Crystal structures and Hirshfeld surface analysis of $[\kappa^2 - P, N - \{(C_6H_5)_2(C_5H_5N)P\}Re(CO)_3Br] \cdot 2CHCl_3$ and the product of its reaction with piperidine. $[P-{(C_6H_5)_2(C_5H_5N)P}(C_5H_{11}N)Re(CO)_3Br]$

Franco Palominos,^a Carolina Muñoz,^a Poldie Oyarzun,^b Marianela Saldías^a and Andrés Vega^a*

^aUniversidad Andrés Bello, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Quillota 980, Viña del Mar, Chile, and ^bLaboratorio de Análisis de Sólidos, Facultad de Ciencias Exactas, Salvador Sanfuentes 2357, Santiago, Chile. *Correspondence e-mail: andresvega@unab.cl

The coordination of the ligands with respect to the central atom in the complex bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane- $\kappa^2 N, P$]rhenium(I) disolvate, $[\kappa^2 - P, N$ chloroform [ReBr(C₁₇H₁₄NP)(CO)₃]·2CHCl₃ or $\{(C_6H_5)_2(C_5H_5N)P\}Re(CO)_3Br\}\cdot 2CHCl_3, (I\cdot 2CHCl_3), is best described as a$ distorted octahedron with three carbonyls in a facial conformation, a bromide atom, and a biting *P*,*N*-diphenylpyridylphosphine ligand. Hirshfeld surface analysis shows that C-Cl···H interactions contribute 26%, the distance of these interactions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C₅H₁₁N) at 313 K in dichloromethane leads to the partial decoordination of the pyridylphosphine ligand, whose pyridyl group is replaced by a piperidine molecule, and the complex bromidotricarbonyl[diphenyl-(pyridin-2-yl)phosphane- κP](piperidine- κN)rhenium(I), $[ReBr(C_5H_{11}N) (C_{17}H_{14}NP)(CO)_3$] or $[P-\{(C_6H_5)_2(C_5H_5N)P\}(C_5H_{11}N)Re(CO)_3Br]$ (II). The molecule has an intramolecular $N-H\cdots N$ hydrogen bond between the noncoordinated pyridyl nitrogen atom and the amine hydrogen atom from piperidine with $D \cdot \cdot \cdot A = 2.992$ (9) Å. Thermogravimetry shows that I-2CHCl₃ losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloroform molecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridylphosphine. The contribution to the scattering from highly disordered solvent molecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in *PLATON*. The stated crystal data for $M_{\rm r}$, μ etc. do not take this solvent into account.

1. Chemical context

Phosphine-type ligands having a second type of atom or coordinating function have been of great interest in many areas of chemistry. The existence of a second coordination atom with different properties, coordination capability or trans effect adds possibilities during a catalytic cycle (Guiry & Saunders, 2004). In particular, much attention has been paid to one of the simplest molecules of this kind, diphenylpyridylphosphine $P(C_6H_5)_2(C_5H_5N)$ (PPh₂Py). The molecule is a rigid bidentate ligand (Abram et al., 1999; Knebel & Angelici, 1973).

The reaction of the diphenylpyridylphosphine ligand with the rhenium dimer $(Re(CO)_3(OC_4H_8)Br)_2$ in chloroform as

33% loss 2-pyridylphoshpine 250 150 T (°C)

OPEN ACCESS

ISSN 2056-9890

Received 23 November 2018 Accepted 5 June 2019

Edited by G. S. Nichol, University of Edinburgh, Scotland

CRYSTALLOGRAPHIC

COMMUNICATIONS

Keywords: crystal structure; diphenylpyridylphosphine; rhenium(I) tricarbonyl; Hirshfeld surface analysis: two-dimensional fingerprint plots; thermogravimetric analysis.

CCDC references: 1921165; 1921164

Supporting information: this article has supporting information at journals.jucr.org/e

solvent leads to the complex P,N-{(C_6H_5)₂(C_5H_5N)P}Re-(CO)₃Br]·2CHCl₃ (I·2CHCl₃). It presents a similar structure to the widely studied [(N,N)Re(CO)₃(L)] complexes, which have interesting photophysical and photochemical properties (Cannizzo *et al.*, 2008). Complex I has been shown to be a dual emitter (Pizarro *et al.*, 2015). It is also interesting to note that the PPh₂Py ligand can be partially decoordinated by reaction of the complex with a monodentate ligand, like piperidine ($C_5H_{11}N$), leading to the complex [P-{(C_6H_5)₂(C_5H_5N)P}-($C_5H_{11}N$)Re(CO)₃Br] (II).

2. Structural commentary

The mononuclear Re^{I} complex **I** with a bidentate P,N (chelating) ligand crystallized from a chloroform solution in the monoclinic space $P2_1/c$. Selected geometrical data are summarized in Table 1, and the molecular structure of complex **I**·2CHCl₃ is given in Fig. 1. The coordination environment of the central rhenium atom is defined for phosphorus

Figure 1

Molecular view of complex I-2CHCl₃, showing the numbering scheme. Displacement ellipsoids are shown at the 33% probability level. For clarity, the C-bound H atoms of I have been omitted.

Table 1		
Selected geometric p	arameters (Å, °) for I·2CHCl ₃ .

Re1-C2	1.892 (6)	Re1-N1	2.173 (4)
Re1-C1	1.914 (5)	Re1-P1	2.4687 (13)
Re1-C3	1.943 (5)	Re1-Br1	2.6066 (8)
C2-Re1-C1	90.2 (2)	C3-Re1-P1	163.62 (15)
C2-Re1-C3	88.3 (2)	N1-Re1-P1	65.39 (9)
C1-Re1-C3	93.39 (19)	C2-Re1-Br1	176.20 (14)
C2-Re1-N1	93.39 (17)	C1-Re1-Br1	92.84 (14)
C1-Re1-N1	167.89 (15)	C3-Re1-Br1	89.22 (15)
C3-Re1-N1	98.27 (17)	N1-Re1-Br1	84.11 (10)
C2-Re1-P1	93.56 (13)	P1-Re1-Br1	88.01 (3)
C1-Re1-P1	102.86 (12)		

 Table 2

 Selected geometric parameters (Å °) for II

beleeted geometric parameters (7, 7) for H .					
Re1-C1	1.870 (8)	Re1-N2	2.246 (6)		
Re1-C2	1.918 (7)	Re1-P1	2.4915 (18)		
Re1-C3	1.932 (8)	Re1-Br1	2.6430 (9)		
C1-Re1-C2	90.1 (3)	C3-Re1-P1	89.0 (2)		
C1-Re1-C3	89.4 (3)	N2-Re1-P1	93.28 (16)		
C2-Re1-C3	88.0 (3)	C1-Re1-Br1	175.3 (2)		
C1-Re1-N2	92.3 (3)	C2-Re1-Br1	92.1 (2)		
C2-Re1-N2	89.6 (3)	C3-Re1-Br1	94.9 (2)		
C3-Re1-N2	177.1 (3)	N2-Re1-Br1	83.53 (17)		
C1-Re1-P1	91.6 (2)	P1-Re1-Br1	86.44 (5)		
C2-Re1-P1	176.6 (2)				

and nitrogen atoms from PPh_2Py , a bromide atom in an apical position and three carbonyl carbon atoms in a *fac* correlation, generating a distorted octahedral environment. Additionally, two chloroform molecules crystallize together with the complex molecule.

The mononuclear Re^{I} complex II, crystallized from a CH₂Cl₂/CH₃CN (2:1) solution in the triclinic space group $P\overline{1}$. Selected geometrical data are given in Table 2, and the molecular structure of the complex is illustrated in Fig. 2. The

Figure 2

Molecular view of complex **II** showing the numbering scheme. Displacement ellipsoids are shown at the 33% probability level. For clarity, the C-bound H atoms have been omitted.

 Table 3

 Hydrogen-bond geometry (Å, $^{\circ}$) for I-2CHCl₃.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C21-H21\cdots Br1^i$	0.98	2.66	3.490 (5)	143
$C4-H4\cdots Br1^{ii}$	0.93	2.80	3.552 (5)	139

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for II.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N2 - H2N \cdots N1$ C14 - H14 \cdots Br1	0.82 0.93	2.34 2.78	2.992 (9) 3.586 (8)	138 146
$C22-H22B\cdots Br1$	0.97	2.83	3.499 (7)	127

central rhenium atom displays a non-regular octahedral coordination geometry, with three facial carbonyl groups, a monodentate PPh₂Py ligand, a piperidine $C_5H_{11}N$ molecule and a bromide anion. The piperidine ring displays a chair-like conformation. An intramolecular hydrogen bond is defined between the non-coordinated pyridyl nitrogen atom and the amine hydrogen atom from piperidine, N2-H2N···N1, with $D \cdot \cdot A = 2.992$ (9) Å (Table 4). There are also two C-H···Br intramolecular contacts present involving atom Br1 and a phenyl H atom (H14) and a methylene H atom (H22B) of the pypridine ring (Table 4).

3. Supramolecular features

In the crystal of **I**·2CHCl₃, the lattice has two solvating molecules of chloroform per complex molecule. The cell has a larger volume than for the unsolvated one [2836.7 (15) vs 2119.2 (3) Å³ (Venegas *et al.*, 2011)] whose geometrical parameters are very similar to those of complex **I**. In the crystal, the chloroform solvent molecules are involved in weak C– $H \cdots Br$ hydrogen bonds and they link the complex molecules to form layers lying parallel to the *bc* plane (Fig. 3 and Table 3).

In the crystal of **II**, a region of highly disordered electron density was equated to the present of a disordered acetonitrile molecule. The contribution to the scattering was removed with the SQUEEZE routine in *PLATON* (Spek, 2015). A view of the crystal packing, showing the regions, or voids, occupied by this disordered solvent in given in Fig. 4.

Figure 3

A view along the *b* axis of the crystal packing of complex $I-2CHCl_3$. The hydrogen bonds are shown as dashed lines (see Table 3).

4. Hirshfeld surface analysis of complex I-2CHCl₃

In order to visualize and quantify the intermolecular interactions in the crystal packing of complex I-2CHCl₃, in particular those involving the chloroform solvent molecules, an Hirshfeld surface analysis was performed and two-dimensional fingerprint plots generated. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007) were performed with *CrystalExplorer17* (Turner *et al.*, 2017). The Hirshfeld surface mapped over $d_{norm} = d_e + d_i$, is given in Fig. 5a (d_e represents the distance from the surface to the nearest nucleus external to the surface, and d_i is the distance from the surface to the nearest nucleus internal to the surface). In this d_{norm} view (Fig. 5a), blue represents the longest distances while the shortest distances are depicted as red spots (Dalal *et al.*, 2015).

The two-dimensional fingerprint plot for the whole complex is given in Fig. 5b. Apart from the $H \cdots H$ intermolecular

Figure 5

(a) The Hirshfeld surface of complex $I.2CHCl_3$, mapped over d_{norm} in the range -0.2767 to +1.3337 arbitrary units. (b) The two-dimensional fingerprint plot of complex $I.2CHCl_3$.

Figure 6

Two-dimensional fingerprint plots with a d_{norm} view of the Cl···H/H···Cl (26.0%), O···H/H···O (15.4%), C···H/H···C (9.8%) and Br···H/H···Br (7.6%) contacts in the coordination complex I·2CHCl₃.

contacts that contribute *ca* 15% the other most relevant intermolecular interactions, as determined from the Hirshfeld surface analysis of complex I·2CHCl₃, are shown in Fig. 6. The Cl···H/H···Cl, O···H/H···O and C···H/H···C interactions contribute 26.0, 15.4 and 9.8%, respectively, to the Hirshfeld surface. Some distances for these interactions are Cl1···H19 = 2.90 Å, H22···O2 = 2.69 Å and H21···Br1 = 2.66 Å.

5. Thermogravimetric analysis

Thermogravimetric analyses from 25 to 300°C were performed for both compounds under an N₂ flux at a heating rate of 1°C min⁻¹ (see Fig. 7). Thermogravimetric analysis for compound I-2CHCl₃ (Fig. 7, red line), shows that it loses 28% of its mass in a narrow range, between 45 and 60°C. This mass loss is completely consistent with the two solvating chloroform molecules detected by the crystal structure analysis. The boiling point of chloroform, 61°C, is almost identical to the temperature where the mass loss stops, suggesting that the chloroform molecules are weakly bonded to the rhenium ones in the solid. From 60 to 300° C the remaining matrix is completely stable.

Compound **II** loses 12% of its initial mass between 154 and 190°C (Fig. 7, blue line). This loss of mass can be associated with the release of the acetonitrile and piperidine molecules (14.7%). The relatively high temperature at which decomposition begins compared to the piperidine boiling point, 105° C, suggest that it is strongly bonded to **II**. From 190 to 300°C, another 33% of mass loss is registered, which can be associated with the release of the PPh₂Py (36.6%, b.p.163°C).

6. Database survey

The diphenylpyridylphosphine ligand has been extensively studied and used as a monodentate and bidentate ligand with different metals, including Ru^{II} (Ooyama & Sato, 2004) where the CO₂-reducing properties of the complex were studied. Another Ru^{II} complex with PPh₂Py (Kumar *et al.*, 2011) has been studied as an inhibitor of DNA-topoisomerases of the filarial parasite *S. cervi.* Re^I–nitrosil complexes with PPh₂Py have been studied structurally and photophysically (Machura & Kruszynski, 2006).

Piperidine is a ligand that has been widely used with various transition metals. It has been used as a ligand with tungsten and molybdenum to study the *cis-trans* effect by using larger ligands and increasing the steric hindrance (Darensbourg *et al.*, 2007).

7. Synthesis and crystallization

The reagents, $(\text{Re}(\text{CO})_3(\text{OC}_4\text{H}_8)\text{Br})_2$ and $(\text{C}_6\text{H}_5)_2(\text{C}_5\text{H}_5\text{N})\text{P}$ were used as provided from supplier (Aldrich), with no purification before use. Seccosolv^(h) solvents were used without

Weight loss for $I.2CHCl_3$ (red line) and II (blue line) between room temperature and $300^{\circ}C$.

Table 5Experimental details.

	I-2CHCl ₃	Ш
Crystal data		
Chemical formula	$[\text{ReBr}(C_{17}\text{H}_{14}\text{NP})(CO)_3]\cdot 2CHCl_2$	$[ReBr(C_5H_{11}N)(C_{17}H_{14}NP)(CO)_2]$
<i>М</i> .	852.14	698.55
Crystal system, space group	Monoclinic. $P2_1/c$	Triclinic. $P\overline{1}$
Temperature (K)	150	150
a, b, c (Å)	14.194 (4), 12.314 (4), 16.249 (5)	9.1384 (17), 9.8348 (18), 15.671 (3)
α, β, ν (°)	90, 92.701 (4), 90	82.956 (2), 82.047 (2), 69.765 (2)
$V(A^3)$	2836.7 (15)	1304.5 (4)
Z	4	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	6.34	6.28
Crystal size (mm)	$0.16 \times 0.13 \times 0.05$	$0.07 \times 0.04 \times 0.03$
Data collection		
Diffractometer	Bruker SMART CCD area detector	Bruker SMART CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2012)	Numerical (SADABS; Bruker, 2012)
$T_{\min}, \tilde{T}_{\max}$	0.386, 0.746	0.560, 0.858
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19979, 5550, 4526	10214, 5113, 4493
R _{int}	0.048	0.042
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.065, 0.99	0.042, 0.082, 1.11
No. of reflections	5550	5113
No. of parameters	317	303
No. of restraints	0	1
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.39, -0.35	1.96, -1.79

Computer programs: SMART and SAINT (Bruker, 2012), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publcIF (Westrip, 2010).

any further purification. Standard Schlenck techniques under argon atmosphere were used for all manipulations.

Synthesis of I. 500 mg of $(\text{Re}(\text{CO})_3(\text{OC}_4\text{H}_8)\text{Br})_2$ (0.590 mmol) were dissolved in 5 ml of chloroform. 312 mg of diphenyl-2-pyridylphosphine (1.18 mmol) was dissolved in 10 ml of chloroform. The two solutions were mixed, changing from colourless to a translucent yellow after 10 minutes of reaction. The reaction was left to continue for a further 2 h. Addition of 2 ml of pentane to the mixture and standing by one day lead to yellow diffraction-quality crystals of I-2CHCl₃ (601 mg, 82.8% yield).

Synthesis of II. The compound was prepared by direct reaction between I and an excess of piperidine $(C_5H_{11}N)$ at 313 K in CH₂Cl₂. 50.0 mg of $[P,N-\{(C_6H_5)_2(C_5H_5N)P\}$ Re- $(CO)_3$ Br] (0.082 mmol) were dissolved in 10 ml of CH₂Cl₂ giving rise to a yellow solution. Then, 40 µL of piperidine (0.51 mmol) was slowly added. The reaction was allowed to continue for six days with constant agitation at 313 K. After cooling, the reaction mixture was layered with acetonitrile.

Small orange-yellow diffraction-quality crystals were obtained after one week.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. For both compounds, the hydrogen atoms were positioned geometrically and refined using a riding model: C-H = 0.93-0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$. For **II**, the amine hydrogen atom of the piperidine ring was located in a Fourier-difference map and then subsequently refined with a distant constraint of 0.82 Å. During the last stages of the refinement of **II**, a region of highly disordered electron density was detected within the crystal structure. As no meaningful model could be achieved, SQUEEZE (Spek, 2015) was used to model the unresolved electron density resulting from the disordered solvent. 25 electrons per cell suggest, in addition to thermogravimetry, a half acetonitrile

molecule per complex molecule of \mathbf{II} . The contribution of this solvent was not included in the crystal data.

Acknowledgements

The authors acknowledge the Laboratory Analysis of Solids (LAS-UNAB) for granting access to its instrumental facilities and software.

Funding information

Funding for this research was provided by: Fondo Nacional de Desarrollo Científico y Tecnológico (grant No. 1160546; grant No. 3170100; grant No. ACT1404).

References

- Abram, U., Alberto, R., Dilworth, J. R., Zheng, Y. & Ortner, K. (1999). *Polyhedron*, **18**, 2995–3003.
- Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cannizzo, A., Blanco-Rodríguez, A. M., El Nahhas, A., Šebera, J., Záliš, S., Vlček, A. Jr & Chergui, M. (2008). *J. Am. Chem. Soc.* **130**, 8967–8974.
- Dalal, J., Sinha, N., Yadav, H. & Kumar, B. (2015). *RSC Adv.* 5, 57735–57748.
- Darensbourg, D. J., Andreatta, J. R., Stranahan, S. M. & Reibenspies, J. H. (2007). Organometallics, 26, 6832–6838.

- Guiry, P. J. & Saunders, C. P. (2004). Adv. Synth. Catal. 346, 497– 537.
- Knebel, W. J. & Angelici, R. J. (1973). Inorg. Chim. Acta, 7, 713-716.
- Kumar, P., Singh, A. K., Pandey, R. & Pandey, D. S. (2011). J. Organomet. Chem. 696, 3454–3464.
- Machura, B. & Kruszynski, R. (2006). Polyhedron, 25, 1985-1993.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Ooyama, D. & Sato, M. (2004). Appl. Organomet. Chem. 18, 380–381.
- Pizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). *J. Phys. Chem. A*, **119**, 3929–3935.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface.net
- Venegas, F., Pizarro, N. & Vega, A. (2011). J. Chil. Chem. Soc. 56, 823– 826.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2019). E75, 1005-1010 [https://doi.org/10.1107/S2056989019008089]

Crystal structures and Hirshfeld surface analysis of $[\kappa^2 - P, N-\{(C_6H_5)_2(C_5H_5N)P\}Re(CO)_3Br]\cdot 2CHCl_3$ and the product of its reaction with piperidine, $[P-\{(C_6H_5)_2(C_5H_5N)P\}(C_5H_{11}N)Re(CO)_3Br]$

Franco Palominos, Carolina Muñoz, Poldie Oyarzun, Marianela Saldías and Andrés Vega

Computing details

For both structures, data collection: *SMART* (Bruker, 2012); cell refinement: *SMART* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane- $\kappa^2 N$,*P*]rhenium(I) chloroform disolvate, [ReBr(C₁₇H₁₄NP) (CO)₃]·2CHCl₃ (I-2CHCl₃)

 $l = -19 \rightarrow 20$

Crystal data	
$[\text{ReBr}(C_{17}H_{14}\text{NP})(\text{CO})_3] \cdot 2\text{CHCl}_3$	F(000) = 1624
$M_r = 852.14$	$D_{\rm x} = 1.995 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 14.194 (4) Å	Cell parameters from 6313 reflections
b = 12.314 (4) Å	$\theta = 2.5 - 28.5^{\circ}$
c = 16.249 (5) Å	$\mu = 6.34 \text{ mm}^{-1}$
$\beta = 92.701 (4)^{\circ}$	T = 150 K
$V = 2836.7 (15) Å^3$	Block, yellow
<i>Z</i> = 4	$0.16 \times 0.13 \times 0.05 \text{ mm}$
Data collection	
Bruker SMART CCD area detector	5550 independent reflections
diffractometer	4526 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.048$
phi and ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(SADABS; Bruker, 2012)	$k = -15 \rightarrow 15$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.065$ S = 0.99

 $T_{\rm min} = 0.386, T_{\rm max} = 0.746$

19979 measured reflections

5550 reflections317 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\min} = -0.35 \text{ e} \text{ Å}^{-3}$
neighbouring sites	Extinction correction: SHELXL2014
H-atom parameters constrained	(Sheldrick, 2015),
$w = 1/(\sigma^2 (F^2))$	$E_{c}^{*} = kE_{c}[1+0.001 \times E_{c}^{2} \lambda^{3} / \sin(2\theta)]^{-1/4}$
where $P = (F_o^2 + 2F_c^2)/3$	Extinction coefficient: 0.00027 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Re1	0.29082 (2)	0.42455 (2)	0.08046 (2)	0.06954 (7)	
Br1	0.45807 (3)	0.36073 (4)	0.13313 (3)	0.07781 (13)	
P1	0.25501 (8)	0.23375 (8)	0.04434 (7)	0.0705 (3)	
N1	0.3373 (3)	0.3742 (3)	-0.0392 (2)	0.0722 (9)	
C1	0.2470 (3)	0.4367 (3)	0.1897 (3)	0.0742 (11)	
01	0.2190 (3)	0.4391 (3)	0.2547 (2)	0.0860 (9)	
C2	0.1733 (4)	0.4761 (3)	0.0367 (3)	0.0779 (11)	
O2	0.1045 (3)	0.5103 (3)	0.0100 (2)	0.0879 (9)	
C3	0.3368 (4)	0.5732 (4)	0.0793 (3)	0.0792 (11)	
03	0.3635 (3)	0.6583 (3)	0.0772 (2)	0.0949 (10)	
C4	0.3826 (3)	0.4234 (4)	-0.0986 (3)	0.0783 (11)	
H4	0.3974	0.4967	-0.0932	0.094*	
C5	0.4076 (4)	0.3694 (4)	-0.1669 (3)	0.0861 (13)	
Н5	0.4382	0.4061	-0.2079	0.103*	
C6	0.3879 (4)	0.2598 (4)	-0.1759 (3)	0.0855 (13)	
H6	0.4053	0.2222	-0.2224	0.103*	
C7	0.3422 (3)	0.2081 (4)	-0.1148 (3)	0.0792 (11)	
H7	0.3283	0.1344	-0.1189	0.095*	
C8	0.3171 (3)	0.2667 (3)	-0.0476 (3)	0.0701 (10)	
C9	0.3085 (3)	0.1116 (3)	0.0857 (3)	0.0735 (11)	
C10	0.4032 (4)	0.0890 (3)	0.0778 (3)	0.0788 (12)	
H10	0.4404	0.1362	0.0486	0.095*	
C11	0.4429 (4)	-0.0041 (4)	0.1134 (3)	0.0860 (13)	
H11	0.5066	-0.0187	0.1080	0.103*	
C12	0.3890 (4)	-0.0741 (4)	0.1561 (3)	0.0896 (14)	
H12	0.4161	-0.1365	0.1793	0.108*	
C13	0.2950 (4)	-0.0530 (4)	0.1651 (3)	0.0873 (14)	
H13	0.2586	-0.1006	0.1946	0.105*	
C14	0.2549 (4)	0.0392 (4)	0.1300 (3)	0.0812 (12)	
H14	0.1912	0.0532	0.1360	0.097*	
C15	0.1366 (3)	0.1951 (3)	0.0108 (3)	0.0723 (10)	
C16	0.1182 (4)	0.1207 (4)	-0.0506 (3)	0.0830 (12)	

H16	0.1680	0.0861	-0.0750	0.100*
C17	0.0272 (4)	0.0967 (4)	-0.0765 (3)	0.0912 (14)
H17	0.0156	0.0465	-0.1185	0.109*
C18	-0.0466 (4)	0.1470 (4)	-0.0402 (4)	0.0987 (16)
H18	-0.1084	0.1319	-0.0583	0.118*
C19	-0.0293 (4)	0.2190 (4)	0.0223 (4)	0.1030 (17)
H19	-0.0794	0.2512	0.0480	0.124*
C20	0.0622 (4)	0.2446 (4)	0.0478 (4)	0.0910 (14)
H20	0.0736	0.2950	0.0897	0.109*
C21	0.3309 (4)	0.7174 (4)	0.3787 (3)	0.0853 (13)
H21	0.3903	0.7468	0.4026	0.102*
Cl1	0.24667 (11)	0.82254 (11)	0.37214 (10)	0.1001 (4)
Cl2	0.29219 (12)	0.61431 (11)	0.44304 (10)	0.1061 (4)
C13	0.35045 (12)	0.66739 (12)	0.28107 (9)	0.1034 (4)
C22	0.0251 (4)	0.0957 (4)	0.3284 (4)	0.0959 (15)
H22	0.0155	0.1018	0.3876	0.115*
Cl4	0.02810 (13)	-0.04155 (12)	0.30240 (11)	0.1102 (4)
C15	0.13277 (12)	0.15706 (16)	0.30768 (12)	0.1288 (6)
C16	-0.06727 (13)	0.16078 (13)	0.27497 (13)	0.1261 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Re1	0.06848 (12)	0.06853 (9)	0.07162 (11)	0.00019 (7)	0.00347 (7)	0.00016 (7)
Br1	0.0707 (3)	0.0804 (2)	0.0822 (3)	-0.00035 (19)	0.0024 (2)	0.0055 (2)
P1	0.0706 (7)	0.0695 (5)	0.0717 (7)	0.0009 (5)	0.0046 (5)	-0.0012 (5)
N1	0.069 (2)	0.0740 (18)	0.074 (2)	0.0018 (16)	0.0066 (17)	0.0004 (16)
C1	0.071 (3)	0.071 (2)	0.079 (3)	-0.0012 (19)	-0.005 (2)	0.000 (2)
01	0.088 (2)	0.097 (2)	0.074 (2)	0.0047 (17)	0.0056 (17)	-0.0020 (16)
C2	0.088 (3)	0.070 (2)	0.077 (3)	0.000(2)	0.012 (2)	-0.003 (2)
O2	0.078 (2)	0.092 (2)	0.092 (2)	0.0048 (17)	-0.0031 (18)	0.0046 (17)
C3	0.083 (3)	0.079 (2)	0.074 (3)	0.005 (2)	-0.006(2)	-0.005 (2)
O3	0.111 (3)	0.0759 (18)	0.097 (3)	-0.0122 (18)	0.000 (2)	0.0000 (16)
C4	0.073 (3)	0.080 (2)	0.083 (3)	0.002 (2)	0.009 (2)	0.008 (2)
C5	0.076 (3)	0.099 (3)	0.083 (3)	0.002 (2)	0.013 (2)	0.010(2)
C6	0.080 (3)	0.100 (3)	0.077 (3)	0.005 (2)	0.007 (2)	-0.002 (2)
C7	0.074 (3)	0.083 (2)	0.081 (3)	-0.001(2)	0.002 (2)	-0.006(2)
C8	0.064 (3)	0.071 (2)	0.074 (3)	0.0006 (17)	0.001 (2)	0.0005 (18)
C9	0.080 (3)	0.071 (2)	0.069 (3)	-0.0015 (19)	0.002 (2)	-0.0065 (18)
C10	0.080 (3)	0.071 (2)	0.085 (3)	0.001 (2)	-0.003 (2)	-0.003(2)
C11	0.083 (3)	0.079 (2)	0.095 (4)	0.011 (2)	-0.005 (3)	-0.004 (2)
C12	0.101 (4)	0.076 (2)	0.090 (3)	0.006 (3)	-0.010 (3)	-0.002 (2)
C13	0.104 (4)	0.077 (2)	0.079 (3)	-0.003(2)	-0.005 (3)	0.008 (2)
C14	0.081 (3)	0.081 (2)	0.082 (3)	0.003 (2)	0.003 (2)	-0.001 (2)
C15	0.072 (3)	0.0675 (19)	0.078 (3)	-0.0029 (18)	0.004 (2)	0.0041 (18)
C16	0.080 (3)	0.087 (3)	0.083 (3)	-0.010 (2)	0.006 (2)	0.000 (2)
C17	0.087 (4)	0.100 (3)	0.087 (4)	-0.015 (3)	0.001 (3)	0.000 (3)
C18	0.078 (4)	0.093 (3)	0.123 (5)	-0.014 (3)	-0.009(3)	0.010 (3)

supporting information

C19	0.073 (4)	0.090 (3)	0.146 (5)	-0.003 (3)	0.014 (3)	-0.006 (3)
C20	0.079 (3)	0.081 (3)	0.115 (4)	-0.003 (2)	0.018 (3)	-0.013 (3)
C21	0.085 (3)	0.088 (3)	0.084 (3)	-0.008(2)	0.007 (3)	0.006 (2)
Cl1	0.1005 (10)	0.0898 (7)	0.1106 (10)	0.0026 (6)	0.0119 (8)	0.0115 (7)
C12	0.1271 (13)	0.0897 (7)	0.1023 (10)	-0.0028 (7)	0.0146 (9)	0.0158 (7)
C13	0.1147 (11)	0.1028 (8)	0.0938 (9)	-0.0140 (8)	0.0153 (8)	-0.0114 (7)
C22	0.087 (4)	0.108 (3)	0.092 (4)	-0.008 (3)	-0.001 (3)	-0.006 (3)
Cl4	0.1192 (12)	0.1039 (8)	0.1067 (11)	0.0020 (8)	-0.0035 (9)	0.0022 (8)
C15	0.1014 (12)	0.1516 (14)	0.1350 (14)	-0.0353 (10)	0.0217 (10)	-0.0418 (11)
Cl6	0.1167 (13)	0.1064 (9)	0.1519 (16)	-0.0004 (9)	-0.0286 (11)	0.0013 (9)

Geometric parameters (Å, °)

Re1—C2	1.892 (6)	C11—C12	1.364 (7)
Re1—C1	1.914 (5)	C11—H11	0.9300
Re1—C3	1.943 (5)	C12—C13	1.373 (8)
Re1—N1	2.173 (4)	C12—H12	0.9300
Re1—P1	2.4687 (13)	C13—C14	1.382 (6)
Re1—Br1	2.6066 (8)	С13—Н13	0.9300
P1—C9	1.800 (5)	C14—H14	0.9300
P1—C15	1.806 (5)	C15—C16	1.370 (6)
P1—C8	1.815 (5)	C15—C20	1.382 (6)
N1—C4	1.330 (5)	C16—C17	1.371 (7)
N1—C8	1.360 (5)	C16—H16	0.9300
C1—O1	1.147 (5)	C17—C18	1.374 (8)
C2—O2	1.131 (6)	C17—H17	0.9300
C3—O3	1.116 (5)	C18—C19	1.362 (8)
C4—C5	1.355 (7)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.381 (8)
C5—C6	1.384 (7)	C19—H19	0.9300
С5—Н5	0.9300	C20—H20	0.9300
C6—C7	1.368 (7)	C21—Cl3	1.737 (5)
С6—Н6	0.9300	C21—Cl2	1.749 (5)
С7—С8	1.370 (6)	C21—C11	1.762 (5)
С7—Н7	0.9300	C21—H21	0.9800
C9—C10	1.385 (6)	C22—Cl6	1.735 (6)
C9—C14	1.394 (6)	C22—Cl4	1.743 (6)
C10—C11	1.392 (6)	C22—C15	1.751 (6)
C10—H10	0.9300	C22—H22	0.9800
C2—Re1—C1	90.2 (2)	C9—C10—C11	120.2 (5)
C2—Re1—C3	88.3 (2)	C9—C10—H10	119.9
C1—Re1—C3	93.39 (19)	C11—C10—H10	119.9
C2—Re1—N1	93.39 (17)	C12-C11-C10	120.5 (5)
C1—Re1—N1	167.89 (15)	C12—C11—H11	119.8
C3—Re1—N1	98.27 (17)	C10-C11-H11	119.8
C2—Re1—P1	93.56 (13)	C11—C12—C13	120.3 (5)
C1—Re1—P1	102.86 (12)	C11—C12—H12	119.9

C3—Re1—P1	163.62 (15)	C13—C12—H12	119.9
N1—Re1—P1	65.39 (9)	C12—C13—C14	119.8 (5)
C2—Re1—Br1	176.20 (14)	С12—С13—Н13	120.1
C1—Re1—Br1	92.84 (14)	C14—C13—H13	120.1
C_3 —Re1—Br1	89 22 (15)	C_{13} C_{14} C_{9}	120.1 120.9(5)
N1 Re1 Br1	84.11 (10)	C_{13} C_{14} H_{14}	110.5
D1 Da1 Dr1	88.01(3)	$C_{13} - C_{14} - H_{14}$	119.5
C_{0} D_{1} C_{15}	105.2(2)	C_{3} C_{14} C_{16} C_{15} C_{20}	119.3
$C_{2} = 1 = C_{12}$	105.2(2) 106.2(2)	$C_{10} - C_{15} - C_{20}$	119.2(3)
C_{9} $-r_{1}$ $-C_{8}$	100.3(2)	C10-C15-F1	122.0(4)
C13 - P1 - C8	100.9 (2)	C20-C15-P1	118.2 (4)
C9—PI—Rel	128.88 (16)		120.8 (5)
CI5—PI—Rel	120.04 (14)	C15—C16—H16	119.6
C8—P1—Rel	83.14 (13)	С17—С16—Н16	119.6
C4—N1—C8	118.5 (4)	C16—C17—C18	119.8 (5)
C4—N1—Re1	134.2 (3)	С16—С17—Н17	120.1
C8—N1—Re1	107.2 (3)	C18—C17—H17	120.1
O1—C1—Re1	176.7 (4)	C19—C18—C17	119.9 (5)
O2—C2—Re1	177.7 (4)	C19—C18—H18	120.1
O3—C3—Re1	178.8 (5)	C17—C18—H18	120.1
N1-C4-C5	121.7 (4)	C18—C19—C20	120.5 (5)
N1—C4—H4	119.2	С18—С19—Н19	119.8
C5—C4—H4	119.2	С20—С19—Н19	119.8
C4—C5—C6	120.3 (5)	C19—C20—C15	119.7 (5)
C4—C5—H5	119.8	С19—С20—Н20	120.1
С6—С5—Н5	119.8	С15—С20—Н20	120.1
C7—C6—C5	118.6 (5)	Cl3—C21—Cl2	110.9 (3)
С7—С6—Н6	120.7	Cl3—C21—Cl1	110.0 (3)
C5—C6—H6	120.7	$C_{12} - C_{21} - C_{11}$	109.8(3)
C6-C7-C8	118 9 (4)	C_{13} C_{21} H_{21}	108.7
C6-C7-H7	120.6	C_{12} C_{21} H_{21}	108.7
C8-C7-H7	120.6	$C_{11} = C_{21} = H_{21}$	108.7
$C_{0} = C_{1} = H_{1}$	120.0 122.0(4)	$C_{16} C_{27} C_{14}$	110.7 (3)
N1 - C8 - C7	122.0(4) 104.1(3)	$C_{10} - C_{22} - C_{14}$	110.7(3)
$N1 - C_0 - I_1$	104.1(3) 122.0(2)	$C_{10} - C_{22} - C_{15}$	110.3(3)
$C_{1} = C_{0} = C_{1}$	133.9(3)	$C_{14} = C_{22} = C_{13}$	109.9 (3)
C10 - C9 - C14	110.4(4)	C10 - C22 - H22	108.0
C10 - C9 - P1	121.8(3)	C14 - C22 - H22	108.6
C14—C9—P1	119.7 (4)	CI5—C22—H22	108.6
C8—N1—C4—C5	0.8 (7)	C14—C9—C10—C11	0.1 (7)
Re1—N1—C4—C5	176.3 (4)	P1-C9-C10-C11	177.4 (4)
N1 - C4 - C5 - C6	-12(8)	C9-C10-C11-C12	0.2.(8)
C4-C5-C6-C7	0.5(8)	C_{10} C_{11} C_{12} C_{13}	-0.5(8)
5 - 6 - 6 - 6	0.4(7)	$C_{11} - C_{12} - C_{13} - C_{14}$	0.5 (8)
C4 - N1 - C8 - C7	0.7(7)	C12 - C13 - C14 - C9	-0.2(8)
R_{e1} N1 C8 C7	-1764(4)	$C10_00_0$ $C14_013$	-0.1(7)
C4 N1 $C8$ P1	-170.7(7)	$P1_0_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C$	-1775(A)
$D_{1} = 1 $ $D_{2} = 1 $ $D_{$	1/9.2(3)	$C_{0} = C_{1} + C_{15} + C_{15}$	-63.2(4)
$\frac{1}{10000000000000000000000000000000000$	4.2(3)	$C_{2} = C_{1} = C_{1$	105.5 (4)
UU-U/-Uð-INI	-0.8(7)	U0-r1-U13-U10	47.3 (4)

C6—C7—C8—P1	178.3 (4)	Re1—P1—C15—C16	141.4 (3)
C9—P1—C8—N1	-132.1 (3)	C9—P1—C15—C20	118.0 (4)
C15—P1—C8—N1	115.8 (3)	C8—P1—C15—C20	-129.2 (4)
Re1—P1—C8—N1	-3.5 (3)	Re1—P1—C15—C20	-37.3 (4)
C9—P1—C8—C7	48.6 (5)	C20-C15-C16-C17	1.3 (7)
C15—P1—C8—C7	-63.4 (5)	P1-C15-C16-C17	-177.4 (4)
Re1—P1—C8—C7	177.2 (5)	C15-C16-C17-C18	-0.5 (8)
C15—P1—C9—C10	145.3 (4)	C16—C17—C18—C19	-1.2 (9)
C8—P1—C9—C10	32.1 (4)	C17—C18—C19—C20	2.1 (9)
Re1—P1—C9—C10	-62.3 (4)	C18—C19—C20—C15	-1.3 (9)
C15—P1—C9—C14	-37.4 (4)	C16—C15—C20—C19	-0.3 (8)
C8—P1—C9—C14	-150.6 (4)	P1-C15-C20-C19	178.4 (4)
Re1—P1—C9—C14	115.0 (4)		

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D··· A	D—H··· A	
C21—H21···Br1 ⁱ	0.98	2.66	3.490 (5)	143	
C4—H4···Br1 ⁱⁱ	0.93	2.80	3.552 (5)	139	

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*.

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II)

Crystal data

$[\text{ReBr}(\text{C}_5\text{H}_{11}\text{N})(\text{C}_{17}\text{H}_{14}\text{NP})(\text{CO})_3] \cdot [+\text{solvent}]$	Z =
$M_r = 698.55$	F(0)
Triclinic, $P\overline{1}$	$D_{\rm x}$
a = 9.1384 (17) Å	Mo
b = 9.8348 (18) Å	Ce
c = 15.671 (3) Å	$\theta =$
$\alpha = 82.956 (2)^{\circ}$	μ =
$\beta = 82.047 (2)^{\circ}$	T=
$\gamma = 69.765 \ (2)^{\circ}$	Sti
V = 1304.5 (4) Å ³	0.0
Data collection	
Bruker SMART CCD area detector	51

diffractometer
Radiation source: sealed tube
phi and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2012)
$T_{\rm min} = 0.560, \ T_{\rm max} = 0.858$
10214 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.082$ S = 1.115113 reflections Z = 2 F(000) = 676.0 $D_x = 1.778$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 4721 reflections $\theta = 2.4-22.8^{\circ}$ $\mu = 6.28$ mm⁻¹ T = 150 K Stick, orange $0.07 \times 0.04 \times 0.03$ mm

5113 independent reflections 4493 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -19 \rightarrow 19$

303 parameters1 restraintPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$\Delta ho_{ m max} = 1.96 \ { m e} \ { m \AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -1.79 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of independent	Extinction correction: SHELXL2014
and constrained refinement	(Sheldrick, 2015),
$w = 1/[\sigma^2(F_o^2) + 9.4699P]$	$Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$
where $P = (F_o^2 + 2F_c^2)/3$	Extinction coefficient: 0.00125 (18)
$(\Delta/\sigma)_{\rm max} = 0.001$	

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Re1	0.83162 (3)	0.70525 (3)	0.70289 (2)	0.01774 (10)
Br1	0.80946 (9)	0.74617 (8)	0.86842 (5)	0.03004 (19)
P1	0.7341 (2)	0.49823 (19)	0.75160 (12)	0.0202 (4)
01	0.8277 (7)	0.6670 (7)	0.5117 (4)	0.0422 (15)
O3	1.1681 (6)	0.4948 (6)	0.6944 (4)	0.0390 (14)
C1	0.8293 (9)	0.6804 (8)	0.5867 (5)	0.0311 (18)
C3	1.0438 (9)	0.5701 (8)	0.6993 (5)	0.0262 (17)
O2	0.9776 (6)	0.9453 (6)	0.6454 (4)	0.0403 (14)
C2	0.9177 (8)	0.8584 (8)	0.6688 (5)	0.0272 (17)
N1	0.4375 (7)	0.6604 (7)	0.8008 (5)	0.0404 (18)
C10	0.5477 (8)	0.5329 (8)	0.8209 (5)	0.0258 (16)
C12	0.8652 (8)	0.3427 (7)	0.8099 (4)	0.0212 (15)
C4	0.7011 (8)	0.4161 (7)	0.6619 (5)	0.0226 (15)
C13	0.8598 (9)	0.2025 (8)	0.8069 (5)	0.0294 (17)
H13	0.7924	0.1883	0.7722	0.035*
C5	0.5513 (8)	0.4262 (8)	0.6451 (5)	0.0271 (17)
Н5	0.4635	0.4741	0.6812	0.032*
C6	0.8295 (9)	0.3428 (9)	0.6070 (5)	0.0329 (19)
H6	0.9298	0.3356	0.6175	0.039*
C14	0.9678 (8)	0.3586 (8)	0.8629 (5)	0.0288 (17)
H14	0.9738	0.4502	0.8667	0.035*
C15	0.9527 (9)	0.0861 (8)	0.8545 (5)	0.035 (2)
H15	0.9469	-0.0058	0.8516	0.042*
C11	0.5179 (9)	0.4359 (9)	0.8863 (5)	0.037 (2)
H11	0.5958	0.3487	0.9002	0.044*
C7	0.8101 (10)	0.2809 (9)	0.5372 (5)	0.038 (2)
H7	0.8971	0.2322	0.5009	0.045*
C8	0.5355 (10)	0.3635 (9)	0.5731 (5)	0.038 (2)
H8	0.4361	0.3716	0.5607	0.046*
N2	0.5893 (6)	0.8705 (7)	0.7094 (4)	0.0267 (14)
C20	1.0531 (8)	0.1025 (8)	0.9058 (5)	0.0312 (19)
H20	1.1158	0.0226	0.9375	0.037*

Special details

C22	0.5748 (8)	1.0155 (7)	0.7304 (5)	0.0265 (17)
H22A	0.6209	1.0630	0.6815	0.032*
H22B	0.6333	1.0066	0.7791	0.032*
C21	1.0610 (9)	0.2390 (9)	0.9101 (5)	0.0330 (19)
H21	1.1293	0.2509	0.9451	0.040*
C16	0.6639 (11)	0.2905 (10)	0.5211 (6)	0.042 (2)
H16	0.6518	0.2470	0.4743	0.050*
C18	0.2572 (9)	0.5974 (9)	0.9089 (5)	0.038 (2)
H18	0.1558	0.6203	0.9366	0.046*
C17	0.2958 (9)	0.6904 (10)	0.8455 (7)	0.052 (3)
H17	0.2198	0.7794	0.8325	0.063*
C23	0.4992 (9)	0.8828 (9)	0.6357 (6)	0.038 (2)
H23A	0.5059	0.7862	0.6237	0.045*
H23B	0.5463	0.9251	0.5848	0.045*
C19	0.3699 (10)	0.4708 (10)	0.9308 (6)	0.046 (2)
H19	0.3477	0.4074	0.9756	0.056*
C24	0.4037 (9)	1.1105 (9)	0.7526 (6)	0.037 (2)
H24A	0.3600	1.0682	0.8047	0.045*
H24B	0.3999	1.2067	0.7637	0.045*
C25	0.3279 (9)	0.9750 (9)	0.6520 (6)	0.043 (2)
H25A	0.2777	0.9872	0.5996	0.052*
H25B	0.2763	0.9245	0.6966	0.052*
C27	0.3068 (9)	1.1232 (9)	0.6799 (6)	0.042 (2)
H3A	0.3377	1.1818	0.6312	0.051*
H3B	0.1971	1.1717	0.6986	0.051*
H2N	0.567 (8)	0.828 (5)	0.755 (2)	0.08 (4)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re1	0.01153 (15)	0.01837 (15)	0.02204 (17)	-0.00440 (10)	-0.00090 (10)	0.00044 (10)
Br1	0.0329 (4)	0.0300 (4)	0.0260 (4)	-0.0077 (3)	-0.0048 (3)	-0.0040 (3)
P1	0.0141 (9)	0.0199 (9)	0.0252 (10)	-0.0052 (7)	-0.0009 (7)	0.0008 (8)
O1	0.042 (4)	0.057 (4)	0.028 (3)	-0.018 (3)	-0.009 (3)	0.004 (3)
03	0.013 (3)	0.045 (3)	0.051 (4)	-0.001 (3)	0.000 (2)	-0.005 (3)
C1	0.023 (4)	0.034 (4)	0.033 (5)	-0.009 (3)	0.003 (3)	0.001 (4)
C3	0.031 (4)	0.025 (4)	0.025 (4)	-0.012 (4)	-0.003 (3)	-0.002 (3)
02	0.031 (3)	0.035 (3)	0.061 (4)	-0.022 (3)	0.001 (3)	-0.001 (3)
C2	0.023 (4)	0.024 (4)	0.032 (4)	-0.005 (3)	0.000 (3)	-0.004 (3)
N1	0.018 (3)	0.031 (4)	0.060 (5)	-0.002 (3)	0.013 (3)	0.009 (3)
C10	0.018 (4)	0.028 (4)	0.030 (4)	-0.008 (3)	0.002 (3)	-0.006 (3)
C12	0.017 (3)	0.021 (4)	0.023 (4)	-0.005 (3)	0.002 (3)	0.001 (3)
C4	0.019 (4)	0.021 (4)	0.028 (4)	-0.006 (3)	-0.005 (3)	0.002 (3)
C13	0.027 (4)	0.026 (4)	0.032 (4)	-0.006 (3)	-0.002 (3)	-0.001 (3)
C5	0.023 (4)	0.025 (4)	0.032 (4)	-0.008 (3)	-0.006 (3)	0.003 (3)
C6	0.032 (4)	0.047 (5)	0.023 (4)	-0.016 (4)	0.003 (3)	-0.011 (4)
C14	0.026 (4)	0.031 (4)	0.025 (4)	-0.005 (3)	0.001 (3)	-0.005 (3)
C15	0.030 (4)	0.014 (4)	0.050 (5)	0.001 (3)	0.002 (4)	0.004 (3)

supporting information

C11	0.026 (4)	0.038 (5)	0.040 (5)	-0.007 (4)	0.006 (4)	0.002 (4)	
C7	0.042 (5)	0.039 (5)	0.032 (5)	-0.012 (4)	0.002 (4)	-0.013 (4)	
C8	0.037 (5)	0.048 (5)	0.039 (5)	-0.025 (4)	-0.018 (4)	0.010 (4)	
N2	0.011 (3)	0.028 (3)	0.039 (4)	-0.008 (3)	-0.002 (3)	0.007 (3)	
C20	0.021 (4)	0.028 (4)	0.029 (4)	0.006 (3)	0.002 (3)	0.005 (3)	
C22	0.024 (4)	0.020 (4)	0.036 (4)	-0.007 (3)	-0.006 (3)	-0.002 (3)	
C21	0.027 (4)	0.040 (5)	0.026 (4)	-0.002 (4)	-0.005 (3)	-0.001 (4)	
C16	0.058 (6)	0.048 (5)	0.031 (5)	-0.029 (5)	-0.021 (4)	0.000 (4)	
C18	0.024 (4)	0.046 (5)	0.043 (5)	-0.014 (4)	0.014 (4)	-0.012 (4)	
C17	0.021 (4)	0.039 (5)	0.076 (7)	0.005 (4)	0.019 (4)	-0.001 (5)	
C23	0.022 (4)	0.040 (5)	0.051 (6)	-0.004 (4)	-0.014 (4)	-0.010 (4)	
C19	0.033 (5)	0.055 (6)	0.042 (5)	-0.014 (4)	0.013 (4)	0.006 (4)	
C24	0.022 (4)	0.032 (4)	0.048 (5)	0.003 (3)	-0.001 (4)	-0.003 (4)	
C25	0.032 (5)	0.035 (5)	0.063 (6)	-0.007 (4)	-0.021 (4)	0.004 (4)	
C27	0.023 (4)	0.034 (5)	0.061 (6)	0.000 (4)	-0.008 (4)	0.003 (4)	

Geometric parameters (Å, °)

Re1—C1	1.870 (8)	C7—C16	1.363 (11)
Re1—C2	1.918 (7)	С7—Н7	0.9300
Re1—C3	1.932 (8)	C8—C16	1.361 (12)
Re1—N2	2.246 (6)	C8—H8	0.9300
Re1—P1	2.4915 (18)	N2C22	1.460 (9)
Re1—Br1	2.6430 (9)	N2—C23	1.479 (10)
P1—C4	1.812 (7)	N2—H2N	0.8200 (10)
P1—C12	1.817 (7)	C20—C21	1.379 (11)
P1-C10	1.837 (7)	C20—H20	0.9300
01—C1	1.202 (9)	C22—C24	1.536 (10)
O3—C3	1.120 (8)	C22—H22A	0.9700
O2—C2	1.164 (8)	C22—H22B	0.9700
N1-C17	1.338 (9)	C21—H21	0.9300
N1-C10	1.343 (9)	C16—H16	0.9300
C10-C11	1.377 (10)	C18—C19	1.354 (11)
C12—C14	1.394 (10)	C18—C17	1.361 (12)
C12—C13	1.404 (10)	C18—H18	0.9300
C4—C6	1.387 (10)	C17—H17	0.9300
C4—C5	1.398 (9)	C23—C25	1.517 (10)
C13—C15	1.371 (10)	C23—H23A	0.9700
С13—Н13	0.9300	C23—H23B	0.9700
C5—C8	1.396 (11)	C19—H19	0.9300
С5—Н5	0.9300	C24—C27	1.505 (12)
C6—C7	1.375 (10)	C24—H24A	0.9700
С6—Н6	0.9300	C24—H24B	0.9700
C14—C21	1.387 (10)	C25—C27	1.514 (11)
C14—H14	0.9300	C25—H25A	0.9700
C15—C20	1.362 (11)	C25—H25B	0.9700
C15—H15	0.9300	С27—Н3А	0.9700
C11—C19	1.382 (10)	С27—Н3В	0.9700

C11—H11	0.9300		
C1—Re1—C2	90.1 (3)	С16—С8—Н8	119.6
C1—Re1—C3	89.4 (3)	С5—С8—Н8	119.6
C2—Re1—C3	88.0 (3)	C22—N2—C23	109.6 (6)
C1—Re1—N2	92.3 (3)	C22—N2—Re1	116.4 (4)
C2—Re1—N2	89.6 (3)	C23—N2—Re1	116.1 (5)
C3—Re1—N2	177.1 (3)	C22—N2—H2N	106 (4)
C1—Re1—P1	91.6 (2)	C23—N2—H2N	118 (5)
C2—Re1—P1	176.6 (2)	Re1—N2—H2N	89 (5)
C3—Re1—P1	89.0 (2)	C15—C20—C21	119.3 (7)
N2—Re1—P1	93.28 (16)	С15—С20—Н20	120.4
C1—Re1—Br1	175.3 (2)	C21—C20—H20	120.4
C2—Re1—Br1	92.1 (2)	N2—C22—C24	112.6 (6)
C3—Re1—Br1	94.9 (2)	N2—C22—H22A	109.1
N2—Re1—Br1	83.53 (17)	C24—C22—H22A	109.1
P1—Re1—Br1	86.44 (5)	N2—C22—H22B	109.1
C4—P1—C12	102.0 (3)	C24—C22—H22B	109.1
C4—P1—C10	102.6 (3)	H22A—C22—H22B	107.8
C12—P1—C10	102.6 (3)	C20—C21—C14	120.6 (8)
C4—P1—Re1	112.4 (2)	C20—C21—H21	119.7
C12— $P1$ — $Re1$	116.4 (2)	C14—C21—H21	119.7
C10— $P1$ — $Re1$	118.7 (2)	C8—C16—C7	120.3 (8)
O1-C1-Re1	178.8 (7)	C8—C16—H16	119.8
03—C3—Re1	177.3 (7)	C7—C16—H16	119.8
Ω^2 — C^2 —Rel	175.9 (6)	C19-C18-C17	118.4 (7)
C17 - N1 - C10	118.0 (7)	C19—C18—H18	120.8
N1-C10-C11	121.6 (7)	C17—C18—H18	120.8
N1-C10-P1	1144(5)	N1-C17-C18	123 4 (8)
C11—C10—P1	124.0 (6)	N1—C17—H17	118.3
C14-C12-C13	117.5 (7)	С18—С17—Н17	118.3
C14—C12—P1	121.7(5)	N2-C23-C25	113.0(7)
C13-C12-P1	120.7(5)	N2-C23-H23A	109.0
C6-C4-C5	118.9 (7)	C25—C23—H23A	109.0
C6-C4-P1	118.6 (5)	N2—C23—H23B	109.0
C5-C4-P1	122.5 (6)	C25-C23-H23B	109.0
C15-C13-C12	120.9 (7)	H23A—C23—H23B	107.8
C15-C13-H13	119.6	C18 - C19 - C11	119.9 (8)
C12—C13—H13	119.6	C18 - C19 - H19	120.0
C8-C5-C4	119.0 (7)	C11—C19—H19	120.0
C8-C5-H5	120.5	C_{27} C_{24} C_{22}	120.0 1110(7)
C4—C5—H5	120.5	C27—C24—H24A	109.4
C7—C6—C4	120.7 (7)	C22—C24—H24A	109.4
C7—C6—H6	119.7	$C_{27} - C_{24} + H_{24B}$	109.4
C4—C6—H6	119.7	C_{22} C_{24} H_{24B}	109.4
C_{21} C_{14} C_{12}	120.5 (7)	H24A—C24—H24B	108.0
C21—C14—H14	119.7	C_{27} C_{25} C_{23}	112.4 (7)
C12—C14—H14	119.7	C27—C25—H25A	109.1

C20—C15—C13	121.2 (8)	C23—C25—H25A	109.1
С20—С15—Н15	119.4	С27—С25—Н25В	109.1
C13—C15—H15	119.4	С23—С25—Н25В	109.1
C10—C11—C19	118.6 (8)	H25A—C25—H25B	107.8
C10-C11-H11	120.7	C24—C27—C25	111.1 (7)
C19—C11—H11	120.7	С24—С27—НЗА	109.4
C16—C7—C6	120.3 (8)	С25—С27—НЗА	109.4
С16—С7—Н7	119.8	С24—С27—Н3В	109.4
С6—С7—Н7	119.8	С25—С27—НЗВ	109.4
C16—C8—C5	120.8 (7)	H3A—C27—H3B	108.0
C17—N1—C10—C11	-0.9 (13)	P1-C4-C6-C7	-178.9 (6)
C17—N1—C10—P1	176.7 (7)	C13—C12—C14—C21	0.4 (10)
C4—P1—C10—N1	-86.6 (6)	P1-C12-C14-C21	176.7 (5)
C12—P1—C10—N1	167.9 (6)	C12-C13-C15-C20	-0.2 (12)
Re1—P1—C10—N1	37.9 (7)	N1-C10-C11-C19	1.1 (13)
C4—P1—C10—C11	90.9 (7)	P1-C10-C11-C19	-176.3 (7)
C12—P1—C10—C11	-14.6 (8)	C4—C6—C7—C16	-0.1 (13)
Re1—P1—C10—C11	-144.5 (6)	C4—C5—C8—C16	1.5 (11)
C4—P1—C12—C14	155.1 (6)	C13—C15—C20—C21	0.3 (12)
C10—P1—C12—C14	-98.9 (6)	C23—N2—C22—C24	58.2 (8)
Re1—P1—C12—C14	32.4 (7)	Re1—N2—C22—C24	-167.6 (5)
C4—P1—C12—C13	-28.7 (6)	C15—C20—C21—C14	0.0 (11)
C10—P1—C12—C13	77.3 (6)	C12-C14-C21-C20	-0.3 (11)
Re1—P1—C12—C13	-151.4 (5)	C5—C8—C16—C7	-1.7 (13)
C12—P1—C4—C6	-58.3 (6)	C6—C7—C16—C8	1.0 (13)
C10—P1—C4—C6	-164.3 (6)	C10—N1—C17—C18	-1.2 (15)
Re1—P1—C4—C6	67.1 (6)	C19—C18—C17—N1	3.1 (15)
C12—P1—C4—C5	123.0 (6)	C22—N2—C23—C25	-56.3 (8)
C10—P1—C4—C5	17.0 (7)	Re1—N2—C23—C25	169.3 (5)
Re1—P1—C4—C5	-111.6 (6)	C17—C18—C19—C11	-2.9 (14)
C14—C12—C13—C15	-0.1 (11)	C10-C11-C19-C18	0.8 (14)
P1—C12—C13—C15	-176.5 (6)	N2—C22—C24—C27	-56.7 (9)
C6—C4—C5—C8	-0.5 (11)	N2—C23—C25—C27	53.0 (10)
P1—C4—C5—C8	178.2 (6)	C22—C24—C27—C25	51.0 (9)
C5—C4—C6—C7	-0.2 (11)	C23—C25—C27—C24	-49.9 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>N</i> ···N1	0.82	2.34	2.992 (9)	138
C14—H14…Br1	0.93	2.78	3.586 (8)	146
C22—H22 <i>B</i> ···Br1	0.97	2.83	3.499 (7)	127