C2	0.5520 (6)	0.2438 (3)	0.2796 (4)	0.0403 (10)	
H2	0.476706	0.199462	0.243743	0.048*	
C3	0.7280 (6)	0.2428 (3)	0.2744 (4)	0.0377 (10)	
H3	0.774934	0.198354	0.234356	0.045*	
03	0.2446 (4)	0.40522 (18)	0.5691 (2)	0.0260 (6)	
C4	0.8354 (6)	0.3068 (3)	0.3280 (4)	0.0440 (12)	
H4	0.957332	0.307435	0.325343	0.053*	
C5	0.7628 (5)	0.3702 (3)	0.3855 (4)	0.0339 (9)	
H5	0.835724	0.414384	0.423704	0.041*	
C6	0.6494 (6)	0.3886 (3)	0.9054 (3)	0.0385 (10)	
H6	0.610967	0.335631	0.868308	0.046*	
C7	0.7611 (8)	0.3855 (4)	1.0040 (4)	0.0570 (14)	
H7	0.800377	0.330116	1.034421	0.068*	
C8	0.8162 (7)	0.4620 (5)	1.0588 (4)	0.0627 (17)	
H8	0.892059	0.460197	1.127146	0.075*	
C9	0.7581 (8)	0.5413 (4)	1.0116 (4)	0.0600 (16)	
H9	0.792711	0.594992	1.048066	0.072*	
C10	0.6498 (7)	0.5426 (3)	0.9116 (4)	0.0396 (10)	
H10	0.613977	0.597312	0.877878	0.048*	
H3A	0.214 (6)	0.418 (3)	0.5042 (18)	0.037 (13)*	
H3B	0.172 (5)	0.424 (3)	0.606 (4)	0.042 (14)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0170 (2)	0.0266 (2)	0.0235 (2)	-0.00262 (13)	0.00117 (15)	0.00210 (12)

C1	0.0210 (18)	0.030 (2)	0.038 (2)	-0.0009 (15)	-0.0002 (16)	-0.0156 (16)
Mn1	0.0175 (3)	0.0151 (3)	0.0155 (3)	0.00165 (18)	0.0039 (2)	0.00189 (17)
01	0.0237 (12)	0.0126 (10)	0.0161 (10)	0.0056 (9)	0.0062 (9)	-0.0010 (8)
N1	0.0210 (14)	0.0101 (12)	0.0172 (12)	0.0016 (11)	0.0046 (11)	-0.0037 (10)
Br2	0.0256 (2)	0.0155 (2)	0.0302 (2)	0.00169 (13)	0.00347 (16)	0.00366 (12)
N2	0.0240 (16)	0.0354 (17)	0.0165 (13)	0.0059 (13)	0.0064 (12)	-0.0019 (12)
O2	0.0298 (15)	0.0420 (16)	0.0175 (11)	0.0119 (12)	0.0050 (11)	0.0009 (11)
C2	0.032 (2)	0.031 (2)	0.054 (3)	0.0001 (18)	-0.0029 (19)	-0.025 (2)
C3	0.038 (2)	0.029 (2)	0.047 (2)	0.0010 (18)	0.012 (2)	-0.0200 (18)
03	0.0220 (13)	0.0305 (14)	0.0263 (13)	0.0033 (11)	0.0063 (11)	0.0089 (11)
C4	0.026 (2)	0.035 (2)	0.077 (3)	-0.0021 (18)	0.025 (2)	-0.023 (2)
C5	0.026 (2)	0.0254 (19)	0.053 (2)	-0.0056 (16)	0.0161 (19)	-0.0176 (17)
C6	0.044 (3)	0.039 (2)	0.030(2)	0.016 (2)	0.0008 (18)	0.0047 (17)
C7	0.053 (3)	0.084 (4)	0.032 (2)	0.029 (3)	-0.001 (2)	0.012 (2)
C8	0.032 (3)	0.127 (5)	0.027 (2)	0.003 (3)	-0.001 (2)	-0.013 (3)
C9	0.055 (3)	0.085 (4)	0.043 (3)	-0.030 (3)	0.016 (3)	-0.031 (3)
C10	0.047 (3)	0.038 (2)	0.036 (2)	-0.011 (2)	0.014 (2)	-0.0076 (18)

Geometric parameters (Å, °)

Mn1—Br1	2.7212 (13)	С3—Н3	0.9500	
C1—H1	0.9500	C3—C4	1.375 (6)	
C1—N1	1.327 (5)	O3—H3A	0.829 (19)	
C1—C2	1.381 (5)	O3—H3B	0.829 (19)	
Mn1—O1	2.172 (2)	C4—H4	0.9500	
Mn1—O1 ⁱ	2.235 (2)	C4—C5	1.379 (5)	
Mn1—Br2	2.5813 (13)	С5—Н5	0.9500	
Mn1—O2	2.099 (3)	С6—Н6	0.9500	
Mn1—O3	2.312 (3)	C6—C7	1.380 (7)	
01—N1	1.353 (3)	С7—Н7	0.9500	
N1C5	1.326 (5)	С7—С8	1.378 (8)	
N2—O2	1.332 (4)	С8—Н8	0.9500	
N2—C6	1.342 (5)	C8—C9	1.381 (9)	
N2-C10	1.342 (5)	С9—Н9	0.9500	
С2—Н2	0.9500	C9—C10	1.381 (8)	
C2—C3	1.374 (6)	C10—H10	0.9500	
N1—C1—H1	120.3	C3—C2—C1	119.9 (4)	
N1-C1-C2	119.4 (4)	C3—C2—H2	120.1	
C2C1H1	120.3	С2—С3—Н3	120.4	
O1—Mn1—Br1	95.84 (7)	C2—C3—C4	119.2 (3)	
O1 ⁱ —Mn1—Br1	87.00 (7)	С4—С3—Н3	120.4	
O1-Mn1-O1 ⁱ	69.66 (9)	Mn1—O3—H3A	109 (3)	
O1—Mn1—Br2	94.44 (6)	Mn1—O3—H3B	122 (4)	
O1 ⁱ —Mn1—Br2	164.07 (6)	H3A—O3—H3B	111 (5)	
O1 ⁱ —Mn1—O3	84.14 (10)	C3—C4—H4	120.6	
O1—Mn1—O3	81.19 (9)	C3—C4—C5	118.8 (4)	
Br2—Mn1—Br1	95.93 (3)	C5—C4—H4	120.6	

O2—Mn1—Br1	94.50 (9)	N1C5C4	120.6 (4)
O2-Mn1-O1 ⁱ	89.15 (10)	N1—C5—H5	119.7
O2—Mn1—O1	155.81 (10)	С4—С5—Н5	119.7
O2—Mn1—Br2	106.17 (8)	N2—C6—H6	120.1
O2—Mn1—O3	85.28 (11)	N2—C6—C7	119.8 (5)
O3—Mn1—Br1	171.14 (7)	С7—С6—Н6	120.1
O3—Mn1—Br2	92.63 (7)	С6—С7—Н7	119.7
Mn1—O1—Mn1 ⁱ	110.34 (9)	C8—C7—C6	120.5 (5)
N1—O1—Mn1	122.99 (18)	С8—С7—Н7	119.7
N1—O1—Mn1 ⁱ	124.32 (17)	С7—С8—Н8	120.9
C1—N1—O1	118.8 (3)	C7—C8—C9	118.2 (5)
C5—N1—C1	122.1 (3)	С9—С8—Н8	120.9
C5—N1—O1	119.1 (3)	С8—С9—Н9	119.9
O2—N2—C6	119.2 (3)	C10—C9—C8	120.1 (5)
O2—N2—C10	119.4 (4)	С10—С9—Н9	119.9
C6—N2—C10	121.3 (4)	N2—C10—C9	120.0 (5)
N2—O2—Mn1	123.9 (2)	N2-C10-H10	120.0
C1—C2—H2	120.1	С9—С10—Н10	120.0

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O3—H3A···Br1 ⁱ	0.83 (2)	2.58 (2)	3.372 (3)	159 (4)
O3—H3 <i>B</i> ···Br1 ⁱⁱ	0.84 (4)	2.66 (4)	3.473 (4)	163 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*.

Bis(µ-2-methylpyridine N-oxide)bis[diaquadibromidomanganese(II)]-2-methylpyridine N-oxide (1/2) (II)

$[Mn_{2}Br_{4}(C_{6}H_{7}NO)_{2}(H_{2}O)_{4}] \cdot 2C_{6}H_{7}NO$	Z = 1
$M_{r} = 938.09$	F(000) = 462
Triclinic, $P\overline{1}$	$D_x = 1.858 \text{ Mg m}^{-3}$
a = 8.9560 (8) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
b = 9.7922 (9) Å	Cell parameters from 4291 reflections
c = 10.2945 (8) Å	$\theta = 2.3-33.2^{\circ}$
$a = 110.048 (8)^{\circ}$	$\mu = 5.57 \text{ mm}^{-1}$
$\beta = 90.336 (7)^{\circ}$	T = 170 K
$\gamma = 98.052 (7)^{\circ}$	Block, clear light yellow
$V = 838.34 (13) Å^{3}$	$0.2 \times 0.2 \times 0.1 \text{ mm}$
Rigaku XtaLAB mini	$T_{\min} = 0.580, T_{\max} = 1.000$
diffractometer	8918 measured reflections
Radiation source: fine-focus sealed X-ray tube,	3838 independent reflections
Enhance (Mo) X-ray Source	2931 reflections with $I > 2\sigma(I)$
Graphite Monochromator monochromator	$R_{int} = 0.053$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 2.1^{\circ}$
profile data from ω -scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(CrysAlisPro; Rigaku Oxford Diffraction, 2018)	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.037$	and constrained refinement
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0319P)^2]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
3838 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
208 parameters	$\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	
-	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.97900 (4)	0.80035 (4)	0.74971 (4)	0.02737 (11)
01	1.0009 (3)	0.4219 (3)	0.5880 (2)	0.0216 (5)
C1	0.9673 (4)	0.2520 (4)	0.7046 (4)	0.0271 (8)
Mn1	0.82268 (6)	0.55061 (6)	0.56887 (5)	0.02123 (13)
N1	1.0302 (3)	0.3845 (3)	0.6999 (3)	0.0219 (6)
Br2	0.62884 (4)	0.49697 (4)	0.74319 (4)	0.03065 (11)
C2	1.0052 (4)	0.2179 (4)	0.8211 (4)	0.0304 (9)
H2	0.962787	0.125920	0.827065	0.037*
O3	0.7281 (3)	0.3472 (3)	0.3927 (3)	0.0267 (6)
H3A	0.647 (3)	0.288 (4)	0.388 (4)	0.043 (13)*
H3B	0.799 (3)	0.297 (4)	0.359 (4)	0.036 (12)*
C3	1.1028 (5)	0.3150 (4)	0.9273 (4)	0.0329 (9)
Н3	1.127202	0.290351	1.005596	0.039*
C4	1.1643 (5)	0.4487 (5)	0.9180 (4)	0.0368 (10)
H4	1.231315	0.517477	0.990012	0.044*
O4	0.6790 (3)	0.6595 (3)	0.4807 (3)	0.0268 (6)
H4A	0.642 (6)	0.726 (4)	0.542 (4)	0.09 (2)*
H4B	0.614 (5)	0.614 (6)	0.417 (4)	0.10 (2)*
C5	1.1269 (4)	0.4809 (4)	0.8023 (4)	0.0320 (9)
Н5	1.169778	0.571996	0.794612	0.038*
C6	0.8633 (5)	0.1536 (4)	0.5885 (4)	0.0377 (10)
H6A	0.769395	0.194740	0.589890	0.057*
H6B	0.840725	0.056545	0.597618	0.057*
H6C	0.910470	0.144060	0.500794	0.057*
N2	0.4507 (3)	0.0303 (3)	0.2438 (3)	0.0262 (7)
O2	0.4865 (3)	0.1344 (3)	0.3682 (3)	0.0288 (6)
C7	0.5133 (4)	-0.0960 (4)	0.2104 (4)	0.0292 (9)
C8	0.4748 (6)	-0.2028 (5)	0.0806 (4)	0.0455 (12)
H8	0.518213	-0.290783	0.054919	0.055*
C9	0.3744 (6)	-0.1829 (6)	-0.0117 (5)	0.0544 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H9	0.349499	-0.256046	-0.100515	0.065*	
C10	0.3105 (5)	-0.0539 (6)	0.0278 (5)	0.0516 (13)	
H10	0.238985	-0.039227	-0.032830	0.062*	
C11	0.3517 (4)	0.0509 (5)	0.1542 (4)	0.0378 (10)	
H11	0.310341	0.140125	0.180201	0.045*	
C12	0.6228 (5)	-0.1073 (4)	0.3143 (4)	0.0383 (10)	
H12A	0.713697	-0.035107	0.324504	0.057*	
H12B	0.650204	-0.206492	0.283156	0.057*	
H12C	0.576598	-0.087782	0.403703	0.057*	

Atomic displacement parameters $(Å^2)$

	U^{II}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0266 (2)	0.0235 (2)	0.0261 (2)	0.00076 (15)	0.00103 (15)	0.00222 (15)
01	0.0243 (13)	0.0249 (13)	0.0179 (12)	0.0027 (11)	-0.0006 (10)	0.0110 (10)
C1	0.0272 (19)	0.024 (2)	0.028 (2)	0.0024 (16)	0.0022 (16)	0.0072 (16)
Mn1	0.0213 (3)	0.0217 (3)	0.0198 (3)	0.0016 (2)	-0.0009 (2)	0.0067 (2)
N1	0.0236 (15)	0.0223 (16)	0.0203 (15)	0.0014 (13)	0.0008 (13)	0.0088 (13)
Br2	0.0294 (2)	0.0379 (2)	0.0225 (2)	-0.00298 (17)	0.00138 (16)	0.01083 (17)
C2	0.040 (2)	0.026 (2)	0.031 (2)	0.0067 (18)	0.0077 (18)	0.0170 (18)
03	0.0247 (14)	0.0246 (14)	0.0269 (14)	-0.0001 (12)	0.0010 (12)	0.0055 (12)
C3	0.040 (2)	0.039 (2)	0.027 (2)	0.0095 (19)	0.0009 (18)	0.0198 (19)
C4	0.041 (2)	0.041 (2)	0.025 (2)	-0.002 (2)	-0.0076 (18)	0.0103 (19)
04	0.0305 (15)	0.0269 (15)	0.0228 (15)	0.0069 (13)	-0.0031 (13)	0.0074 (12)
C5	0.035 (2)	0.028 (2)	0.030(2)	-0.0046 (18)	-0.0073 (18)	0.0099 (17)
C6	0.046 (3)	0.029 (2)	0.035 (2)	-0.0069 (19)	-0.003 (2)	0.0126 (19)
N2	0.0229 (16)	0.0293 (18)	0.0237 (16)	-0.0054 (14)	0.0025 (13)	0.0096 (14)
02	0.0316 (14)	0.0243 (14)	0.0255 (14)	0.0036 (12)	0.0051 (12)	0.0024 (11)
C7	0.038 (2)	0.024 (2)	0.0230 (19)	-0.0034 (17)	0.0049 (17)	0.0080 (16)
C8	0.068 (3)	0.028 (2)	0.030 (2)	-0.012 (2)	0.005 (2)	0.0046 (19)
C9	0.062 (3)	0.057 (3)	0.027 (2)	-0.036 (3)	-0.005 (2)	0.009 (2)
C10	0.032 (2)	0.088 (4)	0.036 (3)	-0.017 (3)	-0.008 (2)	0.033 (3)
C11	0.0185 (19)	0.059 (3)	0.042 (3)	0.0064 (19)	0.0035 (18)	0.024 (2)
C12	0.054 (3)	0.035 (2)	0.030 (2)	0.018 (2)	0.007 (2)	0.0113 (19)

Geometric parameters (Å, °)

Mn1—Br1	2.7009 (7)	O4—H4B	0.83 (2)	
Mn1—O1	2.214 (2)	С5—Н5	0.9500	
O1—Mn1 ⁱ	2.321 (2)	C6—H6A	0.9800	
01—N1	1.358 (3)	C6—H6B	0.9800	
C1—N1	1.357 (4)	C6—H6C	0.9800	
C1—C2	1.402 (5)	N2—O2	1.338 (4)	
C1—C6	1.473 (5)	N2—C7	1.366 (5)	
Mn1—Br2	2.6340 (7)	N2—C11	1.359 (5)	
Mn1—O3	2.237 (3)	C7—C8	1.390 (5)	
Mn1—O4	2.157 (3)	C7—C12	1.490 (5)	
N1—C5	1.353 (5)	C8—H8	0.9500	

С2—Н2	0.9500	C8C9	1 384 (7)
$C^2 - C^3$	1 381 (5)	C9—H9	0.9500
03—H3A	0.852(19)	C9-C10	1.394(7)
03_H3B	0.852(19)	C10H10	0.9500
C3_H3	0.057 (17)	C10-C11	1 362 (6)
$C_3 = C_4$	1 383 (5)	C11 H11	0.0500
$C_3 = C_4$	0.0500		0.9500
C4 = H4	0.9300	C12—H12A	0.9800
C4 - C3	1.382(3)	С12—П12В	0.9800
04—H4A	0.846 (19)	C12—H12C	0.9800
O1—Mn1—O1 ⁱ	74.40 (9)	Mn1—O4—H4A	112 (4)
Mn1—O1—Mn1 ⁱ	105.60 (9)	Mn1—O4—H4B	123 (4)
N1—O1—Mn1	125.53 (19)	H4A—O4—H4B	110 (5)
N1 $-O1$ $-Mn1^{i}$	124.62 (18)	N1-C5-C4	121.0 (3)
N1-C1-C2	117.5 (3)	N1-C5-H5	119.5
N1-C1-C6	118.5 (3)	C4—C5—H5	119.5
$C_2 - C_1 - C_6$	124.1 (3)	C1—C6—H6A	109.5
$\Omega_1 - Mn_1 - Br_1$	91 54 (6)	C1—C6—H6B	109.5
$O1^{i}$ Mn1 Br1	85 90 (6)	C1 - C6 - H6C	109.5
Ω_1 —Mn1—Br2	101 36 (6)	H6A—C6—H6B	109.5
$O1^{i}$ Mn1 Br2	175.09(6)	H6A—C6—H6C	109.5
01—Mn1— 03	84 60 (9)	H6B—C6—H6C	109.5
Br2-Mn1-Br1	96 79 (2)	$\Omega^2 - N^2 - C^7$	119.0(3)
Ω_3 —Mn1—Br1	169 21 (8)	02 - N2 - C11	119.0(3) 119.7(3)
$Mn1 - O1^{i}$	83 36 (9)	$C_{11} = N_{2} = C_{7}$	121.3(3)
Ω_3 —Mn1—Br2	93 85 (7)	N2-C7-C8	121.3(3) 1182(4)
O4—Mn1—Br1	95.42 (8)	$N_{2} = C_{7} = C_{12}$	117.4(3)
04 —Mn1— 01^{i}	87 70 (9)	C8-C7-C12	177.4(3) 1744(4)
04—Mn1—O1	160.29(10)	C7 - C8 - H8	119.5
04—Mn1—Br2	96 11 (8)	C9 - C8 - C7	121.1 (5)
04 Mm1 $D12$	85 19 (10)	C9 - C8 - H8	110 5
C1N101	1201(3)	C_{8} C_{9} H_{9}	120.5
C_{5} N1 $-$ O1	120.1(3) 117.8(3)	$C_{8} - C_{9} - C_{10}$	120.3 118.9(4)
C_5 -N1-C1	117.0(3)	C_{10} C_{9} H9	120.5
C1 - C2 - H2	110.2	$C_{10} - C_{10} - H_{10}$	120.5
$C_1 = C_2 = C_1$	11).2	C_{11} C_{10} C_{9}	120.4 110 3 (4)
C_{3} C_{2} H_{2}	110.2	$C_{11} = C_{10} = C_{3}$	119.3 (4)
$M_{n1} = O_3 = H_3 \Lambda$	119.2	$N_2 C_{11} C_{10}$	120.4 121.2(4)
Mn1 = O3 = H3B	120(3)	$N_2 = C_{11} = C_{10}$	121.2 (4)
$H_{3A} \cap 3 H_{3B}$	100(3)	C_{10} C_{11} H_{11}	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109 (4)	C7 $C12$ $H12A$	100.5
$C_2 = C_3 = C_4$	120.3 110.0(3)	C7 C12 H12R	109.5
$C_2 = C_3 = C_7$	120.5	$C_7 = C_{12} = H_{12}C_{12}$	109.5
$C_{-} C_{-} C_{-} H_{A}$	120.5	$H_{12} = C_{12} = H_{12} C_{12}$	109.5
$C_5 = C_4 = C_3$	120.3	H12A = C12 = H12C	109.5
$C_{5} = C_{4} = C_{5}$	120.5	$H_{12}A - C_{12} - H_{12}C$	109.5
UJ-U4-I14	120.3	$\Pi 2D - U I 2 - \Pi I 2U$	109.5

Symmetry code: (i) -x+2, -y+1, -z+1.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3A…O2	0.85 (2)	1.89 (2)	2.731 (4)	171 (4)
O3—H3 <i>B</i> ···Br1 ⁱ	0.86 (2)	2.44 (2)	3.282 (3)	168 (4)
O4—H4A···O2 ⁱⁱ	0.85 (2)	1.91 (3)	2.721 (4)	161 (5)
O4—H4 <i>B</i> ···Br2 ⁱⁱ	0.83 (4)	2.59 (4)	3.403 (3)	167 (4)

Z = 1

F(000) = 442

 $\theta = 2.2 - 33.1^{\circ}$

 $\mu = 5.79 \text{ mm}^{-1}$

T = 170 K

 $D_{\rm x} = 1.859 {\rm Mg} {\rm m}^{-3}$

Plate, clear light yellow

 $0.45 \times 0.4 \times 0.2 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 4991 reflections

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Bis(µ-3-methylpyridine N-oxide)bis[aquadibromido(3-methylpyridine N-oxide)manganese(II)] (III)

Crystal data $[Mn_2Br_4(C_6H_7NO)_4(H_2O)_2]$ $M_r = 902.05$ Triclinic, *P*1 *a* = 7.6354 (5) Å *b* = 9.9700 (8) Å *c* = 11.898 (1) Å *a* = 111.980 (7)° *β* = 100.360 (6)° *y* = 97.737 (6)° *V* = 805.71 (12) Å³

Data collection

Rigaku XtaLAB mini diffractometer	$T_{\min} = 0.319, T_{\max} = 1.000$
Radiation source: fine-focus sealed X-ray tube,	3672 independent reflections
Enhance (Mo) X-ray Source	2875 reflections with $I > 2\sigma(I)$
Graphite Monochromator monochromator	$R_{\rm int} = 0.036$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
profile data from ω -scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(CrysAlisPro; Rigaku Oxford Diffraction, 2018)	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.040$	and constrained refinement
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0461P)^2 + 0.5922P]$
<i>S</i> = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
3672 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
191 parameters	$\Delta \rho_{\rm max} = 1.66 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta ho_{ m min} = -0.84 \ m e \ m \AA^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.36280 (5)	0.42105 (5)	0.13651 (4)	0.03458 (13)
C1	0.4906 (7)	0.7816 (7)	0.4116 (5)	0.0544 (14)
H1	0.509132	0.827435	0.356286	0.065*
N1	0.3196 (5)	0.7177 (4)	0.4046 (3)	0.0383 (9)
Mn1	0.04801 (8)	0.51611 (7)	0.16098 (5)	0.02659 (16)
01	0.1816 (4)	0.7175 (4)	0.3187 (3)	0.0418 (8)
O2	0.0827 (3)	0.6326 (3)	0.0380 (3)	0.0295 (6)
C2	0.6381 (7)	0.7822 (7)	0.4963 (5)	0.0606 (16)
Br2	-0.07392 (6)	0.33641 (5)	0.25163 (4)	0.03571 (14)
N2	0.1876 (4)	0.7681 (4)	0.0757 (3)	0.0254 (7)
C3	0.6062 (7)	0.7148 (6)	0.5770 (5)	0.0520 (13)
H3	0.705412	0.710037	0.635284	0.062*
O3	-0.2115 (4)	0.5986 (4)	0.1560 (3)	0.0360 (7)
H3A	-0.304 (4)	0.546 (5)	0.159 (4)	0.045 (15)*
H3B	-0.237 (7)	0.594 (6)	0.082 (3)	0.065 (18)*
C4	0.4293 (7)	0.6553 (6)	0.5712 (5)	0.0489 (12)
H4	0.406617	0.612501	0.627790	0.059*
C5	0.2857 (6)	0.6573 (5)	0.4846 (4)	0.0391 (10)
Н5	0.163976	0.616659	0.481113	0.047*
C6	0.8283 (9)	0.8554 (11)	0.5025 (7)	0.110 (3)
H6A	0.848206	0.962978	0.548807	0.165*
H6B	0.841882	0.833305	0.417405	0.165*
H6C	0.918146	0.817490	0.545184	0.165*
C7	0.3693 (5)	0.7876 (4)	0.1021 (4)	0.0287 (9)
H7	0.422698	0.704972	0.095217	0.034*
C8	0.4801 (5)	0.9247 (5)	0.1391 (4)	0.0317 (9)
C9	0.3993 (6)	1.0418 (5)	0.1454 (4)	0.0369 (10)
H9	0.472406	1.136963	0.166642	0.044*
C10	0.2119 (6)	1.0206 (5)	0.1206 (5)	0.0425 (11)
H10	0.155519	1.101679	0.127690	0.051*
C11	0.1069 (6)	0.8811 (5)	0.0856 (4)	0.0376 (10)
H11	-0.022312	0.865462	0.068630	0.045*
C12	0.6838 (6)	0.9463 (6)	0.1743 (6)	0.0583 (15)
H12A	0.727982	0.988271	0.265702	0.087*
H12B	0.739282	1.014307	0.142149	0.087*
H12C	0.717356	0.850553	0.138142	0.087*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0214 (2)	0.0436 (3)	0.0499 (3)	0.00744 (18)	0.00730 (17)	0.0319 (2)
C1	0.044 (3)	0.076 (4)	0.044 (3)	-0.004 (3)	0.009 (2)	0.031 (3)
N1	0.036 (2)	0.043 (2)	0.032 (2)	0.0035 (18)	0.0039 (16)	0.0153 (18)
Mn1	0.0209 (3)	0.0312 (3)	0.0304 (3)	-0.0003 (2)	0.0023 (2)	0.0195 (3)
01	0.0405 (18)	0.0424 (19)	0.0391 (18)	0.0021 (15)	-0.0031 (14)	0.0214 (16)

O2	0.0230 (13)	0.0309 (15)	0.0352 (16)	-0.0048 (12)	0.0013 (11)	0.0207 (13)
C2	0.041 (3)	0.084 (4)	0.044 (3)	0.003 (3)	0.006 (2)	0.017 (3)
Br2	0.0330 (2)	0.0405 (3)	0.0419 (3)	0.00105 (19)	0.00990 (18)	0.0280 (2)
N2	0.0225 (16)	0.0287 (18)	0.0282 (17)	0.0018 (14)	0.0054 (13)	0.0169 (15)
C3	0.046 (3)	0.064 (4)	0.035 (3)	0.012 (3)	0.002 (2)	0.011 (3)
O3	0.0261 (16)	0.0437 (19)	0.047 (2)	0.0063 (14)	0.0113 (14)	0.0273 (17)
C4	0.051 (3)	0.057 (3)	0.039 (3)	0.009 (3)	0.008 (2)	0.022 (3)
C5	0.041 (2)	0.043 (3)	0.032 (2)	0.003 (2)	0.0093 (19)	0.015 (2)
C6	0.043 (4)	0.180 (9)	0.095 (6)	-0.025 (5)	0.007 (3)	0.064 (6)
C7	0.0226 (19)	0.025 (2)	0.040 (2)	0.0041 (17)	0.0054 (17)	0.0168 (19)
C8	0.028 (2)	0.029 (2)	0.040 (2)	0.0042 (18)	0.0103 (18)	0.017 (2)
C9	0.044 (3)	0.026 (2)	0.037 (2)	0.000 (2)	0.006 (2)	0.014 (2)
C10	0.045 (3)	0.028 (2)	0.055 (3)	0.013 (2)	0.005 (2)	0.019 (2)
C11	0.029 (2)	0.043 (3)	0.048 (3)	0.016 (2)	0.0118 (19)	0.023 (2)
C12	0.029 (2)	0.048 (3)	0.100 (5)	0.002 (2)	0.017 (3)	0.034 (3)

Geometric parameters (Å, °)

2.7237 (7)	O3—H3B	0.844 (19)
0.9500	C4—H4	0.9500
1.347 (6)	C4—C5	1.370 (6)
1.368 (7)	С5—Н5	0.9500
1.328 (4)	C6—H6A	0.9800
1.346 (6)	С6—Н6В	0.9800
2.129 (3)	С6—Н6С	0.9800
2.211 (3)	С7—Н7	0.9500
2.219 (3)	С7—С8	1.372 (6)
2.5687 (7)	C8—C9	1.377 (6)
2.245 (3)	C8—C12	1.499 (6)
1.339 (4)	С9—Н9	0.9500
1.399 (8)	C9—C10	1.377 (6)
1.511 (8)	C10—H10	0.9500
1.336 (5)	C10—C11	1.377 (6)
1.332 (5)	C11—H11	0.9500
0.9500	C12—H12A	0.9800
1.379 (7)	C12—H12B	0.9800
0.834 (19)	C12—H12C	0.9800
119.2	Mn1—O3—H3B	101 (4)
121.6 (5)	H3A—O3—H3B	104 (5)
119.2	C3—C4—H4	119.7
119.2 (4)	C5—C4—C3	120.7 (5)
119.5 (4)	C5—C4—H4	119.7
121.3 (4)	N1—C5—C4	119.1 (4)
93.86 (9)	N1—C5—H5	120.4
157.76 (11)	C4—C5—H5	120.4
88.94 (11)	С2—С6—Н6А	109.5
105.48 (9)	С2—С6—Н6В	109.5
	$\begin{array}{c} 2.7237\ (7)\\ 0.9500\\ 1.347\ (6)\\ 1.368\ (7)\\ 1.328\ (4)\\ 1.346\ (6)\\ 2.129\ (3)\\ 2.211\ (3)\\ 2.219\ (3)\\ 2.219\ (3)\\ 2.5687\ (7)\\ 2.245\ (3)\\ 1.339\ (4)\\ 1.399\ (8)\\ 1.511\ (8)\\ 1.336\ (5)\\ 1.332\ (5)\\ 0.9500\\ 1.379\ (7)\\ 0.834\ (19)\\ \end{array}$	2.7237(7) $O3$ —H3B 0.9500 $C4$ —H4 $1.347(6)$ $C4$ —C5 $1.347(6)$ $C4$ —C5 $1.368(7)$ $C5$ —H5 $1.328(4)$ $C6$ —H6A $1.346(6)$ $C6$ —H6B $2.129(3)$ $C6$ —H6C $2.211(3)$ $C7$ —H7 $2.219(3)$ $C6$ —H6C $2.211(3)$ $C7$ —C8 $2.5687(7)$ $C8$ —C9 $2.245(3)$ $C8$ —C12 $1.339(4)$ $C9$ —H9 $1.399(8)$ $C9$ —C10 $1.511(8)$ $C10$ —H10 $1.332(5)$ $C11$ —H11 0.9500 $C12$ —H12A $1.379(7)$ $C12$ —H12B $0.834(19)$ $C12$ —H12B $0.834(19)$ $C12$ —H12A 119.2 $Mn1$ —O3—H3B 119.2 $C3$ —C4—H4 119.2 $C3$ —C4—H4 119.2 $C3$ —C4—H4 $119.5(4)$ $C5$ —C4—C3 $119.5(4)$ $C5$ —C4—H4 $121.3(4)$ $N1$ —C5—C4 $93.86(9)$ $N1$ —C5—H5 $88.94(11)$ $C2$ —C6—H6A $105.48(9)$ $C2$ —C6—H6B

O1—Mn1—O3	88.95 (12)	С2—С6—Н6С	109.5
O2—Mn1—Br1	91.19 (7)	H6A—C6—H6B	109.5
O2 ⁱ —Mn1—Br1	89.84 (8)	H6A—C6—H6C	109.5
O2-Mn1-O2 ⁱ	69.05 (11)	H6B—C6—H6C	109.5
O2 ⁱ —Mn1—Br2	95.91 (7)	N2—C7—H7	119.4
O2—Mn1—Br2	163.39 (7)	N2—C7—C8	121.2 (4)
O2—Mn1—O3	81.25 (11)	С8—С7—Н7	119.4
O2 ⁱ —Mn1—O3	84.75 (11)	C7—C8—C9	118.3 (4)
Br2—Mn1—Br1	95.91 (2)	C7—C8—C12	120.6 (4)
O3—Mn1—Br1	171.89 (8)	C9—C8—C12	121.1 (4)
O3—Mn1—Br2	90.65 (8)	С8—С9—Н9	120.1
N1—O1—Mn1	119.7 (3)	C8—C9—C10	119.8 (4)
$Mn1$ — $O2$ — $Mn1^i$	110.95 (11)	С10—С9—Н9	120.1
N2—O2—Mn1 ⁱ	123.8 (2)	С9—С10—Н10	120.2
N2—O2—Mn1	124.7 (2)	C11—C10—C9	119.6 (4)
C1—C2—C3	117.8 (5)	C11—C10—H10	120.2
C1—C2—C6	120.5 (6)	N2-C11-C10	119.6 (4)
C3—C2—C6	121.7 (5)	N2—C11—H11	120.2
C7—N2—O2	119.9 (3)	C10-C11-H11	120.2
C11—N2—O2	118.7 (3)	C8—C12—H12A	109.5
C11—N2—C7	121.5 (4)	C8—C12—H12B	109.5
С2—С3—Н3	120.3	C8—C12—H12C	109.5
C4—C3—C2	119.4 (5)	H12A—C12—H12B	109.5
С4—С3—Н3	120.3	H12A—C12—H12C	109.5
Mn1—O3—H3A	118 (3)	H12B-C12-H12C	109.5

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3A···Br1 ⁱⁱ	0.83 (2)	2.60 (2)	3.410 (3)	164 (4)
O3—H3 <i>B</i> ···Br1 ⁱ	0.84 (2)	2.55 (2)	3.386 (3)	172 (5)

Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z.

Bis(µ-4-methylpyridine N-oxide)bis[dibromidomethanol(4-methylpyridine N-oxide)manganese(II)] (IV)

F(000) = 916
$D_{\rm x} = 1.790 {\rm ~Mg} {\rm ~m}^{-3}$
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 9251 reflections
$\theta = 2.0 - 33.1^{\circ}$
$\mu = 5.40 \text{ mm}^{-1}$
T = 170 K
Prism, clear light brown
$0.4 \times 0.4 \times 0.4$ mm

Data collection

Rigaku XtaLAB mini diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source Graphite Monochromator monochromator Detector resolution: 13.6612 pixels mm ⁻¹ profile data from ω -scans Absorption correction: multi-scan (CrysAlisPro; Rigaku Oxford Diffraction, 2018) <i>Refinement</i>	$T_{\min} = 0.659, T_{\max} = 1.000$ 17754 measured reflections 3964 independent reflections 3175 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 1.9^{\circ}$ $h = -17 \rightarrow 17$ $k = -12 \rightarrow 12$ $l = -17 \rightarrow 17$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.112$ S = 1.03 3964 reflections 196 parameters 3 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0665P)^2 + 0.0317P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.64$ e Å ⁻³ $\Delta\rho_{min} = -0.74$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.55122 (3)	0.55895 (4)	0.73950 (3)	0.02951 (13)	
0.42974 (4)	0.62247 (6)	0.55858 (4)	0.02011 (15)	
0.4741 (3)	0.9181 (3)	0.6510(2)	0.0243 (7)	
0.4328 (3)	0.8828 (4)	0.7272 (3)	0.0266 (9)	
0.390399	0.802474	0.722371	0.032*	
0.4550 (2)	0.8416 (3)	0.56661 (19)	0.0283 (6)	
0.4393 (2)	0.4023 (3)	0.5134 (2)	0.0219 (6)	
0.3727 (2)	0.3013 (3)	0.5239 (2)	0.0209 (7)	
0.4519 (3)	0.9632 (4)	0.8130 (3)	0.0275 (9)	
0.422582	0.937169	0.866939	0.033*	
0.25806 (3)	0.60062 (4)	0.60914 (3)	0.03081 (13)	
0.5128 (3)	1.0806 (4)	0.8220 (3)	0.0292 (9)	
0.3548 (2)	0.6580(3)	0.3987 (2)	0.0297 (6)	
0.3793 (18)	0.613 (4)	0.3550 (13)	0.045*	
0.5541 (3)	1.1132 (4)	0.7408 (3)	0.0279 (9)	
0.596641	1.193074	0.743893	0.033*	
0.5341 (3)	1.0312 (4)	0.6560 (3)	0.0269 (9)	
0.562828	1.054615	0.601121	0.032*	
0.5321 (4)	1.1692 (5)	0.9149 (3)	0.0417 (11)	
0.476217	1.157376	0.948694	0.063*	
	x 0.55122 (3) 0.42974 (4) 0.4741 (3) 0.4328 (3) 0.390399 0.4550 (2) 0.4393 (2) 0.3727 (2) 0.4519 (3) 0.422582 0.25806 (3) 0.5128 (3) 0.3548 (2) 0.3793 (18) 0.5541 (3) 0.596641 0.5341 (3) 0.562828 0.5321 (4) 0.476217	x y $0.55122 (3)$ $0.55895 (4)$ $0.42974 (4)$ $0.62247 (6)$ $0.4741 (3)$ $0.9181 (3)$ $0.4328 (3)$ $0.8828 (4)$ 0.390399 0.802474 $0.4550 (2)$ $0.8416 (3)$ $0.4393 (2)$ $0.4023 (3)$ $0.3727 (2)$ $0.3013 (3)$ $0.4519 (3)$ $0.9632 (4)$ 0.422582 0.937169 $0.25806 (3)$ $0.60062 (4)$ $0.5128 (3)$ $1.0806 (4)$ $0.3793 (18)$ $0.613 (4)$ $0.5541 (3)$ $1.1132 (4)$ 0.596641 1.193074 $0.5341 (3)$ $1.0312 (4)$ 0.562828 1.054615 $0.5321 (4)$ $1.1692 (5)$ 0.476217 1.157376	xyz $0.55122 (3)$ $0.55895 (4)$ $0.73950 (3)$ $0.42974 (4)$ $0.62247 (6)$ $0.55858 (4)$ $0.4741 (3)$ $0.9181 (3)$ $0.6510 (2)$ $0.4328 (3)$ $0.8828 (4)$ $0.7272 (3)$ 0.390399 0.802474 0.722371 $0.4550 (2)$ $0.8416 (3)$ $0.56661 (19)$ $0.4393 (2)$ $0.4023 (3)$ $0.5134 (2)$ $0.3727 (2)$ $0.3013 (3)$ $0.5239 (2)$ $0.4519 (3)$ $0.9632 (4)$ $0.8130 (3)$ 0.422582 0.937169 0.866939 $0.25806 (3)$ $0.60062 (4)$ $0.60914 (3)$ $0.5128 (3)$ $1.0806 (4)$ $0.8220 (3)$ $0.3548 (2)$ $0.6580 (3)$ $0.3987 (2)$ $0.3793 (18)$ $0.613 (4)$ $0.3550 (13)$ 0.596641 1.193074 0.743893 $0.5341 (3)$ $1.0312 (4)$ $0.660 (3)$ 0.562828 1.054615 0.601121 $0.5321 (4)$ $1.1692 (5)$ 0.948694	xyz U_{iso}^*/U_{eq} 0.55122 (3)0.55895 (4)0.73950 (3)0.02951 (13)0.42974 (4)0.62247 (6)0.55858 (4)0.02011 (15)0.4741 (3)0.9181 (3)0.6510 (2)0.0243 (7)0.4328 (3)0.8828 (4)0.7272 (3)0.0266 (9)0.3903990.8024740.7223710.032*0.4550 (2)0.8416 (3)0.56661 (19)0.0283 (6)0.4393 (2)0.4023 (3)0.5134 (2)0.0219 (6)0.3727 (2)0.3013 (3)0.5239 (2)0.0209 (7)0.4519 (3)0.9632 (4)0.8130 (3)0.0275 (9)0.4225820.9371690.8669390.033*0.25806 (3)0.60062 (4)0.60914 (3)0.03081 (13)0.5128 (3)1.0806 (4)0.8220 (3)0.0292 (9)0.3548 (2)0.6580 (3)0.3987 (2)0.0297 (6)0.3793 (18)0.613 (4)0.3550 (13)0.045*0.5541 (3)1.1132 (4)0.7408 (3)0.0279 (9)0.5966411.1930740.7438930.033*0.5341 (3)1.0312 (4)0.6560 (3)0.0269 (9)0.5628281.0546150.6011210.032*0.5321 (4)1.1692 (5)0.9149 (3)0.0417 (11)0.4762171.1573760.9486940.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H6B	0.536834	1.267992	0.896711	0.063*
H6C	0.595831	1.140083	0.959757	0.063*
C7	0.3259 (3)	0.2277 (4)	0.4442 (3)	0.0256 (8)
H7	0.339610	0.246866	0.380646	0.031*
C8	0.2582 (3)	0.1247 (4)	0.4535 (3)	0.0305 (9)
H8	0.226450	0.071416	0.396473	0.037*
C9	0.2353 (3)	0.0971 (4)	0.5451 (4)	0.0318 (10)
C10	0.2848 (3)	0.1774 (4)	0.6253 (3)	0.0294 (9)
H10	0.270434	0.162602	0.689092	0.035*
C11	0.3542 (3)	0.2781 (4)	0.6148 (3)	0.0255 (8)
H11	0.388719	0.330637	0.671008	0.031*
C12	0.1594 (4)	-0.0123 (5)	0.5565 (4)	0.0475 (13)
H12A	0.105685	-0.016658	0.495319	0.071*
H12B	0.129842	0.011844	0.613227	0.071*
H12C	0.193117	-0.103673	0.568581	0.071*
C13	0.2496 (4)	0.6767 (8)	0.3550 (4)	0.069 (2)
H13A	0.241626	0.735075	0.294999	0.103*
H13B	0.216868	0.722797	0.403254	0.103*
H13C	0.217904	0.585124	0.336828	0.103*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0332 (2)	0.0303 (2)	0.0229 (2)	0.00096 (17)	0.00200 (17)	-0.00194 (16)
Mn1	0.0218 (3)	0.0170 (3)	0.0229 (3)	-0.0003(2)	0.0080 (2)	-0.0004 (2)
N1	0.0301 (18)	0.0184 (16)	0.0254 (17)	0.0024 (13)	0.0085 (15)	-0.0013 (13)
C1	0.032 (2)	0.021 (2)	0.030(2)	-0.0061 (16)	0.0127 (19)	-0.0017 (16)
01	0.0437 (17)	0.0190 (14)	0.0245 (14)	-0.0034 (12)	0.0125 (13)	-0.0045 (11)
O2	0.0236 (13)	0.0171 (13)	0.0271 (14)	-0.0053 (10)	0.0103 (12)	-0.0032 (11)
N2	0.0189 (15)	0.0168 (16)	0.0291 (17)	0.0001 (12)	0.0098 (14)	0.0013 (13)
C2	0.031 (2)	0.029 (2)	0.025 (2)	0.0034 (17)	0.0130 (18)	0.0010 (17)
Br2	0.0271 (2)	0.0298 (2)	0.0401 (3)	-0.00056 (16)	0.01705 (19)	-0.00008 (18)
C3	0.027 (2)	0.030 (2)	0.030 (2)	0.0036 (17)	0.0038 (18)	-0.0032 (17)
O3	0.0291 (15)	0.0340 (16)	0.0247 (14)	0.0083 (13)	0.0035 (13)	-0.0007 (12)
C4	0.029 (2)	0.024 (2)	0.031 (2)	-0.0017 (16)	0.0069 (18)	0.0002 (16)
C5	0.030 (2)	0.023 (2)	0.029 (2)	0.0012 (17)	0.0090 (18)	0.0051 (16)
C6	0.047 (3)	0.043 (3)	0.035 (2)	-0.010 (2)	0.008 (2)	-0.009 (2)
C7	0.025 (2)	0.027 (2)	0.0239 (19)	-0.0003 (16)	0.0035 (17)	-0.0041 (16)
C8	0.027 (2)	0.024 (2)	0.038 (2)	-0.0039 (17)	0.0029 (19)	-0.0064 (18)
C9	0.023 (2)	0.020 (2)	0.052 (3)	0.0039 (16)	0.009 (2)	0.0052 (19)
C10	0.034 (2)	0.023 (2)	0.033 (2)	0.0035 (17)	0.0102 (19)	0.0090 (17)
C11	0.030 (2)	0.023 (2)	0.0239 (18)	0.0032 (16)	0.0065 (17)	0.0020 (16)
C12	0.044 (3)	0.031 (3)	0.068 (4)	-0.009 (2)	0.015 (3)	0.010 (2)
C13	0.030 (3)	0.136 (6)	0.037 (3)	0.012 (3)	-0.001 (2)	0.014 (3)

Geometric parameters (Å, °)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
N1C1 1.336 (5) C7C8 1.370 (6) N1O1 1.344 (4) C8H8 0.9500 N1C5 1.343 (5) C8C9 1.387 (6) C1H1 0.9500 C9C10 1.382 (6) C1C2 1.379 (6) C9C12 1.497 (6) O2N2 1.349 (4) C10H10 0.9500 N2C7 1.333 (5) C10C11 1.373 (5) N2C7 1.333 (5) C11H11 0.9500 C2H2 0.9500 C12H12A 0.9800 C2C3 1.379 (6) C12H12A 0.9800 C3C4 1.390 (6) C12H12C 0.9800 C3C6 1.502 (6) C13H13A 0.9800 C3C6 1.502 (6) C13H13B 0.9800 C3C4 1.390 (6) C12H12C 0.9800 C4H4 0.9500 C13H13B 0.9800 C4H4 0.9500 C13H13C 0.9800 C4H4 0.9500 C13H13C 0.9800 C4H4 0.9500 C10Mn1-O2 159.59 (11) C5C4C3<	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C1-H10.9500C9-C101.382 (6)C1-C21.379 (6)C9-C121.497 (6)O2-N21.349 (4)C10-H100.9500N2-C71.333 (5)C10-C111.373 (5)N2-C111.345 (5)C11-H110.9500C2-H20.9500C12-H12A0.9800C2-C31.379 (6)C12-H12B0.9800C3-C41.390 (6)C12-H12C0.9800C3-C61.502 (6)C13-H13A0.9800O3-H30.861 (9)C13-H13B0.9800O3-C131.426 (6)C13-H13C0.9800C4-H40.9500VVO1-Mn1-Br196.62 (8)C5-C4-C3120.9 (4)O1-Mn1-O2159.59 (11)C5-C4-H4119.6O1-Mn1-O2i89.55 (10)N1-C5-H5120.0O1-Mn1-Br2102.17 (8)N1-C5-H5120.0O1-Mn1-O386.17 (11)C4-C5-H5120.0O2i-Mn1-Br190.24 (7)C3-C6-H6A109.5O2-Mn1-Br189.03 (7)C3-C6-H6B109.5O2-Mn1-D2i70.77 (11)C3-C6-H6C109.5	
C1C21.379 (6)C9C121.497 (6)O2N21.349 (4)C10H100.9500N2C71.333 (5)C10C111.373 (5)N2C111.345 (5)C11H110.9500C2H20.9500C12H12A0.9800C2C31.379 (6)C12H12B0.9800C3C41.390 (6)C12H12C0.9800C3C61.502 (6)C13H13A0.9800O3H30.861 (9)C13H13B0.9800O3C131.426 (6)C13H13C0.9800C4H40.9500VVO1Mn1O2159.59 (11)C5C4C3120.9 (4)O1Mn1-O2i89.55 (10)N1C5C4120.0 (4)O1Mn1-O386.17 (11)C4C5H5120.0O2iMn1-Br190.24 (7)C3C6H6A109.5O2Mn1-Br189.03 (7)C3C6H6B109.5O2Mn1-Br189.03 (7)C3C6H6C109.5O2Mn1-D2i70.77 (11)C3C6H6C109.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C4—H4 0.9500 O1—Mn1—Br196.62 (8)C5—C4—C3120.9 (4)O1—Mn1—O2159.59 (11)C5—C4—H4119.6O1—Mn1—O2 ⁱ 89.55 (10)N1—C5—C4120.0 (4)O1—Mn1—Br2102.17 (8)N1—C5—H5120.0O1—Mn1—O386.17 (11)C4—C5—H5120.0O2 ⁱ —Mn1—Br190.24 (7)C3—C6—H6A109.5O2—Mn1—Br189.03 (7)C3—C6—H6B109.5O2—Mn1—O2 ⁱ 70.77 (11)C3—C6—H6C109.5	
$O1Mn1-Br1$ 96.62 (8) $C5C4C3$ 120.9 (4) $O1Mn1-O2$ 159.59 (11) $C5C4H4$ 119.6 $O1Mn1-O2^i$ 89.55 (10) $N1C5C4$ 120.0 (4) $O1Mn1-Br2$ 102.17 (8) $N1C5H5$ 120.0 $O1Mn1-O3$ 86.17 (11) $C4C5H5$ 120.0 $O2^iMn1-Br1$ 90.24 (7) $C3C6H6A$ 109.5 $O2Mn1-Br1$ 89.03 (7) $C3C6H6B$ 109.5 $O2Mn1-O2^i$ 70.77 (11) $C3C6H6C$ 109.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
O1Mn1Br2 $102.17 (8)$ N1C5H5 120.0 O1Mn1O3 $86.17 (11)$ C4C5H5 120.0 O2 ⁱ Mn1Br1 $90.24 (7)$ C3C6H6A 109.5 O2Mn1Br1 $89.03 (7)$ C3C6H6B 109.5 O2Mn1O2 ⁱ $70.77 (11)$ C3C6H6C 109.5 O2Mn1D2 ⁱ $70.77 (11)$ C3C6H6C 109.5	
$O1Mn1-O3$ $86.17 (11)$ $C4C5H5$ 120.0 $O2^{i}Mn1-Br1$ $90.24 (7)$ $C3C6-H6A$ 109.5 $O2Mn1-Br1$ $89.03 (7)$ $C3C6-H6B$ 109.5 $O2Mn1-O2^{i}$ $70.77 (11)$ $C3C6-H6C$ 109.5	
O2 ⁱ —Mn1—Br1 90.24 (7) C3—C6—H6A 109.5 O2—Mn1—Br1 89.03 (7) C3—C6—H6B 109.5 O2—Mn1—O2 ⁱ 70.77 (11) C3—C6—H6C 109.5 O2—Mn1—O2 ⁱ 90.24 (7) C3—C6—H6C 109.5	
O2Mn1-Br1 89.03 (7) C3C6H6B 109.5 O2Mn1-O2 ⁱ 70.77 (11) C3C6H6C 109.5 O2Mn1-O2 ⁱ 96.47 (7) 100.5	
$\begin{array}{cccc} O2Mn1O2^{i} & 70.77 (11) & C3C6H6C & 109.5 \\ O2Mn1D2 & O(47.77) & O(47.77) & O(47.77) \\ O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) \\ O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) \\ O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) \\ O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) \\ O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) \\ O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) & O(47.77) \\ O(47.77) & O(47.77) \\ O(47.77) & $	
O2—Mn1—Br2 96.4/(/) H6A—C6—H6B 109.5	
O2 ⁱ —Mn1—Br2 165.02 (7) H6A—C6—H6C 109.5	
O2—Mn1—O3 84.83 (10) H6B—C6—H6C 109.5	
Br2—Mn1—Br1 97.55 (2) N2—C7—H7 119.8	
O3—Mn1—Br1 168.90 (8) N2—C7—C8 120.3 (4)	
O3—Mn1—O2 ⁱ 79.01 (10) C8—C7—H7 119.8	
O3—Mn1—Br2 92.34 (8) C7—C8—H8 119.6	
C1—N1—O1 120.4 (3) C7—C8—C9 120.8 (4)	
C1—N1—C5 121.2 (3) C9—C8—H8 119.6	
C5—N1—O1 118.4 (3) C8—C9—C12 121.8 (4)	
N1—C1—H1 120.1 C10—C9—C8 116.7 (4)	
N1—C1—C2 119.8 (4) C10—C9—C12 121.5 (4)	
C2—C1—H1 120.1 C9—C10—H10 119.2	
N1—O1—Mn1 125.3 (2) C11—C10—C9 121.5 (4)	
$Mn1-O2-Mn1^{i} 109.23 (11) C11-C10-H10 119.2$	
$N2-O2-Mn1^{i}$ 126.1 (2) $N2-C11-C10$ 119.2 (4)	

N2—O2—Mn1	124.6 (2)	N2-C11-H11	120.4
C7—N2—O2	119.5 (3)	C10-C11-H11	120.4
C7—N2—C11	121.4 (3)	C9—C12—H12A	109.5
C11—N2—O2	119.1 (3)	C9—C12—H12B	109.5
С1—С2—Н2	119.3	C9—C12—H12C	109.5
C3—C2—C1	121.4 (4)	H12A—C12—H12B	109.5
С3—С2—Н2	119.3	H12A—C12—H12C	109.5
C2—C3—C4	116.8 (4)	H12B—C12—H12C	109.5
C2—C3—C6	121.2 (4)	O3—C13—H13A	109.5
C4—C3—C6	122.0 (4)	O3—C13—H13B	109.5
Mn1—O3—H3	116.8 (15)	O3—C13—H13C	109.5
C13—O3—Mn1	128.5 (3)	H13A—C13—H13B	109.5
С13—О3—Н3	105.9 (15)	H13A—C13—H13C	109.5
C3—C4—H4	119.6	H13B—C13—H13C	109.5

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3…Br1 ⁱ	0.86 (1)	2.41 (2)	3.255 (3)	166 (3)

Symmetry code: (i) -x+1, -y+1, -z+1.