

Received 31 May 2019 Accepted 14 June 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; polyoxomolybdates; IR spectroscopic study; hydrogen bonding.

CCDC reference: 1922927

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Synthesis and crystal structure of a new hybrid organic-inorganic material containing neutral molecules, cations and heptamolybdate anions

Bougar Sarr,^a* Abdou Mbaye,^b Wally Diallo,^a Cheikh Abdoul Khadir Diop,^a Mamadou Sidibe^a and Francois Michaud^c

^aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, ^bLaboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor (UASZ), BP 523 Ziguinchor, Senegal, and ^cService Commun d'Analyse par Diffraction des Rayons X, Universite de Bretagne Occidentale, 6, avenue Victor Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France. *Correspondence e-mail: bouks89@gmail.com

The title compound, hexakis(2-methyl-1*H*-imidazol-3-ium) heptamolybdate 2-methyl-1*H*-imidazole disolvate dihydrate, $(C_4H_7N_2)_6[Mo_7O_{24}]\cdot 2C_4H_6N_2\cdot 2H_2O$, was prepared from 2-methylimidazole and ammonium heptamolybdate tetrahydrate in acid solution. The $[Mo_7O_{24}]^{6-}$ heptamolybdate cluster anion is accompanied by six protonated $(C_4H_7N_2)^+$ 2-methylimidazolium cations, two neutral $C_4H_6N_2$ 2-methylimidazole molecules and two water molecules of crystallization. The cluster consists of seven distorted MoO_6 octahedra sharing edges or vertices. In the crystal, the components are linked by $N-H\cdots N$, $N-H\cdots O$, $O-H\cdots O$, $N-H\cdots (O,O)$ and $O-H\cdots (O,O)$ hydrogen bonds, generating a three-dimensional network. Weak $C-H\cdots O$ interactions consolidate the packing.

1. Chemical context

Polyoxometalates (POMs) are clusters of transition metals (M = V, Nb, Ta, Mo, W, \cdots) and oxygen atoms with a structural and compositional diversity that lead to numerous applications because of their electrochemical, optical, catalytic and photochromic properties as well as their antiviral and antitumor activities (Katsoulis, 1998; Hasenknopf, 2005; Gerth et al., 2005; Coué et al., 2007). In this context, the $[Mo_7O_{24}]^{6-1}$ heptamolybdate anion has been isolated with numerous different counter-cations such as 4-aminopyridinium, Npentylammonium, diethylenetriammonium, N,N,N',N'-tetramethylethylenediammonium, tetramethylammonium, guanidinium, hexanediammonium, butan-1-aminium, ammonium, potassium and sodium (Román et al., 1985, 1988, 1990, 1992; Don & Weakly, 1981; Gatehouse & Leverett, 1968; Sjöbom & Hedman, 1973; Niu et al., 1996; Himeno et al., 1997; Reinoso et al., 2008; Ftini, 2015; Khandolkar et al., 2016). As a continuation of our work in this area (Sarr et al., 2018), we now describe the synthesis and structure of the title compound (I), which is notable for the incorporation of both protonated $[C_4H_7N_2]^+$ 2-methylimidazolium cations and neutral $C_4H_6N_2$ 2-methylimidazole molecules in the crystal.

2. Structural commentary

The title compound is characterized by the presence of the familiar $[Mo_7O_{24}]^{6-}$ heptamolybdate cluster anion (Fig. 1).

research communications

There are four categories of oxygen atoms within the polyanion: O_t (terminal oxygen atoms), μ^2 -O (oxygen atoms bridging two molybdenum atoms), μ^3 -O (oxygen atoms bridging three molybdenum atoms) and μ^4 -O (oxygen atoms bridging four molybdenum atoms). All of the Mo atoms are bound to two terminal oxygen atoms except for Mo7, which is located in the 'core' of the cluster. The geometrical data for the cluster in (I) are consistent with those found in previous studies (Román et al., 1992; Reinoso et al., 2008): the Mo-O bond lengths vary between 1.707 (2) and 1.726 (2) Å for O_t , 1.754 (2)–2.453 (2) Å for μ^2 -O, 1.8945 (19)–2.3057 (19) Å for μ^{3} -O and 2.1329 (19)–2.3011 (18) Å for μ^{4} -O. The variations of Mo-O bond lengths and O-Mo-O angles indicate that all seven octahedra (MoO_6) within the cluster are highly distorted. As in the compound (H₃dien)₂[Mo₇O₂₄]·4H₂O (Román et al., 1988), we note that the longest Mo-O bond length derives from an oxygen atom bridging two molybdenum atoms (μ^2 -O). As well as the $[Mo_7O_{24}]^{6-}$ anion, six $(C_4H_7N_2)^+$ cations, two neutral $C_4H_6N_2$ molecules and two water molecules of crystallization are present in the asymmetric unit (Fig. 2).

Figure 1 Molecular structure of the $[Mo_7O_{24}]^{6-}$ heptamolybdate cluster anion in (I).

The asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level.

3. Supramolecular features

In the crystal, each heptamolybdate anion interacts with six neighbours *via* the water molecules, $(C_4H_7N_2)^+$ cations and/or neutral 2-methylimidazole molecules (Fig. 3). These interactions occur through simple $O-H\cdots O$, $N-H\cdots O$ and $N-H\cdots N$ and bifurcated $N-H\cdots (O,O)$ and $O-H\cdots (O,O)$

Figure 3 Detail of the structure of (I) showing the interconnections of the $[Mo_7O_{24}]^{6-}$ anion with its neighbours.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdots O22^{i}$	0.88 (2)	1.85 (2)	2.710 (3)	167 (2)
$N2 - H2N \cdots O20$	0.87 (2)	1.79 (2)	2.655 (3)	172 (2)
$N3 - H3N \cdot \cdot \cdot O18^{i}$	0.88(2)	1.87 (2)	2.743 (4)	171 (5)
$N4 - H4N \cdots O9$	0.88(2)	1.79 (2)	2.662 (4)	171 (5)
$N5 - H5N \cdots O12$	0.89(2)	1.77 (3)	2.644 (4)	168 (4)
$N6-H6N\cdots O3^{ii}$	0.90(2)	1.80 (3)	2.684 (4)	168 (5)
$N7 - H7N \cdots O1^{iii}$	0.89 (3)	1.83 (3)	2.697 (4)	167 (3)
N8−H8N···O25	0.89 (3)	1.78 (3)	2.659 (4)	172 (5)
N9−H9N···N14 ^{iv}	0.89(2)	1.81 (2)	2.698 (4)	177 (3)
N10−H10N···O15	0.88(2)	1.98 (2)	2.852 (3)	174 (3)
$N11 - H11N \cdot \cdot \cdot O6$	0.88(2)	1.78 (2)	2.636 (3)	166 (3)
$N12 - H12N \cdot \cdot \cdot N16^{v}$	0.88(2)	1.87 (2)	2.725 (4)	165 (3)
N13−H13N···O5	0.88(4)	2.32 (4)	3.186 (5)	167 (3)
N13−H13N···O8	0.88(4)	2.55 (4)	3.043 (5)	116 (2)
N15−H15N···O14	0.87 (3)	2.22 (3)	2.953 (4)	142 (3)
N15−H15N···O17	0.87 (3)	2.27 (3)	2.917 (4)	132 (3)
O25−H25V···O19	0.86(2)	2.00(2)	2.788 (3)	154 (5)
$O25 - H25W \cdot \cdot \cdot O26^{vi}$	0.86 (3)	1.85 (3)	2.702 (4)	176 (5)
O26−H26V···O10	0.83 (4)	2.50 (6)	2.999 (4)	119 (5)
O26−H26V···O13	0.83 (4)	2.25 (5)	3.009 (4)	151 (6)
$O26 - H26W \cdot \cdot \cdot O7$	0.83 (4)	1.99 (6)	2.737 (4)	149 (6)
$C4-H4A\cdots O8$	0.98	2.35	3.228 (5)	149
$C8-H8B\cdots O2^{i}$	0.98	2.54	3.517 (6)	176
C8-H8C···O8	0.98	2.49	3.386 (5)	152
$C10-H10\cdots O26^{vii}$	0.95	2.45	3.318 (5)	151
$C12-H12A\cdots O5^{ii}$	0.98	2.44	3.407 (5)	167
C13−H13···O4 ⁱⁱⁱ	0.95	2.50	3.297 (6)	141
$C17-H17\cdots O2^{viii}$	0.95	2.46	3.154 (4)	130
C18−H18···O26	0.95	2.58	3.522 (5)	172
C21-H21···O16	0.95	2.46	3.302 (4)	147
$C22-H22\cdots O11^{ix}$	0.95	2.22	3.113 (4)	156
$C24 - H24B \cdots O7$	0.98	2.50	3.346 (5)	145
C25-H25···O8	0.95	2.59	3.055 (5)	110
$C32-H32B\cdots O14$	0.98	2.55	3.234 (5)	126
Symmetry codes: (i)	$-x + \frac{1}{2}, y - \frac{1}{2}$	$, -z + \frac{1}{2};$ (ii)	$-x + \frac{1}{2}, y + \frac{1}{2}$	$, -z + \frac{1}{2};$ (iii)

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2};$ (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (vi) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (vii) -x + 1, -y + 1, -z + 1; (viii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (ix) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (ix)

hydrogen bonds (Table 1) involving three categories of oxygen atoms of the polyanion: O_t , μ^2 -O and μ^3 -O. The N-H···N hydrogen bonds from N9 and N12 link ($C_4H_7N_2$)⁺ cations to neutral molecules. The packing is consolidated by weak C-H···O links (Table 1). The overall hydrogen-bonding topology is an infinite three-dimensional network.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom *et al.*, 2016) resulted in 35 hits for the heptamolybdate anion and 90 hits for the 2-methylimidazolium cation.

5. Synthesis and crystallization

Sulfuric acid (2.1 g, 21.7 mmol), 2-methylimidazole (3.5 g, 43.4 mmol) and ammonium heptamolybdate tetrahydrate (2.2 g, 1.8 mmol) in a ratio of 1:2:1/12 were dissolved in water (60 ml). The solution was stirred for one h and evaporated in the oven at 333 K to yield a whitish precipitate. The precipitate was recrystallized from methanol solution: after two

	• •	•
research	communicat	ions
i escui en	communeu	

lable 2	
Experimental details.	
Crystal data	
Chemical formula	$(C_4H_7N_2)_6[Mo_7O_{24}]\cdot 2C_4H_6N_2-2H_2O$
M _r	1754.52
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	170
<i>a, b, c</i> (Å)	16.5325 (2), 17.5842 (2), 19.8873 (2)
β (°)	90.653 (1)
$V(Å^3)$	5781.08 (11)
Ζ	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.56
Crystal size (mm)	$0.38 \times 0.28 \times 0.19$
Data collection	
Diffractometer	Agilent Xcalibur, Sapphire2
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.476, 0.756
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	104921, 27993, 21593
R _{int}	0.053
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.833
Definement	
$P[E^2 > 2\pi(E^2)] = P(E^2) - S$	0.046 0.120 1.15
X[T > 20(T)], WX(T), S	27002
No. of peremotors	21993
No. of parameters	792 59
No. of restraints	Jo U stoms treated by a minture of
n-atom treatment	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	1.83, -2.87

Computer programs: CrysAlis PRO (Agilent, 2014), SIR92 (Altomare et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

weeks at room temperature, colourless prisms of (I) were recovered.

The IR spectrum of (I) is included in the supporting information. The absorption bands at 3400 and 3395 cm⁻¹ correspond to $\nu(O-H)$ stretches and indicate the presence of water molecules and those at 1621 and 1564 cm^{-1} to the deformation vibrations $\delta(O-H)$. The bands centered at 3132 and 1431 cm⁻¹ with shoulders are respectively attributed to the stretching and deformation vibrations of the N-H bonds of the protonated and/or non-protonated entities of 2-methylimidazole (Jinnah et al., 2004). The bands between 2904- 2686 cm^{-1} are attributed to the stretching vibrations of the C-H bonds, while that at 1291 cm⁻¹ is a δ (C-H) deformation vibration (Jinnah et al., 2004). The two bands at 929 and 900 cm⁻¹ correspond to ν (Mo–Ot) stretching vibrations while the bands between 838 and 650 cm^{-1} are typical for the vibrations of $\nu(Mo-O-Mo)$ and $\nu[Mo-(\mu-O)]$ groupings (Dey et al., 2011).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms treated by a mixture of independent and constrained refinement were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H distances of 0.87 (2), 0.88 (2) and 0.89 (2) Å, Cmethyl—H = 0.97/0.98 Å and Cmethine—H = 0.94/0.95 Å, and with U_{iso} (H) = $1.2U_{eq}$ (C,N) or $1.5U_{eq}$ (Cmethyl).

Acknowledgements

The authors thank the Université Cheikh Anta Diop Dakar-Sénégal, the Laboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor, Sénégal and the service commun d'analyse par diffraction des rayons X, Universitée de Bretagne Occidentale, France for financial support. All measurements were performed in the institutes above quoted.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). J. Appl. Cryst. 27, 435.
- Coué, V., Dessapt, R., Bujoli-Doeuff, M., Evain, M. & Jobic, S. (2007). Inorg. Chem. 46, 2824–2835.
- Dey, C. D., Das, R., Pachfule, P., Poddar, P. & Banerjee, R. (2011). *Cryst. Growth Des.* 11, 139–146.
- Don, A. & Weakley, T. J. R. (1981). Acta Cryst. B37, 451-453.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ftini, M. M. (2015). J. Struct. Chem. 56, 1595-1601.
- Gatehouse, B. M. & Leverett, P. (1968). Chem. Commun. pp. 901–902.

- Gerth, H. U. V., Rompel, A., Krebs, B., Boos, J. & Lanvers-Kaminsky, C. (2005). *Anticancer Drugs*, **16**, 101–106.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hasenknopf, B. (2005). Front. Biosci. 10, 275-287.
- Himeno, S., Niiya, H. & Ueda, T. (1997). Bull. Chem. Soc. Jpn, 70, 631-637.
- Jinnah, M. M. A., Umadevi, M. & Ramakrishnan, V. (2004). J. Raman Spectrosc. 35, 956–960.
- Katsoulis, D. E. (1998). Chem. Rev. 98, 359-388.
- Khandolkar, S. S., Naik, A. R., Näther, C., Bensch, W. & Srinivasan, B. R. (2016). J. Chem. Sci. 128, 1737–1744.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Niu, J.-Y., You, X.-Z., Fun, H.-K., Zhou, Z.-Y. & Yip, B.-C. (1996). Polyhedron, 15, 1003–1008.
- Reinoso, S., Dickman, M. H., Praetorius, A. & Kortz, U. (2008). Acta Cryst. E64, m614–m615.
- Román, P., Gutiérrez-Zorrilla, J. M., Luque, A. & Martínez-Ripoll, M. (1988). J. Crystallogr. Spectrosc. Res. 18, 117–131.
- Román, P., Gutiérrez-Zorrilla, J. M., Martínez-Ripoll, M. & García-Blanco, S. (1985). Z. Kristallogr. 173, 283–292.
- Román, P., Luque, A., Aranzabe, A. & Gutiérrez-Zorrilla, J. M. (1992). *Polyhedron*, **11**, 2027–2038.
- Román, P., Luque, A., Gutiérrez-Zorrilla, J. M. & Zuniga, F. J. (1990). Z. Kristallogr. 190, 249–258.
- Sarr, B., Diop, C. A. K., Melin, F., Sidibe, M., Hellwig, P., Michaud, F., Maury, F., Senocq, F., Mbaye, A. & Rousselin, Y. (2018). *J. Mol. Struct.* **1170**, 44–50.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sjöbom, K. & Hedman, B. (1973). Acta Chem. Scand. A27, 3673– 3691.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2019). E75, 1001-1004 [https://doi.org/10.1107/S2056989019008454]

Synthesis and crystal structure of a new hybrid organic-inorganic material containing neutral molecules, cations and heptamolybdate anions

Bougar Sarr, Abdou Mbaye, Wally Diallo, Cheikh Abdoul Khadir Diop, Mamadou Sidibe and Francois Michaud

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Hexakis(2-methyl-1H-imidazol-3-ium) heptamolybdate 2-methyl-1H-imidazole disolvate dihydrate

Crystal data

$(C_4H_7N_2)_6[Mo_7O_{24}]\cdot 2C_4H_6N_2\cdot 2H_2O$
$M_r = 1754.52$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 16.5325 (2) Å
b = 17.5842 (2) Å
c = 19.8873 (2) Å
$\beta = 90.653 (1)^{\circ}$
$V = 5781.08 (11) \text{ Å}^3$
Z = 4

Data collection

Agilent Xcalibur, Sapphire2, large Be window diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 8.3622 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{min} = 0.476, T_{max} = 0.756$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.120$ S = 1.15 F(000) = 3456 $D_x = 2.016 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 38522 reflections $\theta = 3.5-37.4^{\circ}$ $\mu = 1.56 \text{ mm}^{-1}$ T = 170 KFragment of prism, colourless $0.38 \times 0.28 \times 0.19 \text{ mm}$

104921 measured reflections 27993 independent reflections 21593 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 36.3^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -24 \rightarrow 27$ $k = -29 \rightarrow 29$ $l = -33 \rightarrow 33$

27993 reflections792 parameters58 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0397P)^2 + 11.2859P]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.011$
neighbouring sites	$\Delta \rho_{\rm max} = 1.83 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -2.87 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.04305 (13)	0.24793 (14)	0.39565 (12)	0.0280 (4)	
O2	0.00551 (14)	0.27946 (14)	0.26843 (11)	0.0284 (5)	
O3	0.07596 (13)	0.15830 (12)	0.34241 (10)	0.0230 (4)	
O4	0.07336 (14)	0.12579 (14)	0.48407 (11)	0.0269 (4)	
O5	0.15457 (15)	0.03530 (13)	0.39571 (12)	0.0295 (5)	
O6	0.23807 (12)	0.13563 (11)	0.47918 (9)	0.0185 (3)	
07	0.40034 (14)	0.12283 (14)	0.50582 (12)	0.0284 (5)	
08	0.33831 (15)	0.04054 (13)	0.40157 (12)	0.0280 (4)	
O9	0.42573 (14)	0.16391 (13)	0.36926 (12)	0.0268 (4)	
O10	0.52563 (15)	0.25984 (16)	0.44633 (15)	0.0364 (6)	
O11	0.50709 (16)	0.28585 (17)	0.31122 (14)	0.0393 (6)	
O12	0.41549 (13)	0.37036 (12)	0.40412 (11)	0.0223 (4)	
O13	0.39387 (13)	0.34235 (15)	0.54308 (11)	0.0277 (4)	
O14	0.32385 (14)	0.46326 (12)	0.47845 (11)	0.0246 (4)	
O15	0.23109 (12)	0.33656 (12)	0.51719 (9)	0.0197 (3)	
O16	0.06318 (13)	0.33595 (15)	0.52098 (11)	0.0278 (5)	
O17	0.13927 (14)	0.45859 (13)	0.46625 (11)	0.0251 (4)	
O18	0.06704 (13)	0.36491 (12)	0.37905 (10)	0.0213 (4)	
O19	0.16800 (13)	0.28094 (12)	0.28601 (10)	0.0227 (4)	
O20	0.24914 (12)	0.16416 (11)	0.35550 (9)	0.0191 (3)	
O21	0.33322 (14)	0.28445 (13)	0.29412 (11)	0.0253 (4)	
O22	0.24226 (12)	0.36427 (11)	0.39099 (9)	0.0171 (3)	
O23	0.14447 (11)	0.25197 (11)	0.41666 (9)	0.0164 (3)	
O24	0.33781 (11)	0.25392 (11)	0.42940 (9)	0.0172 (3)	
Mo1	0.042356 (14)	0.264056 (14)	0.348758 (11)	0.01907 (5)	
Mo2	0.142420 (14)	0.128403 (13)	0.420960 (11)	0.01805 (4)	
Mo3	0.342279 (14)	0.130828 (14)	0.434127 (12)	0.01888 (4)	
Mo4	0.454713 (15)	0.269540 (15)	0.383726 (13)	0.02328 (5)	
Mo5	0.333156 (14)	0.365314 (13)	0.475739 (11)	0.01745 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Mo6	0.134696 (14)	0.360541 (13)	0.463691 (11)	0.01669 (4)
Mo7	0.248954 (14)	0.271359 (12)	0.343147 (10)	0.01554 (4)
C1	0.2405 (3)	0.0776 (2)	0.1309 (2)	0.0436 (9)
H1	0.235	0.0891	0.0844	0.052*
C2	0.2374 (3)	0.1281 (2)	0.18283 (19)	0.0366 (8)
H2	0.2294	0.1814	0.1794	0.044*
C3	0.25571 (18)	0.01393 (18)	0.22512 (16)	0.0243 (5)
C4	0.2682 (3)	-0.0505(2)	0.2726 (2)	0.0466(10)
H4A	0.2705	-0.031	0.3188	0.07*
H4B	0.3192	-0.0763	0.2623	0.07*
H4C	0.2233	-0.0865	0.2681	0.07*
N1	0.2233 0.25288 (17)	0.0000	0.15858 (13)	0.07 0.0265(5)
N2	0.23286(17) 0.24786(16)	0.00771(10) 0.08720(15)	0.13055(13) 0.24065(13)	0.0236(5)
H1N	0.24700(10) 0.255(2)	-0.0354(12)	0.1362(13)	0.0236 (3)
H2N	0.235(2) 0.248(2)	0.035 + (12) 0.1084 (15)	0.1302(13) 0.2801(10)	0.028*
C5	0.246(2) 0.4466(3)	0.1084(13) 0.0710(3)	0.2301(10) 0.1457(2)	0.023 0.0472(10)
U5	0.4400 (3)	0.0710(3)	0.1437(2) 0.0084	0.0472(10) 0.057*
	0.4409	0.0709	0.0984	0.037°
	0.4452 (5)	0.1275(5)	0.1927 (2)	0.0429 (9)
Ho	0.4352	0.1801	0.1847	0.051*
C7	0.46291 (19)	0.0184 (2)	0.2452 (2)	0.0338(7)
C8	0.4/9/ (3)	-0.0370(3)	0.3006 (2)	0.0458 (10)
H8A	0.5322	-0.0253	0.3215	0.069*
H8B	0.4807	-0.0887	0.2822	0.069*
H8C	0.4372	-0.0333	0.3344	0.069*
N3	0.45995 (18)	0.00367 (19)	0.18011 (18)	0.0356 (7)
N4	0.45352 (17)	0.09260 (18)	0.25376 (18)	0.0343 (6)
H3N	0.457 (3)	-0.0409 (12)	0.1597 (14)	0.041*
H4N	0.450 (3)	0.1166 (16)	0.2926 (10)	0.041*
C9	0.4628 (3)	0.5730 (2)	0.3839 (2)	0.0417 (9)
H9	0.4661	0.5816	0.431	0.05*
C10	0.4672 (2)	0.6261 (2)	0.3346 (2)	0.0389 (8)
H10	0.4739	0.6794	0.3407	0.047*
C11	0.45236 (19)	0.5147 (2)	0.28609 (19)	0.0308 (7)
C12	0.4469 (3)	0.4532 (3)	0.2355 (2)	0.0536 (12)
H12A	0.4124	0.4697	0.1979	0.08*
H12B	0.4235	0.4077	0.2561	0.08*
H12C	0.5011	0.4413	0.219	0.08*
N5	0.45244 (17)	0.50405 (18)	0.35196 (16)	0.0316 (6)
N6	0.46028 (17)	0.58857 (17)	0.27414 (16)	0.0316 (6)
H5N	0.446 (3)	0.4604 (12)	0.3735 (13)	0.038*
H6N	0.456 (3)	0.6126 (15)	0.2346 (10)	0.038*
C13	0.4092 (3)	0.3119 (4)	0.0588 (3)	0.0606 (14)
H13	0.4644	0.327	0.0599	0.073*
C14	0.3540 (3)	0.3234(3)	0.1070 (3)	0.0549(12)
H14	0.363	0.3476	0.1492	0.066*
C15	0.2921 (3)	0.2642 (2)	0.02298 (19)	0.0364 (8)
C16	0.2296 (4)	0.2267(3)	-0.0190(3)	0.0564(12)
H16A	0.2271	0.1726	-0.0075	0.085*
	··/	···/ ····	0.0070	

H16B	0.2433	0.2323	-0.0666	0.085*
H16C	0.177	0.2503	-0.0108	0.085*
N7	0.3698 (2)	0.2740 (2)	0.00784 (19)	0.0475 (9)
N8	0.2818 (2)	0.2935 (2)	0.08359 (17)	0.0398 (7)
H7N	0.3920 (18)	0.263 (3)	-0.0313 (13)	0.048*
H8N	0.2341 (13)	0.301 (3)	0.1029 (17)	0.048*
C17	0.3403 (2)	0.3084 (2)	0.75070 (18)	0.0319(7)
H17	0.3787	0.2916	0.7834	0.038*
C18	0.34305 (19)	0.2954 (2)	0.68388 (18)	0.0300 (6)
H18	0.3836	0.2681	0.6606	0.036*
C19	0.23323 (18)	0.36274 (19)	0.70469 (15)	0.0251 (5)
C20	0.1568 (2)	0.4053 (3)	0.6948 (2)	0.0404 (9)
H20A	0.119	0.392	0.7305	0.061*
H20B	0.1328	0.392	0.651	0.061*
H20C	0.1679	0.46	0.6962	0.061*
N9	0.27156 (17)	0.35055 (18)	0.76280(14)	0.0292 (5)
N10	0.27544 (16)	0.32947 (17)	0.65606 (13)	0.0260(5)
H9N	0.2597(19)	0.369(2)	0.8029 (10)	0.031*
HION	0.2612(19)	0.328(2)	0.6133 (9)	0.031*
C21	0.1295(2)	0.226(2) 0.2036(2)	0.62572(16)	0.0294 (6)
H21	0.0909	0.2298	0.5985	0.025*
C22	0.0909 0.12795 (19)	0.2290 0.1954 (2)	0.69351 (15)	0.0289 (6)
H22	0.0878	0.2144	0.7228	0.0209 (0)
C23	0.0070	0.13713 (18)	0.65689 (14)	0.035 0.0241(5)
C24	0.23097(19)	0.19713(10) 0.0943(2)	0.05000 (14)	0.0241(3) 0.0356(7)
С24 Н24 Δ	0.3575	0.1257	0.6739	0.0538
H24A	0.3264	0.0813	0.6083	0.053*
H24C	0.328	0.0476	0.6815	0.053*
N11	0.10766 (16)	0.0470 0.16674(17)	0.0015 0.60401(12)	0.035
N12	0.19700 (10)	0.10074(17) 0.15416(17)	0.00401(12) 0.71100(12)	0.0202(3)
U11N	0.19371(10) 0.2134(10)	0.15410(17) 0.164(2)	0.71190(12) 0.5621(0)	0.0237(3)
	0.2134(19) 0.2122(10)	0.104(2) 0.145(2)	0.3021(9) 0.7531(0)	0.031*
C25	0.2122(19) 0.3331(3)	-0.0604(3)	0.7331(9) 0.5204(2)	0.051°
U25	0.3331 (3)	-0.0638	0.3204 (2)	0.0545 (12)
п23	0.3733	-0.0038 -0.1023(3)	0.4000 0.5821 (2)	0.003°
U20	0.3380 (3)	-0.1248	0.5821 (2)	0.0498 (11)
П20 С27	0.3833	-0.1246 -0.0632(2)	0.0009	0.00°
C27	0.2140(3)	-0.0032(2)	0.3099(2)	0.0439(10)
C28	0.1280 (4)	-0.0448(3)	0.3813 (3)	0.0623 (14)
П20А 1120D	0.0994	-0.0912	0.3938	0.094
H28B	0.1046	-0.0234	0.5404	0.094*
H28C	0.1248	-0.00//	0.618	0.094*
N13	0.2543(3)	-0.0461(2)	0.51329 (18)	0.0523 (10)
NI4	0.2641 (2)	-0.0981 (2)	0.61320 (16)	0.0421 (8)
H13N	0.2347 (18)	-0.022(3)	0.4779 (15)	0.05*
C29	0.1459 (2)	0.5736 (2)	0.59154 (18)	0.0331 (7)
H29	0.0966	0.5697	0.5669	0.04*
C30	0.1591 (2)	0.6127 (2)	0.64964 (18)	0.0325 (7)
H30	0.1195	0.6411	0.673	0.039*

C31	0.2732 (2)	0.5611 (2)	0.62385 (16)	0.0289 (6)	
C32	0.3600(2)	0.5372 (3)	0.6246 (2)	0.0472 (11)	
H32A	0.3916	0.5723	0.6526	0.071*	
H32B	0.3807	0.5378	0.5786	0.071*	
H32C	0.3645	0.4856	0.643	0.071*	
N15	0.21866 (17)	0.54082 (17)	0.57597 (14)	0.0287 (5)	
N16	0.23894 (17)	0.60467 (18)	0.66955 (14)	0.0302 (6)	
H15N	0.2266 (18)	0.511 (2)	0.5419 (15)	0.036*	
O25	0.14267 (16)	0.30433 (19)	0.14871 (12)	0.0369 (6)	
H25V	0.134 (3)	0.300 (3)	0.1909 (10)	0.055*	
H25W	0.0957 (17)	0.302 (3)	0.130 (2)	0.055*	
O26	0.4963 (2)	0.2100 (2)	0.58818 (17)	0.0519 (8)	
H26V	0.482 (4)	0.248 (2)	0.566 (3)	0.078*	
H26W	0.482 (4)	0.172 (2)	0.566 (3)	0.078*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0214 (9)	0.0333 (12)	0.0294 (11)	-0.0021 (8)	0.0030 (8)	0.0072 (9)
O2	0.0330 (11)	0.0339 (12)	0.0182 (9)	-0.0065 (9)	-0.0104 (8)	0.0047 (8)
O3	0.0288 (10)	0.0217 (9)	0.0183 (9)	-0.0051 (8)	-0.0051 (7)	0.0004 (7)
O4	0.0258 (10)	0.0345 (12)	0.0206 (9)	-0.0030 (9)	0.0017 (8)	0.0070 (8)
O5	0.0382 (12)	0.0218 (10)	0.0285 (11)	-0.0060 (9)	-0.0035 (9)	-0.0020 (8)
O6	0.0218 (8)	0.0208 (9)	0.0129 (7)	-0.0003 (7)	0.0016 (6)	0.0024 (6)
O7	0.0255 (10)	0.0328 (12)	0.0268 (11)	0.0018 (9)	-0.0034 (8)	0.0067 (9)
08	0.0375 (12)	0.0221 (10)	0.0247 (10)	0.0050 (9)	0.0080 (9)	0.0008 (8)
09	0.0295 (10)	0.0258 (10)	0.0253 (10)	0.0044 (8)	0.0119 (8)	0.0025 (8)
O10	0.0240 (11)	0.0398 (14)	0.0452 (15)	0.0009 (10)	-0.0018 (10)	0.0059 (12)
011	0.0371 (13)	0.0433 (15)	0.0379 (14)	0.0011 (11)	0.0227 (11)	0.0077 (11)
O12	0.0239 (9)	0.0206 (9)	0.0223 (9)	-0.0029 (7)	0.0041 (7)	0.0025 (7)
013	0.0233 (10)	0.0389 (13)	0.0206 (9)	-0.0016 (9)	-0.0060(8)	0.0031 (9)
O14	0.0312 (10)	0.0204 (9)	0.0222 (9)	-0.0040 (8)	-0.0020 (8)	-0.0034 (7)
O15	0.0219 (9)	0.0257 (9)	0.0116 (7)	-0.0001 (7)	-0.0011 (6)	0.0004 (7)
O16	0.0256 (10)	0.0402 (13)	0.0177 (9)	0.0037 (9)	0.0059 (8)	0.0036 (8)
O17	0.0310 (11)	0.0228 (10)	0.0215 (9)	0.0033 (8)	-0.0038 (8)	-0.0032 (7)
O18	0.0242 (9)	0.0206 (9)	0.0189 (9)	0.0013 (7)	-0.0031 (7)	0.0008 (7)
019	0.0306 (10)	0.0237 (9)	0.0137 (8)	-0.0029 (8)	-0.0038 (7)	0.0018 (7)
O20	0.0283 (9)	0.0160 (8)	0.0129 (7)	-0.0013 (7)	0.0032 (7)	-0.0007 (6)
O21	0.0321 (11)	0.0255 (10)	0.0186 (9)	0.0004 (8)	0.0110 (8)	0.0020 (7)
O22	0.0229 (8)	0.0167 (8)	0.0117 (7)	-0.0007 (6)	0.0003 (6)	-0.0007 (6)
O23	0.0187 (8)	0.0189 (8)	0.0117 (7)	-0.0014 (6)	0.0007 (6)	0.0008 (6)
O24	0.0198 (8)	0.0175 (8)	0.0143 (7)	0.0004 (6)	0.0029 (6)	0.0014 (6)
Mo1	0.01912 (9)	0.02215 (10)	0.01584 (9)	-0.00268 (8)	-0.00351 (7)	0.00174 (7)
Mo2	0.02159 (10)	0.01762 (9)	0.01494 (9)	-0.00348 (7)	-0.00019 (7)	0.00209 (7)
Mo3	0.02075 (10)	0.01832 (10)	0.01763 (9)	0.00146 (8)	0.00352 (7)	0.00293 (7)
Mo4	0.01970 (10)	0.02472 (11)	0.02561 (11)	0.00006 (8)	0.00868 (8)	0.00360 (9)
Mo5	0.01950 (9)	0.01916 (10)	0.01367 (9)	-0.00115 (7)	-0.00133 (7)	-0.00076 (7)
Mo6	0.01876 (9)	0.01945 (10)	0.01188 (8)	0.00120 (7)	0.00054 (7)	-0.00103 (7)

Mo7	0.02116 (9)	0.01513 (9)	0.01035 (8)	-0.00110 (7)	0.00168 (7)	-0.00035 (6)
C1	0.069 (3)	0.0360 (19)	0.0254 (16)	0.0063 (19)	-0.0037 (17)	-0.0048 (14)
C2	0.054 (2)	0.0268 (15)	0.0291 (16)	0.0069 (15)	-0.0016 (15)	-0.0060 (12)
C3	0.0225 (12)	0.0242 (13)	0.0263 (13)	0.0004 (10)	0.0014 (10)	-0.0075 (10)
C4	0.076 (3)	0.0280 (17)	0.036 (2)	-0.0038 (18)	0.002 (2)	-0.0050 (15)
N1	0.0293 (12)	0.0281 (12)	0.0222 (11)	0.0017 (10)	0.0000 (9)	-0.0128 (9)
N2	0.0248 (11)	0.0248 (11)	0.0211 (11)	0.0002 (9)	0.0014 (9)	-0.0092 (9)
C5	0.052 (2)	0.051 (3)	0.038 (2)	0.000 (2)	-0.0123 (18)	-0.0113 (18)
C6	0.047 (2)	0.041 (2)	0.041 (2)	0.0030 (17)	-0.0089 (17)	-0.0061 (17)
C7	0.0215 (13)	0.0335 (17)	0.047 (2)	-0.0041 (12)	0.0096 (13)	-0.0113 (14)
C8	0.045 (2)	0.046 (2)	0.046 (2)	0.0079 (18)	0.0100 (18)	-0.0030 (18)
N3	0.0256 (13)	0.0373 (16)	0.0439 (17)	-0.0015 (11)	0.0025 (12)	-0.0179 (13)
N4	0.0231 (12)	0.0330 (15)	0.0469 (18)	-0.0027 (11)	0.0027 (11)	-0.0127 (13)
C9	0.050 (2)	0.037 (2)	0.038 (2)	-0.0067 (17)	0.0036 (17)	0.0054 (15)
C10	0.043 (2)	0.0313 (17)	0.043 (2)	-0.0031 (15)	0.0023 (16)	0.0063 (15)
C11	0.0230 (13)	0.0311 (15)	0.0380 (17)	-0.0034 (11)	-0.0103 (12)	0.0118 (13)
C12	0.073 (3)	0.040 (2)	0.047 (2)	-0.004 (2)	-0.020 (2)	0.0017 (19)
N5	0.0250 (12)	0.0308 (14)	0.0389 (16)	-0.0056 (10)	-0.0032 (11)	0.0133 (12)
N6	0.0261 (12)	0.0306 (14)	0.0380 (15)	-0.0036 (10)	-0.0054 (11)	0.0120 (12)
C13	0.037 (2)	0.077 (4)	0.068 (3)	0.002 (2)	0.012 (2)	-0.008 (3)
C14	0.045 (2)	0.070 (3)	0.050 (3)	-0.003 (2)	0.005 (2)	-0.020 (2)
C15	0.047 (2)	0.0326 (17)	0.0296 (16)	0.0093 (15)	0.0081 (14)	0.0016 (13)
C16	0.077 (4)	0.044 (3)	0.047 (3)	0.002 (2)	-0.011 (2)	-0.005 (2)
N7	0.053 (2)	0.052 (2)	0.0381 (18)	0.0154 (17)	0.0202 (16)	0.0027 (16)
N8	0.0393 (16)	0.0454 (19)	0.0350 (16)	0.0044 (14)	0.0116 (13)	-0.0041 (14)
C17	0.0242 (13)	0.0393 (18)	0.0321 (16)	0.0027 (12)	-0.0053 (12)	0.0007 (13)
C18	0.0220 (13)	0.0359 (17)	0.0322 (16)	0.0035 (12)	0.0030 (11)	-0.0006 (13)
C19	0.0228 (12)	0.0309 (15)	0.0215 (12)	0.0022 (11)	0.0018 (10)	-0.0001 (10)
C20	0.0333 (17)	0.048 (2)	0.040 (2)	0.0146 (16)	-0.0022 (14)	0.0057 (17)
N9	0.0293 (13)	0.0380 (15)	0.0203 (11)	0.0040 (11)	-0.0012 (9)	-0.0007 (10)
N10	0.0266 (12)	0.0338 (13)	0.0177 (10)	-0.0006 (10)	0.0024 (9)	-0.0001 (9)
C21	0.0277 (14)	0.0417 (18)	0.0190 (12)	0.0009 (13)	0.0000 (10)	0.0026 (12)
C22	0.0268 (13)	0.0415 (18)	0.0187 (12)	-0.0004 (12)	0.0069 (10)	0.0002 (11)
C23	0.0288 (13)	0.0282 (14)	0.0155 (11)	-0.0015 (11)	0.0017 (10)	-0.0007 (9)
C24	0.0362 (17)	0.0365 (18)	0.0343 (17)	0.0089 (14)	0.0056 (14)	0.0012 (14)
N11	0.0289 (12)	0.0374 (14)	0.0124 (9)	-0.0002 (10)	0.0027 (8)	0.0008 (9)
N12	0.0293 (12)	0.0347 (14)	0.0132 (9)	-0.0017 (10)	0.0013 (8)	0.0037 (9)
C25	0.081 (3)	0.039 (2)	0.043 (2)	0.008 (2)	0.026 (2)	0.0121 (18)
C26	0.066 (3)	0.042 (2)	0.042 (2)	0.003 (2)	0.013 (2)	0.0089 (18)
C27	0.074 (3)	0.0266 (16)	0.0306 (17)	-0.0031 (18)	0.0014 (18)	0.0015 (13)
C28	0.075 (4)	0.054 (3)	0.058 (3)	-0.001 (3)	-0.006 (3)	0.005 (2)
N13	0.095 (3)	0.0330 (17)	0.0288 (16)	0.0064 (19)	0.0075 (18)	0.0112 (13)
N14	0.065 (2)	0.0348 (16)	0.0260 (14)	-0.0038 (15)	0.0053 (14)	0.0052 (12)
C29	0.0285 (15)	0.0419 (19)	0.0286 (15)	0.0052 (13)	-0.0094 (12)	-0.0013 (13)
C30	0.0307 (15)	0.0369 (17)	0.0298 (15)	0.0115 (13)	-0.0028 (12)	-0.0057 (13)
C31	0.0290 (14)	0.0355 (16)	0.0222 (13)	0.0043 (12)	-0.0059 (11)	-0.0094 (12)
C32	0.0322 (18)	0.068 (3)	0.041 (2)	0.0155 (19)	-0.0086 (15)	-0.019 (2)
N15	0.0315 (13)	0.0327 (14)	0.0217 (11)	0.0048 (11)	-0.0046 (10)	-0.0109 (10)

N16	0.0302 (13)	0.0364 (15)	0.0240 (12)	0.0088 (11)	-0.0057 (10)	-0.0092 (11)
O25	0.0344 (12)	0.0563 (17)	0.0199 (10)	0.0001 (12)	0.0025 (9)	0.0003 (11)
O26	0.066 (2)	0.0466 (18)	0.0422 (17)	-0.0038 (16)	-0.0272 (15)	0.0040 (14)

Geometric parameters (Å, °)

01—Mo1	1.724 (2)	C11—N6	1.328 (4)	
O2—Mo1	1.725 (2)	C11—C12	1.479 (6)	
O3—Mo1	1.945 (2)	C12—H12A	0.98	
O3—Mo2	1.971 (2)	C12—H12B	0.98	
O4—Mo2	1.707 (2)	C12—H12C	0.98	
O5—Mo2	1.725 (2)	N5—H5N	0.886 (17)	
O6—Mo3	1.9528 (19)	N6—H6N	0.895 (17)	
O6—Mo2	1.953 (2)	C13—C14	1.347 (7)	
O7—Mo3	1.715 (2)	C13—N7	1.372 (7)	
O8—Mo3	1.716 (2)	C13—H13	0.95	
O9—Mo4	1.939 (2)	C14—N8	1.379 (6)	
O9—Mo3	1.987 (2)	C14—H14	0.95	
O10-Mo4	1.709 (3)	C15—N8	1.324 (5)	
O11—Mo4	1.715 (2)	C15—N7	1.333 (5)	
O12—Mo4	1.932 (2)	C15—C16	1.476 (6)	
O12—Mo5	1.983 (2)	C16—H16A	0.98	
O13—Mo5	1.713 (2)	C16—H16B	0.98	
O14—Mo5	1.730 (2)	C16—H16C	0.98	
O15—Mo6	1.9521 (19)	N7—H7N	0.887 (17)	
O15—Mo5	1.953 (2)	N8—H8N	0.893 (17)	
O16—Mo6	1.707 (2)	C17—C18	1.350 (5)	
O17—Mo6	1.726 (2)	C17—N9	1.380 (4)	
O18—Mo1	1.916 (2)	C17—H17	0.95	
O18—Mo6	2.012 (2)	C18—N10	1.379 (4)	
O19—Mo7	1.754 (2)	C18—H18	0.95	
O19—Mo1	2.453 (2)	C19—N9	1.329 (4)	
O20—Mo7	1.901 (2)	C19—N10	1.334 (4)	
O20—Mo3	2.259 (2)	C19—C20	1.480 (5)	
O20—Mo2	2.292 (2)	C20—H20A	0.98	
O21—Mo7	1.725 (2)	C20—H20B	0.98	
O22—Mo7	1.8945 (19)	C20—H20C	0.98	
O22—Mo5	2.2453 (19)	N9—H9N	0.886 (17)	
O22—Mo6	2.3057 (19)	N10—H10N	0.880 (17)	
O23—Mo6	2.1329 (19)	C21—C22	1.356 (4)	
O23—Mo1	2.1604 (19)	C21—N11	1.374 (4)	
O23—Mo2	2.1748 (19)	C21—H21	0.95	
O23—Mo7	2.3011 (18)	C22—N12	1.380 (4)	
O24—Mo4	2.1624 (19)	C22—H22	0.95	
O24—Mo5	2.1665 (19)	C23—N12	1.330 (4)	
O24—Mo3	2.1677 (19)	C23—N11	1.336 (4)	
O24—Mo7	2.2665 (19)	C23—C24	1.479 (5)	
Mol—Mo6	3.2178 (3)	C24—H24A	0.98	

Mo4—Mo5	3.2105 (3)	C24—H24B	0.98
C1—C2	1.362 (5)	C24—H24C	0.98
C1—N1	1.362 (5)	N11—H11N	0.877 (17)
C1—H1	0.95	N12—H12N	0.876 (17)
C2—N2	1.365 (5)	C25—C26	1.357 (6)
C2—H2	0.95	C25—N13	1.371 (7)
C3—N1	1.328 (4)	C25—H25	0.95
C3—N2	1 332 (4)	C26—N14	1 377 (6)
$C_3 - C_4$	1.332(1) 1 488(5)	C26—H26	0.95
C4—H4A	0.98	C27—N14	1 338 (6)
C4—H4B	0.98	C27—N13	1.348 (6)
C4—H4C	0.98	C_{27} C_{28}	1.340(0) 1.470(8)
N1 H1N	0.98 0.881 (17)	$C_{2}^{2} = C_{2}^{2}$	0.08
N2 H2N	0.861(17)	C28 H28P	0.98
$C_{5} = C_{6}$	1.262(6)	C_{28} H_{28C}	0.98
C_{5} N2	1.303(0) 1.284(6)	С20— <u>H</u> 20С	0.98
C5—N5	1.384 (0)	N13—H13N	0.880 (19)
C5—H5	0.95	$C_{29} - C_{30}$	1.360 (5)
C6—N4	1.367 (6)	C29—N15	1.372 (4)
С6—Н6	0.95	C29—H29	0.95
C7—N3	1.321 (5)	C30—N16	1.380 (4)
C7—N4	1.325 (5)	C30—H30	0.95
C7—C8	1.493 (6)	C31—N16	1.321 (4)
C8—H8A	0.98	C31—N15	1.352 (4)
C8—H8B	0.98	C31—C32	1.495 (5)
C8—H8C	0.98	C32—H32A	0.98
N3—H3N	0.884 (17)	C32—H32B	0.98
N4—H4N	0.884 (17)	C32—H32C	0.98
C9—C10	1.357 (6)	N15—H15N	0.867 (19)
C9—N5	1.378 (5)	O25—H25V	0.857 (19)
С9—Н9	0.95	O25—H25W	0.856 (18)
C10—N6	1.375 (5)	O26—H26V	0.842 (19)
C10—H10	0.95	O26—H26W	0.843 (19)
C11—N5	1.323 (5)		
Mo1—O3—Mo2	111.13 (10)	C3—C4—H4A	109.5
Mo3—O6—Mo2	115.96 (9)	C3—C4—H4B	109.5
Mo4—O9—Mo3	110.89 (11)	H4A—C4—H4B	109.5
Mo4-012-Mo5	110.14 (10)	C3—C4—H4C	109.5
Mo6-015-Mo5	114.70 (9)	H4A—C4—H4C	109.5
Mo1-018-Mo6	110.01(10)	H4B-C4-H4C	109.5
Mo7-019-Mo1	107 64 (9)	$C_3 - N_1 - C_1$	109.5 109.4(3)
Mo7 = O20 = Mo3	110 29 (9)	$C_3 = N_1 = H_1N$	105.4(3) 125.1(19)
Mo7Mo2	110.29(9) 110.20(9)	C1 - N1 - H1N	125.1(19) 125.4(19)
$Mo_3 = O_2 O_2 = Mo_2$	93 36 (7)	$C_3 N_2 C_2$	123.7(19) 1000(3)
M_{0} M_{0	100.08 (0)	$C_3 = N_2 = C_2$	109.0(3) 128.7(10)
$M_07 O22 M_06$	109.90 (9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.7(17) 122.2(10)
$M_{05} = 0.22 = 1000$	102.02(3) 02 51 (7)	$C_{2} = 112 \text{ II}$	122.3(17) 1060(4)
$M_{06} = 0.22 = 1000$	92.31(7)	C6 $C5$ $H5$	100.7 (4)
10100-023-10101	7/.07(0)	UU-UJ-IIJ	120.0

Mo6—O23—Mo2	151.14 (9)	N3—C5—H5	126.6
Mo1-O23-Mo2	96.34 (7)	C5—C6—N4	106.2 (4)
Mo6—O23—Mo7	101.96 (8)	С5—С6—Н6	126.9
Mo1—O23—Mo7	100.09 (7)	N4—C6—H6	126.9
Mo2—O23—Mo7	100.67 (7)	N3—C7—N4	108.4 (4)
Mo4—O24—Mo5	95.74 (8)	N3—C7—C8	126.8 (4)
Mo4-024-Mo3	96.60 (8)	N4—C7—C8	124.7 (4)
Mo5-024-Mo3	152.34 (9)	C7—C8—H8A	109.5
Mo4-024-Mo7	103 86 (7)	C7—C8—H8B	109.5
$M_05 = 0.024 = M_07$	100.00(8)	H8A - C8 - H8B	109.5
Mo3 = O24 = Mo7	100.92 (8)	C7 - C8 - H8C	109.5
01 - Mo1 - 02	104.12(11)	H8A - C8 - H8C	109.5
01 Mo1 018	09.02(11)	HSR CS HSC	109.5
01 - M01 - 018	30.92(11) 102 57 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3 108.7(3)
02 - M01 - 018	102.57(10)	C7 N2 U2N	108.7(3)
01 - M01 - 03	90.33(11)	$C_{1} = N_{2} = H_{2}N_{1}$	129(2)
02 - M01 - 03	100.84(10)	C_{2} NA C_{2}	122(2)
018—Mo1—03	14/./3 (9)	C/—N4—C6	109.9 (3)
01—Mo1—023	106.54 (9)	C/—N4—H4N	126 (2)
O2—Mo1—O23	149.29 (10)	C6—N4—H4N	124 (2)
O18—Mo1—O23	74.47 (8)	C10—C9—N5	106.3 (4)
O3—Mo1—O23	74.03 (8)	С10—С9—Н9	126.9
O1—Mo1—O19	176.53 (9)	N5—C9—H9	126.9
O2—Mo1—O19	78.58 (10)	C9—C10—N6	107.2 (4)
O18—Mo1—O19	82.49 (8)	C9—C10—H10	126.4
O3—Mo1—O19	80.71 (8)	N6—C10—H10	126.4
O23—Mo1—O19	70.72 (7)	N5-C11-N6	108.4 (3)
O1—Mo1—Mo6	95.01 (8)	N5-C11-C12	124.7 (3)
O2—Mo1—Mo6	137.30 (8)	N6-C11-C12	126.8 (4)
O18—Mo1—Mo6	35.98 (6)	C11—C12—H12A	109.5
O3—Mo1—Mo6	114.62 (6)	C11—C12—H12B	109.5
O23—Mo1—Mo6	41.13 (5)	H12A—C12—H12B	109.5
O19—Mo1—Mo6	84.26 (5)	C11—C12—H12C	109.5
O4—Mo2—O5	105.64 (12)	H12A—C12—H12C	109.5
O4—Mo2—O6	96.30 (9)	H12B—C12—H12C	109.5
O5—Mo2—O6	97.94 (10)	C11—N5—C9	109.3 (3)
O4—Mo2—O3	102.62 (10)	C11—N5—H5N	127.0 (19)
O5—Mo2—O3	95.05 (10)	C9—N5—H5N	123.7 (19)
O6—Mo2—O3	153.21 (8)	C11—N6—C10	108.7 (3)
O4—Mo2—O23	93.82 (10)	C11—N6—H6N	127.8 (19)
05—Mo2—023	159.22 (10)	C10—N6—H6N	123.1 (19)
$06 - M_0 2 - 023$	86 87 (8)	C14— $C13$ — $N7$	106.2 (4)
03 - Mo2 - 023	73 22 (8)	C_{14} C_{13} H_{13}	126.9
$04 - M_0 2 - 020$	161.90(10)	N7_C13_H13	126.9
$05 - M_0 2 - 020$	90.12 (10)	C13 - C14 - N8	120.9 107 0 (4)
$06 - M_0 2 - 020$	72 28 (7)	C13 - C14 - H14	126.5
$M_{02} = 020$	84 40 (8)	N8_C14_H14	126.5
$0.3 - M_0 2 = 0.20$	72 01 (7)	N8 C15 N7	106.8 (4)
025 - 1002 - 020	104.86(12)	N8 C15 C16	100.0(4) 126.4(4)
00-1000-07	107.00(12)	110-013-010	120.7(4)

O8—Mo3—O6	100.55 (10)	N7-C15-C16	126.8 (4)
O7—Mo3—O6	96.34 (10)	C15—C16—H16A	109.5
O8—Mo3—O9	92.85 (10)	C15—C16—H16B	109.5
O7—Mo3—O9	100.23 (11)	H16A—C16—H16B	109.5
O6—Mo3—O9	155.25 (9)	C15—C16—H16C	109.5
O8—Mo3—O24	155.03 (9)	H16A—C16—H16C	109.5
O7—Mo3—O24	97.84 (10)	H16B—C16—H16C	109.5
O6—Mo3—O24	86.96 (8)	C15—N7—C13	110.3 (4)
O9—Mo3—O24	72.72 (8)	C15—N7—H7N	125 (2)
O8—Mo3—O20	87.48 (10)	C13—N7—H7N	124 (2)
O7—Mo3—O20	165.23 (10)	C15—N8—C14	109.7 (4)
O6—Mo3—O20	73.05 (7)	C15—N8—H8N	125 (2)
O9—Mo3—O20	86.99 (9)	C14—N8—H8N	124 (2)
O24—Mo3—O20	71.84 (7)	C18—C17—N9	107.4 (3)
O10—Mo4—O11	106.30 (14)	С18—С17—Н17	126.3
O10-Mo4-O12	99.66 (12)	N9—C17—H17	126.3
O11—Mo4—O12	101.36 (12)	C17—C18—N10	106.6 (3)
O10—Mo4—O9	100.30 (12)	C17—C18—H18	126.7
O11—Mo4—O9	99.31 (12)	N10-C18-H18	126.7
O12—Mo4—O9	145.80 (9)	N9—C19—N10	108.1 (3)
O10—Mo4—O24	106.87 (10)	N9—C19—C20	126.5 (3)
O11—Mo4—O24	146.81 (11)	N10-C19-C20	125.3 (3)
O12—Mo4—O24	74.02 (8)	C19—C20—H20A	109.5
O9—Mo4—O24	73.74 (8)	C19—C20—H20B	109.5
O10—Mo4—Mo5	93.77 (10)	H20A—C20—H20B	109.5
O11—Mo4—Mo5	135.81 (10)	C19—C20—H20C	109.5
O12—Mo4—Mo5	35.45 (6)	H20A—C20—H20C	109.5
O9—Mo4—Mo5	115.58 (6)	H20B—C20—H20C	109.5
O24—Mo4—Mo5	42.18 (5)	C19—N9—C17	108.7 (3)
O13—Mo5—O14	105.18 (11)	C19—N9—H9N	128.0 (19)
O13—Mo5—O15	96.34 (10)	C17—N9—H9N	123.0 (19)
O14—Mo5—O15	99.61 (10)	C19—N10—C18	109.2 (3)
O13—Mo5—O12	99.85 (10)	C19—N10—H10N	125.4 (19)
O14—Mo5—O12	92.28 (10)	C18—N10—H10N	125.4 (19)
O15—Mo5—O12	156.65 (9)	C22—C21—N11	106.6 (3)
O13—Mo5—O24	95.51 (10)	C22—C21—H21	126.7
O14—Mo5—O24	156.48 (9)	N11—C21—H21	126.7
O15—Mo5—O24	88.88 (8)	C21—C22—N12	107.2 (3)
O12—Mo5—O24	72.96 (8)	C21—C22—H22	126.4
O13—Mo5—O22	165.08 (10)	N12—C22—H22	126.4
O14—Mo5—O22	88.42 (9)	N12—C23—N11	108.1 (3)
O15—Mo5—O22	74.97 (7)	N12—C23—C24	125.8 (3)
O12—Mo5—O22	85.42 (8)	N11—C23—C24	126.1 (3)
O24—Mo5—O22	72.54 (7)	C23—C24—H24A	109.5
O13—Mo5—Mo4	87.53 (8)	C23—C24—H24B	109.5
O14—Mo5—Mo4	126.61 (8)	H24A—C24—H24B	109.5
O15—Mo5—Mo4	130.86 (6)	C23—C24—H24C	109.5
O12—Mo5—Mo4	34.41 (6)	H24A—C24—H24C	109.5

O24—Mo5—Mo4	42.08 (5)	H24B—C24—H24C	109.5
O22—Mo5—Mo4	89.18 (5)	C23—N11—C21	109.3 (2)
O16—Mo6—O17	105.29 (12)	C23—N11—H11N	125.3 (18)
O16—Mo6—O15	98.56 (10)	C21—N11—H11N	125.4 (18)
O17—Mo6—O15	99.46 (10)	C23—N12—C22	108.8 (2)
O16—Mo6—O18	100.69 (10)	C23—N12—H12N	124.9 (19)
O17—Mo6—O18	90.59 (9)	C22—N12—H12N	125.9 (19)
O15—Mo6—O18	155.08 (8)	C26—C25—N13	105.5 (4)
O16—Mo6—O23	97.03 (10)	С26—С25—Н25	127.2
O17—Mo6—O23	154.60 (9)	N13—C25—H25	127.2
O15—Mo6—O23	88.86 (8)	C25—C26—N14	109.8 (5)
O18—Mo6—O23	73.23 (8)	С25—С26—Н26	125.1
O16—Mo6—O22	166.13 (10)	N14—C26—H26	125.1
O17—Mo6—O22	87.49 (9)	N14—C27—N13	109.4 (4)
O15—Mo6—O22	73.58 (7)	N14—C27—C28	126.1 (4)
O18—Mo6—O22	84.24 (8)	N13—C27—C28	124.5 (4)
O23—Mo6—O22	71.80 (7)	C27—C28—H28A	109.5
O16—Mo6—Mo1	90.80 (8)	C27—C28—H28B	109.5
O17—Mo6—Mo1	124.59 (7)	H28A—C28—H28B	109.5
O15—Mo6—Mo1	130.62 (6)	C27—C28—H28C	109.5
O18—Mo6—Mo1	34.01 (6)	H28A—C28—H28C	109.5
O23—Mo6—Mo1	41.78 (5)	H28B—C28—H28C	109.5
O22—Mo6—Mo1	86.14 (5)	C27—N13—C25	108.9 (4)
O21—Mo7—O19	103.66 (11)	C27—N13—H13N	126 (2)
O21—Mo7—O22	102.76 (10)	C25—N13—H13N	125 (2)
O19—Mo7—O22	101.19 (9)	C27—N14—C26	106.3 (4)
O21—Mo7—O20	101.84 (10)	C30—C29—N15	105.7 (3)
O19—Mo7—O20	100.32 (9)	С30—С29—Н29	127.1
O22—Mo7—O20	142.21 (8)	N15—C29—H29	127.1
O21—Mo7—O24	85.71 (9)	C29—C30—N16	109.6 (3)
O19—Mo7—O24	170.59 (8)	С29—С30—Н30	125.2
O22—Mo7—O24	77.15 (8)	N16—C30—H30	125.2
O20—Mo7—O24	76.58 (8)	N16—C31—N15	110.4 (3)
O21—Mo7—O23	174.78 (9)	N16—C31—C32	125.2 (3)
O19—Mo7—O23	81.55 (8)	N15—C31—C32	124.4 (3)
O22—Mo7—O23	76.12 (8)	C31—C32—H32A	109.5
O20—Mo7—O23	76.77 (8)	C31—C32—H32B	109.5
O24—Mo7—O23	89.07 (6)	H32A—C32—H32B	109.5
C2—C1—N1	106.8 (3)	С31—С32—Н32С	109.5
C2—C1—H1	126.6	H32A—C32—H32C	109.5
NI-CI-HI	126.6	H32B—C32—H32C	109.5
C1 - C2 - N2	106.9 (3)	C31—N15—C29	108.1 (3)
C1—C2—H2	126.6	C31—NI5—HI5N	127.1 (19)
$N_2 - C_2 - H_2$	120.0	C29—NIO—HION	124.8 (19)
N1 - C3 - N2	108.0 (3)	C_{31} —N16—C30	106.1(3)
N1-C3-C4	125.0 (3)	$H_{25}V - U_{25} - H_{25}W$	105 (3)
N2	127.0 (3)	H26V—O26—H26W	107 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H1 <i>N</i> ···O22 ⁱ	0.88 (2)	1.85 (2)	2.710 (3)	167 (2)
N2—H2 <i>N</i> ···O20	0.87 (2)	1.79 (2)	2.655 (3)	172 (2)
N3—H3 <i>N</i> ···O18 ⁱ	0.88 (2)	1.87 (2)	2.743 (4)	171 (5)
N4—H4 <i>N</i> ···O9	0.88 (2)	1.79 (2)	2.662 (4)	171 (5)
N5—H5 <i>N</i> ···O12	0.89 (2)	1.77 (3)	2.644 (4)	168 (4)
N6—H6N····O3 ⁱⁱ	0.90 (2)	1.80 (3)	2.684 (4)	168 (5)
N7—H7 <i>N</i> ···O1 ⁱⁱⁱ	0.89 (3)	1.83 (3)	2.697 (4)	167 (3)
N8—H8 <i>N</i> ···O25	0.89 (3)	1.78 (3)	2.659 (4)	172 (5)
N9—H9 <i>N</i> ···N14 ^{iv}	0.89 (2)	1.81 (2)	2.698 (4)	177 (3)
N10—H10 <i>N</i> ···O15	0.88 (2)	1.98 (2)	2.852 (3)	174 (3)
N11—H11 <i>N</i> ···O6	0.88 (2)	1.78 (2)	2.636 (3)	166 (3)
N12—H12 <i>N</i> ···N16 ^v	0.88 (2)	1.87 (2)	2.725 (4)	165 (3)
N13—H13 <i>N</i> ···O5	0.88 (4)	2.32 (4)	3.186 (5)	167 (3)
N13—H13 <i>N</i> ···O8	0.88 (4)	2.55 (4)	3.043 (5)	116 (2)
N15—H15 <i>N</i> ···O14	0.87 (3)	2.22 (3)	2.953 (4)	142 (3)
N15—H15 <i>N</i> ···O17	0.87 (3)	2.27 (3)	2.917 (4)	132 (3)
O25—H25 <i>V</i> ···O19	0.86 (2)	2.00 (2)	2.788 (3)	154 (5)
O25—H25 <i>W</i> ···O26 ^{vi}	0.86 (3)	1.85 (3)	2.702 (4)	176 (5)
O26—H26V…O10	0.83 (4)	2.50 (6)	2.999 (4)	119 (5)
O26—H26V···O13	0.83 (4)	2.25 (5)	3.009 (4)	151 (6)
O26—H26 <i>W</i> ···O7	0.83 (4)	1.99 (6)	2.737 (4)	149 (6)
C4—H4 <i>A</i> ···O8	0.98	2.35	3.228 (5)	149
$C8$ — $H8B$ ···· $O2^{i}$	0.98	2.54	3.517 (6)	176
C8—H8 <i>C</i> ···O8	0.98	2.49	3.386 (5)	152
C10—H10…O26 ^{vii}	0.95	2.45	3.318 (5)	151
C12—H12A···O5 ⁱⁱ	0.98	2.44	3.407 (5)	167
C13—H13…O4 ⁱⁱⁱ	0.95	2.50	3.297 (6)	141
C17—H17····O2 ^{viii}	0.95	2.46	3.154 (4)	130
C18—H18…O26	0.95	2.58	3.522 (5)	172
C21—H21…O16	0.95	2.46	3.302 (4)	147
C22—H22···O11 ^{ix}	0.95	2.22	3.113 (4)	156
C24—H24 <i>B</i> …O7	0.98	2.50	3.346 (5)	145
C25—H25…O8	0.95	2.59	3.055 (5)	110
C32—H32 <i>B</i> ···O14	0.98	2.55	3.234 (5)	126

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) *x*+1/2, -*y*+1/2, *z*-1/2; (iv) -*x*+1/2, *y*+1/2, -*z*+3/2; (v) -*x*+1/2, *y*-1/2, -*z*+3/2; (vi) *x*+1/2, -*y*+1/2, *z*-1/2; (vii) -*x*+1/2, *y*-1/2, -*z*+3/2; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1/2, -*z*+3/2; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1/2, -*z*+3/2; (v) -*x*+1/2, -*y*+1/2, -*z*+3/2; (v) -*x*+1/2, -*y*+1/2, -*z*+3/2; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (v) -*x*