

Received 28 June 2019 Accepted 8 July 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: 1,2,4-triazolyl carboxylate; silver(I) metal-organic framework; hydrogen bonding; crystal structure.

CCDC reference: 1939097

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Crystal structure of poly[[[μ_4 -3-(1,2,4-triazol-4-yl)adamantane-1-carboxylato- $\kappa^5 N^1$: N^2 : O^1 : O^1 , O^1 ']silver(I)] dihydrate]

Ganna A. Senchyk,^a* Harald Krautscheid^b and Kostiantyn V. Domasevitch^a

^aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01033, Ukraine, and ^bInstitut für Anorganische Chemie, Universitat Leipzig, Johannisallee 29, D-04103, Leipzig, Germany. *Correspondence e-mail: senchyk.ganna@gmail.com

The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1carboxylate (*tr-ad-COO*⁻), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C₁₃H₁₆N₃O₂)]·2H₂O}_n, crystallizing in the rare orthorhombic C222₁ space group. Alternation of the double μ_2 -1,2,4-triazole and μ_2 - η^2 : η^1 -COO⁻ (chelating, bridging mode) bridges between Ag^I cations supports the formation of sinusoidal coordination chains. The Ag^I centers possess a distorted {N₂O₃} square-pyramidal arrangement with $\tau_5 = 0.30$. The angular organic linkers connect the chains into a tetragonal framework with small channels along the *c*-axis direction occupied by water molecules of crystallization, which are interlinked *via* O–H···O hydrogen bonds with carboxylate groups, leading to right- and left-handed helical dispositions.

1. Chemical context

Organic ligands, which contain two different functional groups, such as azole and carboxylic groups, attract attention in the context of the construction of unusual metal-organic frameworks (MOFs) including heterometallic architectures (Guillerm et al. 2014). Each ligand function is intended to introduce its coordination ability towards a metal center forming secondary building units (SBUs) based on its peculiarities. For instance, 1,2,4-triazoles (tr) typically serve as short N,N-bridges between two metal ions resulting in polynuclear units and chains (Wang et al. 2007, Murdock & Jenkins 2014). In contrast, carboxylate groups offer a much broader variety of coordination modes: mono-, chelate-, bridging- and their combinations; and the number of connected metal ions may differ from one to four (Sun et al. 2004; Lu et al. 2014). As shown by Lincke et al. (2011, 2012), 1,2,4-triazolecarboxylate ligands are good candidates for the construction of microporous MOFs suitable for gas sorption and separation. Considering the heterofunctional tr/COO ligands, there are two possible roles for them to play. First, the 'separate' role, where tr is responsible for di-, tri- or tetranuclear cluster formation, whereas the COO⁻ group only occupies terminal (non-bridging) positions (Handke et al. 2014) or it can be involved in the separate coordination to metal centers. In this context, Chen et al. (2011) used 1,2,4-triazolyl isophthalate as a ligand in the synthesis of a series of $Ag^{I}-Ln^{III}$ heterometallic coordination polymers. Second, in the 'cooperative' role, tr/ COO serves as a heteroleptic bridge between the metal centers (Vasylevs'kyy et al. 2015).

In present paper, we report the crystal structure of a new silver(I) coordination polymer $[Ag(tr-ad-COO)]_n \cdot 2H_2O$ (I) based on the 1-(1,2,4-triazol-4-yl)-3-carboxyadamantane $(C_{13}H_{16}N_3O_2; tr-ad-COOH)$ ligand.

2. Structural commentary

The title compound **I** crystallizes in the orthorhombic system with the uncommon space group $C222_1$. The asymmetric unit contains one Ag^I cation, one organic ligand and three distinct water molecules of crystallization, one of which (O5) is disordered over two adjacent sites (Fig. 1). The O3 water molecule is situated on a crystallographic twofold axis passing through the O atom, while the O4 water molecule is statistically disordered over two positions, both possessing an occupancy factor of 0.5. Thus, in the asymmetric unit, the total atom content sums up to two water molecules. The 1,2,4triazole functional group is coordinated by two Ag^I centers as a μ_2 -N,N bridge and the carboxylate group connects two Ag^I centers in a chelating, bridging mode (μ_2 - η^2 : η^1), supporting the formation of sinusoidal chains with a periodicity of 13 Å.

In the case of compound **I** an unusual situation with alternation of double triazoles and double carboxylate bridges within the chain is observed. Thus, the *tr-ad-COO⁻* ligands act in a deprotonated form adopting a μ_4 -coordination modes (Fig. 2) that yields a three-dimensional tetragonal pattern with open channels along the *c*-axis direction (Fig. 3).

Figure 1

Fragment of the crystal structure of **I**. The independent part of the structure is indicated with black bonds and displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$, (ii) $\frac{1}{2} + x$, $-\frac{1}{2} + y$, z, (iii) x, -y, 1 - z]

Figure 2

Projection on the *bc* plane showing the interconnection of sinusoidal Ag^{I} coordination chains by means of *tr-ad-COO⁻* organic ligands into a threedimensional framework.

The coordination environment of the Ag^I cation is a very distorted {N₂O₃} polyhedron with two Ag–N(triazole) [2.291 (3) Å, 2.442 (3) Å] and three elongated Ag– O(carboxylate) [2.437 (3)–2.703 (4) Å] bonds (Table 1). The geometry of the five-coordinate center can be described by the geometric parameter τ_5 , which represents the degree of trigonality between two ideal structures – trigonal bipyramid

Figure 3 View of the channels along the c axis in the structure of **I**.

Ag1-N2 ⁱ	2.291 (3)	Ag1-O2	2.571 (4)
Ag1-O1	2.437 (3)	Ag1-O2 ⁱⁱⁱ	2.703 (4)
Ag1-N1 ⁱⁱ	2.442 (3)	-	
N2 ⁱ -Ag1-O1	125.93 (11)	N1 ⁱⁱ -Ag1-O2	121.93 (12)
N2 ⁱ -Ag1-N1 ⁱⁱ	92.12 (11)	N2 ⁱ -Ag1-O2 ⁱⁱⁱ	101.35 (11)
O1-Ag1-N1 ⁱⁱ	106.84 (11)	$O1 - Ag1 - O2^{iii}$	128.04 (11)
$N2^{i} - Ag1 - O2$	145.74 (12)	N1 ⁱⁱ -Ag1-O2 ⁱⁱⁱ	89.79 (11)
O1-Ag1-O2	51.95 (11)	$O2 - Ag1 - O2^{iii}$	77.22 (13)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (iii) x, -y, -z + 1.

 $(\tau_5 = 1)$ and square pyramid $(\tau_5 = 0)$ (Addison *et al.*, 1984). In compound **I**, the Ag1 center has $\tau_5 = 0.30$, indicating a significantly distorted square-pyramidal geometry.

3. Supramolecular features

The water guest molecules inside the [001] channels are responsible for the extended hydrogen-bonding network (Table 2). Together with the $-COO^-$ groups, they are organized into two types of helices along the *c* axis – smaller right-handed (A in Fig. 4) and bigger left-handed (B in Fig. 4). In addition, weak $C-H_{(triazole)}\cdotsO1_{(COO)}$ and $C-H_{(triazole)}\cdotsO1_{(COO)}$ and $C-H_{(triazole)}\cdotsO1_{(COO)}$ is shown in Fig. 5.

Figure 4

Hydrogen-bonding scheme between water molecules and COO⁻ groups showing the formation of right-handed (A) and left-handed (B) helices. Adamantyl fragments are omitted for clarity. [Symmetry codes: (iv) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z; (v) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z; (vi) 1 - x, y, $\frac{1}{2} - z$; (vii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.]

Table 2	
Hydrogen-bond geometry (Å,	°).

$\overline{D - \mathbf{H} \cdots A}$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3-H1W\cdots O1$	0.85	1.97	2.818 (5)	171
$O4-H2W\cdots O3$	0.85	1.92	2.746 (10)	163
$O4-H3WO5A^{iv}$	0.85	1.81	2.56 (2)	147
$O4-H3W\cdots O5B^{iv}$	0.85	2.11	2.83 (3)	143
$C1-H1\cdots O1^{v}$	0.94	2.43	3.336 (5)	162
$C2-H2\cdots O4^{vi}$	0.94	2.58	3.516 (12)	171

Symmetry codes: (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (vi) $-x + 1, y, -z + \frac{1}{2}$.

4. Synthesis and crystallization

1-(1,2,4-Triazol-4-yl)-3-carboxyadamantane (*tr-ad-COOH*) was synthesized by refluxing 3-amino-adamantane-1-carboxylic acid (Wanka *et al.*, 2007) (3.00 g, 15.4 mmol) and dimethylformamide azine (5.46 g, 38.5 mmol) in the presence of toluenesulfonic acid monohydrate (0.44 g, 2.3 mmol) as catalyst in DMF (30 ml). Yield = 63%.

The synthesis of **I** was carried out under hydrothermal conditions as follows. A mixture of $AgNO_3$ (17.0 mg, 0.100 mmol), *tr-ad-COOH* (12.4 mg, 0.050 mmol) and 5 ml of water was added into a Teflon vessel, which was sealed and heated at 413 K for 24 h and slowly cooled to room temperature over 48 h, yielding colourless needles of **I** (yield 13.3 mg, 68%).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. O4 lies adjacent to a crystallographic twofold axis and is statistically disordered over two positions (O4···O4 = 0.60 Å) and O5 is statistically disordered over adjacent locations (O5A···O5B = 0.77 Å). CH hydrogen atoms were positioned geometrically and refined as riding,

The packing of the right- and left-handed helices in the crystal structure of I (top view). Adamantyl fragments are omitted for clarity.

with C-H = 0.94 Å (triazole); C-H = 0.98 Å (adamantane CH₂); C-H = 0.99 Å (adamantane CH) and with $U_{iso}(H) = 1.2U_{eq}(C)$. OH hydrogen atoms were located and then refined with O-H = 0.85 Å (H₂O) and with $U_{iso}(H) = 1.5U_{eq}(O)$. For one of the disordered water molecules, the H atoms were not located.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-05).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Chen, M., Chen, M.-S., Okamura, T., Lv, M.-F., Sun, W.-Y. & Ueyama, N. (2011). *CrystEngComm*, **13**, 3801–3810.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). *Chem. Soc. Rev.* 43, 6141–6172.
- Handke, M., Weber, H., Lange, M., Möllmer, J., Lincke, J., Gläser, R., Staudt, R. & Krautscheid, H. (2014). *Inorg. Chem.* 53, 7599–7607.
- Lincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). *Inorg. Chem.* 51, 7579–7586.
- Lincke, J., Lässig, D., Moellmer, J., Reichenbach, C., Puls, A., Moeller, A., Gläser, R., Kalies, G., Staudt, R. & Krautscheid, H. (2011). *Microporous Mesoporous Mater.* 142, 62–69.
- Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle, T. III, Bosch, M. & Zhou, H.-C. (2014). *Chem. Soc. Rev.* 43, 5561–5593.
- Murdock, C. R. & Jenkins, D. M. (2014). J. Am. Chem. Soc. 136, 10983–10988.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (2000). *IPDS Software*. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[Ag(C_{13}H_{16}N_{3}O_{2})]\cdot 2H_{2}O$
M _r	390.19
Crystal system, space group	Orthorhombic, C222 ₁
Temperature (K)	213
a, b, c (Å)	12.9321 (9), 17.9056 (10), 12.9695 (9)
$V(Å^3)$	3003.2 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.36
Crystal size (mm)	$0.22 \times 0.18 \times 0.16$
Data collection	
Diffractometer	Stoe Image plate diffraction system
Absorption correction	Numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
T_{\min}, T_{\max}	0.649, 0.689
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13596, 3617, 3135
R _{int}	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.661
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.058, 0.97
No. of reflections	3617
No. of parameters	204
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.89, -0.94
Absolute structure	Flack x determined using 1289 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	-0.060(9)
-	

Computer programs: *IPDS Software* (Stoe & Cie, 2000), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *DIAMOND* (Brandenburg, 1999) and *WinGX* (Farrugia, 2012).

- Sun, D., Cao, R., Bi, W., Weng, J., Hong, M. & Liang, Y. (2004). Inorg. Chim. Acta, 357, 991–1001.
- Vasylevs'kyy, S. I., Lysenko, A. B., Krautscheid, H., Karbowiak, M., Rusanov, E. B. & Domasevitch, K. V. (2015). *Inorg. Chem. Commun.* 62, 51–54.
- Wang, Y., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 2002–2010.
- Wanka, L., Cabrele, C., Vanejews, M. & Schreiner, P. R. (2007) Eur. J. Org. Chem. pp. 1474–1490.

supporting information

Acta Cryst. (2019). E75, 1145-1148 [https://doi.org/10.1107/S2056989019009708]

Crystal structure of poly[[[μ_4 -3-(1,2,4-triazol-4-yl)adamantane-1-carboxylato- $\kappa^5 N^1: N^2: O^1: O^1, O^1'$]silver(I)] dihydrate]

Ganna A. Senchyk, Harald Krautscheid and Kostiantyn V. Domasevitch

Computing details

Data collection: *IPDS Software* (Stoe & Cie, 2000); cell refinement: *IPDS Software* (Stoe & Cie, 2000); data reduction: *IPDS Software* (Stoe & Cie, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Poly[[[μ_4 -3-(1,2,4-triazol-4-yl)adamantane-1-carboxylato- $\kappa^5 N^1$: N^2 : O^1 : O^1 , O^1]silver(I)] dihydrate]

Crystal data	
$[Ag(C_{13}H_{16}N_{3}O_{2})] \cdot 2H_{2}O$ $M_{r} = 390.19$ Orthorhombic, C222 ₁ a = 12.9321 (9) Å b = 17.9056 (10) Å c = 12.9695 (9) Å V = 3003.2 (3) Å ³ Z = 8 F(000) = 1584	$D_{\rm x} = 1.726 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13596 reflections $\theta = 2.8-28.0^{\circ}$ $\mu = 1.36 \text{ mm}^{-1}$ T = 213 K Needle, colourless $0.22 \times 0.18 \times 0.16 \text{ mm}$
Data collection	
Stoe Image plate diffraction system diffractometer φ oscillation scans Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] $T_{\min} = 0.649, T_{\max} = 0.689$ 13596 measured reflections	3617 independent reflections 3135 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -17 \rightarrow 17$ $k = -22 \rightarrow 23$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.058$ S = 0.97 3617 reflections 204 parameters 0 restraints Hydrogen site location: mixed H-atom parameters constrained	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.037P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.89$ e Å ⁻³ $\Delta\rho_{min} = -0.94$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 1289 quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$ (Parsons et al., 2013) Absolute structure parameter: -0.060 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ag1	0.39032 (3)	0.01581 (2)	0.35981 (2)	0.04198 (10)	
01	0.4141 (3)	0.14822 (17)	0.3962 (2)	0.0474 (8)	
O2	0.3185 (3)	0.09152 (19)	0.5123 (3)	0.0581 (9)	
N1	0.0616 (2)	0.45845 (17)	0.3648 (3)	0.0318 (6)	
N2	0.1451 (2)	0.46474 (17)	0.2982 (2)	0.0316(7)	
N3	0.1946 (2)	0.39903 (16)	0.4325 (2)	0.0231 (6)	
C1	0.0930 (3)	0.4190 (2)	0.4435 (3)	0.0282 (8)	
H1	0.0514	0.4060	0.5001	0.034*	
C2	0.2230 (3)	0.4290 (2)	0.3398 (2)	0.0276 (7)	
H2	0.2890	0.4245	0.3102	0.033*	
C3	0.3583 (3)	0.1495 (2)	0.4758 (3)	0.0339 (9)	
C4	0.2574 (2)	0.3521 (2)	0.5055 (3)	0.0219 (7)	
C5	0.2762 (3)	0.27539 (19)	0.4550 (3)	0.0234 (7)	
H5A	0.3139	0.2819	0.3900	0.028*	
H5B	0.2098	0.2515	0.4396	0.028*	
C6	0.3398 (3)	0.2253 (2)	0.5293 (3)	0.0260 (7)	
C7	0.2807 (3)	0.2174 (2)	0.6319 (3)	0.0333 (8)	
H7A	0.2140	0.1929	0.6196	0.040*	
H7B	0.3206	0.1862	0.6796	0.040*	
C8	0.2626 (3)	0.2948 (2)	0.6802 (3)	0.0333 (9)	
H8	0.2247	0.2887	0.7460	0.040*	
C9	0.1977 (3)	0.3427 (2)	0.6064 (3)	0.0278 (8)	
H9A	0.1311	0.3184	0.5931	0.033*	
H9B	0.1843	0.3917	0.6374	0.033*	
C10	0.3616 (3)	0.3907 (2)	0.5253 (3)	0.0287 (8)	
H10A	0.3502	0.4401	0.5556	0.034*	
H10B	0.3990	0.3970	0.4601	0.034*	
C11	0.4256 (3)	0.3416 (2)	0.5999 (3)	0.0326 (8)	
H11	0.4930	0.3659	0.6135	0.039*	
C12	0.4439 (3)	0.2646 (2)	0.5505 (3)	0.0294 (8)	
H12A	0.4859	0.2338	0.5968	0.035*	
H12B	0.4819	0.2707	0.4857	0.035*	
C13	0.3663 (3)	0.3327 (2)	0.7016 (3)	0.0384 (10)	
H13A	0.4069	0.3025	0.7499	0.046*	
H13B	0.3547	0.3818	0.7328	0.046*	
03	0.5000	0.2468 (3)	0.2500	0.0630 (13)	
H1W	0.4787	0.2190	0.2988	0.094*	
O4	0.5231 (6)	0.3992 (4)	0.2479 (18)	0.068 (3)	0.5
H2W	0.5153	0.3530	0.2348	0.102*	0.5

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H3W	0.5724	0.4038	0.2909	0.102*	0.5
O5A	0.1318 (13)	0.0398 (10)	0.6097 (11)	0.096 (4)	0.5
O5B	0.1073 (12)	0.0560 (11)	0.5604 (12)	0.100 (5)	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.04963 (17)	0.03609 (16)	0.04023 (15)	0.01122 (15)	-0.00959 (15)	-0.01749 (13)
01	0.063 (2)	0.0348 (16)	0.0446 (17)	0.0145 (14)	-0.0012 (14)	-0.0141 (12)
O2	0.064 (2)	0.0231 (18)	0.087 (3)	0.0013 (17)	0.005 (2)	-0.0047 (15)
N1	0.0325 (15)	0.0318 (15)	0.0311 (14)	0.0098 (12)	-0.0019 (15)	-0.0012 (14)
N2	0.0379 (17)	0.0292 (17)	0.0275 (14)	0.0059 (13)	-0.0028 (12)	0.0018 (12)
N3	0.0255 (15)	0.0201 (15)	0.0239 (14)	0.0042 (12)	-0.0023 (11)	0.0004 (11)
C1	0.0258 (19)	0.0321 (19)	0.0266 (17)	0.0057 (15)	0.0039 (14)	0.0016 (13)
C2	0.0290 (17)	0.0307 (19)	0.0231 (17)	0.0050 (15)	0.0002 (13)	0.0037 (13)
C3	0.037 (2)	0.019 (2)	0.045 (2)	0.0076 (16)	-0.0134 (16)	-0.0061 (17)
C4	0.0260 (15)	0.022 (2)	0.0176 (13)	0.0035 (15)	-0.0030 (14)	0.0009 (11)
C5	0.0261 (16)	0.0211 (17)	0.0229 (15)	0.0034 (14)	-0.0023 (13)	-0.0028 (13)
C6	0.0317 (18)	0.0184 (17)	0.0280 (17)	0.0040 (15)	-0.0026 (13)	-0.0024 (13)
C7	0.0394 (18)	0.0290 (19)	0.0315 (18)	0.0046 (15)	0.0011 (17)	0.0080 (16)
C8	0.042 (2)	0.039 (2)	0.0196 (15)	0.0089 (17)	0.0015 (15)	0.0045 (14)
C9	0.0321 (19)	0.0278 (19)	0.0235 (16)	0.0076 (15)	0.0039 (13)	0.0010 (13)
C10	0.0305 (19)	0.0208 (19)	0.0349 (19)	-0.0023 (14)	-0.0063 (13)	-0.0024 (15)
C11	0.0323 (19)	0.0275 (19)	0.0380 (19)	0.0011 (15)	-0.0147 (15)	-0.0050 (15)
C12	0.0272 (18)	0.029 (2)	0.0321 (19)	0.0056 (16)	-0.0059 (14)	-0.0003 (15)
C13	0.052 (3)	0.037 (2)	0.0266 (17)	0.0087 (18)	-0.0121 (16)	-0.0052 (15)
03	0.067 (3)	0.060 (3)	0.062 (3)	0.000	0.001 (3)	0.000
O4	0.051 (9)	0.068 (4)	0.085 (5)	-0.008 (4)	-0.018 (10)	0.000 (6)
O5A	0.089 (10)	0.109 (9)	0.091 (10)	-0.005 (7)	0.009 (7)	-0.018 (8)
O5B	0.060 (7)	0.128 (12)	0.110 (11)	0.003 (8)	-0.005 (8)	-0.045 (10)

Geometric parameters (Å, °)

Ag1—N2 ⁱ	2.291 (3)	C6—C12	1.544 (5)
Ag1—01	2.437 (3)	C7—C8	1.538 (5)
Ag1—N1 ⁱⁱ	2.442 (3)	С7—Н7А	0.9800
Ag1—O2	2.571 (4)	С7—Н7В	0.9800
Ag1—O2 ⁱⁱⁱ	2.703 (4)	C8—C13	1.529 (6)
O1—C3	1.259 (5)	C8—C9	1.536 (5)
O2—C3	1.251 (5)	C8—H8	0.9900
N1-C1	1.305 (5)	С9—Н9А	0.9800
N1—N2	1.387 (4)	С9—Н9В	0.9800
N1—Ag1 ^{iv}	2.442 (3)	C10-C11	1.548 (5)
N2—C2	1.310 (5)	C10—H10A	0.9800
N2—Ag1 ^v	2.291 (3)	C10—H10B	0.9800
N3—C2	1.366 (4)	C11—C13	1.533 (6)
N3—C1	1.369 (5)	C11—C12	1.538 (5)
N3—C4	1.505 (4)	C11—H11	0.9900

supporting information

C1—H1	0.9400	C12—H12A	0.9800
C2—H2	0.9400	C12—H12B	0.9800
C3—C6	1.544 (5)	C13—H13A	0.9800
C4 - C9	1.530(5)	C13—H13B	0.9800
C4-C10	1.535 (5)	O3—H1W	0.8500
C4-C5	1.555(5) 1 541(5)	$04 - 04^{vi}$	0.601 (16)
C5 C6	1.541(5) 1.552(5)	$O_4 = O_4$	0.8500
C5_H5A	0.0800	$O_4 = H_2 W$	0.8500
C5 USP	0.9800		0.8500
С. С.	0.9600	OJA—OJB	0.770 (10)
CoC/	1.542 (5)		
$N2^{i}$ Ag1 -01	125 93 (11)	C3—C6—C5	108 1 (3)
$N2^{i}$ A g1 $N1^{ii}$	92 12 (11)	$C_{8} - C_{7} - C_{6}$	110.1(3)
$\Omega_1 = Ag_1 = N_1^{ii}$	106 84 (11)	C8 - C7 - H7A	109.6
$N2^{i}$ Ag1 O2	145.74(12)	C6 $C7$ $H7A$	109.6
$\Lambda_2 - Ag_1 - O_2$	51.95(11)	C_{0} C_{1} C_{1} C_{1} C_{2} C_{1} C_{2} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2} C_{2} C_{1} C_{2} C_{2	109.0
N_{1}^{1} A_{2}^{1} O_{2}^{2}	121.93(11)	$C_{0} = C_{1} = H_{1} = H_{2}$	109.0
N1 - Ag1 - O2	121.95(12) 101.25(11)	$C_0 - C_7 - H_7 B$	109.0
$N_2 - Ag_1 - O_2$	101.55(11) 128.04(11)	H/A = C/ = H/B	108.2
$OI - AgI - O2^{iii}$	128.04 (11)	C13 - C8 - C9	110.1 (3)
NI^{μ} $AgI = 02^{\mu}$	89.79 (11)	C13 - C8 - C7	110.0 (3)
$O2$ —Ag1— $O2^{m}$	77.22 (13)	C9—C8—C7	109.5 (3)
C3—O1—Ag1	96.0 (3)	С13—С8—Н8	109.1
C3—O2—Ag1	89.9 (3)	С9—С8—Н8	109.1
C1—N1—N2	106.7 (3)	С7—С8—Н8	109.1
C1—N1—Ag1 ^{iv}	122.0 (2)	C4—C9—C8	108.5 (3)
N2—N1—Ag1 ^{iv}	130.9 (2)	С4—С9—Н9А	110.0
C2—N2—N1	107.6 (3)	С8—С9—Н9А	110.0
C2—N2—Ag1 ^v	135.8 (2)	C4—C9—H9B	110.0
N1—N2—Ag1 ^v	115.7 (2)	С8—С9—Н9В	110.0
C2—N3—C1	104.3 (3)	H9A—C9—H9B	108.4
C2—N3—C4	128.9 (3)	C4—C10—C11	108.6 (3)
C1—N3—C4	126.8 (3)	C4—C10—H10A	110.0
N1—C1—N3	111.0 (3)	C11—C10—H10A	110.0
N1—C1—H1	124.5	C4—C10—H10B	110.0
N3—C1—H1	124.5	C11—C10—H10B	110.0
N2—C2—N3	110.3 (3)	H10A—C10—H10B	108.4
N2—C2—H2	124.8	C13—C11—C12	110.0 (3)
N3—C2—H2	124.8	C13—C11—C10	109.2 (3)
O2—C3—O1	122.1 (4)	C12—C11—C10	109.3 (3)
02 - C3 - C6	119.7 (4)	C13—C11—H11	109.4
01 - C3 - C6	118.7(1)	C12—C11—H11	109.4
N_{3} C_{4} C_{9}	109.1(3)	C10-C11-H11	109.1
N_{3} C4 C10	109.1(3) 109.1(3)	C11-C12-C6	109.1
$C_{9} - C_{4} - C_{10}$	109.1(3) 110.5(3)	C11_C12_H12A	109.6
$N_3 C_4 C_5$	108.4(3)	C6-C12-H12A	109.0
$C_{2} - C_{4} - C_{5}$	100.7(3) 110.2(3)	C11 - C12 - H12R	109.0
$C_{10} = C_{1} = C_{2}$	10.2(3)	C6 C12 U12D	109.0
CA $C5$ $C6$	109.5(3) 100.5(3)	H12A C12 H12D	109.0
-0	102.2 (3)	1112π -0.12 $-1112D$	100.1

С4—С5—Н5А	109.8	C8—C13—C11	109.2 (3)
С6—С5—Н5А	109.8	C8—C13—H13A	109.8
C4—C5—H5B	109.8	C11—C13—H13A	109.8
С6—С5—Н5В	109.8	C8—C13—H13B	109.8
H5A—C5—H5B	108.2	C11—C13—H13B	109.8
C7—C6—C12	108.7 (3)	H13A—C13—H13B	108.3
C7—C6—C3	112.6 (3)	O4 ^{vi} —O4—H2W	84.2
C12—C6—C3	110.2 (3)	O4 ^{vi} —O4—H3W	133.4
C7—C6—C5	109.1 (3)	H2W—O4—H3W	108.4
C12—C6—C5	108.1 (3)		
	0.1.(4)		114 4 (4)
CI = NI = N2 = C2	-0.1 (4)	02-03-06-05	-114.4 (4)
AgI^{N} NI $N2$ $C2$	173.7 (3)	01-03-06-05	65.8 (4)
CI—NI—N2—AgI ^v	171.1 (2)	C4—C5—C6—C7	58.0 (4)
$AgI^{V} - NI - N2 - AgI^{V}$	-15.1 (4)	C4—C5—C6—C12	-60.0 (4)
N2—N1—C1—N3	0.4 (4)	C4—C5—C6—C3	-179.3 (3)
$Ag1^{iv}$ —N1—C1—N3	-174.1 (2)	C12—C6—C7—C8	58.8 (4)
C2—N3—C1—N1	-0.5 (4)	C3—C6—C7—C8	-178.8 (3)
C4—N3—C1—N1	-178.4 (3)	C5—C6—C7—C8	-58.8 (4)
N1—N2—C2—N3	-0.2 (4)	C6—C7—C8—C13	-60.3(4)
$Ag1^{v}$ N2 C2 N3	-168.8 (3)	C6—C7—C8—C9	60.7 (4)
C1—N3—C2—N2	0.4 (4)	N3—C4—C9—C8	180.0 (3)
C4—N3—C2—N2	178.3 (3)	C10—C4—C9—C8	-60.1 (4)
Ag1	-4.0 (4)	C5—C4—C9—C8	61.1 (4)
Ag1—O2—C3—C6	176.3 (3)	C13—C8—C9—C4	59.9 (4)
Ag1—O1—C3—O2	4.2 (4)	C7—C8—C9—C4	-61.1 (4)
Ag1-01-C3-C6	-176.0 (3)	N3—C4—C10—C11	-179.7 (3)
C2—N3—C4—C9	170.9 (3)	C9—C4—C10—C11	60.4 (4)
C1—N3—C4—C9	-11.7 (5)	C5—C4—C10—C11	-61.2 (4)
C2—N3—C4—C10	50.1 (5)	C4—C10—C11—C13	-60.1 (4)
C1—N3—C4—C10	-132.5 (3)	C4—C10—C11—C12	60.4 (4)
C2—N3—C4—C5	-69.0 (4)	C13-C11-C12-C6	59.3 (4)
C1—N3—C4—C5	108.3 (4)	C10-C11-C12-C6	-60.6 (4)
N3—C4—C5—C6	-179.3 (3)	C7—C6—C12—C11	-58.4 (4)
C9—C4—C5—C6	-60.0 (3)	C3—C6—C12—C11	177.8 (3)
C10—C4—C5—C6	61.8 (4)	C5-C6-C12-C11	59.8 (4)
O2—C3—C6—C7	6.2 (5)	C9—C8—C13—C11	-60.8 (4)
O1—C3—C6—C7	-173.6 (3)	C7—C8—C13—C11	59.9 (4)
O2—C3—C6—C12	127.7 (4)	C12—C11—C13—C8	-59.4 (4)
O1—C3—C6—C12	-52.1 (4)	C10-C11-C13-C8	60.5 (4)

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) x+1/2, y-1/2, z; (iii) x, -y, -z+1; (iv) x-1/2, y+1/2, z; (v) -x+1/2, y+1/2, -z+1/2; (vi) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O3—H1 <i>W</i> …O1	0.85	1.97	2.818 (5)	171
O4—H2 <i>W</i> ···O3	0.85	1.92	2.746 (10)	163

supporting information O4—H3W····O5A^{vii} 0.85 1.81 2.56 (2) 147 O4—H3*W*···O5*B*^{vii} 0.85 2.11 2.83 (3) 143 $C1 - H1 \cdots O1^{viii}$ 0.94 2.43 3.336 (5) 162 C2—H2··· $O4^{vi}$ 0.94 3.516 (12) 171 2.58

Symmetry codes: (vi) -x+1, y, -z+1/2; (vii) x+1/2, -y+1/2, -z+1; (viii) x-1/2, -y+1/2, -z+1.