5-Methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate]: crystal structure and **DFT** calculations

Tanwawan Duangthongyou,^a Ramida Rattanakam,^b Kittipong Chainok,^c Songwut Suramitr,^d Thawatchai Tuntulani^e and Boontana Wannalerse^a*

^aDepartment of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, ^bDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, ^cMaterials and Textile Technology, Faculty of Science, and Technology, Thammasart University, Pathum Thani 12120, Thailand, ^dCenter of Nanotechnology, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, and ^eSupramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. *Correspondence e-mail: fscibnw@ku.ac.th

The title compound, C₃₁H₃₀N₂S₂O₆, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methylphenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO-LUMO energy gap was found to be 2.99 eV and indicates $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transitions within the molecule.

1. Chemical context

Dansyl probes play important roles in many fields, including their use as industrial tracers and labelled biological tags (Tondi et al., 2005; Li et al., 2006; Liu et al., 2016). Dansyl derivatives have been employed to identify some diseases within cells and to detect DNA-duplex sequences. For example, modified oligonucleotides that contain a dansyl fluorophore and (S)-2, 3-dihydroxy propyl carbamates linked to guanine residues result in an enhancement of the fluorescence. Such modified oligonucleotides can be used to prepare and detect the sequence of fluorogenic probes in DNA (Suzuki et al., 2013). Cu-labelled dansyl molecules have been designed and synthesized as fluorescence probes for membrane tags on apoptosis cells. These compounds can also be used for PET imaging of the apoptosis in vivo (Han et al., 2016). Furthermore, the development of dansyl fluorogenic receptors for cations, anions and neutral molecules has attracted much attention because of their ability to turn fluorescence 'on' or 'off' through a number of mechanisms including ICT, PET and ET processes (Chen & Chen, 2005; Praveen et al., 2010; Dinake et al. 2012; Jeong et al. 2016). In this paper, we report the synthesis, molecular structure and crystal packing of 5-methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate]. The results of DFT calculations on the molecule are also reported.

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 24 May 2019 Accepted 25 June 2019

Edited by J. Simpson, University of Otago, New

Keywords: crystal structure; dansyl unit; 3,5dihydroxytoluene; hydrogen bonds; DFT calculations

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

2. Structural commentary

The title compound crystallizes in the space group C2/c. The molecule lies on a crystallographic twofold axis running through atoms C1, C2 and C5 of the methylphenyl unit so that the asymmetric unit comprises one half-molecule (Fig. 1). The hydrogen atoms of the C1 methyl group are therefore disordered over two equivalent positions. Intramolecular C14—H14—O3 hydrogen bonds enclose S(6) rings, Fig. 1. The molecular structure comprises two *O*-dansyl groups on either side of a bridging methylphenyl ring that is essentially planar. The S1–O1–C4–C3 torsion angle is 72.98 (16)° with the methylphenyl ring plane. The S1 sulfur atoms have distorted tetrahedral geometries, with an O2–S1–C6 bond angle of 109.18 (8)°. The two naphthalene units in each dansyl group are inclined to one another at an angle of 52.29 (6)°; however, no stacking of the naphthalene units is observed.

3. Supramolecular features

In the crystal structure, the supramolecular packing is dominated by weak $C-H \cdots O$ hydrogen bonds, Table 1. C9-H9-

Figure 1

The molecular structure of the title compound with displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as red dashed lines.

Table 1	l			
Hydrog	en-bond	geometry	(Å,	°).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C14 H14 O2	0.02	2.40	2116(2)	125
$C_1 = H_1 P = O_2^{i}$	0.93	2.49	3.110(2)	125
$C_1 = H_1 B \cdots O_3$	0.90	2.70	3.326(2)	143
$C_{16} = H_{16} C_{16} O_{11}^{iii}$	0.95	2.00	3.460(2)	138
C10=1110C····O2	0.90	2.05	5.475 (2)	14/

Symmetry codes: (i) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) x, -y + 1, $z - \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

O1 contacts form dimers enclosing $R_2^2(22)$ rings and generate chains of molecules along the *c*-axis direction, Fig. 2. C1–H1*B*–O3 and C16–H16*C*–O2 contacts further link the molecules into sheets in the *ab* plane, Fig. 3. These contacts combine to stack rows of molecules arranged in an obverse fashion along the *a*-axis direction, Fig. 4.

4. Computational study

The Density Functional Theory (DFT) calculations were performed at the CAM-B3LYP/6-311G (d,p) level as implemented in the *GAUSSIAN09* program package (Frisch *et al.*, 2009). The DFT structure optimization of the compound was

Chains of dimers of the title compound along the *c* axis. Dashed lines represent the $C-H\cdots O$ hydrogen bonds.

Figure 3 Sheets of molecules of the title compound formed in the *ab* plane.

Table 2 Comparison of selected experimental (XRD) bond lengths and angles (\mathring{A}, \circ) with those from DFT calculations.

Bond/angle	XRD	DFT
\$1-O1	1.6006 (12)	1.647
S1-O3	1.4223 (13)	1.453
S1-C6	1.7552 (16)	1.768
O1-C4	1.4166 (17)	1.394
N1-C11	1.413 (2)	1.406
O1-S1-C6	103.11 (7)	103.46
O2-S1-O1	108.81 (7)	108.93
O2-S1-O3	119.32 (9)	119.85
C4-O1-S1	119.05 (9)	119.08
O2-S1-C6	109.18 (8)	109.04

performed starting from the X-ray geometry. The experimental values of the bond lengths and bond angles match reasonably well with the theoretical values in most cases. However, the lengths of bonds to O atoms involved in hydrogen bonding fit less well, Table 2. The important features such as conjugation and aromaticity are well illustrated by frontier molecular orbitals. The ionization potential of the molecule is determined from the energy of the highest occupied molecular orbital (HOMO) and the electron affinity is calculated from the energy of the lowest unoccupied molecular orbital (LUMO). The frontier molecular orbital ener-

The overall packing of the title compound viewed along the *a*-axis direction.

gies, E_{HOMO} and E_{LUMO} are -8.24 and -5.25 eV, respectively. Insights into the kinetic stability and chemical reactivity of a molecule can be determined from the energy difference between the HOMO and LUMO orbitals, the so-called HOMO-LUMO energy gap. This gap was found here to be 2.99 eV. The HOMO-LUMO energy levels indicate $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transitions and are shown in Fig. 5. The HOMO is mainly localized on the nitrogen atom of dimethylamine group as well as on the C=C segments of the naphthalene ring systems while the LUMO is located again on the dimethylamine substituent and also on the aromatic rings of the naphthalene systems. In Fig. 5, the negative and positive phases are represented by green and red colours, respectively.

5. Database survey

There are many crystal structures of dansyl derivatives that are similar to the title compound. Two categories of crystal structures of dansyl derivatives are found. The first types are simple organic molecules that pack in the solid state through the many types of intermolecular interactions. For example,

in 2-[5-(dimethylamino)naphthalene-1-sulfonamido]phenyl 5-(dimethylamino)naphthalene-1-sulfonate [CSD (Groom *et al.*, 2016) refcode NUQDOU; Chainok *et al.*, 2015), there are two dansyl units connecting to the amine and hydroxyl groups of a 2-aminophenol, while weak $C-H\cdots O$ hydrogen bonds stabilize the crystal structure. In *N*-cyclododecyl-5-(dimethylamino)naphthalene-1-sulfonamide (HODDOU; Fischer *et al.*, 2008) a cyclododecylamine linked to the dansyl substituent adopts a U-shaped conformation, and the crystal packing is stabilized by $N-H\cdots O$ hydrogen bonds and $C-H\cdots \pi$ interactions between neighbouring molecules. In 8-quinolyl

Frontier molecular orbitals of the title compound.

research communications

5-(dimethylamino)naphthalene-1-sulfonate, (DUVFOQ; Xiao & Zhan, 2010) with an 8-hydroxyquinoline ring, C-H···O hydrogen bonds and π - π interactions between pairs of chains link adjacent molecules. In the crystal structure of *N*-(2-aminoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide (BOVBOE; Zhang *et al.*, 2009) a dansyl compound with a 2-aminoethyl group, layers are formed through N-H···N and weak C-H···O hydrogen bonds. In 5,5'-bis(dimethylamino)-N,N'-(3-methyl-3-azapentane-1,5-diyl)di(naphthalene-1-sulfonamide) (DABSEH; Horne *et al.*, 2015), packing in the crystal structure relies on N-H···O and C-H···O interactions.

Metal-dansyl complexes form the second class of common dansyl derivatives. The crystal structures of the di- and trinuclear gold(I) complexes [5-(dimethylamino)naphthalene-1-sulfonamido]bis(triphenylphosphine)digold (UZEJAL) and [5-(dimethylamino)naphthalene-1-sulfonamido]tris(triphenylphosphine)trigold perchlorate (UZEJEP) (Cho *et al.*, 2011) display weak Au···Au interactions and C-H··· π contacts within the molecule. The Pb²⁺ complex 26,28-dibutoxy-25,27bis(*N*-dansylcarbamoylmethoxy)-5,11,17,23-tetrakis(1,1-dimethylethyl)calix[4]arene (NOJRAG; Buie *et al.*, 2008), where the calix[4]arene bears two dansylcarboxamide groups, was found to be highly selective and sensitive for the recognition of and coordination to the Pb²⁺ ion.

6. Synthesis and crystallization

The title compound was synthesized by mixing 3,5-dihydroxytoluene (1.05 g, 8.46 mmol) and dansyl chloride (4.55g, 17 mmol) using potassium carbonate(2.34g, 17 mmol) as a base in acetonitrile solvent (40 ml). The reaction mixture was heated at 363 K and stirred under an N₂ atmosphere for 24 h. The solvent was removed with a rotary evaporator. The residue was added to water (15 ml) and extracted with dichloromethane (3 × 25ml). The organic layer was dried with anhydrous Na₂SO₄ and the product was purified by column chromatography using CH₂Cl₂ as the eluent. The dichloromethane was slowly evaporated to afford a green solid in 65% yield. Light-green block-like crystals were grown in chloroform at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms on C were refined using a riding model with d(C-H) = 0.95 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$ for aromatic and d(C-H) = 0.98 Å, $U_{iso}(H) =$ $1.5U_{eq}(C)$ for methyl H atoms. As atom Cl lies on a twofold rotation axis, the H atoms of the Cl methyl group are disordered with occupancies fixed at 0.5.

Acknowledgements

The authors thank the Thailand Research Fund (MRG5580182), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Ministry of Higher Education,

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{31}H_{30}N_2O_6S_2$
M _r	590.69
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.5072 (6), 12.3504 (5), 16.3017 (5)
β (°)	114.868 (1)
$V(\dot{A}^3)$	2832.62 (18)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.24
Crystal size (mm)	$0.44 \times 0.44 \times 0.4$
Data collection	
Diffractometer	Bruker D8 QUEST CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.710, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18169, 2857, 2437
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.106, 1.04
No. of reflections	2857
No. of parameters	190
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.23, -0.33

Computer programs: *APEX CCD* and *SAINT* (Bruker, 2013), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008).

Science, Research and Innovation, the Kasetsart University Research and Development Institute and the Department of Chemistry, Kasetsart University for financial support.

References

- Bruker (2013). APEX CCD and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buie, N. M., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2008). *Inorg. Chem.* 47, 3549–3558.
- Chainok, K., Duangthongyou, T., Tuntulani, T., Chuenka, A. & Wannalerse, B. (2015). Acta Cryst. E71, o721-o722.
- Chao, H., Su, B.-C., Li, C.-L., Lam, C.-K. & Feng, X.-L. (2011). Inorg. Chem. Commun. 14, 1436–1439.
- Chen, Q.-Y. & Chen, C.-F. (2005). Tetrahedron Lett. 46, 165-168.
- Dinake, P., Prokhorova, P. E., Talanov, V. S., Butcher, R. J. & Talanova, G. G. (2012). Acta Cryst. E68, m460-m461.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fischer, C., Gruber, T., Seichter, W., Weber, E. & Ibragimov, B. T. (2008). Acta Cryst. E64, o1204.
- Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Han, J., Wang, X. & Yu, M. (2016). *Bioorg. Med. Chem. Lett.* 26, 5594–5596.
- Horne, T. V., Haque, S. A., Barton, A. & Hossain, M. A. (2015). *Acta Cryst.* E**71**, 0959–0960.
- Jeong, Y. A., Chang, I. J. & Chang, S.-K. (2016). Sens. Actuators B Chem. 224, 73–80.

Li, X., McCarroll, M. & Kohli, P. (2006). Langmuir, 22, 8165-8167.

- Liu, C.-Y., Guo, C. W., Chang, Y. F., Wang, J.-T., Shih, H.-W., Hsu, Y.-F., Chen, C.-W., Chen, S.-K., Wang, Y.-C., Cheng, T. J., Ma, C., Wong, C.-H., Fang, J.-M. & Cheng, W.-C. (2010). Org. Lett. 12, 1608–1611.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Praveen, L., Reddy, M. L. P. & Varma, R. L. (2010). *Tetrahedron Lett.* **51**, 6626–6629.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Suzuki, Y., Kowata, K. & Komatsu, Y. (2013). Bioorg. Med. Chem. Lett. 23, 6123–6126.
- Tondi, D., Venturelli, A., Ferrari, S., Ghelli, S. & Costi, M. P. (2005). J. Med. Chem. 48, 913–916.
- Xiao, Z. & Zhan, D. (2010). Acta Cryst. E66, o2180.
- Zhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, 01452.

supporting information

Acta Cryst. (2019). E75, 1079-1083 [https://doi.org/10.1107/S2056989019009058]

5-Methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate]: crystal structure and DFT calculations

Tanwawan Duangthongyou, Ramida Rattanakam, Kittipong Chainok, Songwut Suramitr, Thawatchai Tuntulani and Boontana Wannalerse

Computing details

Data collection: *APEX* CCD (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

5-Methyl-1,3-phenylene bis[5-(dimethylamino)naphthalene-1-sulfonate]

Crystal data

 $C_{31}H_{30}N_2O_6S_2$ $M_r = 590.69$ Monoclinic, C2/c a = 15.5072 (6) Å b = 12.3504 (5) Å c = 16.3017 (5) Å $\beta = 114.868$ (1)° V = 2832.62 (18) Å³ Z = 4

Data collection

Bruker D8 QUEST CMOS diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.710, T_{\max} = 0.745$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.106$ S = 1.042857 reflections 190 parameters 0 restraints F(000) = 1240 $D_x = 1.385 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8490 reflections $\theta = 3.0-26.4^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 296 KBlock, light green $0.44 \times 0.44 \times 0.4 \text{ mm}$

18169 measured reflections 2857 independent reflections 2437 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 26.4^\circ, \theta_{min} = 3.0^\circ$ $h = -19 \rightarrow 19$ $k = -15 \rightarrow 15$ $l = -20 \rightarrow 20$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0573P)^2 + 1.5124P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.24891 (3)	0.59066 (4)	0.67336 (3)	0.04868 (15)	
01	0.35036 (8)	0.59425 (9)	0.75828 (7)	0.0458 (3)	
O2	0.21860 (9)	0.69851 (11)	0.64561 (10)	0.0632 (4)	
O3	0.19426 (9)	0.52398 (12)	0.70474 (10)	0.0675 (4)	
N1	0.43181 (10)	0.25203 (12)	0.48853 (10)	0.0535 (4)	
C6	0.27383 (10)	0.52632 (13)	0.58976 (11)	0.0424 (4)	
C7	0.25296 (12)	0.58335 (13)	0.51133 (12)	0.0483 (4)	
H7	0.2260	0.6519	0.5041	0.058*	
C8	0.27244 (12)	0.53779 (15)	0.44241 (12)	0.0526 (4)	
H8	0.2545	0.5739	0.3876	0.063*	
C9	0.31748 (12)	0.44083 (14)	0.45540 (11)	0.0473 (4)	
H9	0.3316	0.4125	0.4096	0.057*	
C10	0.34350 (10)	0.38180 (12)	0.53666 (10)	0.0400 (3)	
C11	0.39393 (11)	0.28115 (13)	0.55059 (11)	0.0458 (4)	
C12	0.40220 (13)	0.21854 (14)	0.62272 (14)	0.0586 (5)	
H12	0.4305	0.1507	0.6302	0.070*	
C13	0.36883 (15)	0.25495 (16)	0.68541 (14)	0.0644 (5)	
H13	0.3740	0.2096	0.7328	0.077*	
C14	0.32938 (13)	0.35391 (15)	0.67920 (12)	0.0532 (4)	
H14	0.3114	0.3778	0.7238	0.064*	
C15	0.31559 (10)	0.42115 (12)	0.60409 (10)	0.0405 (3)	
C16	0.51087 (14)	0.32132 (16)	0.49436 (14)	0.0616 (5)	
H16A	0.4915	0.3958	0.4888	0.092*	
H16B	0.5289	0.3032	0.4465	0.092*	
H16C	0.5640	0.3103	0.5516	0.092*	
C17	0.45713 (16)	0.13831 (16)	0.48903 (16)	0.0728 (6)	
H17A	0.5091	0.1212	0.5457	0.109*	
H17B	0.4755	0.1250	0.4406	0.109*	
H17C	0.4034	0.0939	0.4812	0.109*	
C4	0.42508 (10)	0.65401 (13)	0.75150 (10)	0.0400 (3)	
C3	0.42371 (11)	0.76504 (14)	0.75244 (11)	0.0459 (4)	
Н3	0.3723	0.8016	0.7547	0.055*	
C2	0.5000	0.82262 (19)	0.7500	0.0490 (5)	
C5	0.5000	0.59523 (18)	0.7500	0.0398 (5)	
H5	0.5000	0.5199	0.7500	0.048*	
C1	0.5000	0.9447 (2)	0.7500	0.0765 (9)	
H1A	0.4591	0.9706	0.6908	0.115*	0.5
H1B	0.5635	0.9706	0.7663	0.115*	0.5

supporting information

		0.970)6	0.7929	0.115*	0.5
Atomic displacement parameters ($Å^2$)						
	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
S1	0.0324 (2)	0.0582 (3)	0.0573 (3)	-0.00268 (16)	0.02067 (19)	-0.00729 (18)
01	0.0378 (6)	0.0558 (7)	0.0467 (6)	-0.0065 (5)	0.0208 (5)	-0.0008 (5)
O2	0.0455 (6)	0.0600 (8)	0.0765 (9)	0.0133 (6)	0.0182 (6)	-0.0078 (6)
O3	0.0482 (7)	0.0864 (10)	0.0816 (9)	-0.0191 (7)	0.0407 (7)	-0.0157 (7)
N1	0.0461 (8)	0.0486 (8)	0.0618 (9)	0.0003 (6)	0.0189 (7)	-0.0103 (7)
C6	0.0325 (7)	0.0458 (9)	0.0473 (9)	-0.0036 (6)	0.0153 (6)	-0.0010 (7)
C7	0.0429 (8)	0.0426 (9)	0.0548 (10)	0.0020 (7)	0.0158 (8)	0.0066 (7)
C8	0.0509 (9)	0.0554 (10)	0.0452 (9)	0.0027 (8)	0.0142 (8)	0.0142 (7)
С9	0.0451 (9)	0.0538 (10)	0.0411 (8)	-0.0015 (7)	0.0163 (7)	0.0013 (7)
C10	0.0336 (7)	0.0395 (8)	0.0423 (8)	-0.0059 (6)	0.0114 (6)	0.0000 (6)
C11	0.0375 (8)	0.0397 (8)	0.0531 (9)	-0.0052 (6)	0.0121 (7)	-0.0032 (7)
C12	0.0564 (10)	0.0414 (9)	0.0743 (13)	0.0032 (8)	0.0241 (10)	0.0119 (8)
C13	0.0662 (12)	0.0583 (11)	0.0700 (12)	-0.0002 (9)	0.0300 (10)	0.0265 (10)
C14	0.0517 (10)	0.0575 (11)	0.0545 (10)	-0.0016 (8)	0.0264 (8)	0.0113 (8)
C15	0.0336 (7)	0.0425 (8)	0.0433 (8)	-0.0062 (6)	0.0141 (6)	0.0029 (6)
C16	0.0507 (10)	0.0686 (12)	0.0671 (12)	0.0000 (9)	0.0263 (9)	-0.0005 (9)
C17	0.0682 (13)	0.0544 (11)	0.0892 (15)	0.0032 (10)	0.0266 (12)	-0.0176 (10)
C4	0.0332 (7)	0.0499 (9)	0.0360 (8)	-0.0049 (6)	0.0136 (6)	-0.0008 (6)
C3	0.0373 (8)	0.0487 (9)	0.0518 (9)	0.0027 (6)	0.0186 (7)	-0.0020 (7)
C2	0.0446 (12)	0.0440 (12)	0.0577 (14)	0.000	0.0208 (11)	0.000
C5	0.0372 (10)	0.0432 (12)	0.0363 (11)	0.000	0.0129 (9)	0.000
C1	0.0671 (18)	0.0455 (15)	0.124 (3)	0.000	0.0475 (19)	0.000

Geometric parameters (Å, °)

S101	1.6006 (12)	С13—Н13	0.9300
S1—O2	1.4215 (14)	C13—C14	1.352 (3)
S1—O3	1.4223 (13)	C14—H14	0.9300
S1—C6	1.7552 (16)	C14—C15	1.419 (2)
O1—C4	1.4166 (17)	C16—H16A	0.9600
N1-C11	1.413 (2)	C16—H16B	0.9600
N1-C16	1.465 (2)	C16—H16C	0.9600
N1-C17	1.458 (2)	C17—H17A	0.9600
С6—С7	1.374 (2)	C17—H17B	0.9600
C6—C15	1.426 (2)	C17—H17C	0.9600
С7—Н7	0.9300	C4—C3	1.372 (2)
С7—С8	1.399 (3)	C4—C5	1.3789 (19)
С8—Н8	0.9300	С3—Н3	0.9300
С8—С9	1.357 (2)	C3—C2	1.395 (2)
С9—Н9	0.9300	C2—C3 ⁱ	1.395 (2)
C9—C10	1.414 (2)	C2—C1	1.507 (3)
C10-C11	1.435 (2)	$C5-C4^{i}$	1.3789 (19)
C10—C15	1.426 (2)	С5—Н5	0.9300

supporting information

C11—C12	1.367 (3)	C1—H1A	0.9600
C12—H12	0.9300	C1—H1B	0.9600
C12—C13	1.400 (3)	C1—H1C	0.9600
O1—S1—C6	103.11 (7)	C13—C14—C15	119.53 (17)
02-\$1-01	108.81 (7)	C15—C14—H14	120.2
02 - 100	119 32 (9)	C10-C15-C6	116 65 (14)
02 - 100 -	109 18 (8)	C14-C15-C6	124 57 (15)
03 - 100	102.86 (8)	C_{14} C_{15} C_{10}	121.37(15) 11877(15)
03 - 51 - C6	112.00(0)	N1 - C16 - H16A	109.5
C_{4} O_{1} S_{1}	112.10(0) 110.05(0)	NI CI6 HI6B	109.5
$C_{1} = 01 = 51$	119.03(9) 113.17(14)	N1 = C16 = H16C	109.5
$C_{11} = N_1 = C_{10}$	113.17(14) 115.69(16)		109.5
C17 N1 - C17	110.06 (10)	H10A - C10 - H10B	109.5
CI / - NI - CIO	110.20 (10)	H10A - C10 - H10C	109.5
$C/-C_0$	116.60 (13)	H16B - C16 - H16C	109.5
C/C6C15	122.16 (15)	NI—CI/—HI/A	109.5
C15—C6—S1	121.22 (12)	N1—C17—H17B	109.5
С6—С7—Н7	120.1	N1—C17—H17C	109.5
C6—C7—C8	119.70 (15)	H17A—C17—H17B	109.5
С8—С7—Н7	120.1	H17A—C17—H17C	109.5
С7—С8—Н8	120.0	H17B—C17—H17C	109.5
C9—C8—C7	120.03 (15)	C3—C4—O1	120.20 (13)
С9—С8—Н8	120.0	C3—C4—C5	122.93 (15)
С8—С9—Н9	119.1	C5—C4—O1	116.74 (14)
C8—C9—C10	121.77 (16)	С4—С3—Н3	120.3
С10—С9—Н9	119.1	C4—C3—C2	119.48 (16)
C9—C10—C11	121.12 (15)	С2—С3—Н3	120.3
C9—C10—C15	119.14 (14)	$C3-C2-C3^{i}$	118.7 (2)
C15—C10—C11	119.69 (14)	$C3^{i}$ — $C2$ — $C1$	120.64 (11)
N1-C11-C10	118.03 (15)	C3—C2—C1	120.65 (11)
C12—C11—N1	123.69 (16)	$C4-C5-C4^{i}$	116.5 (2)
C12—C11—C10	118.28 (16)	C4—C5—H5	121.8
C11—C12—H12	119.5	$C4^{i}$ —C5—H5	121.8
$C_{11} - C_{12} - C_{13}$	121.09(17)	$C_2 - C_1 - H_1 A$	109.5
C13 - C12 - H12	119 5	C_2 C_1 H_1B	109.5
C_{12} C_{12} C_{13} H_{13}	119.0	$C_2 = C_1 = H_1C$	109.5
$C_{12} = C_{13} = C_{13}$	122.05 (17)	HIA CI HIB	109.5
$C_{14} = C_{13} = C_{12}$	110.0		109.5
$C_{14} = C_{13} = H_{13}$	119.0		109.5
С13—С14—П14	120.2	пів—сі—піс	109.5
S1 O1 C4 C2	72.00(10)	C0 C10 C11 N1	11.1.(2)
$SI_{-01} - C4_{-C3}$	/2.98 (16)	C9 - C10 - C11 - N1	11.1 (2)
$S_1 - U_1 - U_4 - U_5$	-111.07 (11)	C9-C10-C11-C12	-168.50 (16)
S1—C6—C7—C8	178.93 (13)	C9—C10—C15—C6	-8.3 (2)
S1—C6—C15—C10	-172.59 (11)	C9—C10—C15—C14	170.72 (15)
S1—C6—C15—C14	8.4 (2)	C10—C11—C12—C13	-4.8 (3)
01—S1—C6—C7	-121.15 (13)	C11—C10—C15—C6	174.23 (13)
O1—S1—C6—C15	57.51 (13)	C11—C10—C15—C14	-6.7 (2)
O1—C4—C3—C2	176.99 (11)	C11—C12—C13—C14	-1.7 (3)

$01-C4-C5-C4^{i}$ $02-S1-01-C4$ $02-S1-C6-C7$ $02-S1-C6-C15$ $03-S1-C6-C7$ $03-S1-C6-C7$ $03-S1-C6-C15$ $N1-C11-C12-C13$ $C6-S1-01-C4$ $C6-C7-C8-C9$ $C7-C6-C15-C10$ $C7-C6-C15-C10$ $C7-C6-C15-C14$ $C7-C8-C9-C10$ $C8-C9-C10-C11$ $C8-C9-C10-C11$	-176.50 (14) -53.02 (13) -5.58 (15) 173.07 (12) 179.51 (11) 128.91 (14) -52.44 (15) 175.62 (17) 62.80 (12) -4.3 (3) 6.0 (2) -172.98 (16) 1.8 (3) -177.88 (15)	$\begin{array}{c} C12-C13-C14-C15\\ C13-C14-C15-C6\\ C13-C14-C15-C10\\ C15-C6-C7-C8\\ C15-C10-C11-N1\\ C15-C10-C11-C12\\ C16-N1-C11-C12\\ C16-N1-C11-C12\\ C17-N1-C11-C12\\ C17-N1-C11-C12\\ C4-C3-C2-C3^i\\ C4-C3-C2-C1\\ C3-C4-C5-C4^i\\ C5-C4-C3-C2\\ \end{array}$	4.0 (3) 179.28 (16) 0.3 (2) 0.3 (2) -171.45 (13) 8.9 (2) 68.68 (19) -111.71 (19) -162.74 (15) 16.9 (2) -0.62 (10) 179.38 (10) -0.66 (11) 1.3 (2)
C8—C9—C10—C15	4.7 (2)		

Symmetry code: (i) -x+1, *y*, -z+3/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.93	2.49	3.116 (2)	125
0.96	2.70	3.528 (2)	145
0.93	2.60	3.486 (2)	158
0.96	2.63	3.475 (2)	147
	<i>D</i> —H 0.93 0.96 0.93 0.96	D—H H···A 0.93 2.49 0.96 2.70 0.93 2.60 0.96 2.63	D—H H···A D···A 0.93 2.49 3.116 (2) 0.96 2.70 3.528 (2) 0.93 2.60 3.486 (2) 0.96 2.63 3.475 (2)

Symmetry codes: (ii) *x*+1/2, *y*+1/2, *z*; (iii) *x*, -*y*+1, *z*-1/2; (iv) *x*+1/2, *y*-1/2, *z*.