COMMUNICATIONS

Received 13 June 2019
Accepted 2 July 2019

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; 2-(methylamino)tropone; tropolone.

CCDC reference: 1937929

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of 2-(methylamino)tropone

Leandri Jansen van Vuuren, Hendrik G. Visser and Marietjie Schutte-Smith*

Department of Chemistry, PO Box 339, University of the Free State, Bloemfontein, 9301, South Africa. *Correspondence e-mail: SchutteM@ufs.ac.za

The title compound, 2-(methylamino)cyclohepta-2,4,6-trien-1-one, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$, crystallizes in the monoclinic space group $P 2_{1} / c$, with three independent molecules in the asymmetric unit. The planarity of the molecules is indicated by planes fitted through the seven ring carbon atoms. Small deviations from the planes, with an extremal r.m.s. deviation of $0.0345 \AA$, are present. In complexes of transition metals with similar ligands, the large planar seven-membered aromatic rings have shown to improve the stability of the complex. Two types of hydrogen-bonding interactions, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, are observed, as well as bifurcation of these interactions. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions link molecules to form infinite chains. The packing of molecules in the unit cell shows a pattern of overlapping aromatic rings, forming column-like formations. $\pi-\pi$ interactions are observed between the overlapping aromatic rings at 3.4462 (19) A from each other.

1. Chemical context

Tropolone and other troponoids, non-benzenoid compounds, have great pharmacological potential (Guo et al., 2019). They display a wide range of bioactivities, including antimicrobial (Saleh et al., 1988), antiviral (Tavis \& Lomonosova, 2015) and antitumor (Ononye et al., 2013) activities. Many tropolonerelated compounds have proved to be possible antiproliferative agents against a variety of cancer cell lines, including lung, prostate and T-cell malignancies (Liu \& Yamauchi, 2006; Hsiao et al., 2012). Tropolone has important medical applications in radiopharmacy (Nepveu et al., 1993) and as catalyst precursor (Crous et al., 2005; Roodt et al., 2003).

Tropolone and its derivatives are versatile ligands used in inorganic and organometallic chemistry (Roesky, 2000; Dias et al., 1995; Nozoe et al., 1997; Schutte et al., 2010; Steyl et al., 2010). The carbonyl oxygen and vicinal coordinating substituent, specifically nitrogen in this study, impart a metalchelating ability to these types of ligands. The complexes of these ligands with first and second row transition elements have increased over the past few decades. The ligands of importance in this study and future work, namely 2-(alkylamino)tropones and aminotroponimines, are N, O and N, N^{\prime} bidentate, monoanionic ligands containing a ten π-electron backbone (Roesky, 2000). The π-conjugated backbone is characteristic of these ligands (Nishinaga et al., 2010). Considering the above-mentioned characteristics, tropolone could be considered analogous to the O-donor $\kappa^{2}-O, O^{\prime}$ acetylacetonate ligand (acac- O, O^{\prime}). The tropolone bidentate ligand differs from the acac- O, O^{\prime} ligand in a few ways. Of importance to our study is the larger aromatic delocalization, which could afford greater polarizability. Tropolone is also
more acidic than the acac- O, O^{\prime} ligand. The acidity of the O, N and N, N^{\prime} bidentate ligands used in our study and the effect thereof on the chelating ability could be compared to these O, O^{\prime} bidentate ligands described in the literature. The ligand-metal-ligand angle, better known as the 'bite angle', would also be smaller for a tropolone-derived complex, since it would form a five-membered metallocycle instead of a sixmembered one as with acac- O, O^{\prime} (Bhalla et al., 2005). This could show interesting steric and electronic influences at the metal centre and could be further compared to the steric and electronic studies conveyed on β-diketone moieties in similar metal complexes by Manicum et al. (2018). These ligands, including the title compound, 2-(methylamino)tropone, will form part of the synthesis of water-soluble complexes of rhenium(I) tricarbonyl, gallium(III) and copper(II). Rhenium(I) (Schutte-Smith et al., 2019), gallium(III) (Green \& Welch, 1989) and copper(II) (Boschi et al., 2018) are highly utilized radioisotopes in the radiopharmaceutical industry.

When designing diagnostic or therapeutic radiopharmaceuticals, certain mechanistic aspects are very important, as it is the basis on which some predictions are made regarding the in vivo behaviour. Kinetic studies, utilizing different techniques, are executed to determine the reaction mechanisms by which the proposed radiopharmaceutical complexes will form and react. Results of such studies are important in nuclear medicine as it gives indications regarding the in vivo stability, uptake and excretion as well as the pharmacokinetics of the compounds. Kinetic investigations by Schutte et al. (2011, 2012), Schutte-Smith et al. (2019) and Manicum et al. (2019) were done on rhenium(I) tricarbonyl tropolonato complexes with satisfying results and conclusions. In the study, methanol substitution was studied using entering nucleophiles in $f a c-\left[\operatorname{Re}(\operatorname{Trop})(\mathrm{CO})_{3}(\mathrm{MeOH})\right]$. The kinetic study performed at high pressure indicated positive volumes of activation for all of the reactions studied. This was a clear indication towards a dissociative interchange mechanism.

The application of these ligands in coordination chemistry could be further increased by adding electron donating or withdrawing moieties to the nitrogen atom.

2. Structural commentary

2-(Methylamino)tropone crystallizes in the monoclinic $P 2_{1} / c$ space group with three independent molecules, A, B and C, in the asymmetric unit (Fig. 1). The bond distances and angles of the three molecules agree well with each other and with those in similar structures (Barret et al., 2014; Dwivedi et al., 2016; Roesky \& Bürgstein, 1999; Shimanouchi \& Sasada, 1973; Siwatch et al., 2011). The largest differences in bond distances
are of the $\mathrm{C} 8 B-\mathrm{N} 1 B \quad[1.4470(18) \AA], \mathrm{N} 1 B-\mathrm{C} 2 B$ [1.3444 (17) \AA] and $\mathrm{O} 1 B-\mathrm{C} 1 B[1.2561$ (15) \AA] bonds with the corresponding bonds in 2-(t-butylamino)tropone [1.472 (4) Å; Siwatch et al., 2011], 2-(isopropylamino)tropone [1.330 (4) Aं; Roesky \& Bürgstein, 1999] and 2-(t-butylamino)tropone [1.242 (4) Å; Siwatch et al., 2011], respectively. Compared to the starting material molecule, tropolone (Shimanouchi \& Sasada, 1973), the $\mathrm{O} 1 B-\mathrm{C} 1 B[1.2561$ (15) \AA] bond distance is slightly shorter than that of tropolone $[1.261$ (3) \AA], both being in the range of normal $\mathrm{C}=\mathrm{O}$ bond distance. The $\mathrm{C} 2-$ $\mathrm{N} 1-\mathrm{C} 8$ bond angle in molecules $A\left[125.69(13)^{\circ}\right], B$ [125.27 (13) $)^{\circ}$] and $C\left[125.07(12)^{\circ}\right]$ are slightly larger than the usual 120° for trigonal-planar bond angles, because of the steric influence of the methyl group. These angles are close to the same angle in 2-(benzylamino)tropone [125.09 (12) ${ }^{\circ}$; Barret et al., 2014]. This could be compared to the large angle in 2-(t-butylamino)tropone [131.9 (2) ${ }^{\circ}$; Siwatch et al., 2011], which deviates even more from 120° due to the highly steric tertiary butyl group. A plane fitted through the seven ring carbon atoms of the three molecules in the asymmetric unit indicates that the molecules are planar. The root-mean-square deviations of molecules A, B and C from the planes are 0.0141 (12), 0.0261 (11) and 0.0345 (11) \AA, respectively. The $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ torsion angle, which involves the methyl group, differs for molecule $A\left[-0.8(2)^{\circ}\right]$, molecule $B\left[2.3(2)^{\circ}\right]$ and molecule $C\left[7.7(2)^{\circ}\right]$. The small deviations from planarity could possibly be ascribed to the intermolecular hydrogenbonding interactions.

Figure 1
The molecular structure of 2-(methylamino)tropone, indicating the numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} N 1 A \cdots \mathrm{O} 1 A$	$0.884(17)$	$2.099(16)$	$2.5453(16)$	$110.3(13)$
$\mathrm{N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 1 B$	$0.884(17)$	$2.248(17)$	$2.9375(17)$	$134.6(14)$
$\mathrm{N} 1 B-\mathrm{H} N 1 B \cdots \mathrm{O} 1 B$	$0.893(15)$	$2.085(15)$	$2.5513(16)$	$111.5(12)$
$\mathrm{N} 1 B-\mathrm{H} N 1 B \cdots \mathrm{O} 1 C$	$0.893(15)$	$2.385(15)$	$3.1566(18)$	$144.7(13)$
$\mathrm{N} 1 C-\mathrm{H} N 1 C \cdots \mathrm{O} 1 C$	$0.890(16)$	$2.130(15)$	$2.5775(16)$	$110.3(12)$
$\mathrm{N} 1 C-\mathrm{H} N 1 C \cdots \mathrm{O} 1 A^{\mathrm{i}}$	$0.890(16)$	$2.313(16)$	$2.9759(17)$	$131.3(13)$
$\mathrm{C} 5 C-\mathrm{H} 5 C \cdots \mathrm{O} 1 B^{\text {ii }}$	0.95	2.42	$3.2914(19)$	153
$\mathrm{C} 7 B-\mathrm{H} 7 B \cdots \mathrm{O} 1 A$	0.95	2.42	$3.3446(19)$	165
$\mathrm{C} 8 C-\mathrm{H} 8 C 2 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.98	2.56	$3.178(2)$	121

Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x, y-1, z$.

3. Supramolecular features

Nine hydrogen-bonding interactions, three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and six $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, are observed (Table 1 and Fig. 2). Infinite chains are formed along [001]. These supramolecular chains are formed through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions linking the molecules together. As in the crystal structure of tropolone (Shimanouchi \& Sasada, 1973), bifurcation of the hydrogen bonds take place. Bifurcation, also known as the over-coordination of a hydrogen bond, creates both inter- and intramolecular branches, which might contribute to the stability of the structures. This is an interesting phenomenon seen in the orientation of water molecules, where the distribution of acceptor hydrogen bonds, terminating at the lone pairs of the oxygen, is higher (Markovitch \& Agmon, 2008). This forms over-coordinated oxygens and could also be seen in this crystal

Figure 3
Packing of molecules viewed perpendicular to the $a c$ plane.
structure (Fig. 2). These interactions clearly contribute to the array of the molecules in the asymmetric unit (Fig. 2). The molecules show an interesting packing format in the unit cell. 'Column'-like structures are formed by molecule B packing in a head-to-tail pattern with the aromatic rings overlapping (Fig. 3). A π-interaction is observed, with a perpendicular distance of 3.4462 (19) \AA between the overlapping aromatic rings of two inversion-related B molecules (Fig. 4). These π interactions could not only possibly contribute to the packing

Figure 2
Hydrogen-bonding interactions (Table 1) and infinite chains along [001] in the unit cell.

Figure 4
$\pi-\pi$ interaction (highlighted by the dashed line) between overlapping aromatic rings of molecule B, where B and B^{*} are related through inversion.
format of the molecules in the unit cell, but could also assist in the formation of one-dimensional infinite chains, as Wong et al. (2018) have found in water-soluble platinum (II) salts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016) using a $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ONH}$ fragment yielded four hits of 2-(alkylamino)tropones. These include 2-(isopropylamino)tropone (LIGVOM: Roesky \& Bürgstein, 1999), 2-(benzylamino)tropone (NOPRUH: Barret et al., 2014), 2-(t-butylamino)tropone (OZINUH: Siwatch et al., 2011) and 2-(cyclo hexylamino)tropone (OTIMUB: Dwivedi et al., 2016). Of the four structures, only the 2-(isopropylamino)tropone and the 2(benzylamino)tropone crystallize in the $P 2_{1} / c$ space group.

5. Synthesis and crystallization

Tropolone ($505 \mathrm{mg}, 4.132 \mathrm{mmol}$) was dissolved in 20 mL of a 40% methylamine solution. The reaction mixture was stirred at room temperature for 7 d . The product was extracted three times with 30 mL of chloroform, and the organic layer was washed with 50 mL of water. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. A 46.03% yield ($257.1 \mathrm{mg}, 1.902 \mathrm{mmol}$) was obtained. Crystals suitable for single crystal X-ray diffraction data collection were obtained by recrystallization from hexane with slow evaporation. Yield: $0.2571 \mathrm{~g}, 46.03 \%$. IR $\left(\mathrm{cm}^{-1}\right): v_{\mathrm{NH}}=3304$, $v_{\mathrm{CO}}=1597$. UV/Vis: $\lambda_{\max }=269 \mathrm{~nm}\left(\varepsilon=1.1885 \times 10^{5}\right.$ $\mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.201(m, 4 \mathrm{H})$, $6.682(t, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.501(d, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 3.056(d$, $3 \mathrm{H}, J=5.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (300MHz, CDCl_{3}): $\delta=177,157,137$, 136, 129, 122, 108, 29.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$
$M_{\text {r }}$	135.16
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	100
$a, b, c(\AA)$	17.635 (5), 7.817 (2), 16.718 (4)
β (${ }^{\circ}$)	110.639 (9)
$V\left(\mathrm{~A}^{3}\right)$	2156.8 (10)
Z	12
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.08
Crystal size (mm)	$0.58 \times 0.30 \times 0.28$
Data collection	
Diffractometer	Bruker X8 APEXII 4K Kappa CCD
Absorption correction	Multi-scan $S A D A B S$ (Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.970, 0.977
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections	33879, 5192, 3575
$R_{\text {int }}$	0.046
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.660
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.039, 0.104, 1.03
No. of reflections	5192
No. of parameters	287
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.17, -0.13

Computer programs: APEX2 and SAINT-Plus (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006) and WinGX (Farrugia, 2012).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Methyl and aromatic hydrogen atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and constrained to ride on their parent atoms $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right.$ and $\left.1.2 U_{\text {eq }}(\mathrm{C})\right]$, while $\mathrm{N}-\mathrm{H}$ hydrogens were freely refined.

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa. We would also like to thank the University of the Free State.

References

Barret, M., Bhatia, P., Kociok-Köhn, G. \& Molloy, K. (2014). Transition Met. Chem. 39, 543-551.
Bhalla, G., Oxgaard, J., Goddard, W. \& Periana, R. (2005). Organometallics, 24, 3229-3232.
Boschi, A., Martini, P., Janevik-Ivanovska, E. \& Duatti, A. (2018). Drug Discovery Today, 23, 1489-1501.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2012). APEX2, SAINT, Bruker AXS Inc, Madison, Wisconsin, USA.
Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. \& Roodt, A. (2005). Dalton Trans. pp. 11081116.

Dias, H. V. R., Jin, W. \& Ratcliff, R. E. (1995). Inorg. Chem. 34, 61006105.

Dwivedi, A., Binnani, C., Tyagi, D., Rawat, K., Li, P., Zhao, Y., Mobin, S. M., Pathak, B. \& Singh, S. K. (2016). Inorg. Chem. 55, 67396749.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Green, M. \& Welch, M. (1989). Int. J. Radiat. Appl. Instrum. B, 16, 435-448.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Guo, H., Roman, D. \& Beemelmanns, C. (2019). Natural Product Reports. https://doi.org/10.1039/C8NP00078F.
Hsiao, C. J., Hsiao, S. H., Chen, W. L., Guh, J. H., Hsiao, G., Chan, Y. J., Lee, T. H. \& Chung, C. L. (2012). Chem. Biol. Interact. 197, 2330.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Liu, S. \& Yamauchi, H. (2006). Biochem. Biophys. Res. Commun. 351, 26-32.
Manicum, A., Schutte-Smith, M., Alexander, O., Twigge, L., Roodt, A. \& Visser, H. (2019). Inorg. Chem. Commun. 101, 93-98.

Manicum, A., Schutte-Smith, M. \& Visser, H. (2018). Polyhedron, 145, 80-87.
Markovitch, O. \& Agmon, N. (2008). Mol. Phys. 106, 485-495.
Nepveu, F., Jasanada, F. \& Walz, L. (1993). Inorg. Chim. Acta, 211, 141-147.
Nishinaga, T., Aono, T., Isomura, E., Watanabe, S., Miyake, Y., Miyazaki, A., Enoki, T., Miyasaka, H., Otani, H. \& Iyoda, M. (2010). Dalton Trans. 39, 2293-2300.

Nozoe, T., Lin, L. C., Hsu, C., Tsay, S., Hakimelahib, G. H. \& Hwu, J. R. (1997). J. Chem. Res. (S), pp. 362-363.

Ononye, S. N., VanHeyst, M. D., Oblak, E. Z., Zhou, W., Ammar, M., Anderson, A. C. \& Wright, D. L. (2013). ACS Med. Chem. Lett. 4, 757-761.
Roesky, P. \& Bürgstein, M. (1999). Inorg. Chem. 38, 5629-5632.
Roesky, P. W. (2000). Chem. Soc. Rev. 29, 335-345.
Roodt, A., Otto, S. \& Steyl, G. (2003). Coord. Chem. Rev. 245, 121137.

Saleh, N. A., Zfiefak, A., Mordarski, M. \& Pulverer, G. (1988). Zentralbl. Bakteriol. MikroBiol. Hyg. Med. Microbiol. Infect. Dis. Virol. Paras. 270, 160-170.
Schutte, M., Kemp, G., Visser, H. \& Roodt, A. (2011). Inorg. Chem. 50, 12486-12498.
Schutte, M., Roodt, A. \& Visser, H. (2012). Inorg. Chem. 51, 11996 12006.

Schutte, M., Visser, H. G. \& Roodt, A. (2010). Acta Cryst. E66, m859m860.
Schutte-Smith, M., Roodt, A. \& Visser, H. G. (2019). Dalton Trans. https://doi.org/10.1039/C9DT01528K.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shimanouchi, H. \& Sasada, Y. (1973). Acta Cryst. B29, 81-90.
Siwatch, R. K., Kundu, S., Kumar, S. \& Nagendran, S. (2011). Organometallics, 30, 1998-2005.
Steyl, G., Muller, T. J. \& Roodt, A. (2010). Acta Cryst. E66, m1508.
Tavis, J. E. \& Lomonosova, E. (2015). Antiviral Res. 118, 132-138.
Wong, V., Po, C., Leung, S., Chan, A., Yang, S., Zhu, B., Cui, X. \& Yam, V. W. (2018). J. Am. Chem. Soc. 140, 657-666.

supporting information

Acta Cryst. (2019). E75, 1128-1132 [https://doi.org/10.1107/S2056989019009502]

Crystal structure of 2-(methylamino)tropone

Leandri Jansen van Vuuren, Hendrik G. Visser and Marietjie Schutte-Smith

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT-Plus (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:

SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

2-(Methylamino)cyclohepta-2,4,6-trien-1-one

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$

$M_{r}=135.16$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=17.635$ (5) \AA
$b=7.817$ (2) \AA
$c=16.718$ (4) \AA
$\beta=110.639(9)^{\circ}$
$V=2156.8(10) \AA^{3}$
$Z=12$

Data collection

Bruker X8 APEXII 4K Kappa CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
SADABS (Krause et al., 2015)
$T_{\min }=0.970, T_{\text {max }}=0.977$
$F(000)=864$
$D_{\mathrm{x}}=1.249 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6617 reflections
$\theta=3.5-23.7^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Cuboid, yellow
$0.58 \times 0.30 \times 0.28 \mathrm{~mm}$

33879 measured reflections
5192 independent reflections
3575 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=3.7^{\circ}$
$h=-23 \rightarrow 23$
$k=-10 \rightarrow 10$
$l=-20 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.104$
$S=1.03$
5192 reflections
287 parameters
0 restraints
0 constraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: structure-
invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0361 P)^{2}+0.437 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}

Extinction correction: SHELXL2018
Extinction coefficient: 0.0113 (9)
(Sheldrick, 2015)

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4K Kappa CCD diffractometer using an exposure time of 10 seconds/frame. A total of 1436 frames was collected with a frame width of 0.5° covering up to $\theta=27.99^{\circ}$ with 99.7\% completeness accomplished.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C8A	0.12323 (10)	0.5412 (2)	0.21119 (10)	0.0626 (4)
H8A1	0.113602	0.421239	0.221702	0.094*
H8A2	0.172571	0.549845	0.197169	0.094*
H8A3	0.077051	0.584932	0.163359	0.094*
C8B	0.49672 (10)	0.4930 (2)	0.26816 (10)	0.0586 (4)
H8B1	0.530729	0.588791	0.263364	0.088*
H8B2	0.47058	0.440852	0.2118	0.088*
H8B3	0.530411	0.407538	0.307747	0.088*
C8C	0.19718 (11)	0.2656 (2)	-0.10383 (9)	0.0588 (4)
H8C1	0.234672	0.189118	-0.117954	0.088*
H8C2	0.187004	0.367098	-0.140513	0.088*
H8C3	0.145975	0.20569	-0.113027	0.088*
N1A	0.13282 (7)	0.64142 (16)	0.28726 (8)	0.0460 (3)
N1B	0.43536 (8)	0.55487 (16)	0.29999 (8)	0.0454 (3)
N1C	0.23250 (7)	0.31715 (16)	-0.01509 (7)	0.0450 (3)
O1A	0.17457 (6)	0.83578 (13)	0.41777 (6)	0.0530 (3)
O1B	0.30974 (5)	0.61826 (14)	0.33715 (6)	0.0515 (3)
O1C	0.28810 (7)	0.46038 (12)	0.13314 (6)	0.0574 (3)
HN1A	0.1803 (10)	0.689 (2)	0.3149 (10)	0.064 (5)*
HN1B	0.3829 (9)	0.5397 (19)	0.2695 (10)	0.052 (4)*
HN1C	0.2345 (9)	0.428 (2)	-0.0016 (10)	0.056 (5)*
C1B	0.37461 (8)	0.67009 (17)	0.39220 (8)	0.0379 (3)
C2B	0.44995 (7)	0.63079 (16)	0.37612 (8)	0.0379 (3)
C3B	0.52868 (8)	0.66224 (19)	0.43132 (9)	0.0476 (3)
H3B	0.569782	0.625712	0.410663	0.057*
C4B	0.55733 (9)	0.7385 (2)	0.51194 (10)	0.0545 (4)
H4B	0.614666	0.74095	0.538203	0.065*
C5B	0.51628 (9)	0.8101 (2)	0.55919 (10)	0.0553 (4)
H5B	0.548086	0.855301	0.613404	0.066*
C6B	0.43262 (9)	0.82372 (19)	0.53599 (9)	0.0510 (4)
H6B	0.414495	0.882838	0.575565	0.061*
C7B	0.37249 (8)	0.76418 (18)	0.46432 (8)	0.0437 (3)
H7B	0.319314	0.790761	0.462424	0.052*
C1C	0.27959 (8)	0.30140 (16)	0.13520 (8)	0.0396 (3)

C2C	$0.25275(7)$	$0.21032(16)$	$0.05204(8)$	$0.0346(3)$
C3C	$0.24942(8)$	$0.03409(16)$	$0.03938(9)$	$0.0406(3)$
H3C	0.236584	-0.000441	-0.018381	0.049^{*}
C4C	$0.26179(8)$	$-0.09981(17)$	$0.09743(9)$	$0.0460(3)$
H4C	0.257336	-0.210933	0.073189	0.055^{*}
C5C	$0.27941(9)$	$-0.09661(19)$	$0.18414(10)$	$0.0495(4)$
H5C	0.283417	-0.204059	0.211879	0.059^{*}
C6C	$0.29204(8)$	$0.0487(2)$	$0.23568(9)$	$0.0491(4)$
H6C	0.301651	0.026655	0.294322	0.059^{*}
C7C	$0.29278(8)$	$0.21802(19)$	$0.21506(9)$	$0.0458(3)$
H7C	0.304073	0.293672	0.262311	0.055^{*}
C1A	$0.10733(8)$	$0.76484(17)$	$0.40289(8)$	$0.0411(3)$
C2A	$0.07897(8)$	$0.65224(16)$	$0.32681(8)$	$0.0395(3)$
C3A	$0.00556(8)$	$0.56527(19)$	$0.29566(10)$	$0.0538(4)$
H3A	-0.003564	0.505768	0.243542	0.065^{*}
C4A	$-0.05654(9)$	$0.5510(2)$	$0.32809(13)$	$0.0647(5)$
H4A	-0.100588	0.48099	0.295409	0.078^{*}
C5A	$-0.06451(10)$	$0.6213(2)$	$0.39924(13)$	$0.0702(5)$
H5A	-0.112064	0.59234	0.410595	0.084^{*}
C6A	$-0.01009(11)$	$0.7312(3)$	$0.45709(12)$	$0.0707(5)$
H6A	-0.026039	0.768486	0.502906	0.085^{*}
C7A	$0.06298(10)$	$0.7941(2)$	$0.45827(10)$	$0.0584(4)$
H7A	0.088461	0.870606	0.504039	0.07^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C8A	$0.0635(10)$	$0.0735(11)$	$0.0479(9)$	$-0.0028(9)$	$0.0162(8)$	$-0.0172(8)$
C8B	$0.0646(10)$	$0.0627(10)$	$0.0585(10)$	$0.0095(8)$	$0.0343(8)$	$0.0034(8)$
C8C	$0.0758(11)$	$0.0571(9)$	$0.0380(8)$	$0.0003(8)$	$0.0132(7)$	$0.0016(7)$
N1A	$0.0412(7)$	$0.0501(7)$	$0.0437(7)$	$-0.0052(6)$	$0.0114(5)$	$-0.0085(6)$
N1B	$0.0432(7)$	$0.0527(7)$	$0.0421(7)$	$0.0019(6)$	$0.0171(6)$	$0.0013(5)$
N1C	$0.0587(7)$	$0.0373(6)$	$0.0384(6)$	$-0.0010(5)$	$0.0164(5)$	$-0.0014(5)$
O1A	$0.0484(6)$	$0.0480(6)$	$0.0582(6)$	$-0.0073(5)$	$0.0132(5)$	$-0.0137(5)$
O1B	$0.0353(5)$	$0.0712(7)$	$0.0441(6)$	$-0.0060(5)$	$0.0091(4)$	$-0.0063(5)$
O1C	$0.0861(8)$	$0.0361(5)$	$0.0494(6)$	$-0.0083(5)$	$0.0230(6)$	$-0.0073(5)$
C1B	$0.0360(7)$	$0.0408(7)$	$0.0354(7)$	$-0.0023(5)$	$0.0106(5)$	$0.0074(5)$
C2B	$0.0385(7)$	$0.0371(7)$	$0.0388(7)$	$-0.0007(5)$	$0.0146(6)$	$0.0094(6)$
C3B	$0.0355(7)$	$0.0566(9)$	$0.0517(8)$	$0.0001(6)$	$0.0166(6)$	$0.0091(7)$
C4B	$0.0353(7)$	$0.0669(10)$	$0.0522(9)$	$-0.0082(7)$	$0.0042(6)$	$0.0085(8)$
C5B	$0.0516(9)$	$0.0634(10)$	$0.0422(8)$	$-0.0135(7)$	$0.0056(7)$	$-0.0022(7)$
C6B	$0.0576(9)$	$0.0530(9)$	$0.0425(8)$	$-0.0058(7)$	$0.0177(7)$	$-0.0046(7)$
C7B	$0.0409(7)$	$0.0497(8)$	$0.0417(7)$	$-0.0007(6)$	$0.0158(6)$	$0.0021(6)$
C1C	$0.0402(7)$	$0.0381(7)$	$0.0416(7)$	$-0.0022(5)$	$0.0158(6)$	$-0.0058(6)$
C2C	$0.0327(6)$	$0.0361(6)$	$0.0365(7)$	$0.0003(5)$	$0.0141(5)$	$-0.0009(5)$
C3C	$0.0445(7)$	$0.0367(7)$	$0.0417(7)$	$-0.0003(6)$	$0.0164(6)$	$-0.0054(6)$
C4C	$0.0478(8)$	$0.0337(7)$	$0.0571(9)$	$0.0026(6)$	$0.0192(7)$	$-0.0010(6)$
C5C	$0.0486(8)$	$0.0423(8)$	$0.0561(9)$	$0.0042(6)$	$0.0165(7)$	$0.0120(7)$

C6C	$0.0462(8)$	$0.0590(9)$	$0.0393(8)$	$-0.0020(7)$	$0.0117(6)$	$0.0074(7)$
C7C	$0.0492(8)$	$0.0502(8)$	$0.0372(7)$	$-0.0054(6)$	$0.0143(6)$	$-0.0050(6)$
C1A	$0.0396(7)$	$0.0367(7)$	$0.0420(7)$	$0.0057(6)$	$0.0080(6)$	$0.0033(6)$
C2A	$0.0368(7)$	$0.0347(7)$	$0.0417(7)$	$0.0039(5)$	$0.0072(6)$	$0.0032(6)$
C3A	$0.0406(8)$	$0.0510(8)$	$0.0620(10)$	$-0.0038(6)$	$0.0086(7)$	$-0.0062(7)$
C4A	$0.0392(8)$	$0.0596(10)$	$0.0907(13)$	$-0.0038(7)$	$0.0170(8)$	$0.0064(9)$
C5A	$0.0445(9)$	$0.0794(12)$	$0.0920(14)$	$0.0088(9)$	$0.0308(9)$	$0.0247(11)$
C6A	$0.0661(11)$	$0.0884(13)$	$0.0683(11)$	$0.0241(10)$	$0.0372(10)$	$0.0169(10)$
C7A	$0.0603(10)$	$0.0643(10)$	$0.0504(9)$	$0.0113(8)$	$0.0194(8)$	$-0.0021(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

C8A-N1A	1.4518 (19)	C4B-H4B	0.95
C8A-H8A1	0.98	C5B-C6B	1.391 (2)
C8A-H8A2	0.98	C5B-H5B	0.95
C8A-H8A3	0.98	C6B-C7B	1.3716 (19)
C8B-N1B	1.4470 (18)	C6B-H6B	0.95
C8B-H8B1	0.98	C7B-H7B	0.95
C8B-H8B2	0.98	C1C-C7C	1.4293 (19)
C8B-H8B3	0.98	$\mathrm{C} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}$	1.4832 (18)
C8C-N1C	1.4492 (18)	$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}$	1.3919 (18)
C8C-H8C1	0.98	$\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}$	1.3913 (19)
C8C-H8C2	0.98	C3C-H3C	0.95
C8C-H8C3	0.98	C4C-C5C	1.372 (2)
N1A-C2A	1.3376 (18)	$\mathrm{C} 4 \mathrm{C}-\mathrm{H} 4 \mathrm{C}$	0.95
N1A-HN1A	0.884 (17)	C5C-C6C	1.395 (2)
N1B-C2B	1.3444 (17)	$\mathrm{C} 5 \mathrm{C}-\mathrm{H} 5 \mathrm{C}$	0.95
N1B-HN1B	0.893 (15)	C6C-C7C	1.369 (2)
N1C-C2C	1.3423 (16)	C6C-H6C	0.95
N1C-HN1C	0.890 (16)	C7C-H7C	0.95
O1A-O1A	0.000 (3)	C1A-C7A	1.426 (2)
O1A-C1A	1.2519 (16)	C1A-C2A	1.4812 (19)
O1B-O1B	0.0000 (19)	$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.3906 (19)
O1B-C1B	1.2561 (15)	C3A-C4A	1.387 (2)
O1C-O1C	0.000 (3)	C3A-H3A	0.95
$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}$	1.2537 (16)	C4A-C5A	1.362 (3)
C1B-C7B	1.4240 (19)	C4A-H4A	0.95
C1B-C2B	1.4777 (18)	C5A-C6A	1.393 (3)
C2B-C3B	1.3917 (19)	C5A-H5A	0.95
C3B-C4B	1.395 (2)	C6A-C7A	1.373 (2)
C3B-H3B	0.95	C6A-H6A	0.95
C4B-C5B	1.366 (2)	C7A-H7A	0.95
N1A-C8A-H8A1	109.5	C6B-C7B-C1B	132.22 (14)
N1A-C8A-H8A2	109.5	C6B-C7B-H7B	113.9
H8A1-C8A-H8A2	109.5	C1B-C7B-H7B	113.9
N1A-C8A-H8A3	109.5	$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{O} 1 \mathrm{C}$	0.00 (10)
H8A1-C8A-H8A3	109.5	$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 7 \mathrm{C}$	119.73 (12)

H8A2-C8A-H8A3	109.5
N1B-C8B-H8B1	109.5
N1B-C8B-H8B2	109.5
H8B1-C8B-H8B2	109.5
N1B-C8B-H8B3	109.5
H8B1-C8B-H8B3	109.5
H8B2-C8B-H8B3	109.5
$\mathrm{N} 1 \mathrm{C}-\mathrm{C} 8 \mathrm{C}-\mathrm{H} 8 \mathrm{C} 1$	109.5
N1C-C8C-H8C2	109.5
$\mathrm{H} 8 \mathrm{C} 1-\mathrm{C} 8 \mathrm{C}-\mathrm{H} 8 \mathrm{C} 2$	109.5
N1C-C8C-H8C3	109.5
$\mathrm{H} 8 \mathrm{C} 1-\mathrm{C} 8 \mathrm{C}-\mathrm{H} 8 \mathrm{C} 3$	109.5
$\mathrm{H} 8 \mathrm{C} 2-\mathrm{C} 8 \mathrm{C}-\mathrm{H} 8 \mathrm{C} 3$	109.5
C2A-N1A-C8A	125.69 (13)
C2A-N1A-HN1A	115.0 (11)
C8A-N1A-HN1A	118.8 (11)
C2B-N1B-C8B	125.27 (13)
C2B-N1B-HN1B	114.4 (10)
C8B-N1B-HN1B	120.3 (10)
$\mathrm{C} 2 \mathrm{C}-\mathrm{N} 1 \mathrm{C}-\mathrm{C} 8 \mathrm{C}$	125.07 (12)
$\mathrm{C} 2 \mathrm{C}-\mathrm{N} 1 \mathrm{C}-\mathrm{HN1C}$	114.7 (10)
C8C-N1C-HN1C	119.5 (10)
O1A-O1A-C1A	0 (10)
O1B-O1B-C1B	0 (10)
$\mathrm{O} 1 \mathrm{C}-\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}$	0 (10)
O1B-C1B-O1B	0.00 (15)
O1B-C1B-C7B	119.87 (12)
O1B-C1B-C7B	119.87 (12)
O1B-C1B-C2B	116.40 (12)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	116.40 (12)
C7B-C1B-C2B	123.72 (12)
N1B-C2B-C3B	121.26 (12)
N1B-C2B-C1B	112.32 (11)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	126.40 (13)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	130.76 (14)
C2B-C3B-H3B	114.6
C4B-C3B-H3B	114.6
C5B-C4B-C3B	130.44 (14)
C5B-C4B-H4B	114.8
C3B-C4B-H4B	114.8
C4B-C5B-C6B	126.62 (14)
C4B-C5B-H5B	116.7
C6B-C5B-H5B	116.7
C7B-C6B-C5B	129.43 (15)
C7B-C6B-H6B	115.3
C5B-C6B-H6B	115.3
$\mathrm{O} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	0.00 (7)

$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 7 \mathrm{C}$	119.73 (12)
$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}$	116.86 (12)
$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}$	116.86 (12)
$\mathrm{C} 7 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}$	123.36 (12)
$\mathrm{N} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}$	120.28 (12)
$\mathrm{N} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 1 \mathrm{C}$	112.83 (11)
$\mathrm{C} 3 \mathrm{C}-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 1 \mathrm{C}$	126.87 (12)
$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{C} 2 \mathrm{C}$	130.60 (13)
$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{H} 3 \mathrm{C}$	114.7
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{H} 3 \mathrm{C}$	114.7
$\mathrm{C} 5 \mathrm{C}-\mathrm{C} 4 \mathrm{C}-\mathrm{C} 3 \mathrm{C}$	130.16 (13)
$\mathrm{C} 5 \mathrm{C}-\mathrm{C} 4 \mathrm{C}-\mathrm{H} 4 \mathrm{C}$	114.9
$\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}-\mathrm{H} 4 \mathrm{C}$	114.9
$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 5 \mathrm{C}-\mathrm{C} 6 \mathrm{C}$	126.51 (13)
$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 5 \mathrm{C}-\mathrm{H} 5 \mathrm{C}$	116.7
C6C-C5C-H5C	116.7
$\mathrm{C} 7 \mathrm{C}-\mathrm{C} 6 \mathrm{C}-\mathrm{C} 5 \mathrm{C}$	130.18 (14)
C7C-C6C-H6C	114.9
$\mathrm{C} 5 \mathrm{C}-\mathrm{C} 6 \mathrm{C}-\mathrm{H} 6 \mathrm{C}$	114.9
$\mathrm{C} 6 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{C} 1 \mathrm{C}$	131.55 (13)
$\mathrm{C} 6 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{H} 7 \mathrm{C}$	114.2
$\mathrm{C} 1 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{H} 7 \mathrm{C}$	114.2
O1A-C1A-O1A	0.00 (9)
O1A-C1A-C7A	119.86 (13)
O1A-C1A-C7A	119.86 (13)
O1A-C1A-C2A	116.32 (12)
O1A-C1A-C2A	116.32 (12)
C7A-C1A-C2A	123.82 (13)
N1A-C2A-C3A	120.88 (13)
N1A-C2A-C1A	112.23 (11)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	126.88 (13)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	130.67 (16)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	114.7
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	114.7
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	130.39 (16)
C5A-C4A-H4A	114.8
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	114.8
C4A-C5A-C6A	126.67 (16)
C4A-C5A-H5A	116.7
C6A-C5A-H5A	116.7
C7A-C6A-C5A	130.12 (17)
C7A-C6A-H6A	114.9
C5A-C6A-H6A	114.9
C6A-C7A-C1A	131.32 (16)
C6A-C7A-H7A	114.3
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{H} 7 \mathrm{~A}$	114.3
$\mathrm{N} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}$	-174.98(13)

$\mathrm{O} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$0.00(11)$
$\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$2.3(2)$
$\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$-176.57(13)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$4.66(16)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$4.66(16)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	$-174.08(12)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-174.13(13)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-174.13(13)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$7.1(2)$
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$179.84(15)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-1.5(2)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-2.6(3)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$-0.1(3)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	$3.1(3)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$0.8(3)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$174.25(15)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$174.25(15)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$-7.1(2)$
$\mathrm{O} 1 \mathrm{C}-\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 7 \mathrm{C}$	$0.0(2)$
$\mathrm{O} 1 \mathrm{C}-\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}$	$0.0(2)$
$\mathrm{C} 8 \mathrm{C}-\mathrm{N} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}$	$7.7(2)$
$\mathrm{C} 8 \mathrm{C}-\mathrm{N} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 1 \mathrm{C}$	$-174.00(13)$
O1C-C1C-C2C-N1C	$-7.16(17)$
O1C-C1C-C2C-N1C	$-7.16(17)$
C7C-C1C-C2C-N1C	$170.43(12)$
O1C-C1C-C2C-C3C	$171.01(13)$
O1C-C1C-C2C-C3C	$171.01(13)$
C7C-C1C-C2C-C3C	$-11.4(2)$

$\mathrm{C} 1 \mathrm{C}-\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}$	$7.0(2)$
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}-\mathrm{C} 5 \mathrm{C}$	$1.4(3)$
$\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}-\mathrm{C} 5 \mathrm{C}-\mathrm{C} 6 \mathrm{C}$	$-2.5(3)$
$\mathrm{C} 4 \mathrm{C}-\mathrm{C} 5 \mathrm{C}-\mathrm{C} 6 \mathrm{C}-\mathrm{C} 7 \mathrm{C}$	$-2.3(3)$
$\mathrm{C} 5 \mathrm{C}-\mathrm{C} 6 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{C} 1 \mathrm{C}$	$1.4(3)$
$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{C} 6 \mathrm{C}$	$-175.92(15)$
$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{C} 6 \mathrm{C}$	$-175.92(15)$
$\mathrm{C} 2 \mathrm{C}-\mathrm{C} 1 \mathrm{C}-\mathrm{C} 7 \mathrm{C}-\mathrm{C} 6 \mathrm{C}$	$6.6(2)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$0.00(3)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$0.00(2)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-0.8(2)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$179.80(13)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$1.88(17)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$1.88(17)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	$-177.78(13)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-177.44(13)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-177.44(13)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$2.9(2)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$176.30(16)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-4.4(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$1.6(3)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$1.5(3)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$-0.6(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$-1.8(3)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-178.88(16)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$-178.88(16)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$	$0.8(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} N 1 A \cdots \mathrm{O} 1 A$	$0.884(17)$	$2.099(16)$	$2.5453(16)$	$110.3(13)$
$\mathrm{N} 1 A-\mathrm{H} N 1 A \cdots \mathrm{O} 1 B$	$0.884(17)$	$2.248(17)$	$2.9375(17)$	$134.6(14)$
$\mathrm{N} 1 B-\mathrm{H} N 1 B \cdots \mathrm{O} 1 B$	$0.893(15)$	$2.085(15)$	$2.5513(16)$	$111.5(12)$
$\mathrm{N} 1 B-\mathrm{H} N 1 B \cdots \mathrm{O} 1 C$	$0.893(15)$	$2.385(15)$	$3.1566(18)$	$144.7(13)$
$\mathrm{N} 1 C-\mathrm{H} N 1 C \cdots \mathrm{O} 1 C$	$0.890(16)$	$2.130(15)$	$2.5775(16)$	$110.3(12)$
$\mathrm{N} 1 C-\mathrm{H} N 1 C \cdots \mathrm{O} 1 A^{\mathrm{i}}$	$0.890(16)$	$2.313(16)$	$2.9759(17)$	$131.3(13)$
$\mathrm{C} 5 C-\mathrm{H} 5 C \cdots \mathrm{O} 1 B^{\mathrm{ii}}$	0.95	2.42	$3.2914(19)$	153
$\mathrm{C} 7 B-\mathrm{H} 7 B \cdots \mathrm{O} 1 A$	0.95	2.42	$3.3446(19)$	165
$\mathrm{C} 8 C-\mathrm{H} 8 C 2 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.98	2.56	$3.178(2)$	121

[^0]
[^0]: Symmetry codes: (i) $x,-y+3 / 2, z-1 / 2$; (ii) $x, y-1, z$.

