

Received 9 May 2019 Accepted 4 June 2019

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; coordination compound; copper(II) complex; dinuclear complex: bipvridine derivative: tartrates: electroless copper baths; hydrogen bonding; π stacks.

CCDC reference: 1920829

Supporting information: this article has supporting information at journals.iucr.org/e

Dennis Wiedemann,* Roman-David Kulko and Andreas Grohmann

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany. *Correspondence e-mail: dennis.wiedemann@chem.tu-berlin.de

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an L-(+)-tartrate as complexing agent, and a 2,2'-bipyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1kO-bis(4,4'-dimethoxy-2,2'-bipyridine)- $1\kappa^2 N, N'; 2\kappa^2 N, N' - [\mu - (2R, 3R) - 2, 3 - dioxidosuccinato - 1\kappa^2 O^1, O^2; 2\kappa^2 O^3, O^4] di$ copper(II) octahydrate, $[Cu_2(C_{12}H_{12}N_2O_2)_2(C_4H_2O_6)(H_2O)]\cdot 8H_2O$, from an ECB mock-up. The title compound crystallizes in the Sohncke group $P2_1$ with one chiral dinuclear complex and eight molecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex molecules exhibit an ansa-like structure with two planar, nearly parallel bipyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato 'handle'. The complex and water molecules give rise to a layered supramolecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures *ex situ* is a first step on the way to prolonged stability and improved coating behavior of ECBs.

1. Chemical context

The production of printed circuit boards (PCB) starts with electroless copper deposition (ECD) on electrically nonconductive plastics. Copper is deposited from an alkaline solution of a copper(II) salt and a reducing agent (in general, formaldehyde). The reduction of copper(II) ions proceeds only at pH > 10, thus making methanediolate (deprotonated formaldehyde hydrate) the actual reactant (Van Den Meerakker, 1981; Jusys & Vaskelis, 1992). A complexing agent prevents the precipitation of copper(II) hydroxide ($K_{\rm L}$ = 0.16 μ mol³ L⁻³), which would otherwise occur at pH > 5.7. Since the early development of ECD in 1946, L-(+)-tartrate has commonly been used as complexing agent (Narcus, 1947). Between pH 11 and 13, it forms bis(tartrato)copper(II), $[Cu(C_4H_2O_6)_2]^{6-}$, where each tartaric-acid-derived ligand is quadruply deprotonated. This complex is also known from Fehling's solution (Fehling, 1848; Hörner & Klüfers, 2016). Reactant solutions facilitating ECD, so-called electroless copper baths (ECB), are metastable with respect to the precipitation of metallic copper, making additional stabilizers necessary. Over the past 60 years, a plethora of compounds has been used for this purpose (Agens, 1960; Saubestre, 1972), affecting not only the lifetime of ECBs but also the rate of

OPEN \bigcirc ACCESS ECD and the physical properties of the deposited copper. Amongst the stabilizers, 2,2'-bipyridine and its derivatives are especially popular (Oita *et al.*, 1997).

Herein, we report on the crystal structure of a compound that formed from an alkaline solution of a copper(II) salt, a tartrate, and 4,4'-dimethoxy-2,2'-bipyridine (dmobpy) during the investigation of stabilities of various copper(II) complexes with ligands derived from 2,2'-bipyridine (bpy).

2. Structural commentary

The compound crystallizes in the Sohncke group $P2_1$ with one chiral complex molecule and eight molecules of hydration water in the asymmetric unit. The copper(II) ions in the dinuclear complex (see Fig. 1) are each coordinated by two azine nitrogen donors, one alcoholate and one carboxylate oxygen donor. The lengths of the respective short bonds (*ca* 1.89–2.00 Å) reflect the formal charge of the donor atoms, while a *cis* configuration is enforced by the structure of the ligand. An additional longer bond to an aqua ligand [d(Cu1 - O60) = 2.322 (3) Å] augments the coordination environment of Cu1 to a distorted square pyramid. Cu2, on the other hand,

Figure 1

Molecular structure of the title compound as an *ORTEP* plot (complex molecule only, solvent water molecules omitted for clarity). Hydrogen atoms are depicted as spheres with arbitrary radius, all other atoms as displacement ellipsoids of 50% probability. The dashed line indicates a non-bonding short contact.

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O60-H60A\cdots O50^{i}$	0.81 (5)	2.00 (5)	2.802 (3)	167 (5)
O60−H60 <i>B</i> ···O67	0.77 (5)	1.98 (5)	2.750 (4)	177 (5)
O61-H61A···O65	0.81(2)	2.02 (3)	2.813 (4)	166 (4)
$O61 - H61B \cdot \cdot \cdot O52^{ii}$	0.82(2)	1.92 (2)	2.739 (3)	177 (4)
O62−H62A···O64	0.79 (2)	2.01 (3)	2.774 (3)	164 (5)
$O62 - H62B \cdots O55$	0.80(2)	1.85 (2)	2.650 (3)	174 (5)
$O63 - H63A \cdots O59^{ii}$	0.83 (2)	1.97 (2)	2.806 (3)	178 (4)
O63−H63B···O61	0.85 (2)	2.13 (2)	2.970 (3)	176 (4)
O64−H64A···O52	0.81(2)	2.05 (3)	2.762 (3)	146 (4)
$O64 - H64B \cdots O65$	0.85 (2)	1.95 (3)	2.719 (3)	149 (4)
$O65 - H65A \cdots O59^{iii}$	0.82(2)	2.08 (3)	2.871 (3)	162 (4)
$O65 - H65B \cdots O66$	0.81(2)	2.01 (2)	2.801 (4)	167 (4)
$O66-H66A\cdots O53^{ii}$	0.79(2)	1.91 (3)	2.680 (3)	169 (5)
O66−H66 <i>B</i> ···O62	0.80(2)	2.02 (3)	2.808 (4)	167 (5)
O67-H67A···O62	0.84(2)	1.91 (3)	2.737 (4)	168 (5)
$O67 - H67B \cdots O59^{ii}$	0.83 (2)	2.15 (2)	2.973 (3)	178 (5)
$O68-H68A\cdots O57^{iii}$	0.90 (3)	2.52 (4)	3.236 (4)	138 (5)
$O68-H68B\cdots O60^{iv}$	0.91 (2)	2.23 (3)	3.129 (5)	169 (5)

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z - 1; (iii) x - 1, y, z - 1; (iv) x - 1, y, z.

is coordinated in a square planar fashion with a short contact to a second alcoholate oxygen atom $[d(Cu2\cdots O55) = 2.549 (2) \text{ Å}].$

The 4,4'-dimethoxy-2,2'-bipyridine ligands are nearly planar [positional root-mean-square (r.m.s.) deviation excluding hydrogen atoms: 0.032 Å for ligand containing N10 and N20, 0.041 Å for ligand containing N30 and N40], almost parallel [interplanar angle: 2.70 (4)°], and give rise to intramolecular π stacks with an average centroid–plane distance of 3.36 (5) Å. Because of this, the overall molecular structure resembles that of ansa compounds, with the tartrato ligand representing the 'handle'. The tartrato ligand assumes an antiperiplanar (*ap*) conformation with respect to the central bond of the carbonatom chain. The C–O bonds at the carboxylate donors are synperiplanar (*sp*) to the C–O bonds at the neighboring alcoholate donors.

The absolute structure of the crystal was established *via* anomalous-dispersion effects [the inversion-distinguishing power of the experiment is strong according to Flack & Bernardinelli 2000)] and matches the absolute configuration of the employed L-(+)-(2R,3R)-tartrate. The Flack parameter is within the statistical range for an untwinned crystal, thus confirming the enantiopurity of the complex molecules (Flack & Bernardinelli, 2000).

3. Supramolecular features

Roughly parallel to { $\overline{111}$ }, complexes form infinite π stacks, in which the intermolecular distance of 3.37 (6) Å (average centroid-plane distance) equals the intramolecular one (see Fig. 2*a*). A hydrogen bond from the aqua ligand to the carboxylato oxygen atom O50 of the neighboring molecule in the stack connects the tartrato(4–) ligands, forming an infinite hydrophilic backbone along the *a* direction.

The eight unique water molecules constitute a local network of hydrogen bonds (see Table 1) in a pocket formed by aqua

research communications

Figure 2

Packing diagram in views along (a) the vector a + c showing the π -stacked bipyridine-type ligands and (b) the cell vector c showing the layer-like arrangement. Dashed bright blue lines indicate hydrogen bonds. Unit-cell boundaries are depicted in black or red/green/blue marking the directions a/b/c, respectively. Symmetry code: (i) x - 1, y, z.

(donors only) and tartrato ligands (all oxygen atoms as acceptors). The methoxy groups do not partake in hydrogen bonding but build a hydrophobic lining of the pocket. In this way, a front-to-back arrangement of alternating water and complex layers along b is formed (see Fig. 2b).

4. Database survey

The Cambridge Structural Database [CDS 5.40 Update 1 (February 2019); Allen, 2002; Groom *et al.*, 2016] contains 33 structures of tartratometal (Co^{II}, Cr^{III}, Cu^{II}, Pd^{II}, Pt^{II}) complexes with bipyridine-related ligands, amongst which twelve contain copper(II). The palladium(II) and platinum(II) complexes are structurally loosely related to

 $[Cu_2(dmobpy)_2(\mu-C_4H_2O_6)(H_2O)]$ in that they form isolated neutral dinuclear complexes $[\{M^{II}L\}_2(\mu-C_4H_2O_6)]$ (*M*: metal, *L*: bipyridine-related ligand). Their centers, however, are coordinated in a square-planar fashion without additional longer bonds to oxygen donors.

The copper(II) complexes fall into two groups containing either regular tartrate(2–) or deprotonated tartrate(4–). The former group comprises isolated cationic complexes such as $[{Cu(bpy)_2}_2(\mu-C_4H_4O_6)]^{2+}$ (Wu *et al.*, 2008) and poly-/oligomeric complexes such as $[Cu(bpy)(\mu-C_4H_4O_6)]_n$ (Liu *et al.*, 2008). The latter group, on the other hand, incorporates isolated neutral complexes like aqua-terminated $[Cu_2L_2(\mu-C_4H_2O_6)(H_2O)]$ (L: bis[2-pyridyl]amine; Li *et al.*, 2006) or polymeric complexes bridged by carboxylate-*O* donors such as $[{Cu(bpy)}_2(\mu_4-C_4H_2O_6)]_n$ presenting Cu₂O₂ motifs (Li *et al.*, 2005).

The closest known relative to the title compound, however, is $[Cu_2(phen)_2(\mu-C_4H_2O_6)(H_2O)]\cdot 8H_2O$ (phen: 1,10-phenanthroline), which crystallizes in the same space-group type with comparable cell dimensions (Saha *et al.*, 2011). Both structures are crystal-chemically homeotypic and differ mainly in the replacement of the 4,4'-methoxy groups at the bipyridine-like ligands by a 3,3'-(1,2-ethenediyl) bridge.

5. Synthesis and crystallization

Copper(II) sulfate pentahydrate (4.96 g, 19.9 mmol, 1.00 eq), potassium sodium L-(+)-tartrate tetrahydrate (12.33 g, 43.7 mmol, 2.20 eq), and sodium hydroxide (5.60 g, 140.0 mmol, 7.04 eq) were dissolved in deionized water (1 L), resulting in a solution with pH = 12.8. 4,4'-Dimethoxy-2,2'-bipyridine (216 mg, 1.00 mmol) was dissolved in sulfuric acid (10 mL, 0.1 mol L⁻¹). In a plastic centrifuge tube, the tartratocopper solution (5 mL) was mixed with the bipyridine solution (0.12 mmol). The mixture was then filled up to a final volume of 7 mL with deionized water and sodium hydroxide solution to adjust the final pH to 12.8.

After two days of standing unsealed at ambient temperature, dark-blue crystals of $[Cu_2(dmobpy)_2(\mu-C_4H_2O_6)(H_2O)]$ -8H₂O formed.

An infrared (IR) spectrum in attenuated total reflectance (ATR) was acquired from a ground crystal using a Thermo Nicolet iS5 equipped with a Thermo Nicolet iD5 ZnSe sample holder. Bands (vs: very strong, s: strong, m: medium, w: weak, br: broad) were assigned using literature data (Hesse *et al.*, 1979; Socrates, 2001), as well as reference spectra of the dmobpy ligand and potassium sodium L-(+)-tartrate. The crystals were insoluble in common laboratory solvents (alkanes, ethers, alcohols, dimethylformamide, dimethyl sulfoxide, and water) at ambient and elevated temperature and decomposed in boiling coordinating solvents. Therefore, we cannot provide data of analyses relying on solutions.

IR (ATR): $\tilde{v} = 3467$, 3295 (all *br w*, v[OH]), 1669 (*s*, v[OC=O]), 1600 (*vs*, v[OC-O], v[C=C], v[C=N]), 1558 (*vs*, v[C=C], v[C=N]), 1499 (*s*), 1476, 1461, 1437, 1418 (all *s*, δ [CH], dmobpy), 1344 (*s*, δ [CH], tartrato), 1317 (*m*), 1280 (*vs*, v_s [C=OMe]), 1253 (*s*, tartrato), 1226 (*s*, dmobpy), 1186 (*w*),

Table 2Experimental details.

Crystal data Chemical formula

 $(H_2O)]\cdot 8H_2O$ 867.75 Μ. Crystal system, space group Monoclinic, P21 Temperature (K) 150 a, b, c (Å) 8.5134 (4), 23.7812 (9), 8.9028 (4) $\beta (^{\circ})$ V (Å³) 101.401 (4) 1766.87 (13) Ζ Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 1.29 $0.84 \times 0.70 \times 0.09$ Crystal size (mm) Data collection Diffractometer Agilent Xcalibur Absorption correction Analytical (CrysAlis PRO; Rigaku OD. 2015) T_{\min}, T_{\max} 0.440, 0.886 No. of measured, independent and 19893, 8971, 8476 observed $[I > 2\sigma(I)]$ reflections 0.021 Rint $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.703 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.028, 0.072, 1.04 No. of reflections 8971 No. of parameters 536 No. of restraints 25 H-atom treatment H-atom parameters constrained for H on C, refined H-atom coordinates only for H on heteroatoms $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.49. -0.50Absolute structure Flack x determined using 2429 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter -0.010(6)

 $[Cu_2(C_{12}H_{12}N_2O_2)_2(C_4H_2O_6)-$

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

1137 (*w*), 1103 (*w*), 1040, 1025, 1016, 1005 (all *s*, $v_{as}[C-OMe]$, v[C=C], v[C=N]), 872 (*w*), 851 (*s*, $\gamma[CH]$), 838 (*vs*, $\gamma[CH]$), 794 (*s*, $\delta_s[COO]$), 662 (*br m*, $\omega[COO]$), 572 cm⁻¹ (*s*, $\rho[COO]$).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were located in difference-Fourier maps (for the complex and most water molecules) or their positions were inferred from neighboring sites (for the water molecule containing O68). Carbon-bound hydrogen atoms were refined with standard riding models. Oxygen-bound hydrogen atoms were refined semi-freely with restrained 1,2- $[d(O-H) \simeq$ 0.84 (2) Å] and 1,3-distances $[d(H \cdots H) \simeq 1.33$ (4) Å], as well as constrained isotropic displacement parameters $[U_{iso}(H) =$ $1.2U_{eq}(O)]$. Final bond lengths ranged between 0.77 (5) and 0.91 (2) Å with an r.m.s. deviation of 0.036 Å from the target value.

After close inspection of the reflection statistics, data with $2\theta > 60^{\circ}$ (essentially noise) and the high-angle reflection $1 \overline{21} 0$ (mismeasurement) were excluded from the final refinement. The somewhat lower Friedel pair coverage is due to an inadequate choice of data-collection strategy. Unfortunately, we could not repeat the experiment because of sample loss.

Acknowledgements

We thank Ms Paula Nixdorf for the collection of diffraction data and Dr. Julia Kohl (both Technische Universität Berlin) for solubility assessment and spectroscopic analyses. We acknowledge support by the German Research Foundation and the Open Access Publication Fund of TU Berlin.

References

- Agens, M. C. (1960). US-American Patent No. 2938805.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fehling, H. (1848). Arch. Physiol. Heilkd. 7, 64-73.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hesse, M., Meier, H. & Zeeh, B. (1979). Spektroskopische Methoden in der organischen Chemie, pp. 55–92. Suttgart: Thieme.

Hörner, T. G. & Klüfers, P. (2016). Eur. J. Inorg. Chem. pp. 1798–1807.

- Jusys, Z. & Vaskelis, A. (1992). Langmuir, 8, 1230–1231.
- Li, D.-S., Wang, Y.-Y., Liu, P., Luan, X.-J., Zhou, C.-H. & Shi, Q.-Z. (2005). Acta Chim. Sinica, 63, 1633–1637.
- Li, D.-S., Zhou, C.-H., Wang, Y.-Y., Fu, F., Wu, Y.-P., Qi, G.-C. & Shi, Q.-Z. (2006). Chin. J. Chem. 24, 1352–1358.
- Liu, J.-Q., Wang, Y.-Y., Ma, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). *Inorg. Chim. Acta*, **361**, 2327–2334.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Narcus, H. (1947). Met. Finish. 45, 64-70.
- Oita, M., Matsuoka, M. & Iwakura, C. (1997). *Electrochim. Acta*, **42**, 1435–1440.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Saha, R., Biswas, S. & Mostafa, G. (2011). CrystEngComm, 13, 1018– 1028.
- Saubestre, E. B. (1972). Plating 59, 563-566.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies, 3rd ed. Chichester: Wiley.
- Van Den Meerakker, J. E. A. M. (1981). J. Appl. Electrochem. 11, 387–393.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, Y.-P., Fu, F., Li, D.-S., Yang, Z.-H., Zou, K. & Wang, Y.-Y. (2008). Inorg. Chem. Commun. 11, 621–625.

Acta Cryst. (2019). E75, 972-975 [https://doi.org/10.1107/S2056989019008053]

Synthesis, characterization, and crystal structure of aquabis(4,4'-dimethoxy-2,2'-bipyridine)[μ -(2R,3R)-tartrato(4–)]dicopper(II) octahydrate

Dennis Wiedemann, Roman-David Kulko and Andreas Grohmann

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

Aqua-1 κ O-bis(4,4'-dimethoxy-2,2'-bipyridine)-1 κ ²N,N';2 κ ²N,N'-[μ -(2R,3R)-2,3-dioxidosuccinato-1 κ ²O¹,O²:2 κ ²O³,O⁴]dicopper(II) octahydrate

Crystal data

$[Cu_2(C_{12}H_{12}N_2O_2)_2(C_4H_2O_6)(H_2O)]$ ·8H ₂ O
$M_r = 867.75$
Monoclinic, $P2_1$
a = 8.5134 (4) Å
b = 23.7812 (9) Å
c = 8.9028 (4) Å
$\beta = 101.401 \ (4)^{\circ}$
$V = 1766.87 (13) Å^3$
Z = 2

Data collection

Agilent Xcalibur diffractometer Radiation source: fine-focus sealed tube, Agilent Enhance Graphite monochromator Detector resolution: 16.3031 pixels mm⁻¹ ω scans Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.072$ S = 1.048971 reflections F(000) = 900 $D_x = 1.631 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8483 reflections $\theta = 3.7-32.5^{\circ}$ $\mu = 1.29 \text{ mm}^{-1}$ T = 150 KPlate, dark blue $0.84 \times 0.70 \times 0.09 \text{ mm}$

 $T_{\min} = 0.440, T_{\max} = 0.886$ 19893 measured reflections 8971 independent reflections 8476 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 30.0^{\circ}, \theta_{\text{min}} = 3.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -33 \rightarrow 31$ $l = -11 \rightarrow 12$

536 parameters
25 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

Heteroxyz $w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.0799P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.49 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.50 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 2429 quotients [(*I*⁺)-(*I*⁻)]/[(*I*⁺)+(*I*⁻)] (Parsons *et al.*, 2013)
Absolute structure parameter: -0.010 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

l.s. plane 1

Equation (x, y, z in crystal coordinates): -6.8237(16) x + 5.2625(12) y + 6.259(2) z = 3.953(6)Defining atoms and their deviation from the plane: N30: -0.014 (2) Å C31: -0.046 (3) Å C32: -0.024 (3) Å C33: 0.024 (3) Å C34: 0.042 (3) Å C35: 0.024 (2) Å O36: 0.055 (2) Å C37: -0.075 (3) Å N40: 0.042 (2) Å C41: 0.018 (3) Å C42: -0.029 (3) Å C43: -0.033 (3) Å C44: -0.014 (3) Å C45: 0.023 (2) Å O46: -0.059 (2) Å C47: 0.065 (3) Å Rms deviation: 0.041 Å

l.s. plane 2

Equation (x, y, z in crystal coordinates): -6.6296(17) x + 6.166(11) y + 6.3561(18) z = 1.306(6)Defining atoms and their deviation from the plane: N10: -0.025 (2) Å C11: -0.035 (2) Å C12: -0.025 (3) Å C13: -0.001 (3) Å C14: 0.002 (3) Å C15: -0.014 (2) Å O16: 0.013 (2) Å C17: 0.056 (3) Å N20: 0.074 (2) Å C21: 0.043 (2) Å C22: -0.003 (3) Å C23: -0.019 (3) Å C24: -0.046 (2) Å C25: 0.003 (2) Å O26: 0.004 (2) Å C27: -0.026 (3) Å Rms deviation: 0.032 Å

Angle between planes 1 and 2: $2.70 (4)^{\circ}$

Refinement. Hydrogen atoms were located on difference Fourier maps for the complex and most water molecules or inferred from neighbouring sites for the water molecule containing O68. Hydrogen positions were refined semi-freely for oxygen-bound atoms with $d(O-H) \approx 0.84$ (2) Å, $d(H \cdots H) \approx 1.33$ Å, and $U_{iso}(H) = 1.2U_{eq}(O)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	1.2715 (3)	0.41601 (12)	1.1226 (3)	0.0182 (5)
H11	1.283890	0.379796	1.168495	0.022*
C12	1.3710 (3)	0.45876 (13)	1.1865 (3)	0.0200 (5)
H12	1.451278	0.452042	1.275142	0.024*
C13	1.3535 (3)	0.51201 (13)	1.1204 (3)	0.0170 (5)
C14	1.2344 (3)	0.52043 (12)	0.9885 (3)	0.0164 (5)
H14	1.219570	0.556191	0.940163	0.020*
C15	1.1396 (3)	0.47504 (12)	0.9311 (3)	0.0145 (5)
C17	1.4390 (4)	0.60720 (13)	1.1263 (4)	0.0245 (6)
H17A	1.456712	0.606259	1.020808	0.037*
H17B	1.518812	0.631776	1.188359	0.037*
H17C	1.331302	0.621650	1.126726	0.037*
C21	0.8061 (3)	0.42851 (13)	0.6374 (3)	0.0193 (5)
H21	0.749051	0.394330	0.612752	0.023*
C22	0.7652 (3)	0.47396 (13)	0.5435 (3)	0.0200 (5)
H22	0.681591	0.471184	0.455702	0.024*
C23	0.8477 (3)	0.52418 (13)	0.5782 (3)	0.0178 (5)
C24	0.9754 (3)	0.52630 (12)	0.7051 (3)	0.0159 (5)
H24	1.037174	0.559525	0.729475	0.019*
C25	1.0079 (3)	0.47817 (11)	0.7933 (3)	0.0145 (5)
C27	0.8802 (4)	0.62092 (14)	0.5171 (4)	0.0300 (7)
H27A	0.865758	0.635393	0.616547	0.045*
H27B	0.836620	0.647981	0.436580	0.045*
H27C	0.994577	0.615298	0.519038	0.045*
C31	0.3834 (3)	0.43168 (13)	0.6794 (3)	0.0205 (5)
H31	0.349432	0.393596	0.668076	0.025*
C32	0.3125 (4)	0.46999 (14)	0.5734 (3)	0.0213 (5)
H32	0.230184	0.458718	0.490547	0.026*
C33	0.3622 (3)	0.52578 (13)	0.5883 (3)	0.0193 (5)
C34	0.4843 (3)	0.54103 (12)	0.7115 (3)	0.0166 (5)
H34	0.521299	0.578745	0.724106	0.020*
C35	0.5496 (3)	0.49946 (12)	0.8148 (3)	0.0154 (5)
C37	0.3456 (4)	0.61790 (14)	0.4770 (4)	0.0290 (7)
H37A	0.338665	0.637059	0.572958	0.043*
H37B	0.280905	0.638229	0.390659	0.043*
H37C	0.457485	0.616927	0.464978	0.043*
C41	0.8415 (3)	0.46603 (13)	1.1602 (3)	0.0192 (5)
H41	0.869537	0.433356	1.220971	0.023*
C42	0.9236 (3)	0.51491 (13)	1.2011 (3)	0.0213 (6)
H42	1.008567	0.515850	1.288088	0.026*
C43	0.8816 (3)	0.56337 (13)	1.1140 (3)	0.0204 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C44	0.7578 (3)	0.56044 (12)	0.9846 (3)	0.0168 (5)
H44	0.727153	0.592557	0.922194	0.020*
C45	0.6817 (3)	0.50923 (12)	0.9505 (3)	0.0160 (5)
C47	0.9181 (4)	0.66188 (15)	1.0865 (5)	0.0335 (7)
H47A	0.933207	0.659815	0.980339	0.050*
H47B	0.983627	0.692454	1.139794	0.050*
H47C	0.804933	0.669051	1.087414	0.050*
C51	0.5003 (3)	0.28733(12)	0.9647 (3)	0.0164 (5)
C54	0.6577(3)	0.29477(12)	1.0809 (3)	0.0152(5)
H54	0.664279	0.266896	1 165969	0.018*
C56	0.7939(3)	0.28407(12)	0.9911 (3)	0.018 (5)
H56	0.776060	0.246864	0.938153	0.018*
C58	0.9527 (3)	0.240004	1 1070 (3)	0.010
N10	1.1565(3)	0.28248(13) 0.42400(10)	0.0065(3)	0.0192(3)
N20	1.1303(3)	0.42400(10) 0.43016(10)	0.9903(3)	0.0151(4)
N20	0.9238(3)	0.43010(10)	0.7035(3)	0.0130(4)
N30	0.4999(3)	0.44308(10)	0.7997(3)	0.0173(4)
N40	0.7210(3)	0.46292(10)	1.0359 (3)	0.0167(4)
016	1.4539 (3)	0.551/1 (10)	1.1887 (2)	0.0223(4)
026	0./9/4 (3)	0.56828 (10)	0.4865 (2)	0.0239 (4)
036	0.2861 (3)	0.56124 (10)	0.4806 (2)	0.0244 (4)
046	0.9656 (3)	0.60980 (10)	1.1623 (3)	0.0265 (5)
050	0.4432 (2)	0.33278 (9)	0.8974 (2)	0.0206 (4)
052	0.4392 (3)	0.24029 (9)	0.9335 (2)	0.0217 (4)
053	0.6716 (3)	0.34935 (8)	1.1395 (2)	0.0185 (4)
055	0.7926 (2)	0.32664 (9)	0.8810 (2)	0.0170 (4)
057	1.0554 (3)	0.31931 (10)	1.0907 (3)	0.0293 (5)
059	0.9761 (3)	0.24641 (10)	1.2100 (2)	0.0233 (4)
O60	1.1234 (3)	0.32417 (11)	0.7440 (3)	0.0333 (6)
H60A	1.217 (6)	0.321 (2)	0.788 (5)	0.040*
H60B	1.084 (6)	0.300 (2)	0.691 (5)	0.040*
Cu1	0.98891 (3)	0.36813 (2)	0.91447 (4)	0.01545 (7)
Cu2	0.59542 (4)	0.39447 (2)	0.96609 (4)	0.01590 (7)
O61	0.4573 (3)	0.17342 (10)	0.1868 (3)	0.0273 (5)
H61A	0.421 (5)	0.1934 (16)	0.245 (4)	0.033*
H61B	0.450 (5)	0.1945 (16)	0.112 (3)	0.033*
O62	0.6964 (3)	0.27767 (12)	0.6111 (3)	0.0283 (5)
H62A	0.633 (4)	0.2548 (15)	0.623 (5)	0.034*
H62B	0.720 (5)	0.2935 (17)	0.692 (3)	0.034*
O63	0.7991 (3)	0.14628 (10)	0.1929 (3)	0.0292 (5)
H63A	0.852 (4)	0.1759 (14)	0.196 (5)	0.035*
H63B	0.703 (3)	0.1559 (18)	0.192 (5)	0.035*
064	0.4289 (3)	0.21351 (11)	0.6298 (3)	0.0284(5)
H64A	0.403 (5)	0.2303 (18)	0.701 (3)	0.034*
H64B	0.364 (4)	0.2296 (18)	0.558 (3)	0.034*
065	0.3108(3)	0.25427(12)	0.3445(3)	0.0295(5)
H65A	0.219(3)	0.2590(18)	0.297(4)	0.035*
H65B	0.359(5)	0.2835(13)	0.351(5)	0.035*
066	0.557(5)	0.2055(15) 0.34554(12)	0.331(3) 0.3780(3)	0.033
000	0.3220 (3)	0.54554 (12)	0.5700 (3)	0.0312(3)

H66A	0.562 (5)	0.3509 (19)	0.306 (3)	0.037*
H66B	0.582 (4)	0.330 (2)	0.446 (4)	0.037*
O67	0.9808 (3)	0.24228 (14)	0.5446 (3)	0.0396 (6)
H67A	0.887 (4)	0.251 (2)	0.552 (5)	0.048*
H67B	0.982 (6)	0.243 (2)	0.452 (3)	0.048*
O68	0.0583 (5)	0.37893 (15)	0.4180 (4)	0.0594 (9)
H68A	0.037 (7)	0.3483 (18)	0.359 (5)	0.071*
H68B	0.065 (7)	0.366 (2)	0.515 (3)	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0168 (12)	0.0151 (13)	0.0211 (12)	-0.0010 (10)	0.0000 (9)	0.0043 (10)
C12	0.0184 (12)	0.0220 (14)	0.0180 (12)	-0.0040 (11)	-0.0004 (10)	0.0012 (11)
C13	0.0165 (11)	0.0191 (13)	0.0158 (11)	-0.0048 (10)	0.0038 (9)	-0.0034 (10)
C14	0.0170 (11)	0.0150 (12)	0.0175 (11)	-0.0018 (10)	0.0042 (9)	0.0004 (10)
C15	0.0121 (11)	0.0158 (13)	0.0157 (11)	-0.0003 (9)	0.0033 (9)	-0.0004 (9)
C17	0.0309 (15)	0.0152 (13)	0.0274 (14)	-0.0069 (11)	0.0058 (12)	-0.0028 (11)
C21	0.0177 (12)	0.0203 (14)	0.0196 (12)	-0.0036 (10)	0.0031 (9)	-0.0013 (11)
C22	0.0165 (12)	0.0229 (14)	0.0189 (12)	-0.0005 (10)	-0.0007 (9)	0.0004 (11)
C23	0.0169 (12)	0.0186 (13)	0.0179 (11)	0.0022 (10)	0.0032 (9)	0.0026 (10)
C24	0.0151 (11)	0.0148 (12)	0.0183 (11)	0.0004 (9)	0.0048 (9)	-0.0007 (10)
C25	0.0140 (11)	0.0145 (12)	0.0157 (10)	0.0014 (9)	0.0046 (9)	-0.0005 (9)
C27	0.0337 (16)	0.0181 (15)	0.0348 (16)	0.0021 (12)	-0.0014 (13)	0.0074 (12)
C31	0.0218 (12)	0.0159 (13)	0.0233 (12)	-0.0016 (10)	0.0030 (10)	-0.0001 (11)
C32	0.0222 (12)	0.0211 (14)	0.0193 (12)	-0.0021 (11)	0.0008 (10)	0.0011 (11)
C33	0.0220 (13)	0.0204 (14)	0.0161 (11)	0.0038 (11)	0.0055 (10)	0.0036 (10)
C34	0.0209 (12)	0.0122 (12)	0.0179 (11)	0.0012 (10)	0.0068 (9)	0.0015 (9)
C35	0.0167 (11)	0.0138 (12)	0.0167 (11)	0.0005 (9)	0.0061 (9)	-0.0003 (10)
C37	0.0421 (18)	0.0213 (16)	0.0224 (14)	0.0019 (13)	0.0037 (13)	0.0062 (12)
C41	0.0242 (13)	0.0146 (13)	0.0189 (12)	0.0047 (10)	0.0043 (10)	0.0012 (10)
C42	0.0209 (13)	0.0214 (15)	0.0200 (12)	0.0027 (11)	0.0007 (10)	-0.0017 (11)
C43	0.0208 (13)	0.0176 (13)	0.0239 (12)	-0.0001 (10)	0.0074 (10)	-0.0036 (11)
C44	0.0189 (12)	0.0129 (12)	0.0195 (11)	0.0005 (10)	0.0057 (9)	-0.0012 (10)
C45	0.0179 (11)	0.0147 (13)	0.0174 (11)	0.0021 (9)	0.0079 (9)	0.0004 (10)
C47	0.0354 (17)	0.0169 (15)	0.0461 (19)	-0.0074 (13)	0.0026 (14)	0.0008 (14)
C51	0.0161 (11)	0.0152 (13)	0.0193 (12)	-0.0019 (10)	0.0067 (9)	0.0033 (10)
C54	0.0177 (11)	0.0101 (12)	0.0176 (11)	-0.0009 (9)	0.0028 (9)	0.0014 (9)
C56	0.0144 (11)	0.0133 (12)	0.0155 (10)	-0.0021 (9)	0.0002 (8)	0.0000 (9)
C58	0.0179 (12)	0.0160 (13)	0.0216 (12)	-0.0012 (10)	-0.0012 (9)	0.0015 (10)
N10	0.0141 (9)	0.0144 (11)	0.0161 (9)	-0.0022 (8)	0.0014 (8)	0.0000 (8)
N20	0.0142 (9)	0.0138 (11)	0.0168 (9)	0.0004 (8)	0.0024 (7)	0.0007 (8)
N30	0.0196 (10)	0.0129 (11)	0.0199 (10)	0.0012 (9)	0.0038 (8)	0.0013 (9)
N40	0.0190 (10)	0.0131 (11)	0.0184 (10)	0.0024 (9)	0.0044 (8)	0.0000 (9)
O16	0.0244 (10)	0.0199 (11)	0.0207 (9)	-0.0093 (8)	-0.0003 (8)	-0.0036 (8)
O26	0.0247 (10)	0.0198 (10)	0.0241 (10)	0.0019 (8)	-0.0026 (8)	0.0062 (8)
O36	0.0289 (11)	0.0200 (11)	0.0218 (9)	0.0034 (9)	-0.0011 (8)	0.0063 (8)
O46	0.0256 (10)	0.0192 (11)	0.0326 (11)	-0.0032(9)	0.0005 (8)	-0.0027 (9)

O50	0.0162 (9)	0.0165 (10)	0.0281 (10)	-0.0012 (8)	0.0017 (8)	0.0054 (8)
O52	0.0233 (10)	0.0175 (10)	0.0240 (9)	-0.0051 (8)	0.0039 (8)	0.0022 (8)
O53	0.0294 (10)	0.0093 (9)	0.0169 (8)	0.0006 (7)	0.0048 (7)	-0.0002 (7)
O55	0.0145 (8)	0.0188 (10)	0.0166 (8)	-0.0041 (7)	0.0007 (6)	0.0039 (7)
O57	0.0209 (10)	0.0231 (12)	0.0374 (12)	-0.0077 (9)	-0.0102 (9)	0.0142 (10)
O59	0.0221 (10)	0.0192 (10)	0.0262 (10)	-0.0021 (8)	-0.0013 (8)	0.0067 (9)
O60	0.0181 (10)	0.0263 (13)	0.0525 (15)	0.0028 (9)	-0.0001 (10)	-0.0113 (11)
Cu1	0.01300 (13)	0.01261 (15)	0.01936 (14)	-0.00242 (12)	-0.00014 (10)	0.00193 (13)
Cu2	0.01896 (15)	0.01035 (14)	0.01850 (14)	0.00071 (13)	0.00396 (10)	0.00248 (12)
O61	0.0383 (13)	0.0166 (11)	0.0283 (11)	0.0021 (9)	0.0101 (10)	0.0035 (9)
O62	0.0311 (12)	0.0342 (14)	0.0183 (10)	-0.0094 (10)	0.0014 (9)	-0.0032 (9)
O63	0.0298 (11)	0.0163 (11)	0.0406 (13)	-0.0026 (9)	0.0051 (10)	0.0010 (10)
O64	0.0360 (13)	0.0240 (12)	0.0227 (10)	-0.0019 (10)	0.0002 (9)	0.0003 (9)
O65	0.0235 (11)	0.0343 (14)	0.0274 (11)	0.0028 (10)	-0.0032 (9)	0.0015 (10)
O66	0.0395 (13)	0.0320 (13)	0.0245 (11)	0.0059 (11)	0.0121 (9)	0.0053 (10)
O67	0.0366 (14)	0.0479 (17)	0.0336 (13)	0.0007 (13)	0.0052 (11)	-0.0124 (12)
O68	0.085 (2)	0.038 (2)	0.0514 (18)	-0.0002 (17)	0.0039 (17)	0.0004 (14)

Geometric parameters (Å, °)

С11—Н11	0.9500	C42—C43	1.396 (4)
C11—C12	1.373 (4)	C43—C44	1.401 (4)
C11—N10	1.350 (3)	C43—O46	1.340 (4)
C12—H12	0.9500	C44—H44	0.9500
C12—C13	1.392 (4)	C44—C45	1.385 (4)
C13—C14	1.406 (4)	C45—N40	1.344 (4)
C13—O16	1.336 (3)	C47—H47A	0.9800
C14—H14	0.9500	C47—H47B	0.9800
C14—C15	1.384 (4)	C47—H47C	0.9800
C15—C25	1.491 (4)	C47—O46	1.430 (4)
C15—N10	1.342 (4)	C51—C54	1.532 (4)
C17—H17A	0.9800	C51—O50	1.284 (4)
С17—Н17В	0.9800	C51—O52	1.242 (4)
С17—Н17С	0.9800	С54—Н54	1.0000
C17—O16	1.428 (4)	C54—C56	1.554 (4)
C21—H21	0.9500	C54—O53	1.395 (3)
C21—C22	1.368 (4)	С56—Н56	1.0000
C21—N20	1.349 (3)	C56—C58	1.530 (4)
С22—Н22	0.9500	C56—O55	1.408 (3)
C22—C23	1.389 (4)	C58—O57	1.266 (4)
C23—C24	1.406 (4)	C58—O59	1.242 (4)
C23—O26	1.346 (3)	N10—Cu1	1.980 (2)
C24—H24	0.9500	N20—Cu1	2.000 (2)
C24—C25	1.385 (4)	N30—Cu2	1.965 (2)
C25—N20	1.346 (4)	N40—Cu2	1.981 (2)
С27—Н27А	0.9800	O50—Cu2	1.973 (2)
С27—Н27В	0.9800	O53—Cu2	1.887 (2)
С27—Н27С	0.9800	O55—Cu1	1.9128 (19)

$C27_{0}^{2}$	1 436 (4)	057_Cu1	1944(2)
$C_{21} = 0.20$	0.9500	O_{5}^{-}	0.81(5)
C_{21} C_{22}	1.3500		0.01(3)
C31_C32	1.304(4)	060 Cu1	0.77(3)
C_{22} U_{22}	1.550 (4)		2.522(3)
C32—H32	0.9300		0.81(2)
C_{32}	1.391 (4)		0.82(2)
C_{33} C_{34}	1.402 (4)	062—H62A	0.79(2)
$C_{33} = 0.36$	1.343 (3)	062—H62B	0.80(2)
C34—H34	0.9500	063—H63A	0.83 (2)
C34—C35	1.389 (4)	063—H63B	0.85 (2)
C35—C45	1.497 (4)	064—H64A	0.81 (2)
C35—N30	1.345 (4)	O64—H64B	0.85 (2)
С37—Н37А	0.9800	O65—H65A	0.82 (2)
С37—Н37В	0.9800	O65—H65B	0.81 (2)
С37—Н37С	0.9800	O66—H66A	0.79 (2)
C37—O36	1.442 (4)	O66—H66B	0.80(2)
C41—H41	0.9500	O67—H67A	0.84 (2)
C41—C42	1.368 (4)	O67—H67B	0.83 (2)
C41—N40	1.351 (4)	O68—H68A	0.90 (3)
C42—H42	0.9500	O68—H68B	0.91 (2)
O55…Cu2	2.549 (2)		
C12—C11—H11	119.1	H47A—C47—H47B	109.5
N10—C11—H11	119.1	H47A—C47—H47C	109.5
N10-C11-C12	121.8 (3)	H47B—C47—H47C	109.5
C11—C12—H12	120.2	O46—C47—H47A	109.5
C11—C12—C13	119.6 (2)	O46—C47—H47B	109.5
C13—C12—H12	120.2	O46—C47—H47C	109.5
C12 - C13 - C14	118 8 (3)	050-051-054	1147(2)
016-013-012	116.6(2)	052 - 051 - 054	121.8(2)
016-013-012	1247(3)	052 - 051 - 051	121.0(2) 1234(2)
C13 - C14 - H14	121.0	C_{51} C_{54} H_{54}	125.4 (2)
C_{15} C_{14} C_{13}	1121.0 1180(3)	$C_{51} = C_{54} = C_{56}$	106.0(2)
$C_{15} = C_{14} = C_{15}$	118.0 (3)	$C_{54} = C_{54} = C_{50}$	100.0(2)
$C_{13} = C_{14} = C_{14} = C_{14}$	121.0	$C_{30} - C_{34} - H_{34}$	110.2 111.0(2)
14 - 15 - 14	123.0(3) 122.7(2)	053 - 054 - 051	111.0(2)
N10 - C15 - C14	122.7(2)	053-C54-F54	110.2
N10-C15-C25	115.0 (2)	053 - 054 - 056	109.1 (2)
HI/A - CI/-HI/B	109.5	C54-C50-H56	109.1
HI/A - CI/-HI/C	109.5	$C_{58} = C_{56} = C_{54}$	107.9 (2)
HI/B—CI/—HI/C	109.5	С58—С56—Н56	109.1
U10-U1/-H1/A	109.5	055-056-054	109.6 (2)
016—C17—H17B	109.5	US5—C56—H56	109.1
016—C17—H17C	109.5	U55—C56—C58	111.8 (2)
C22—C21—H21	118.6	O57—C58—C56	116.4 (2)
N20—C21—H21	118.6	O59—C58—C56	120.4 (2)
N20—C21—C22	122.8 (3)	O59—C58—O57	123.3 (3)
C21—C22—H22	120.4	C11—N10—Cu1	124.3 (2)

C21—C22—C23	119.2 (2)	C15—N10—C11	119.1 (2)
С23—С22—Н22	120.4	C15—N10—Cu1	116.08 (17)
C22—C23—C24	119.1 (3)	C21—N20—Cu1	126.8 (2)
$0.26 - C_{23} - C_{22}$	116.7 (2)	C25—N20—C21	117.9 (2)
0.26 - 0.23 - 0.24	124.2 (3)	$C_{25} = N_{20} = C_{11}$	115.24(17)
C_{23} C_{24} H_{24}	121.2	C_{31} N_{30} C_{11}^2	125.1(2)
$C_{25} = C_{24} = C_{23}$	117 5 (3)	C_{35} N30 $-C_{31}$	123.1(2) 118.7(2)
$C_{25} = C_{24} = H_{24}$	121.2	C_{35} N ₃₀ C_{11}	116.03(19)
C_{24} C_{25} C_{15}	121.2	$C_{41} = N_{40} = C_{11}^{2}$	125 2 (2)
N20-C25-C15	113.9(2)	C45 - N40 - C41	120.2(2) 1190(3)
N20-C25-C24	113.3(2) 123.4(2)	C_{45} N40 C_{11}	115.0(3) 115.79(18)
H27A - C27 - H27B	109 5	$C_{13} = 0.16 = 0.17$	118.4(2)
H27A - C27 - H27C	109.5	$C_{23}^{23} - O_{26}^{26} - C_{27}^{27}$	118.4(2)
$H_{27B} = C_{27} = H_{27C}$	109.5	$C_{23} = O_{20} = C_{27}$	118.0(2)
0.26 0.27 0.27 0.27	109.5	$C_{33} = 0.00 = 0.000$	118.7(2)
026 - 027 - 1127R	109.5	$C_{+3} = 0_{+0} = 0_{+7}$	110.0(2) 108 45 (17)
020 - 027 - 1127B	109.5	$C_{51} = 0_{50} = C_{12}$	103.45(17)
$C_{20} = C_{21} = H_{21}$	109.5	$C_{54} = 0.055 = 0.02$	103.40(13)
C32—C31—H31	118./	$C_{56} = 0.055 = C_{11}^{-1}$	112.00(15)
N30-C31-H31	118.7	C36—055—Cu2	99.39 (13)
$N_{30} = C_{31} = C_{32}$	122.7 (3)	Cu1 = 055 = Cu2	103.52 (9)
$C_{31} = C_{32} = H_{32}$	120.4		114.07 (18)
$C_{31} = C_{32} = C_{33}$	119.1 (3)	H60A - O60 - H60B	119 (5)
C33—C32—H32	120.4	Cu1—060—H60A	107 (3)
C32—C33—C34	119.1 (3)	Cu1—O60—H60B	122 (4)
O36—C33—C32	115.9 (3)	N10—Cu1—N20	80.60 (9)
O36—C33—C34	125.1 (3)	N10—Cu1—O60	97.51 (9)
С33—С34—Н34	120.9	N20—Cu1—O60	89.96 (10)
C35—C34—C33	118.2 (3)	O55—Cu1—N10	161.28 (9)
C35—C34—H34	120.9	O55—Cu1—N20	99.09 (9)
C34—C35—C45	124.2 (2)	O55—Cu1—O57	85.65 (8)
N30—C35—C34	122.3 (2)	O55—Cu1—O60	101.20 (9)
N30—C35—C45	113.5 (2)	O57—Cu1—N10	91.69 (9)
H37A—C37—H37B	109.5	O57—Cu1—N20	168.93 (10)
Н37А—С37—Н37С	109.5	O57—Cu1—O60	98.98 (11)
Н37В—С37—Н37С	109.5	N30—Cu2—N40	81.11 (10)
O36—C37—H37A	109.5	N30—Cu2—O50	94.51 (10)
О36—С37—Н37В	109.5	N30—Cu2—O55	111.51 (8)
О36—С37—Н37С	109.5	N40—Cu2—O55	105.38 (8)
C42—C41—H41	119.1	O50—Cu2—N40	172.01 (10)
N40—C41—H41	119.1	O50—Cu2—O55	82.41 (8)
N40—C41—C42	121.9 (3)	O53—Cu2—N30	173.36 (10)
C41—C42—H42	120.2	O53—Cu2—N40	97.64 (9)
C41—C42—C43	119.5 (3)	O53—Cu2—O50	85.94 (9)
C43—C42—H42	120.2	O53—Cu2—O55	75.12 (7)
C42—C43—C44	119.0 (3)	H61A—O61—H61B	100 (4)
O46—C43—C42	116.1 (3)	H62A—O62—H62B	105 (4)
O46—C43—C44	124.9 (3)	H63A—O63—H63B	107 (4)
C43—C44—H44	121.1	H64A—O64—H64B	97 (4)
			~ /

C45—C44—C43	117.9 (3)	H65A—O65—H65B	110 (4)
C45—C44—H44	121.1	H66A—O66—H66B	113 (4)
C44—C45—C35	123.9 (2)	H67A—O67—H67B	106 (4)
N40—C45—C35	113.3 (2)	H68A—O68—H68B	104 (4)
N40—C45—C44	122.8 (2)		
C11—C12—C13—C14	-0.6 (4)	C42—C43—C44—C45	0.7 (4)
C11—C12—C13—O16	179.8 (3)	C42—C43—O46—C47	-174.1(3)
C12—C11—N10—C15	0.4 (4)	C43—C44—C45—C35	-179.0(2)
C12—C11—N10—Cu1	-170.9 (2)	C43—C44—C45—N40	0.1 (4)
C12—C13—C14—C15	0.3 (4)	C44—C43—O46—C47	6.1 (4)
C12—C13—O16—C17	-179.2(3)	C44—C45—N40—C41	-0.3(4)
C13—C14—C15—C25	179.2 (2)	C44—C45—N40—Cu2	179.6 (2)
C13—C14—C15—N10	0.3 (4)	C45—C35—N30—C31	-178.6(2)
C14—C13—O16—C17	1.2 (4)	C45—C35—N30—Cu2	5.5 (3)
C14—C15—C25—C24	4.0 (4)	C51—C54—C56—C58	-171.8(2)
C14-C15-C25-N20	-175.8(2)	C51—C54—C56—O55	66.2 (3)
C_{14} C_{15} N_{10} C_{11}	-0.7(4)	$C51 - C54 - 053 - Cu^2$	-41.2(2)
C_{14} C_{15} N_{10} C_{11}	1714(2)	C54-C51-O50-Cu2	3 5 (3)
C_{15} C_{25} N_{20} C_{21}	-177.6(2)	$C_{54} - C_{56} - C_{58} - O_{57}$	-1189(3)
$C_{15} = C_{25} = N_{20} = C_{11}$	26(3)	$C_{54} - C_{56} - C_{58} - C_{59}$	61 3 (3)
C_{21} C_{22} C_{23} C_{24}	2.0(5) 2.7(4)	C_{54} C_{56} C_{50} C_{50} C_{11}	119 29 (19)
$C_{21} = C_{22} = C_{23} = C_{24}$	-1768(3)	$C_{54} - C_{56} - O_{55} - C_{11}^2$	105(2)
$C_{22} = C_{21} = N_{20} = C_{25}$	-2.7(4)	C54 - 053 - Cu2 - N40	-152.04(16)
$C_{22} = C_{21} = N_{20} = C_{11}$	2.7(4) 177 2 (2)	$C_{54} = 0.53 = C_{112} = 0.50$	35 14 (17)
$C_{22} = C_{21} = N_{20} = C_{41}$	-2.7(4)	$C_{54} = 053 = Cu_2 = 050$	-48.08(15)
$C_{22} = C_{23} = C_{24} = C_{23}$	-1703(3)	$C_{54} = 0.053 = 0.02 = 0.053$	75 3 (2)
$C_{22} = C_{23} = C$	-179.8(3)	$C_{56} C_{58} O_{57} C_{11}$	-23(4)
$C_{23} = C_{24} = C_{25} = C_{15}$	177.0(2)	$C_{50} = C_{50} = C_{57} = C_{11}$	-0.3(3)
$C_{23} = C_{24} = C_{23} = N_{20}$	1.2(4)	$C_{58} = C_{50} = 0.055 = C_{11}^{-1}$	-1091(2)
$C_{24} = C_{25} = 020 = C_{27}$	1.2(4)	N10 C11 C12 C13	0.2(4)
$C_{24} = C_{25} = N_{20} = C_{21}$	2.0(4)	N10 - C15 - C25 - C24	-177.0(2)
$C_{24} = C_{25} = N_{20} = C_{41}$	177.2(2) -1707(2)	N10 - C15 - C25 - C24	177.0(2)
$C_{25} = C_{15} = N_{10} = C_{11}$	-77(2)	N10 - C13 - C23 - N20	3.3(3)
$C_{23} = C_{13} = N_{10} = C_{41}$	7.7(3)	$N_{20} = C_{21} = C_{22} = C_{23}$ $N_{30} = C_{31} = C_{32} = C_{33}$	0.0(4)
$C_{31} C_{32} C_{33} C_{34}$	-170 4 (3)	$N_{30} = C_{31} = C_{32} = C_{33}$	1764(2)
$C_{31} = C_{32} = C_{33} = 0.50$	-0.8(4)	$N_{30} = C_{33} = C_{43} = C_{44}$	-27(3)
$C_{32} = C_{31} = N_{30} = C_{33}$	0.0(4)	$N_{40} = C_{41} = C_{42} = C_{43}$	2.7(3)
$C_{32} = C_{31} = N_{30} = C_{42}$	1/4.7(2) -0.5(4)	016 C12 C14 C15	1.0(4)
$C_{32} = C_{33} = C_{34} = C_{33}$	-0.3(4)	010 - 013 - 014 - 013	100.0(3)
$C_{32} = C_{33} = C_{35} = C_{45}$	-1/1.8(3)	020-023-024-025	170.8(3)
$C_{33} = C_{34} = C_{35} = C_{45}$	1/9.2(2)	030-033-034-035	1/9.1(3)
$C_{33} - C_{34} - C_{35} - N_{30}$	0.2(4)	040 - 043 - 044 - 043	-1/9.5(3)
$C_{34} = C_{35} = C_{45} = C_{44}$	8.3 (4) 2.7 (4)	050 - 051 - 054 - 052	-92.5(3)
$C_{34} = C_{35} = C_{45} = C_{44}$	-2.7(4)	050 - 051 - 054 - 053	20.1(3)
$C_{24} = C_{25} = C_{45} = N_{40}$	1/8.2(2)	052 - 051 - 054 - 052	84.0 (3)
$C_{34} = C_{35} = N_{30} = C_{31}$	0.5 (4)	052 - 051 - 054 - 053	-15/.6(3)
C34—C35—N30—Cu2	-1/5.4(2)	052—051—050—012	-1/2.7(2)
C35—C45—N40—C41	178.8 (2)	O53—C54—C56—C58	68.6 (3)

C35—C45—N40—Cu2 C41—C42—C43—C44	-1.2 (3) -1.2 (4)	O53—C54—C56—O55 O55—C56—C58—O57	-53.4 (3) 1.8 (4)
C41—C42—C43—O46	179.0 (3)	O55—C56—C58—O59	-178.1 (3)
C42—C41—N40—C45	-0.2 (4)	O59—C58—O57—Cu1	177.5 (2)
C42—C41—N40—Cu2	179.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O60—H60A···O50 ⁱ	0.81 (5)	2.00 (5)	2.802 (3)	167 (5)
O60—H60 <i>B</i> ···O67	0.77 (5)	1.98 (5)	2.750 (4)	177 (5)
O61—H61A···O65	0.81 (2)	2.02 (3)	2.813 (4)	166 (4)
O61—H61 <i>B</i> ···O52 ⁱⁱ	0.82 (2)	1.92 (2)	2.739 (3)	177 (4)
O62—H62A···O64	0.79 (2)	2.01 (3)	2.774 (3)	164 (5)
O62—H62 <i>B</i> ···O55	0.80 (2)	1.85 (2)	2.650 (3)	174 (5)
O63—H63 <i>A</i> ···O59 ⁱⁱ	0.83 (2)	1.97 (2)	2.806 (3)	178 (4)
O63—H63 <i>B</i> ···O61	0.85 (2)	2.13 (2)	2.970 (3)	176 (4)
O64—H64A···O52	0.81 (2)	2.05 (3)	2.762 (3)	146 (4)
O64—H64 <i>B</i> ···O65	0.85 (2)	1.95 (3)	2.719 (3)	149 (4)
O65—H65A···O59 ⁱⁱⁱ	0.82 (2)	2.08 (3)	2.871 (3)	162 (4)
O65—H65 <i>B</i> ···O66	0.81 (2)	2.01 (2)	2.801 (4)	167 (4)
O66—H66A···O53 ⁱⁱ	0.79 (2)	1.91 (3)	2.680 (3)	169 (5)
O66—H66 <i>B</i> ···O62	0.80 (2)	2.02 (3)	2.808 (4)	167 (5)
O67—H67A···O62	0.84 (2)	1.91 (3)	2.737 (4)	168 (5)
O67—H67 <i>B</i> ···O59 ⁱⁱ	0.83 (2)	2.15 (2)	2.973 (3)	178 (5)
O68—H68A····O57 ⁱⁱⁱ	0.90 (3)	2.52 (4)	3.236 (4)	138 (5)
O68—H68 <i>B</i> ···O60 ^{iv}	0.91 (2)	2.23 (3)	3.129 (5)	169 (5)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*, *z*-1; (iii) *x*-1, *y*, *z*-1; (iv) *x*-1, *y*, *z*.