COMMUNICATIONS

Received 4 June 2019
Accepted 22 June 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; hydrazinecarbothioamide; Schiff base; intermolecular interactions.

CCDC reference: 1480651

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of (E)-N-cyclohexyl-2-(2-hydroxy-3-methylbenzylidene)hydrazine-1-carbothioamide

Md. Azharul Arafath, ${ }^{\text {a* }}$ Huey Chong Kwong ${ }^{\mathbf{b}}$ and Farook Adam ${ }^{\text {b }}$

${ }^{\text {a Department }}$ of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, and ${ }^{\mathbf{b}}$ School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia. *Correspondence e-mail: arafath.usm@gmail.com, farook@usm.my

The asymmetric unit of the title compound, $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$, comprises of two crystallographically independent molecules (A and B). Each molecule consists of a cyclohexane ring and a 2-hydroxy-3-methylbenzylidene ring bridged by a hydrazinecarbothioamine unit. Both molecules exhibit an E configuration with respect to the azomethine $\mathrm{C}=\mathrm{N}$ bond. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond in each molecule forming an $S(6)$ ring motif. The cyclohexane ring in each molecule has a chair conformation. The benzene ring is inclined to the mean plane of the cyclohexane ring by $47.75(9)^{\circ}$ in molecule A and $66.99(9)^{\circ}$ in molecule B. The mean plane of the cyclohexane ring is inclined to the mean plane of the thiourea moiety $[\mathrm{N}-\mathrm{C}(=\mathrm{S})-\mathrm{N}]$ by 55.69 (9) and 58.50 (8) ${ }^{\circ}$ in molecules A and B, respectively. In the crystal, the A and B molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming 'dimers'. The A molecules are further linked by a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, hence linking the $A-B$ units to form ribbons propagating along the b-axis direction. The conformation of a number of related cyclohexanehydrazinecarbothioamides are compared to that of the title compound.

1. Chemical context

Schiff bases are significant agents in both organic and inorganic chemistry, and are widely used in biological applications, particularly for anticancer screening (Ziessel, 2001; Salam et al., 2012a; Arafath et al., 2017b). They have attracted a great deal of attention because of the presence of hard and soft atoms together in one molecule. Thiosemicarbazone Schiff base compounds have soft sulfur and hard nitrogen as well hard oxygen atoms (Mohamed et al., 2009). These Schiff base compounds are of special interest because of their diversity in coordinating to hard and soft metals using the hard and soft coordinating sites such as NSO (Arion et al., 2001; Leovac \& Češlje vić, 2002; Chandra \& Sangeetika, 2004; Singh et al., 2000; Gerbeleu et al., 2008; Mohamed et al., 2009). Many Schiff base compounds and their complexes with transition metals have wide biological and pharmaceutical applications (Padhyé \& Kauffman, 1985; Salam et al., 2012b). Thiosemicarbazones having ONS-coordinating sites are important for coordination chemistry because of their strong bonding ability with transition metals (Rayati et al., 2007; Alomar et al., 2009; Vieites et al., 2009; Siddiki et al., 2012).

2. Structural commentary

The asymmetric unit of the title compound consists of two crystallographic independent molecules (A and B), as

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of benzene ring $\mathrm{C} 1 A-\mathrm{C} 6 A$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 1 O 1 \cdots \mathrm{~N} 1 A$	$0.80(2)$	$1.98(2)$	$2.6844(19)$	$146(2)$
$\mathrm{O} 1 B-\mathrm{H} 1 O 2 \cdots \mathrm{~N} 1 B$	$0.84(2)$	$1.91(2)$	$2.664(2)$	$148(2)$
$\mathrm{N} 2 A-\mathrm{H} 1 N 2 \cdots \mathrm{~S} 1 B^{\mathrm{i}}$	$0.85(2)$	$2.60(2)$	$3.4414(16)$	$170(2)$
$\mathrm{N} 2 B-\mathrm{H} 2 N 2 \cdots \mathrm{~S} 1 A^{\mathrm{i}}$	$0.85(2)$	$2.53(2)$	$3.3568(15)$	$164(2)$
${\mathrm{C} 11 A-\mathrm{H} 11 B \cdots \mathrm{Cg} 1^{\mathrm{ii}}}^{2}$	0.99	2.93	$3.801(2)$	148

Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $x, y+1, z$.
illustrated in Fig. 1. In each molecule a cyclohexane ring and a 2-hydroxy-3-methylbenzylidene ring are interconnected by a hydrazinecarbothioamine bridge. Both molecules exhibit an E configuration with respect to the azomethine $\mathrm{C} 7=\mathrm{N} 1$ bond, and in each molecule there is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond forming an $S(6)$ ring motif (Table 1and Fig. 1). The best AutoMolFit (PLATON; Spek, 2009) image of the two molecules, viz. inverted molecule B (red) on molecule A (black), which has an r.m.s. deviation of $0.654 \AA$, is shown in Fig. 2.

The cyclohexane ring (C9-C14) in each molecule has a chair conformation. The mean plane of the four central C atoms ($\mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 13 / \mathrm{C} 14$) is inclined to the mean plane of the thiourea moiety $[\mathrm{N} 2-\mathrm{C} 8(=\mathrm{S} 1)-\mathrm{N} 3]$ by $54.83(11)$ and $55.64(10)^{\circ}$ in molecules A and B, respectively, and by

Figure 1
A view of the molecular structure of the two independent molecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) are shown as dashed cyan lines.

Figure 2
An AutoMolFit figure (PLATON; Spek, 2009) of inverted molecule B (red) on molecule A (black).
50.33 (10) and $65.30(10)^{\circ}$ to the benzene rings (C1-C6) in molecules A and B, respectively. The benzene ring is inclined to the mean plane of the thiourea moiety by $10.95(8)^{\circ}$ in molecule A and $9.80(8)^{\circ}$ in molecule B.

The unique molecular conformations of the two molecules can be characterized by five torsion angles, i.e. $\tau_{1}(\mathrm{C} 1-\mathrm{C} 6-$ $\mathrm{C} 7-\mathrm{N} 1), \tau_{2}(\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8), \tau_{3}(\mathrm{~N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3), \tau_{4}$ ($\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9$) and $\tau_{5}(\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10)$, as illustrated in Fig. 3. The torsion angle τ_{1} between the benzylidine ring and the azomethine double bond for both molecules are approximately $0^{\circ}\left[3.0(2)^{\circ}\right.$ in molecule A and $1.9(2)^{\circ}$ in molecule B], signifying the coplanarity between benzylidine ring and the azomethine double bond $(\mathrm{C} 7=\mathrm{N} 1)$. In molecule B, the azomethine double bond is close to planar with the hydrazine moiety [$\tau_{2}=177.23(14)^{\circ}$], whereas τ_{2} in molecule A is slightly twisted $\left[\tau_{2}=171.68(14)^{\circ}\right]$. In both molecules, the torsion angle between the hydrazine moiety and the carbothio group are also slight twisted with τ_{3} values in molecules A and B of 7.4 (2) and $-10.2(2)^{\circ}$, respectively. Similarly to τ_{1}, the carbothio group is almost coplanar with the thioamide group

Figure 3
General chemical diagram showing torsion angles, $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ and τ_{5} in the title compound.

Table 2
Torsion angles $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ and $\tau_{5}\left({ }^{\circ}\right)$.

Compound	R	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}
Title compound	2-hydroxy-3-methylbenzylidene	3.2, 1.9	171.7, 177.2	7.4, 10.2	178.1, 175.6	85.3, 81.6
ABUHEN (Basheer et al., 2017)	pyren-1-ylmethylene	10.1	174.9	1.2	180.0	81.6
BEFZIY (Basheer et al., 2016a)	2-hydroxy-1-naphthyl)methylene	0.9	179.3	6.8	176.6	83.4
BEVNAR (Koo et al., 1981)	4-aminobenzylidene	14.3	175.0	7.4	178.5	94.5
LAQCIR (Jacob \& Kurup, 2012)	5-bromo-2-hydroxy-3-methoxybenzylidene	10.1	176.8	4.1	179.5	86.2
LEPFIW (Seena et al., 2006)	1-(2-hydroxyphenyl)ethylidene	3.9, 6.6	155.0, 153.5	14.0, 14.7	175.7, 171.8	91.9, 81.6
NALKOD (Basheer et al., 2016b)	anthracen-9-ylmethylene	25.8, 36.2	171.6, 178.6	0.8, 1.4	$172.9,176.2$	79.0, 79.2
OBOLOJ (Arafath, 2017a)	5-chloro-2-hydroxybenzylidene	4.7	176.0	5.5	176.7	83.7
XOYKAZ (Bhat et al., 2015)	4-ethoxybenzylidene	0.5	169.3	11.6	176.2	85.8
YUXJOS (Arafath et al., 2018)	3-t-butyl-2-hydroxyphenyl)methylidene	11.8	170.1	12.5	176.2	78.3

Note: The title compound and compounds LEPFIW and NALKOD crystallize with two independent molecules in the asymmetric unit.
for both molecules, as implied by torsion angle $\tau_{4}\left[178.07(14)^{\circ}\right.$ in molecule A and 175.59 (14) ${ }^{\circ}$ in molecule B], which are approximately 180°. The thioamide group and the cyclohexane ring are almost perpendicular to each other with τ_{5} torsion angles of 85.3 (2) and -81.6 (2) ${ }^{\circ}$ in molecules A and B, respectively. This may arise from the steric repulsion between the cyclohexane ring and adjacent sulfur atom.

3. Supramolecular features

In the crystal, the A and B molecules are connected into 'dimers' with an $R_{2}^{2}(8)$ ring motif, via $\mathrm{N} 2 A-\mathrm{H} 1 N 2 \cdots \mathrm{~S} 1 B^{\mathrm{i}}$ and $\mathrm{N} 2 B-\mathrm{H} 2 N 2 \cdots \mathrm{~S} 1 A^{\mathrm{i}}$ hydrogen bonds (Fig. 4 and Table 1). The A molecules are further linked by a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, so linking the $A-B$ units to form ribbons propagating along the b axis direction, as illustrated in Fig. 4.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, last update February 2019; Groom et al., 2016) using (E)-2-benzylidene- N-cyclohexylhydrazine-1-carbothioamide as the reference moiety resulted in nine structures containing a cyclohexylhydrazinecarbothioamide moiety with different substituents (R). The different substituents (R) together with

Figure 4
A partial view, normal to the ac plane, of the crystal packing of the title compound. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds are shown as cyan dotted lines, and the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions as green dotted lines (see Table 1 for details). For clarity, only the hydrogen atoms involved in these interactions have been included.
the torsion angles of the hydrazinecarbothioamide connecting bridge are compiled in Table 2 ($c f$. Fig. 3). In these structures, including the title compound, the hydrazinecarbothioamide connecting bridge is nearly planar as τ_{2}, τ_{3} and τ_{4} are in, respectively, anti-periplanar (153.5 to 179.3°), syn-periplanar (0.8 to 14.7°) and anti-periplanar (from 171.8 to 180.0°) conformations. The attached cyclohexane ring is always close to perpendicular to the thioamide group and with a syn/anticlinal ($\tau_{5}=78.3$ to 94.5°) conformation. Furthermore, torsion angle τ_{1} for most of these structures exists in a syn-periplanar conformation, ranging from 0 to 25.8°, but there is one outlier (molecule B in NALKOD; Basheer et al., 2016b) where torsion angle τ_{1} is in a syn-clinal (36.2°) conformation. The cyclohexylhydrazinecarbothioamide moiety of this structure is substituted with an anthracen-9-ylmethylene ring system.

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title Schiff base compound is given in Fig. 5.

2-Hydroxy-3-methylbenzaldehyde $(0.68 \mathrm{~g}, 5.00 \mathrm{mmol})$ was dissolved in 20 ml of methanol. Glacial acetic acid $(0.20 \mathrm{ml})$ was added and the mixture was refluxed for 30 min . A solution of N-cyclohexylhydrazine carbothioamide $(0.87 \mathrm{~g}, 5 \mathrm{mmol})$ in 20 ml methanol was added dropwise with stirring to the aldehyde solution. The resulting colourless solution was refluxed for 4 h with stirring. A colourless precipitate was obtained on evaporation of the solvent. The crude product was washed with n-hexane (5 ml). The recovered product was dissolved in acetonitrile and purified by recrystallization. Colourless block-like crystals suitable for X-ray diffraction analysis were obtained on slow evaporation of the acetonitrile solvent (m.p. 513-514 K, yield 93\%).

Spectroscopic and analytical data: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- $\left.d_{6}, \mathrm{Me}_{4} \mathrm{Si} \mathrm{ppm}\right): \delta 11.27(s, \mathrm{~N}-\mathrm{NH}), \delta 9.51(s, \mathrm{OH}), \delta$

Figure 5
Reaction scheme for the synthesis of the title compound.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$
M_{r}	291.41
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	100
$a, b, c(\AA)$	$10.7799(11), 10.9481(11)$,
	$14.1895(15)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$74.526(2), 68.246(1), 80.207(2)$
$V\left(\AA^{3}\right)$	$1494.2(3)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.22
Crystal size (mm)	$0.34 \times 0.14 \times 0.10$
Data collection	Bruker APEXII CCD
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2012)$
	$0.873,0.935$
$T_{\text {min }}, T_{\text {max }}$	$50505,8135,5805$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.069
$R_{\text {int }}$	0.690
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.049,0.119,1.04$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	8135
No. of reflections	387
No. of parameters	H atoms treated by a mixture of
H-atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$0.42,-0.36$

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).
$8.34(s, \mathrm{HC}=\mathrm{N}), \delta 8.05(d, J=8.35 \mathrm{~Hz}, \mathrm{CS}=\mathrm{NH}), \delta 7.39-6.81$ (multiplet, aromatic-H), $\delta 2.20\left(s, \mathrm{Ph}-\mathrm{CH}_{3}\right), \delta 1.87-1.14$ (multiplet, cyclohexyl-H) ppm. ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, \mathrm{Me}_{4} \mathrm{Si}$ $\mathrm{ppm}): \delta 175.79(\mathrm{C}=\mathrm{S}), \delta 154.29(\mathrm{C}=\mathrm{N}), \delta 143.76-119.17(\mathrm{C}-$ aromatic), $\delta 15.93\left(\mathrm{CH}_{3}\right), \delta 52.87-24.90(\mathrm{C}-\mathrm{cyclohexyl}) \mathrm{ppm}$. IR (KBr pellets, cm^{-1}): $3364(\mathrm{NH}), 3148(\mathrm{OH}), 2989\left(\mathrm{CH}_{3}\right)$, 2931 and $2854(\mathrm{CH}$, cyclohexyl), $1620(\mathrm{C}=\mathrm{N}), 1540(\mathrm{C}=\mathrm{C}$, aromatic), $1268(\mathrm{C}=\mathrm{S})$, $1218(\mathrm{CH}$, bend., aromatic), 1122 (C-O). $1075(\mathrm{C}-\mathrm{N})$. Elemental analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}\left(M_{\mathrm{r}}=291.41 \mathrm{~g} \mathrm{~mol}^{-1}\right) ; \mathrm{C}, 61.77 ; \mathrm{H}, 7.21 ; \mathrm{N}$, 14.42%; found: C, $61.81 ; \mathrm{H}, 7.19$; N, 14.42%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The O and N -bound H atoms were located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}($ C-methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Funding information

This research was supported financially by an RU grant (No. 1001/PKIMIA/811269) from Universiti Sains Malaysia. The authors wish to thank Universiti Sains Malaysia and The World Academy of Science for a USM-TWAS fellowship to

MdAA. MdAA also thanks Shahjalal University of Science and Technology for a Promotional Research Grant (ID. PS/ 2018/1/04, 2018-2019). HCK is grateful to the Malaysian Government for a MyBrain15 scholarship.

References

Alomar, K., Khan, M. A., Allain, M. \& Bouet, G. (2009). Polyhedron, 28, 1273-1280.
Arafath, M. A., Adam, F. \& Razali, M. R. (2017a). IUCrData, 2, x161997.
Arafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. \& Majid, A. M. S. (2017b). J. Mol. Struct. 1130, 791-798.

Arafath, M. A., Kwong, H. C., Adam, F. \& Razali, M. R. (2018). Acta Cryst. E74, 1460-1462.
Arion, V., Revenco, M., Gradinaru, J., Simonov, Y., Kravtsov, V., Gerbeleu, N., Saint-Aman, E. \& Adams, F. (2001). Rev. Inorg. Chem. 21, 1-42.
Basheer, S. M., Bhuvanesh, N. S. P. \& Sreekanth, A. (2016a). J. Fluor. Chem. 191, 129-142.
Basheer, S. M., Willis, A. C., Pace, R. J. \& Sreekanth, A. (2016b). Polyhedron, 109, 7-18.
Basheer, S. M., Willis, A. C. \& Sreekanth, A. (2017). J. Lumin. 183, 266-280.
Bhat, M. A., Al-Dhfyan, A., Khan, A. A., Al-Harbi, N., Manogaran, P. S., Alanazi, A. M., Fun, H.-K. \& Al-Omar, M. A. (2015). Bioorg. Med. Chem. Lett. 25, 83-87.
Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.
Chandra, S. \& Sangeetika, X. (2004). Spectrochim. Acta A, 60, 147153.

Gerbeleu, N. V., Arion, V. B. \& Burgess, J. P. (2008). Template Synthesis of Macrocyclic Compounds. John Wiley \& Sons.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jacob, J. M. \& Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.
Koo, C. H., Kim, C. H. \& Park, Y. J. (1981). J. Korean Chem. Soc. 25, 343-350.
Leovac, V. \& Češljević, V. (2002). Coordination Chemistry of Isothiosemicarbazide and Its Derivatives. Faculty of Science, University of Novi Sad, Serbia.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Mohamed, G. G., Omar, M. \& Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801-4812.
Padhyé, S. \& Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.
Rayati, S., Sadeghzadeh, N. \& Khavasi, H. R. (2007). Inorg. Chem. Coттии. 10, 1545-1548.
Salam, M., Affan, M., Ahmad, F. B. \& Arafath, M. A. (2012a). J. Coord. Chem. 65, 1999-2007.
Salam, M., Affan, M., Ahmad, F. B., Arafath, M. A., Tahir, M. I. M. \& Shamsuddin, M. B. (2012b). J. Coord. Chem. 65, 3174-3187.
Seena, E. B., Bessy Raj, B. N., Prathapachandra Kurup, M. R. \& Suresh, E. (2006). J. Chem. Crystallogr. 36, 189-193.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Siddiki, A. N. A., Rahman, M. S., Rahman, M. A., Salam, M. A., Yousuf, M. A., Islam, M. F. \& Arafat, M. A. (2012). Bangladesh Pharmaceutical Journal, 15, 83-87.
Singh, N. K., Srivastava, A., Sodhi, A. \& Ranjan, P. (2000). Transit. Met. Chem. 25, 133-140.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Vieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Diego Maya, J. \& Gambino, D. (2009). J. Inorg. Biochem. 103, 411-418.
Ziessel, R. (2001). Coord. Chem. Rev. 216-217, 195-223.

supporting information

Acta Cryst. (2019). E75, 1065-1068 [https://doi.org/10.1107/S2056989019008946]

Crystal structure of (E)-N-cyclohexyl-2-(2-hydroxy-3-methylbenzyl-idene)hydrazine-1-carbothioamide

Md. Azharul Arafath, Huey Chong Kwong and Farook Adam

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).
(E)-N-Cyclohexyl-2-(2-hydroxy-3-methylbenzylidene)hydrazine-1- \backslash carbothioamide

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$

$M_{r}=291.41$
Triclinic, $P \overline{1}$
$a=10.7799$ (11) \AA
$b=10.9481$ (11) \AA
$c=14.1895(15) \AA$
$\alpha=74.526(2)^{\circ}$
$\beta=68.246(1)^{\circ}$
$\gamma=80.207(2)^{\circ}$
$V=1494.2(3) \AA^{3}$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.873, T_{\text {max }}=0.935$
50505 measured reflections

$$
Z=4
$$

$F(000)=624$
$D_{\mathrm{x}}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6929 reflections
$\theta=2.2-29.3^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.34 \times 0.14 \times 0.10 \mathrm{~mm}$

8135 independent reflections
5805 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=29.4^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-14 \rightarrow 14$
$k=-15 \rightarrow 15$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.119$
$S=1.03$
8135 reflections
387 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0524 P)^{2}+0.3685 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1A	0.69733 (4)	0.60902 (4)	0.10987 (3)	0.01869 (11)
O1A	0.20574 (12)	0.29193 (12)	0.27567 (9)	0.0204 (3)
H1O1	0.264 (2)	0.340 (2)	0.2474 (19)	0.047 (7)*
N1A	0.44459 (13)	0.36989 (12)	0.14267 (10)	0.0157 (3)
N2A	0.54998 (14)	0.44583 (13)	0.10122 (11)	0.0168 (3)
H1N2	0.617 (2)	0.4267 (19)	0.0507 (16)	0.032 (6)*
N3A	0.45512 (13)	0.54155 (13)	0.23929 (11)	0.0180 (3)
H1N3	0.387 (2)	0.5075 (19)	0.2500 (16)	0.031 (6)*
C1A	0.23068 (15)	0.20058 (15)	0.22090 (12)	0.0166 (3)
C2A	0.13421 (16)	0.11183 (15)	0.25585 (13)	0.0180 (3)
C3A	0.15680 (17)	0.01785 (16)	0.20070 (13)	0.0212 (4)
H3AA	0.0925	-0.0427	0.2231	0.025*
C4A	0.27061 (17)	0.00986 (16)	0.11389 (14)	0.0219 (4)
H4AA	0.2840	-0.0557	0.0779	0.026*
C5A	0.36387 (17)	0.09792 (16)	0.08048 (13)	0.0204 (3)
H5AA	0.4412	0.0933	0.0206	0.024*
C6A	0.34648 (16)	0.19418 (15)	0.13340 (12)	0.0163 (3)
C7A	0.45032 (16)	0.28267 (15)	0.09523 (13)	0.0173 (3)
H7AA	0.5243	0.2759	0.0337	0.021*
C8A	0.55885 (15)	0.52858 (15)	0.15423 (12)	0.0154 (3)
C9A	0.44553 (15)	0.62215 (16)	0.30920 (12)	0.0175 (3)
H9AA	0.5368	0.6226	0.3119	0.021*
C10A	0.39567 (17)	0.75839 (16)	0.27188 (14)	0.0223 (4)
H10A	0.3072	0.7594	0.2653	0.027*
H10B	0.4588	0.7950	0.2024	0.027*
C11A	0.38338 (17)	0.83900 (17)	0.34832 (14)	0.0249 (4)
H11A	0.4734	0.8448	0.3495	0.030*
H11B	0.3465	0.9261	0.3246	0.030*
C12A	0.29295 (17)	0.78223 (19)	0.45741 (15)	0.0300 (4)
H12A	0.2924	0.8328	0.5059	0.036*
H12B	0.2002	0.7864	0.4580	0.036*
C13A	0.3395 (2)	0.64536 (19)	0.49414 (14)	0.0334 (5)
H13A	0.2742	0.6092	0.5627	0.040*
H13B	0.4269	0.6425	0.5031	0.040*
C14A	0.35411 (18)	0.56458 (17)	0.41752 (13)	0.0253 (4)
H14A	0.3914	0.4777	0.4415	0.030*
H14B	0.2648	0.5581	0.4153	0.030*
C15A	0.01137 (16)	0.12174 (18)	0.34918 (14)	0.0246 (4)
H15A	-0.0495	0.0589	0.3588	0.037*

H15B	-0.0337	0.2073	0.3387	0.037*
H15C	0.0371	0.1055	0.4111	0.037*
S1B	1.20980 (4)	0.63000 (4)	0.11943 (3)	0.01957 (11)
O1B	0.72600 (12)	0.31105 (11)	0.27336 (9)	0.0204 (3)
H1O2	0.790 (2)	0.358 (2)	0.2455 (18)	0.042 (7)*
N1B	0.96393 (13)	0.38885 (13)	0.14385 (10)	0.0165 (3)
N2B	1.07086 (14)	0.46229 (13)	0.10739 (11)	0.0183 (3)
H2N2	1.141 (2)	0.4453 (19)	0.0585 (17)	0.035 (6)*
N3B	0.95163 (13)	0.58802 (14)	0.22201 (11)	0.0191 (3)
H2N3	0.8858 (19)	0.5517 (18)	0.2277 (14)	0.023 (5)*
C1B	0.74994 (15)	0.22243 (15)	0.21634 (12)	0.0160 (3)
C2B	0.64909 (16)	0.14034 (16)	0.24528 (13)	0.0182 (3)
C3B	0.67030 (16)	0.04933 (16)	0.18792 (13)	0.0212 (4)
H3BA	0.6019	-0.0055	0.2052	0.025*
C4B	0.78870 (17)	0.03605 (16)	0.10606 (14)	0.0221 (4)
H4BA	0.8018	-0.0285	0.0692	0.027*
C5B	0.88741 (16)	0.11750 (16)	0.07866 (13)	0.0198 (3)
H5BA	0.9683	0.1087	0.0224	0.024*
C6B	0.87008 (15)	0.21254 (15)	0.13242 (12)	0.0168 (3)
C7B	0.97581 (16)	0.29730 (15)	0.09955 (13)	0.0178 (3)
H7BA	1.0559	0.2846	0.0438	0.021*
C8B	1.06817 (16)	0.55741 (15)	0.15303 (12)	0.0165 (3)
C9B	0.93058 (15)	0.68143 (15)	0.28450 (12)	0.0171 (3)
H9BA	0.9867	0.7537	0.2406	0.021*
C10B	0.97252 (16)	0.62377 (16)	0.37971 (13)	0.0200 (3)
H10C	1.0684	0.5927	0.3570	0.024*
H10D	0.9197	0.5504	0.4230	0.024*
C11B	0.95005 (16)	0.72239 (16)	0.44436 (13)	0.0214 (4)
H11C	0.9730	0.6819	0.5077	0.026*
H11D	1.0100	0.7914	0.4034	0.026*
C12B	0.80487 (16)	0.77855 (17)	0.47574 (13)	0.0219 (4)
H12C	0.7460	0.7118	0.5248	0.026*
H12D	0.7953	0.8471	0.5120	0.026*
C13B	0.76067 (17)	0.83197 (17)	0.38142 (14)	0.0224 (4)
H13C	0.8111	0.9065	0.3372	0.027*
H13D	0.6642	0.8610	0.4051	0.027*
C14B	0.78417 (15)	0.73274 (16)	0.31723 (13)	0.0201 (4)
H14C	0.7268	0.6620	0.3590	0.024*
H14D	0.7592	0.7717	0.2546	0.024*
C15B	0.52399 (16)	0.15270 (17)	0.33654 (14)	0.0237 (4)
H15D	0.4569	0.1011	0.3383	0.036*
H15E	0.4886	0.2420	0.3299	0.036*
H15F	0.5447	0.1231	0.4010	0.036*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.01576(19)$	$0.0224(2)$	$0.0179(2)$	$-0.00439(16)$	$-0.00298(16)$	$-0.00655(17)$

01A	0.0200 (6)	0.0223 (7)	0.0185 (6)	-0.0050 (5)	-0.0019 (5)	-0.0086 (5)
N1A	0.0150 (6)	0.0159 (7)	0.0166 (7)	-0.0018 (5)	-0.0052 (5)	-0.0041 (5)
N2A	0.0155 (6)	0.0188 (7)	0.0155 (7)	-0.0032 (5)	-0.0014 (6)	-0.0072 (6)
N3A	0.0142 (6)	0.0223 (8)	0.0187 (7)	-0.0050 (6)	-0.0020 (6)	-0.0095 (6)
C1A	0.0199 (8)	0.0162 (8)	0.0153 (8)	-0.0006 (6)	-0.0079 (6)	-0.0036 (6)
C2A	0.0177 (7)	0.0191 (8)	0.0173 (8)	-0.0022 (6)	-0.0080 (6)	-0.0012 (7)
C3A	0.0238 (8)	0.0177 (9)	0.0244 (9)	-0.0054 (7)	-0.0118 (7)	-0.0013 (7)
C4A	0.0291 (9)	0.0168 (9)	0.0238 (9)	-0.0012 (7)	-0.0122 (7)	-0.0070 (7)
C5A	0.0238 (8)	0.0177 (9)	0.0187 (9)	0.0002 (7)	-0.0056 (7)	-0.0061 (7)
C6A	0.0197 (8)	0.0146 (8)	0.0151 (8)	-0.0009 (6)	-0.0074 (6)	-0.0025 (6)
C7A	0.0180 (7)	0.0175 (8)	0.0146 (8)	-0.0015 (6)	-0.0032 (6)	-0.0043 (6)
C8A	0.0158 (7)	0.0158 (8)	0.0153 (8)	-0.0003 (6)	-0.0072 (6)	-0.0024 (6)
C9A	0.0162 (7)	0.0223 (9)	0.0159 (8)	-0.0045 (6)	-0.0036 (6)	-0.0081 (7)
C10A	0.0248 (8)	0.0215 (9)	0.0225 (9)	-0.0012 (7)	-0.0091 (7)	-0.0072 (7)
C11A	0.0223 (8)	0.0248 (10)	0.0327 (10)	0.0003 (7)	-0.0109 (8)	-0.0142 (8)
C12A	0.0206 (8)	0.0435 (12)	0.0320 (11)	-0.0055 (8)	-0.0022 (8)	-0.0262 (9)
C13A	0.0415 (11)	0.0405 (12)	0.0187 (10)	-0.0133 (9)	-0.0027 (8)	-0.0120 (8)
C14A	0.0295 (9)	0.0272 (10)	0.0180 (9)	-0.0086 (8)	-0.0031 (7)	-0.0066 (7)
C15A	0.0198 (8)	0.0282 (10)	0.0244 (9)	-0.0067 (7)	-0.0040 (7)	-0.0056 (8)
S1B	0.01561 (19)	0.0223 (2)	0.0206 (2)	-0.00340 (16)	-0.00332 (16)	-0.00756 (17)
O1B	0.0204 (6)	0.0208 (6)	0.0198 (6)	-0.0032 (5)	-0.0019 (5)	-0.0106 (5)
N1B	0.0154 (6)	0.0169 (7)	0.0173 (7)	-0.0020 (5)	-0.0052 (5)	-0.0042 (6)
N2B	0.0155 (7)	0.0203 (8)	0.0177 (7)	-0.0029 (6)	-0.0013 (6)	-0.0074 (6)
N3B	0.0148 (6)	0.0217 (8)	0.0227 (8)	-0.0024 (6)	-0.0035 (6)	-0.0117 (6)
C1B	0.0185 (7)	0.0145 (8)	0.0151 (8)	0.0014 (6)	-0.0067 (6)	-0.0039 (6)
C2B	0.0179 (7)	0.0185 (8)	0.0176 (8)	-0.0002 (6)	-0.0072 (6)	-0.0022 (7)
C3B	0.0217 (8)	0.0200 (9)	0.0244 (9)	-0.0034 (7)	-0.0103 (7)	-0.0047 (7)
C4B	0.0275 (9)	0.0198 (9)	0.0246 (9)	-0.0003 (7)	-0.0117 (7)	-0.0109 (7)
C5B	0.0208 (8)	0.0211 (9)	0.0176 (8)	0.0000 (7)	-0.0041 (7)	-0.0095 (7)
C6B	0.0179 (7)	0.0171 (8)	0.0163 (8)	-0.0011 (6)	-0.0066 (6)	-0.0042 (6)
C7B	0.0175 (7)	0.0186 (8)	0.0158 (8)	0.0003 (6)	-0.0042 (6)	-0.0049 (7)
C8B	0.0186 (7)	0.0160 (8)	0.0142 (8)	-0.0011 (6)	-0.0059 (6)	-0.0021 (6)
C9B	0.0178 (7)	0.0179 (8)	0.0167 (8)	-0.0032 (6)	-0.0035 (6)	-0.0079 (7)
C10B	0.0183 (8)	0.0215 (9)	0.0199 (9)	0.0017 (6)	-0.0066 (7)	-0.0063 (7)
C11B	0.0228 (8)	0.0252 (9)	0.0188 (9)	-0.0011 (7)	-0.0096 (7)	-0.0063 (7)
C12B	0.0225 (8)	0.0247 (9)	0.0196 (9)	-0.0005 (7)	-0.0062 (7)	-0.0092 (7)
C13B	0.0207 (8)	0.0245 (9)	0.0262 (10)	0.0035 (7)	-0.0107 (7)	-0.0121 (8)
C14B	0.0179 (8)	0.0236 (9)	0.0218 (9)	-0.0006 (7)	-0.0081 (7)	-0.0087 (7)
C15B	0.0199 (8)	0.0253 (9)	0.0231 (9)	-0.0036 (7)	-0.0036 (7)	-0.0048 (7)

Geometric parameters ($\AA,{ }^{\circ}$)

S1A-C8A	$1.6897(15)$	S1B-C8B	$1.6914(16)$
O1A-C1A	$1.3583(19)$	O1B-C1B	$1.3569(19)$
O1A-H1O1	$0.80(2)$	O1B-H1O2	$0.83(2)$
N1A-C7A	$1.289(2)$	N1B-C7B	$1.284(2)$
N1A-N2A	$1.3758(18)$	N1B-N2B	$1.3762(18)$
N2A-C8A	$1.357(2)$	N2B-C8B	$1.357(2)$

N2A-H1N2	0.85 (2)	N2B-H2N2	0.85 (2)
N3A-C8A	1.328 (2)	N3B-C8B	1.330 (2)
N3A-C9A	1.461 (2)	N3B-C9B	1.463 (2)
N3A-H1N3	0.82 (2)	N3B-H2N3	0.840 (19)
C1A-C6A	1.404 (2)	C1B-C2B	1.401 (2)
C1A-C2A	1.406 (2)	C1B-C6B	1.409 (2)
C2A-C3A	1.390 (2)	C2B-C3B	1.387 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}$	1.499 (2)	C2B-C15B	1.500 (2)
C3A-C4A	1.390 (2)	C3B-C4B	1.388 (2)
C3A-H3AA	0.9500	C3B-H3BA	0.9500
C4A-C5A	1.378 (2)	C4B-C5B	1.382 (2)
C4A-H4AA	0.9500	C4B-H4BA	0.9500
C5A-C6A	1.400 (2)	C5B-C6B	1.397 (2)
C5A-H5AA	0.9500	C5B-H5BA	0.9500
C6A-C7A	1.458 (2)	C6B-C7B	1.453 (2)
C7A-H7AA	0.9500	C7B-H7BA	0.9500
C9A-C14A	1.517 (2)	C9B-C14B	1.522 (2)
C9A-C10A	1.520 (2)	C9B-C10B	1.526 (2)
C9A-H9AA	1.0000	C9B-H9BA	1.0000
C10A-C11A	1.529 (2)	C10B-C11B	1.530 (2)
C10A-H10A	0.9900	C10B-H10C	0.9900
C10A-H10B	0.9900	C10B-H10D	0.9900
C11A-C12A	1.519 (3)	C11B-C12B	1.526 (2)
C11A-H11A	0.9900	C11B-H11C	0.9900
C11A-H11B	0.9900	C11B-H11D	0.9900
C12A-C13A	1.513 (3)	C12B-C13B	1.523 (2)
C12A-H12A	0.9900	C12B-H12C	0.9900
C12A-H12B	0.9900	C12B-H12D	0.9900
C13A-C14A	1.526 (2)	C13B-C14B	1.529 (2)
C13A-H13A	0.9900	C13B-H13C	0.9900
C13A-H13B	0.9900	C13B-H13D	0.9900
C14A-H14A	0.9900	C14B-H14C	0.9900
C14A-H14B	0.9900	C14B-H14D	0.9900
C15A-H15A	0.9800	C15B-H15D	0.9800
C15A-H15B	0.9800	C15B-H15E	0.9800
C15A-H15C	0.9800	C15B-H15F	0.9800
$\mathrm{C} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{H1O1}$	108.6 (17)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{O} 2$	107.4 (15)
C7A-N1A-N2A	116.82 (13)	C7B-N1B-N2B	116.97 (14)
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	119.82 (13)	$\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	120.46 (14)
C8A-N2A-H1N2	120.7 (13)	$\mathrm{C} 8 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~N} 2$	119.4 (14)
N1A-N2A-H1N2	117.8 (14)	N1B-N2B-H2N2	120.0 (14)
C8A-N3A-C9A	125.71 (13)	C8B-N3B-C9B	124.99 (13)
C8A-N3A-H1N3	117.1 (14)	C8B-N3B-H2N3	116.0 (13)
C9A-N3A-H1N3	116.9 (14)	$\mathrm{C} 9 \mathrm{~B}-\mathrm{N} 3 \mathrm{~B}-\mathrm{H} 2 \mathrm{~N} 3$	118.9 (13)
O1A-C1A-C6A	122.24 (14)	O1B-C1B-C2B	116.63 (14)
O1A-C1A-C2A	116.68 (14)	O1B-C1B-C6B	122.02 (14)
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	121.08 (15)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	121.35 (15)

$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	117.85 (15)
C3A-C2A-C15A	122.40 (14)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}$	119.74 (15)
C4A-C3A-C2A	122.00 (15)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AA}$	119.0
C2A-C3A-H3AA	119.0
C5A-C4A-C3A	119.37 (16)
C5A-C4A-H4AA	120.3
C3A-C4A-H4AA	120.3
C4A-C5A-C6A	121.01 (16)
C4A-C5A-H5AA	119.5
C6A-C5A-H5AA	119.5
C5A-C6A-C1A	118.68 (14)
C5A-C6A-C7A	118.22 (15)
C1A-C6A-C7A	123.09 (14)
N1A-C7A-C6A	121.83 (15)
N1A-C7A-H7AA	119.1
C6A-C7A-H7AA	119.1
N3A-C8A-N2A	116.73 (14)
N3A-C8A-S1A	123.76 (12)
N2A-C8A-S1A	119.51 (12)
N3A-C9A-C14A	108.61 (13)
N3A-C9A-C10A	112.01 (13)
C14A-C9A-C10A	111.06 (14)
N3A-C9A-H9AA	108.4
C14A-C9A-H9AA	108.4
C10A-C9A-H9AA	108.4
C9A-C10A-C11A	110.55 (14)
C9A-C10A-H10A	109.5
C11A-C10A-H10A	109.5
C9A-C10A-H10B	109.5
C11A-C10A-H10B	109.5
H10A-C10A-H10B	108.1
C12A-C11A-C10A	111.31 (14)
C12A-C11A-H11A	109.4
C10A-C11A-H11A	109.4
C12A-C11A-H11B	109.4
C10A-C11A-H11B	109.4
H11A-C11A-H11B	108.0
C13A-C12A-C11A	111.40 (15)
C13A-C12A-H12A	109.3
C11A-C12A-H12A	109.3
C13A-C12A-H12B	109.3
C11A-C12A-H12B	109.3
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~B}$	108.0
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}$	111.91 (16)
C12A-C13A-H13A	109.2
C14A-C13A-H13A	109.2

C3B-C2B-C1B	117.95 (15)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}$	122.57 (15)
C1B-C2B-C15B	119.48 (15)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	121.87 (15)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{BA}$	119.1
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{BA}$	119.1
C5B-C4B-C3B	119.48 (15)
C5B-C4B-H4BA	120.3
C3B-C4B-H4BA	120.3
C4B-C5B-C6B	120.98 (16)
C4B-C5B-H5BA	119.5
C6B-C5B-H5BA	119.5
C5B-C6B-C1B	118.35 (14)
C5B-C6B-C7B	118.96 (15)
C1B-C6B-C7B	122.70 (14)
N1B-C7B-C6B	121.80 (15)
N1B-C7B-H7BA	119.1
C6B-C7B-H7BA	119.1
N3B-C8B-N2B	116.78 (14)
N3B-C8B-S1B	124.07 (12)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	119.15 (12)
N3B-C9B-C14B	109.69 (12)
N3B-C9B-C10B	111.20 (13)
C14B-C9B-C10B	110.58 (13)
N3B-C9B-H9BA	108.4
C14B-C9B-H9BA	108.4
C10B-C9B-H9BA	108.4
C9B-C10B-C11B	110.68 (13)
C9B-C10B-H10C	109.5
C11B-C10B-H10C	109.5
C9B-C10B-H10D	109.5
C11B-C10B-H10D	109.5
H10C-C10B-H10D	108.1
C12B-C11B-C10B	111.23 (13)
C12B-C11B-H11C	109.4
C10B-C11B-H11C	109.4
C12B-C11B-H11D	109.4
C10B-C11B-H11D	109.4
H11C-C11B-H11D	108.0
C13B-C12B-C11B	111.49 (14)
C13B-C12B-H12C	109.3
C11B-C12B-H12C	109.3
C13B-C12B-H12D	109.3
C11B-C12B-H12D	109.3
$\mathrm{H} 12 \mathrm{C}-\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 12 \mathrm{D}$	108.0
C12B-C13B-C14B	111.59 (14)
C12B-C13B-H13C	109.3
C14B-C13B-H13C	109.3

C12A-C13A-H13B	109.2
C14A-C13A-H13B	109.2
H13A-C13A-H13B	107.9
C9A-C14A-C13A	111.02 (14)
C9A-C14A-H14A	109.4
C13A-C14A-H14A	109.4
C9A-C14A-H14B	109.4
C13A-C14A-H14B	109.4
H14A-C14A-H14B	108.0
C2A-C15A-H15A	109.5
C2A-C15A-H15B	109.5
H15A-C15A-H15B	109.5
C2A-C15A-H15C	109.5
H15A-C15A-H15C	109.5
H15B-C15A-H15C	109.5
C7A-N1A-N2A-C8A	-171.68 (14)
O1A-C1A-C2A-C3A	179.53 (14)
C6A-C1A-C2A-C3A	-0.3 (2)
O1A-C1A-C2A-C15A	0.2 (2)
C6A-C1A-C2A-C15A	-179.68(15)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	0.3 (2)
$\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	179.61 (16)
C2A-C3A-C4A-C5A	-0.5 (3)
C3A-C4A-C5A-C6A	0.8 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	-0.9 (2)
C4A-C5A-C6A-C7A	178.73 (15)
O1A-C1A-C6A-C5A	-179.23 (14)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	0.6 (2)
O1A-C1A-C6A-C7A	1.2 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	-178.96 (14)
N2A-N1A-C7A-C6A	178.28 (13)
C5A-C6A-C7A-N1A	-176.61 (15)
C1A-C6A-C7A-N1A	3.0 (2)
C9A-N3A-C8A-N2A	178.07 (14)
C9A-N3A-C8A-S1A	-2.3 (2)
N1A-N2A-C8A-N3A	-7.4 (2)
N1A-N2A-C8A-S1A	172.92 (11)
C8A-N3A-C9A-C14A	-151.70 (16)
C8A-N3A-C9A-C10A	85.26 (19)
N3A-C9A-C10A-C11A	178.51 (13)
C14A-C9A-C10A-C11A	56.87 (18)
C9A-C10A-C11A-C12A	-56.18 (19)
C10A-C11A-C12A-C13A	54.83 (19)
C11A-C12A-C13A-C14A	-54.1 (2)
N3A-C9A-C14A-C13A	-179.67 (15)
C10A-C9A-C14A-C13A	-56.06 (19)
C12A-C13A-C14A-C9A	54.7 (2)

C12B-C13B-H13D	109.3
C14B-C13B-H13D	109.3
H13C-C13B-H13D	108.0
C9B-C14B-C13B	$110.42(13)$
C9B-C14B-H14C	109.6
C13B-C14B-H14C	109.6
C9B-C14B-H14D	109.6
C13B-C14B-H14D	109.6
H14C-C14B-H14D	108.1
C2B-C15B-H15D	109.5
C2B-C15B-H15E	109.5
H15D-C15B-H15E	109.5
C2B-C15B-H15F	109.5
H15D-C15B-H15F	109.5
H15E-C15B-H15F	109.5

$-177.23(14)$
179.53 (14)
-0.7 (2)
-1.0 (2)
178.77 (15)
1.9 (2)
-177.57 (16)
-1.7 (3)
0.3 (3)
0.8 (2)
-178.94 (15)
179.16 (14)
-0.6 (2)
-1.1 (2)
179.12 (15)
179.20 (14)
177.83 (15)
-1.9 (2)
175.59 (14)
-4.8 (2)
-10.2 (2)
170.21 (11)
155.77 (15)
-81.60 (19)
179.99 (13)
-57.90 (17)
55.88 (18)
-54.08 (19)
54.32 (19)
-179.21 (14)
57.79 (18)
-56.10 (19)

Hydrogen-bond geometry (A, ${ }^{\circ}$)
$C g 1$ is the centroid of benzene ring C1A-C6A.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 1 O 1 \cdots \mathrm{~N} 1 A$	$0.80(2)$	$1.98(2)$	$2.6844(19)$	$146(2)$
$\mathrm{O} 1 B-\mathrm{H} 1 O 2 \cdots \mathrm{~N} 1 B$	$0.84(2)$	$1.91(2)$	$2.664(2)$	$148(2)$
$\mathrm{N} 2 A-\mathrm{H} 1 N 2 \cdots \mathrm{~S} 1 B^{\mathrm{i}}$	$0.85(2)$	$2.60(2)$	$3.4414(16)$	$170(2)$
$\mathrm{N} 2 B-\mathrm{H} 2 N 2 \cdots \mathrm{~S} 1 A^{\mathrm{i}}$	$0.85(2)$	$2.53(2)$	$3.3568(15)$	$164(2)$
$\mathrm{C} 11 A-\mathrm{H} 11 B \cdots C g 1^{\mathrm{ii}}$	0.99	2.93	$3.801(2)$	148

Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $x, y+1, z$.

