

Received 15 February 2019 Accepted 16 June 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: Thiourea; benzamide derivative; crystal structure; Hirshfeld surface.

CCDC references: 1923234; 1923233

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of *N*-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide and *N*-(4-bromophenylcarbamothioyl)-4-fluorobenzamide

Sidra Akhter, Muhammad Iqbal Choudhary, Hina Siddiqui and Sammer Yousuf*

H.E.J. Research Institute Of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. *Correspondence e-mail: dr.sammer.yousuf@gmail.com

The title compounds, $C_{14}H_{10}ClFN_2OS$ (1) and $C_{14}H_{10}BrFN_2OS$ (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intramolecular bifurcated N-H···(O,Cl) link due to the presence of the *ortho*-Cl atom on the benzene ring, whereas 2 features an intramolecular N-H···O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N-H···S hydrogen bonds generate $R_2^2(8)$ loops. The extended structure of 2 features the same motif but an additional weak C-H···S interaction links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H···H (26.6%), S···H/H.·S (13.8%) and Cl···H/H···Cl (9.5%) contacts for 1 and H···H (19.7%), C···H/H···C (14.8%) and Br···H/H···Br (12.4%) contacts for 2.

1. Chemical context

Thiourea and its derivatives show a broad range of biological activities (Solmaz et al., 2018; Saeed et al., 2018; Pandey et al., 2019). The crystal structures of many thiourea derivatives and their metal complexes have been reported (Lai et al.,2018; Contreras Aguilar et al., 2018; Fakhar et al., 2018; Mitoraj et al., 2018; Pervez et al., 2018; Hashim et al., 2017 Ghazal et al., 2019; Zhang et al., 2019). As part of our studies in this area, we now describe the syntheses, crystal structures and Hirshfeld surface analyses of the thiourea derivatives N-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide $(C_{14}H_{10}ClFN_2OS,$ 1) and N-(4-bromophenylcarbamothioyl)-4-fluorobenzamide $(C_{14}H_{10}BrFN_2OS, 2)$. The biological activities of these compounds were previously reported by Khan et al. (2018).

2. Structural commentary

Compound **1** (Fig. 1) is composed of a *para*-fluoro-substituted [C-F = 1.3579 (16) Å] benzoyl ring linked to a *ortho*-chloro-substituted phenyl ring [C-Cl = 1.7387 (14) Å] in while in **2** (Fig. 2), a *para*-fluoro-substituted [C-F = 1.350 (2) Å] benzoyl ring is linked to a *para*-bromo-substituted phenyl ring

Figure 1

The molecular structure of 1 showing 50% displacement ellipsoids; the blue lines represent the intramolecular interactions.

Figure 2

The molecular structure of 2 showing 50% displacement ellipsoids; the blue lines represent the intramolecular interactions.

[C-Br = 1.8991 (17) Å] *via* a thiourea (S1/N1/N2/C8) linkage. The benzoyl (O1/C1-C7) and phenyl rings (C9-C14) are arranged about the thiourea moiety in an *anti* fashion having torsion angles C8-N1-C7-C6 = -170.22 (13) and C9-N2-C8-S1 = 4.5 (2)° in compound **1**, with corresponding values of -176.01 (16) and 3.8 (3)°, respectively, in compound **2**. The dihedral angles between the phenyl rings are 31.99 (3) and 9.17 (5)° in **1** and **2**, respectively. Compound **1** features an intramoleclar bifurcated N-H···(O,Cl) hydrogen bond (Table 1) due to the presence of the *ortho*-Cl atom whereas **2** has an intramolecular N-H···O link (Table 2). Both structures feature an intramolecular C-H···S bond, which closes an *S*(6) ring. These intramolecular hydrogen bonds may be responsible for the *anti* arrangement of the aromatic rings about the thiourea linker.

Figure 3 Partial packing diagram for 1. Light-blue lines indicate directional interactions

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for 1 .	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10-H10···S1	0.95	2.57	3.1945 (14)	124
$N2-H1B\cdots Cl$	0.87(2)	2.482 (19)	2.9246 (12)	112.3 (14)
$N2-H1B\cdots O1$	0.87(2)	1.924 (19)	2.6600 (14)	141.6 (17)
$N1-H1A\cdots S1^{i}$	0.85 (2)	2.67 (2)	3.4031 (13)	145.2 (16)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2			
Hydrogen-bond	geometry	(Å,	°) for 2 .

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots S1^{i}$	0.88	2.69	3.5081 (15)	154
$N2-H1B\cdots O1$	0.88	1.88	2.610 (2)	139
C10−H10···S1	0.95	2.65	3.2319 (18)	120
$C1-H1\cdots S1^{ii}$	0.95	2.81	3.7312 (18)	165

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z.

3. Supramolecular features

In the crystal of **1**, inversion dimers linked by pairwise N1– H1A···S1 hydrogen bonds (Table 1) generate $R_2^2(8)$ loops (Fig. 3). The crystal of **2** features the same motif (Table 2), but an additional weak C–H···S bond links the dimers into double columns propagating in the [100] direction (Fig. 4).

Figure 4 Partial packing diagram for 2. Light-blue lines indicate directional interactions

Figure 5 The Hirshfeld surfaces of 1 and 2.

4. Database survey

A search of Cambridge Structural Database (CSD version 5.39, update of February 2018) for compounds related to **1** and **2** yielded hits for *N*-{[4-chloro-3-(trifluoromethyl)phenyl]carbamothioyl}-3-methylbenzamide (CCDC deposition No. 1840069) and 4-chloro-*N*-{[4-chloro-3-(trifluoromethyl)phenyl]carbamothioyl}benzamide (CCDC 1587395) (Zhang *et al.*, 2019): these compounds have the same skeleton as the title compounds but with different substituents attached to the phenyl rings. In both compounds, pairwise $N-H\cdots$ S hydrogen bonds are responsible for the formation of inversion dimers with an $R_2^2(8)$ motif, as also observed in title compounds.

5. Hirshfeld surface analysis

In order to further analyse the close contacts and intermolecular interactions in the crystals of **1** and **2**, Hirshfeld surfaces (mapped over d_{norm} , curvedness and shape-index) (Fig. 5) and two-dimensional fingerprint plots (Figs. 6 and 7)

Two dimensional fingerprint plots for 2.

Figure 6 Two dimensional fingerprint plots for **1**.

were generated using *CrystalExplorer3.1* (Mackenzie *et al.*, 2017). The fingerprint plot for **1** decomposed into individual contact types indicates that the the most significant contributions are from $H \cdots H$ (van der Waals) (26.6%) contacts, followed by $S \cdots H/H \cdots S$ (13.8%), $Cl \cdots H/H \cdots Cl$ (9.5%) $O \cdots H/H \cdots O$ (6.7%), $F \cdots H/H \cdots F$ (6.6%), $Cl \cdots F/F \cdots Cl$ (3.7%) and $F \cdots C/C \cdots F$ (3.1%) interactions. In compound **2**, $H \cdots H$ (19.7%) (van der Waals contacts) are the most significant, followed by $C \cdots H/H \cdots C$ (14.8%), $S \cdots H/H \cdots S$ (12.6%), $Br \cdots H/H \cdots Br$ (12.4%), $C \cdots C$ (9.9%) and $O \cdots N/N \cdots O$ (7.9%) interactions.

6. Synthesis and Crystallization

Compounds 1 and 2 were synthesized by adopting a literature procedure (Binzet *et al.*, 2018) with slight modification: we refluxed the reactants in distilled solvents for 20 min. instead of refluxing them in anhydrous solvents for 4 h. In the first step, 4-fluorobenzoyle chloride (1 mmol) and potassium thiocyanate (1 mmol) were dissolved in acetone (10 ml) at room temperature with constant stirring for 20 minutes to obtain a white precipitate of 4-fluorophenyl isothiocyanate. In the second step, 1 mmol of 2-chloro phenyl aniline (for 1) or 4-bromophenyl aniline (for 2) were added to the mixture and refluxed at 343 K. Hydrochloric acid (0.5 N, 10 ml) was added and the solution was filtered to obtain the desired products: 1 in 69% yield and 2 in 80% yield. For recrystallization, compound 1 was dissolved in a mixture of dichloromethane

Table 3Experimental details.

	1	2
Crystal data		
Chemical formula	$C_{14}H_{10}CIFN_2OS$	C ₁₄ H ₁₀ BrFN ₂ OS
M _r	308.75	353.19
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$
Temperature (K)	100	100
a, b, c (Å)	8.0785 (2), 12.4230 (3), 13.0772 (3)	3.8733 (2), 13.0776 (5), 13.2628 (6)
α, β, γ (°)	90, 90.551 (1), 90	98.817 (1), 94.714 (1), 94.727 (1)
$V(A^3)$	1312.36 (5)	658.54 (5)
Ζ	4	2
Radiation type	Cu Ka	Cu Ka
$\mu (\text{mm}^{-1})$	4.15	5.83
Crystal size (mm)	$0.11\times0.07\times0.03$	$0.35 \times 0.05 \times 0.04$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2000)	Multi-scan (<i>SADABS</i> ; Bruker, 2000)
T_{\min}, T_{\max}	0.682, 0.895	0.612, 0.946
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18686, 2362, 2269	20701, 2384, 2381
R _{int}	0.023	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602	0.602
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.069, 1.05	0.025, 0.110, 1.10
No. of reflections	2362	2384
No. of parameters	189	181
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.22, -0.25	0.45, -1.46

Computer programs: APEX2 and SAINT (Bruker, 2000), SHELXT2014 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

and methanol (1:1) while compound 2 was dissolved in dichloromethane and left for slow evaporation at room temperature to obtain colourless prisms of 1 and colourless plates of 2

7. Data collection and Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms atoms were positioned with idealized geometry (C–H = 0.93–0.97 Å) and refined as riding atoms. In **1**, the N-bound H atoms were located in difference-Fourier maps and their positions were freely refined; in **2**, the N-bound H atoms were located in difference-Fourier maps and refined as riding atoms in their as-found relative positions. The constraint $U_{iso}(H) =$ $1.2U_{eq}(carrier)$ was applied in all cases.

Funding information

The authors thank the Higher Education Commission of Pakistan (HEC) for financial support through research project No. 20-2830 under the National Research Program for Universities.

References

Binzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N. & Arslan, H. (2018). J. Mol. Struct. 1161, 519–529.

- Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Contreras Aguilar, E., Echeverría, G., Piro, O., Ulic, S., Jios, J., Tuttolomondo, M. & Pérez, H. (2018). *Mol. Phys.* **116**, 399–413.
- Fakhar, I., Hussien, N. J., Sapari, S., Bloh, A. H., Yusoff, S. F. M., Hasbullah, S. A., Yamin, B. M., Mutalib, S. A., Shihab, M. S. & Yousif, E. (2018). *J. Mol. Struct.* **1159**, 96–102.
- Ghazal, K., Shoaib, S., Khan, M., Khan, S., Rauf, M. K., Khan, N., Badshah, A., Tahir, M. N. & Ali, I. (2019). *J. Mol. Struct.* **1177**, 12-130.
- Hashim, S. N. M., Jumal, J. & Kassim, K. (2017). Adv. Sci. Lett. 23, 4523–4527.
- Khan, M. R., Zaib, S., Rauf, M. K., Ebihara, M., Badshah, A., Zahid, M., Nadeem, M. A. & Iqbal, J. (2018). J. Mol. Struct. 1164, 354–362.
- Lai, L. C., Rahman, C. N. B. C. A., Tahir, M. I. M., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 256–260.
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *IUCrJ*, **4**, 575–587.
- Mitoraj, M. P., Babashkina, M. G., Isaev, A. Y., Chichigina, Y. M., Robeyns, K., Garcia, Y. & Safin, D. A. (2018). *Cryst. Growth Des.* 18, 5385–5397.
- Pandey, S. K., Pratap, S., Tiwari, M. K., Marverti, G. & Jasinski, J. P. (2019). J. Mol. Struct. 1175, 963–970.
- Pervez, H., Khan, N., Iqbal, J., Zaib, S., Yaqub, M., Tahir, M. N. & Naseer, M. M. (2018). *Heterocycl. Commun.* 24, 51–58.
- Saeed, A., Mustafa, M. N., Zain-ul-Abideen, M., Shabir, G., Erben, M. F. & Flörke, U. (2018). J. Sulfur Chem. pp. 1–39.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Solmaz, U., Gumus, I., Binzet, G., Celik, O., Balci, G. K., Dogen, A. & Arslan, H. (2018). J. Coord. Chem. 71, 200–218.
- Zhang, Y., Zhang, X., Qiao, L., Ding, Z., Hang, X., Qin, B., Song, J. & Huang, J. (2019). J. Mol. Struct. **1176**, 335–345.

Acta Cryst. (2019). E75, 1026-1029 [https://doi.org/10.1107/S2056989019008569]

Crystal structure and Hirshfeld surface analysis of *N*-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide and *N*-(4-bromophenylcarbamothioyl)-4-fluorobenzamide

Sidra Akhter, Muhammad Iqbal Choudhary, Hina Siddiqui and Sammer Yousuf

Computing details

For both structures, data collection: *APEX2* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

N-(2-Chlorophenylcarbamothioyl)-4-fluorobenzamide (1)

Crystal data

 $C_{14}H_{10}CIFN_2OS$ $M_r = 308.75$ Monoclinic, $P2_1/c$ a = 8.0785 (2) Å b = 12.4230 (3) Å c = 13.0772 (3) Å $\beta = 90.551$ (1)° V = 1312.36 (5) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.682, T_{\max} = 0.895$ 18686 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.069$ S = 1.052362 reflections 189 parameters 0 restraints Primary atom site location: dual F(000) = 632 $D_x = 1.563 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9977 reflections $\theta = 4.9-68.3^{\circ}$ $\mu = 4.15 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.11 \times 0.07 \times 0.03 \text{ mm}$

2362 independent reflections 2269 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 68.3^\circ, \ \theta_{min} = 4.9^\circ$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 + 0.7594P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.73325 (5)	0.47025 (3)	0.56374 (3)	0.02331 (12)
Cl	0.83162 (5)	0.03157 (3)	0.58416 (3)	0.02495 (11)
F1	0.18907 (12)	0.30493 (8)	0.01782 (7)	0.0314 (2)
O1	0.54889 (12)	0.15637 (8)	0.42244 (7)	0.0192 (2)
N1	0.56777 (15)	0.33824 (10)	0.44484 (9)	0.0179 (3)
N2	0.70992 (14)	0.25311 (9)	0.57516 (9)	0.0157 (2)
C1	0.43467 (17)	0.36712 (11)	0.24179 (10)	0.0177 (3)
H1	0.493438	0.425890	0.271153	0.021*
C2	0.35330 (18)	0.38022 (12)	0.14870 (11)	0.0206 (3)
H2	0.355095	0.447218	0.113699	0.025*
C3	0.26979 (18)	0.29291 (12)	0.10866 (10)	0.0211 (3)
C4	0.26446 (18)	0.19359 (12)	0.15557 (11)	0.0224 (3)
H4	0.206152	0.135158	0.125243	0.027*
C5	0.34669 (18)	0.18165 (11)	0.24822 (11)	0.0199 (3)
Н5	0.345811	0.113881	0.281860	0.024*
C6	0.43099 (16)	0.26820 (11)	0.29281 (10)	0.0156 (3)
C7	0.51917 (16)	0.24761 (11)	0.39152 (10)	0.0160 (3)
C8	0.67071 (16)	0.34671 (11)	0.53083 (10)	0.0162 (3)
C9	0.80473 (16)	0.23264 (11)	0.66453 (10)	0.0148 (3)
C10	0.83157 (17)	0.30697 (11)	0.74300 (10)	0.0184 (3)
H10	0.789298	0.378033	0.736600	0.022*
C11	0.91962 (17)	0.27772 (12)	0.83031 (11)	0.0213 (3)
H11	0.938625	0.329427	0.882642	0.026*
C12	0.98017 (18)	0.17407 (12)	0.84215 (11)	0.0224 (3)
H12	1.040289	0.154849	0.902214	0.027*
C13	0.95246 (18)	0.09856 (12)	0.76576 (11)	0.0217 (3)
H13	0.992398	0.027057	0.773432	0.026*
C14	0.86603 (17)	0.12824 (11)	0.67813 (10)	0.0170 (3)
H1B	0.672 (2)	0.1970 (16)	0.5432 (14)	0.028 (5)*
H1A	0.528 (2)	0.3988 (16)	0.4260 (14)	0.031 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0331 (2)	0.01172 (18)	0.0249 (2)	-0.00054 (13)	-0.01311 (15)	-0.00095 (12)
Cl	0.0406 (2)	0.01417 (18)	0.01996 (19)	0.00501 (14)	-0.00550 (15)	-0.00194 (12)
F1	0.0374 (5)	0.0388 (5)	0.0178 (4)	0.0005 (4)	-0.0147 (4)	0.0016 (4)
01	0.0267 (5)	0.0138 (5)	0.0170 (5)	-0.0006 (4)	-0.0048 (4)	0.0011 (4)
N1	0.0248 (6)	0.0126 (6)	0.0161 (6)	0.0039 (5)	-0.0079 (5)	-0.0007 (4)

N2	0.0206 (6)	0.0125 (6)	0.0141 (6)	0.0000 (5)	-0.0046 (4)	-0.0015 (4)	
C1	0.0208 (7)	0.0165 (6)	0.0158 (7)	0.0002 (5)	-0.0008(5)	-0.0019 (5)	
C2	0.0257 (7)	0.0196 (7)	0.0166 (7)	0.0034 (6)	-0.0016 (6)	0.0024 (5)	
C3	0.0209 (7)	0.0304 (8)	0.0119 (7)	0.0041 (6)	-0.0042 (5)	-0.0015 (6)	
C4	0.0241 (7)	0.0243 (8)	0.0188 (7)	-0.0040 (6)	-0.0045 (6)	-0.0048 (6)	
C5	0.0240 (7)	0.0170 (7)	0.0187 (7)	-0.0012 (6)	-0.0017 (5)	-0.0007 (5)	
C6	0.0158 (6)	0.0171 (7)	0.0137 (6)	0.0017 (5)	-0.0004 (5)	-0.0012 (5)	
C7	0.0171 (6)	0.0152 (7)	0.0158 (7)	0.0000 (5)	-0.0002 (5)	-0.0011 (5)	
C8	0.0184 (6)	0.0150 (6)	0.0152 (6)	0.0020 (5)	-0.0023 (5)	-0.0010 (5)	
C9	0.0139 (6)	0.0169 (6)	0.0135 (6)	-0.0009(5)	-0.0008 (5)	0.0022 (5)	
C10	0.0208 (7)	0.0169 (7)	0.0175 (7)	-0.0002 (5)	-0.0020 (5)	-0.0003 (5)	
C11	0.0221 (7)	0.0250 (7)	0.0167 (7)	-0.0030 (6)	-0.0034 (5)	-0.0019 (6)	
C12	0.0211 (7)	0.0292 (8)	0.0169 (7)	0.0001 (6)	-0.0055 (5)	0.0048 (6)	
C13	0.0226 (7)	0.0211 (7)	0.0215 (7)	0.0039 (6)	-0.0024 (6)	0.0053 (6)	
C14	0.0189 (6)	0.0160 (7)	0.0161 (6)	0.0000 (5)	-0.0001 (5)	-0.0007 (5)	

Geometric parameters (Å, °)

S1—C8	1.6709 (14)	C4—C5	1.384 (2)
Cl-C14	1.7387 (14)	C4—H4	0.9500
F1—C3	1.3579 (16)	C5—C6	1.3972 (19)
O1—C7	1.2264 (17)	С5—Н5	0.9500
N1—C7	1.3794 (18)	C6—C7	1.4904 (18)
N1—C8	1.3961 (17)	C9—C10	1.3959 (19)
N1—H1A	0.85 (2)	C9—C14	1.3990 (19)
N2—C8	1.3360 (18)	C10-C11	1.3879 (19)
N2—C9	1.4141 (17)	C10—H10	0.9500
N2—H1B	0.87 (2)	C11—C12	1.385 (2)
C1—C2	1.3875 (19)	C11—H11	0.9500
C1—C6	1.3987 (19)	C12—C13	1.387 (2)
C1—H1	0.9500	C12—H12	0.9500
С2—С3	1.378 (2)	C13—C14	1.3860 (19)
С2—Н2	0.9500	C13—H13	0.9500
C3—C4	1.379 (2)		
C7—N1—C8	129.28 (12)	01—C7—N1	122.26 (12)
C7—N1—H1A	117.8 (13)	O1—C7—C6	122.32 (12)
C8—N1—H1A	112.8 (13)	N1—C7—C6	115.41 (12)
C8—N2—C9	129.75 (12)	N2—C8—N1	114.89 (12)
C8—N2—H1B	114.1 (12)	N2—C8—S1	128.15 (10)
C9—N2—H1B	116.1 (12)	N1	116.94 (10)
C2—C1—C6	120.64 (13)	C10—C9—C14	117.87 (12)
C2—C1—H1	119.7	C10—C9—N2	124.58 (12)
С6—С1—Н1	119.7	C14—C9—N2	117.39 (12)
C3—C2—C1	117.84 (13)	C11—C10—C9	120.42 (13)
С3—С2—Н2	121.1	C11—C10—H10	119.8
C1—C2—H2	121.1	C9—C10—H10	119.8
F1—C3—C2	118.37 (13)	C12—C11—C10	120.86 (13)

F1—C3—C4	118.09 (13)	C12—C11—H11	119.6
C2—C3—C4	123.54 (13)	C10-C11-H11	119.6
C3—C4—C5	117.94 (13)	C11—C12—C13	119.58 (13)
C3—C4—H4	121.0	C11—C12—H12	120.2
C5—C4—H4	121.0	C13—C12—H12	120.2
C4—C5—C6	120.72 (13)	C14—C13—C12	119.47 (13)
C4—C5—H5	119.6	C14—C13—H13	120.3
С6—С5—Н5	119.6	С12—С13—Н13	120.3
C5—C6—C1	119.30 (12)	C13—C14—C9	121.78 (13)
C5—C6—C7	117.15 (12)	C13—C14—Cl	118.45 (11)
C1—C6—C7	123.49 (12)	C9—C14—Cl	119.76 (10)
C6—C1—C2—C3	-0.1 (2)	C9—N2—C8—S1	4.5 (2)
C1—C2—C3—F1	179.70 (12)	C7—N1—C8—N2	-9.6 (2)
C1—C2—C3—C4	-0.7 (2)	C7—N1—C8—S1	168.84 (11)
F1—C3—C4—C5	-179.92 (12)	C8—N2—C9—C10	22.4 (2)
C2—C3—C4—C5	0.5 (2)	C8—N2—C9—C14	-162.20 (13)
C3—C4—C5—C6	0.6 (2)	C14—C9—C10—C11	1.4 (2)
C4—C5—C6—C1	-1.3 (2)	N2-C9-C10-C11	176.73 (13)
C4—C5—C6—C7	-178.72 (13)	C9-C10-C11-C12	-1.1 (2)
C2-C1-C6-C5	1.1 (2)	C10-C11-C12-C13	0.0 (2)
C2-C1-C6-C7	178.32 (13)	C11—C12—C13—C14	0.7 (2)
C8—N1—C7—O1	8.6 (2)	C12—C13—C14—C9	-0.3 (2)
C8—N1—C7—C6	-170.22 (13)	C12—C13—C14—Cl	-179.45 (11)
C5-C6-C7-O1	15.54 (19)	C10-C9-C14-C13	-0.7 (2)
C1—C6—C7—O1	-161.73 (13)	N2-C9-C14-C13	-176.39 (12)
C5—C6—C7—N1	-165.60 (12)	C10—C9—C14—Cl	178.42 (10)
C1C6C7N1	17.14 (19)	N2-C9-C14-Cl	2.72 (17)
C9—N2—C8—N1	-177.23 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A
C10—H10…S1	0.95	2.57	3.1945 (14)	124
N2—H1 <i>B</i> …Cl	0.87 (2)	2.482 (19)	2.9246 (12)	112.3 (14)
N2—H1 <i>B</i> …O1	0.87 (2)	1.924 (19)	2.6600 (14)	141.6 (17)
$N1$ — $H1A$ ···· $S1^{i}$	0.85 (2)	2.67 (2)	3.4031 (13)	145.2 (16)

Symmetry code: (i) -x+1, -y+1, -z+1.

N-(4-Bromophenylcarbamothioyl)-4-fluorobenzamide (2)

$\beta = 94.714 \ (1)^{\circ}$
$\gamma = 94.727 (1)^{\circ}$
V = 658.54 (5) Å ³
Z = 2
F(000) = 348
$D_{\rm x} = 1.771 {\rm ~Mg} {\rm ~m}^{-3}$
Cu K α radiation, $\lambda = 1.54178$ Å

Cell parameters from 9945 reflections $\theta = 3.4-68.2^{\circ}$ $\mu = 5.83 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD	2384 independent reflections
diffractometer	2381 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{\rm max} = 68.2^\circ, \ \theta_{\rm min} = 3.4^\circ$
(SADABS; Bruker, 2000)	$h = -4 \rightarrow 4$
$T_{\min} = 0.612, \ T_{\max} = 0.946$	$k = -15 \rightarrow 15$
20701 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
S = 1.10	where $P = (F_o^2 + 2F_c^2)/3$
2384 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
181 parameters	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

T = 100 K

Plate, colourless

 $0.35 \times 0.05 \times 0.04 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
-0.39350 (4)	0.11758 (2)	0.46689 (2)	0.01272 (16)	
0.4560 (4)	0.66092 (11)	0.32207 (10)	0.0175 (3)	
0.3835 (4)	0.58122 (12)	0.15534 (11)	0.0106 (3)	
0.419261	0.590591	0.092584	0.013*	
0.1544 (4)	0.47331 (12)	0.26027 (11)	0.0111 (3)	
0.187274	0.531645	0.304308	0.013*	
0.9679 (3)	1.04344 (9)	0.12214 (9)	0.0205 (3)	
0.18617 (10)	0.38973 (3)	0.06266 (3)	0.00989 (18)	
0.5195 (4)	0.78724 (14)	0.09959 (14)	0.0092 (4)	
0.376290	0.737919	0.050359	0.011*	
0.6398 (5)	0.88103 (14)	0.07394 (14)	0.0129 (4)	
0.581012	0.896819	0.007460	0.016*	
0.8466 (5)	0.95143 (15)	0.14634 (15)	0.0146 (4)	
0.9345 (5)	0.93323 (14)	0.24544 (14)	0.0137 (4)	
1.074144	0.983856	0.294279	0.016*	
0.8117 (5)	0.83897 (14)	0.27036 (14)	0.0116 (4)	
0.866416	0.824564	0.337592	0.014*	
0.6063 (5)	0.76392 (14)	0.19744 (13)	0.0101 (4)	
	x $-0.39350(4)$ $0.4560(4)$ $0.3835(4)$ 0.419261 $0.1544(4)$ 0.157274 $0.9679(3)$ $0.18617(10)$ $0.5195(4)$ 0.376290 $0.6398(5)$ 0.581012 $0.8466(5)$ $0.9345(5)$ 1.074144 $0.8117(5)$ 0.866416 $0.6063(5)$	xy $-0.39350 (4)$ $0.11758 (2)$ $0.4560 (4)$ $0.66092 (11)$ $0.3835 (4)$ $0.58122 (12)$ 0.419261 0.590591 $0.1544 (4)$ $0.47331 (12)$ 0.187274 0.531645 $0.9679 (3)$ $1.04344 (9)$ $0.18617 (10)$ $0.38973 (3)$ $0.5195 (4)$ $0.78724 (14)$ 0.376290 0.737919 $0.6398 (5)$ $0.88103 (14)$ 0.581012 0.896819 $0.8466 (5)$ $0.95143 (15)$ $0.9345 (5)$ $0.83897 (14)$ 1.074144 0.983856 $0.8117 (5)$ 0.824564 $0.6063 (5)$ $0.76392 (14)$	xyz $-0.39350 (4)$ $0.11758 (2)$ $0.46689 (2)$ $0.4560 (4)$ $0.66092 (11)$ $0.32207 (10)$ $0.3835 (4)$ $0.58122 (12)$ $0.15534 (11)$ 0.419261 0.590591 0.092584 $0.1544 (4)$ $0.47331 (12)$ $0.26027 (11)$ 0.187274 0.531645 0.304308 $0.9679 (3)$ $1.04344 (9)$ $0.12214 (9)$ $0.18617 (10)$ $0.38973 (3)$ $0.06266 (3)$ $0.5195 (4)$ $0.78724 (14)$ $0.09959 (14)$ 0.376290 0.737919 0.050359 $0.6398 (5)$ $0.88103 (14)$ $0.07394 (14)$ 0.581012 0.896819 0.007460 $0.8466 (5)$ $0.95143 (15)$ $0.14634 (15)$ $0.9345 (5)$ $0.83897 (14)$ $0.27036 (14)$ 0.866416 0.824564 0.337592 $0.6063 (5)$ $0.76392 (14)$ $0.19744 (13)$	xyz $U_{iso}*/U_{eq}$ -0.39350 (4)0.11758 (2)0.46689 (2)0.01272 (16)0.4560 (4)0.66092 (11)0.32207 (10)0.0175 (3)0.3835 (4)0.58122 (12)0.15534 (11)0.0106 (3)0.4192610.5905910.0925840.013*0.1544 (4)0.47331 (12)0.26027 (11)0.0111 (3)0.1872740.5316450.3043080.013*0.9679 (3)1.04344 (9)0.12214 (9)0.0205 (3)0.18617 (10)0.38973 (3)0.06266 (3)0.00989 (18)0.5195 (4)0.78724 (14)0.09959 (14)0.0092 (4)0.3762900.7379190.0503590.011*0.6398 (5)0.88103 (14)0.07394 (14)0.0129 (4)0.5810120.8968190.0074600.016*0.8466 (5)0.95143 (15)0.14634 (15)0.0146 (4)0.9345 (5)0.93323 (14)0.24544 (14)0.0137 (4)1.0741440.9838560.2942790.016*0.8117 (5)0.83897 (14)0.27036 (14)0.0116 (4)0.8664160.8245640.3375920.014*0.6063 (5)0.76392 (14)0.19744 (13)0.0101 (4)

C7	0.4782 (5)	0.66558 (14)	0.23084 (14)	0.0105 (4)
C9	0.0233 (4)	0.38653 (13)	0.30136 (13)	0.0086 (4)
C8	0.2378 (4)	0.48253 (14)	0.16562 (13)	0.0085 (4)
C10	-0.1837 (5)	0.30056 (14)	0.24536 (13)	0.0115 (4)
H10	-0.240925	0.296827	0.173769	0.014*
C11	-0.3051 (4)	0.22064 (14)	0.29513 (13)	0.0105 (4)
H11	-0.444455	0.161739	0.257544	0.013*
C12	-0.2224 (5)	0.22707 (13)	0.39998 (14)	0.0102 (4)
C13	-0.0217 (5)	0.31221 (13)	0.45694 (13)	0.0109 (4)
H13	0.031180	0.315998	0.528723	0.013*
C14	0.0999 (5)	0.39136 (15)	0.40755 (14)	0.0114 (4)
H14	0.237633	0.450144	0.445916	0.014*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0169 (2)	0.0096 (2)	0.0125 (2)	-0.00227 (13)	0.00215 (13)	0.00588 (13)
01	0.0312 (8)	0.0122 (7)	0.0076 (7)	-0.0065 (6)	0.0033 (6)	0.0011 (5)
N1	0.0154 (8)	0.0108 (8)	0.0057 (7)	0.0005 (6)	0.0007 (6)	0.0022 (6)
N2	0.0170 (8)	0.0073 (7)	0.0090 (7)	-0.0001 (6)	0.0021 (6)	0.0019 (6)
F1	0.0328 (7)	0.0078 (6)	0.0213 (7)	-0.0054 (5)	0.0078 (5)	0.0051 (5)
S 1	0.0140 (3)	0.0082 (3)	0.0069 (3)	-0.00094 (19)	0.00084 (19)	0.00050 (19)
C1	0.0092 (8)	0.0080 (9)	0.0102 (8)	-0.0004 (6)	0.0023 (6)	0.0005 (7)
C2	0.0161 (9)	0.0103 (9)	0.0133 (9)	0.0022 (7)	0.0031 (7)	0.0031 (7)
C3	0.0197 (9)	0.0068 (9)	0.0194 (10)	0.0022 (7)	0.0119 (8)	0.0033 (7)
C4	0.0149 (9)	0.0097 (9)	0.0148 (9)	-0.0026 (7)	0.0020 (7)	-0.0021 (7)
C5	0.0144 (8)	0.0095 (9)	0.0093 (8)	-0.0016 (7)	-0.0006 (7)	-0.0012 (7)
C6	0.0106 (8)	0.0103 (9)	0.0089 (9)	-0.0002 (7)	0.0008 (6)	0.0008 (7)
C7	0.0118 (8)	0.0104 (9)	0.0098 (9)	-0.0013 (7)	0.0013 (6)	0.0037 (7)
C9	0.0120 (8)	0.0070 (9)	0.0086 (8)	0.0005 (7)	0.0048 (6)	0.0047 (6)
C8	0.0103 (8)	0.0086 (8)	0.0071 (8)	0.0020 (7)	-0.0002 (6)	0.0026 (6)
C10	0.0137 (8)	0.0120 (9)	0.0088 (8)	0.0001 (7)	-0.0005 (7)	0.0028 (6)
C11	0.0116 (8)	0.0092 (9)	0.0097 (8)	-0.0028 (6)	0.0007 (6)	0.0004 (6)
C12	0.0128 (8)	0.0080 (9)	0.0112 (8)	0.0005 (6)	0.0023 (7)	0.0056 (6)
C13	0.0138 (8)	0.0132 (9)	0.0067 (8)	-0.0003 (7)	0.0018 (7)	0.0048 (6)
C14	0.0130 (8)	0.0092 (9)	0.0112 (9)	-0.0007 (6)	0.0011 (7)	0.0002 (6)

Geometric parameters (Å, °)

Br1—C12	1.8991 (17)	C4—C5	1.382 (3)	
O1—C7	1.230 (2)	C4—H4	0.9500	
N1—C7	1.374 (2)	C5—C6	1.409 (2)	
N1—C8	1.396 (2)	С5—Н5	0.9500	
N1—H1A	0.8800	C6—C7	1.484 (3)	
N2—C8	1.342 (2)	C9—C10	1.399 (2)	
N2-C9	1.408 (2)	C9—C14	1.406 (3)	
N2—H1B	0.8800	C10—C11	1.390 (3)	
F1—C3	1.350 (2)	C10—H10	0.9500	

S1—C8	1.6687 (18)	C11—C12	1.389 (2)
C1—C2	1.377 (3)	C11—H11	0.9500
C1—C6	1.399 (3)	C12—C13	1.385 (3)
C1—H1	0.9500	C13—C14	1.379 (3)
$C^2 - C^3$	1 375 (3)	C13—H13	0.9500
C2H2	0.9500	C14—H14	0.9500
$C_2 = 112$	1 301 (3)	014 1114	0.7500
05-04	1.591 (5)		
C7—N1—C8	128.20 (16)	O1—C7—N1	122.08 (17)
C7—N1—H1A	115.9	O1—C7—C6	121.00 (17)
C8—N1—H1A	115.9	N1—C7—C6	116.92 (16)
C8—N2—C9	131.19 (16)	C10—C9—C14	119.30 (16)
C8 = N2 = H1B	114.4	C10-C9-N2	124 87 (15)
C9 - N2 - H1B	114.4	C14 - C9 - N2	115 78 (16)
$C_2 C_1 C_6$	120.62 (17)	N2 C8 N1	114.66 (16)
$C_2 = C_1 = C_0$	110 7	$N_2 = C_8 = S_1$	126.02 (15)
C_{2}	119.7	N1 C8 S1	120.92(13) 118.43(13)
$C_0 = C_1 = H_1$	119.7	$N1 - C_0 - S_1$	110.43 (13)
$C_2 = C_2 = C_1$	118.79 (17)	C11 - C10 - C9	119.37 (10)
$C_3 - C_2 - H_2$	120.6	CII = CI0 = HI0	120.2
CI = C2 = H2	120.6	C9—C10—H10	120.2
F1—C3—C2	119.46 (18)		119.85 (16)
F1—C3—C4	117.55 (18)	C12—C11—H11	120.1
C2—C3—C4	122.98 (18)	С10—С11—Н11	120.1
C5—C4—C3	117.70 (18)	C13—C12—C11	121.42 (16)
С5—С4—Н4	121.1	C13—C12—Br1	119.31 (13)
C3—C4—H4	121.1	C11—C12—Br1	119.27 (13)
C4—C5—C6	120.91 (18)	C14—C13—C12	118.76 (16)
C4—C5—H5	119.5	C14—C13—H13	120.6
С6—С5—Н5	119.5	C12—C13—H13	120.6
C1—C6—C5	118.97 (17)	C13—C14—C9	121.10 (17)
C1—C6—C7	123.33 (17)	C13—C14—H14	119.5
С5—С6—С7	117.62 (16)	C9—C14—H14	119.5
C6—C1—C2—C3	-0.1 (3)	C8—N2—C9—C10	-28.7 (3)
C1—C2—C3—F1	179.66 (16)	C8—N2—C9—C14	154.04 (18)
C1—C2—C3—C4	-1.4 (3)	C9—N2—C8—N1	-175.93 (16)
F1—C3—C4—C5	-179.80 (16)	C9—N2—C8—S1	3.8 (3)
C2—C3—C4—C5	1.2 (3)	C7—N1—C8—N2	6.3 (3)
C3—C4—C5—C6	0.4 (3)	C7—N1—C8—S1	-173.53 (14)
C2—C1—C6—C5	1.6 (3)	C14—C9—C10—C11	-1.1 (3)
C2-C1-C6-C7	178.38 (16)	N2-C9-C10-C11	-178.32 (16)
C4—C5—C6—C1	-1.8 (3)	C9—C10—C11—C12	0.5 (3)
C4—C5—C6—C7	-178.72 (16)	C10-C11-C12-C13	0.4 (3)
C8—N1—C7—O1	3.4 (3)	C10-C11-C12-Br1	179.54 (13)
C8—N1—C7—C6	-176.01 (16)	C11—C12—C13—C14	-0.6 (3)
C1—C6—C7—O1	-154.97 (17)	Br1-C12-C13-C14	-179.76 (13)
C5—C6—C7—O1	21.9 (3)	C12—C13—C14—C9	0.0 (3)
C1-C6-C7-N1	24.4 (2)	C10—C9—C14—C13	0.9 (3)

C5—C6—C7—N1	-158.75 (16)	N2-C9-C14-C13	178.36 (14)	
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N1—H1A····S1 ⁱ	0.88	2.69	3.5081 (15)	154
N2—H1 <i>B</i> …O1	0.88	1.88	2.610 (2)	139
C10—H10…S1	0.95	2.65	3.2319 (18)	120
C1—H1…S1 ⁱⁱ	0.95	2.81	3.7312 (18)	165

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*+1, -*z*.