

Received 20 February 2019 Accepted 26 February 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; binuclear; lanthanide; oxalate bridge; N,N'-bis(2-hydroxybenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine; H<sub>2</sub>bbpen.

CCDC references: 1899963; 1899964

Supporting information: this article has supporting information at journals.jucr.org/e



Crystal structures of binuclear complexes of gadolinium(III) and dysprosium(III) with oxalate bridges and chelating N.N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine  $(bbpen^{2-})$ 

### Guilherme Augusto Barbosa, Francielli Sousa Santana, Giovana Gioppo Nunes and Jaísa Fernandes Soares\*

Departamento de Química, Universidade Federal do Paraná, Centro, Politécnico, Jardim das Américas, 81530-900, Curitiba-PR, Brazil. \*Correspondence e-mail: jaisa@quimica.ufpr.br

The reaction between mononuclear [Ln(bbpen)Cl]  $[Ln = Gd \text{ or } Dy; H_2bbpen =$ N,N'-bis(2-hydroxybenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine,  $C_{28}H_{30}N_4O_2$  and potassium oxalate monohydrate in water/methanol produced the solvated centrosymmetric isostructural binuclear ( $\mu$ -oxalato)bis{[N,N'bis(2-oxidobenzyl- $\kappa O$ )-N,N'-bis(pyridin-2-ylmethyl- $\kappa N$ )ethylenediamine- $\kappa^2 N, N'$ ]dilanthanide(III)}-methanol-water (1/4/4) complexes,  $[Ln_2(C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}H_{28}-C_{28}-C_{28}H_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_{28}-C_$  $N_4O_2_2(C_2O_4)$ ]·4CH<sub>3</sub>OH·4H<sub>2</sub>O, with lanthanide(III) = gadolinium(III) (Ln = Gd) and dysprosium(III) (Ln = Dy), in high yields (ca 70%) directly from the reaction mixtures. In both complexes, the lanthanide ion is eight-coordinate and adopts a distorted square-antiprismatic coordination environment. The triclinic  $(P\overline{1})$  unit cell contains one dimeric unit together with four water and four methanol molecules; in the final structural model, two of each type of solvating molecule refine well. In each lanthanide(III) dimeric molecule, the mediumstrength  $O \cdots H - O$  hydrogen-bonding pattern involves four oxygen atoms, two of them from the phenolate groups that are 'bridged' by one water and one methanol molecule. These interactions seem to contribute to the stabilization of the relatively compact shape of the dimer. Electron densities associated with an additional water and methanol molecule were removed with the SOUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9-18]. These two new compounds are of interest with respect to magnetic properties.

### 1. Chemical context

Since the discovery, in 2003, of the first lanthanide(III)-based single-ion magnets (SIM), namely  $(Bu_4N)[LnPc_2]$  (H<sub>2</sub>Pc = phthalocyanine; Ln = Tb and Dy; Ishikawa et al., 2003), a number of lanthanide(III) complexes have been prepared for magnetic studies because of their intrinsically high magnetic anisotropy barrier. Heterometallic 3d-4f single-molecule magnets (SMM) have also been sought, particularly in the early 2000s, mainly because of the possibility of improving magnetic response when compared to d-block-only metal complexes such as those of manganese(III), cobalt(II) and nickel(II) (Piquer & Sañudo, 2015).

Among the 3d-4f heterometallic systems of higher nuclearity, two tetranuclear compounds formulated as  $[M(\mu$ dto)<sub>3</sub>{Dy(HBpz<sub>3</sub>)<sub>2</sub>}<sub>3</sub>·4CH<sub>3</sub>CN·2CH<sub>2</sub>Cl<sub>2</sub> ( $M = \text{Fe}^{\text{III}}$  or Co<sup>III</sup>;  $HBpz^{-} = hydrotris(pyrazolyl)borate; dto^{2-} = dithiooxalate)$ presented slow relaxation of the magnetization under applied magnetic field (Xu et al., 2012). In this three-blade propeller



framework, the tris-chelate  $[M(dto)_3]^{3-}$  complex forms the central unit, which is bridged to the  $[Dv(HBpz_3)_2]^+$  peripheral positions by the dithiooxalate ions. The lanthanide cations assume square-antiprismatic coordination environments while the *d*-block metal is octahedrally coordinated (Xu et al., 2012). The same monocationic  $[Dy(HBpz_3)_2]^+$  complex had previously been employed to produce binuclear  $[Dy_2(\mu-ox) (HBpz_3)_4$ ]·2CH<sub>3</sub>CN·CH<sub>2</sub>Cl<sub>2</sub>, this time with oxalate (ox<sup>2-</sup>) as the bridging ligand. Direct current (DC) magnetic susceptibility measurements performed with this dimeric compound revealed the presence of an intramolecular ferromagnetic interaction between the Dy<sup>III</sup> cations (Xu *et al.*, 2010). Other oxalate-bridged lanthanide(III) complexes have also shown field-induced slow magnetic relaxation (Zhang et al., 2015) or weak (antiferro)magnetic exchange interactions (Feng et al., 2014). In all cases mentioned above, the products were obtained by self-assembly in one-pot reactions, sometimes under hydrothermal conditions.

In our research group, we first attempted to prepare heterometallic complexes of general formula  $[M^{III}(\mu-ox)_3 \{Ln(bbpen)\}_3$  (H<sub>2</sub>bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'bis(pyridin-2-ylmethyl)ethylenediamine) via modular synthesis employing [Ln(bbpen)Cl]  $(Ln^{III} = Gd \text{ or } Dy)$  and  $K_3[M(ox)_3]$   $(M^{III} = Cr \text{ or } Co)$  as building blocks in a 3:1 proportion. The syntheses with gadolinium(III) and chromium(III) produced colourless crystals of the binuclear complex [{Gd(bbpen)}<sub>2</sub>( $\mu$ -ox)]·4CH<sub>3</sub>OH·4H<sub>2</sub>O, as revealed by single crystal X-ray diffraction analysis. The formation of this dimer is explained by dissociation of  $[Cr(ox)_3]^{3-}$  into  ${Cr(ox)_2(OH_2)_2}^-$  and  $ox^{2-}$  in aqueous solution (Krishnamurty & Harris, 1960), followed by interaction of the  $ox^{2-}$  anion with Gd(bbpen)<sup>+</sup>. Structural elucidation of this otherwise unexpected product prompted us to try and perform its targeted preparation with both gadolinium(III) and dysprosium(III) in good yields.



Ln<sup>III</sup> = Gd or Dy

In this paper we report the rational synthesis and the crystal and molecular structures of the two binuclear and solvated  $[{Ln(bbpen)}_2(\mu-ox)]$  products [Ln = Gd (1) or Dy (2)], prepared from the direct reaction between [Ln(bbpen)Cl] and  $K_2C_2O_4$ ·H<sub>2</sub>O in water/methanol media.



View of  $[{Gd(bbpen)}_2(\mu-ox)] \cdot 4CH_3OH \cdot 4H_2O$  (compound 1), with the atom-numbering scheme. Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level Unlabelled atoms are generated by the symmetry operation -x, -y + 1, -z + 1.

#### 2. Structural commentary

Compounds 1 and 2 are isostructural and crystallize in the  $P\overline{1}$  space group, with four methanol and four water molecules per lanthanide dimer. Crystals contain the neutral  $[Ln_2(\mu\text{-}ox)-(bbpen)_2]$  molecules (Fig. 1) in which gadolinium(III) (1) or dysprosium(III) (2) are eight-coordinate; the  $[Ln(bbpen)]^+$  units are connected to one another by oxalate bridging in the usual bis(bidentate) coordination mode. The  $ox^{2-}$  ligand lies about an inversion centre. The coordination sphere of the lanthanide(III) ion is formed by an N<sub>4</sub>O<sub>2</sub> donor set from the bbpen<sup>2-</sup> ligand and two oxygen atoms from the bridging oxalate. In 1 and 2 each metal cation has a distorted square-antiprismatic coordination environment (Fig. 2), as indicated



Figure 2

Plot of the coordination sphere about the lanthanide(III) atom in the structure of **1** [symmetry code: (i) -x, -y + 1, -z + 1].

### research communications

Table 1Hydrogen-bond geometry (Å,  $^{\circ}$ ) for 1.

| $D - H \cdots A$           | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|----------------------------|----------|-------------------------|-------------------------|------------------|
|                            |          |                         |                         |                  |
| O30−H30···O1               | 0.84     | 1.80                    | 2.643 (3)               | 177              |
| $C1 - H1B \cdots O1W^{ii}$ | 0.99     | 2.59                    | 3.459 (3)               | 147              |
| $O1W-H1W\cdots O2^{iii}$   | 0.83 (2) | 1.96 (2)                | 2.786 (3)               | 170 (3)          |
| O1W−H2W···O30              | 0.88 (2) | 1.87 (2)                | 2.745 (3)               | 171 (4)          |

Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 1.

by general inspection of atom positions and bond angles, and confirmed from the crystallographic data by the use of the SHAPE program (Llunell et al., 2005). The average Ln-Nbonds are *ca* 2.60 and 2.58 Å for **1** and **2**, respectively, while the average Ln - O distances are *ca* 2.27 (1) and 2.24 Å (2). The non-bonding  $Dy \cdots Dy$  distance in 2, 6.1488 (17) Å, is close to the analogous distance of 6.14 Å in  $[Dv_2(\mu-ox) (HBpz_3)_4]$ ·2CH<sub>3</sub>CN·CH<sub>2</sub>Cl<sub>2</sub> (Xu et al., 2010). The O3-Ln- $O4^{i}$  angles of approximately  $68^{\circ}$  in both 1 and 2 [symmetry code: (i) -x, 1 - y, 1 - z] are also similar to those reported for the dysprosium(III)-hydrotris(pirazolylborate) dimer mentioned above. The slightly decreased crystal volume of the Dy compound [1626.3 (7)  $Å^3$ ] compared with that of the Gd compound [1633.7 (3)  $Å^3$ ] is a perfect match with the smaller effective ionic radius of eight-coordinate Dy<sup>III</sup> versus Gd<sup>III</sup> (1.027 and 1.053 Å, respectively; Shannon, 1976), and is in line with the lanthanide contraction. Structural representations provided in this paper are for compound 1; the dysprosium(III) product 2 gives rise to very similar results.

### 3. Supramolecular features

In both structures, the hydrogen atoms from the crystallizing solvents (water and methanol) participate in an extensive



Figure 3

*ORTEP* representation of hydrogen-bonding interactions for compound **1** involving solvating methanol and water molecules, with hydrogen bonds indicated by double-dashed lines. Displacement ellipsoid are drawn at the 50% probability level [symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.].

Table 2 Hydrogen-bond geometry (Å,  $^\circ)$  for 2.

| $D - H \cdots A$                                                                                             | $D-\mathrm{H}$                       | $H \cdot \cdot \cdot A$              | $D \cdot \cdot \cdot A$                          | $D - H \cdots A$                 |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------|----------------------------------|
| $O30 - H30 \cdots O1$<br>$C1 - H1B \cdots O1W^{ii}$<br>$O1W - H1W \cdots O2^{iii}$<br>$O1W - H2W \cdots O30$ | 0.84<br>0.99<br>0.82 (2)<br>0.86 (2) | 1.80<br>2.58<br>1.97 (2)<br>1.95 (3) | 2.636 (4)<br>3.448 (4)<br>2.785 (4)<br>2.759 (5) | 178<br>146<br>167 (5)<br>158 (5) |

Symmetry codes: (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z + 1.

three-dimensional hydrogen-bonding network that may be described as medium-strength intermolecular interactions (Tables 1 and 2).

The solvating (methanol and water) molecules, half of which refine well and are depicted in Fig. 3, participate in intermolecular interactions with the dimeric complexes **1** and **2**. As seen in Fig. 3, one water and one methanol molecule are hydrogen-bonded to one another and to the phenolate oxygen atoms in the ligands, generating an  $O1\cdots H-O30\cdots H-O1W-H\cdots O2^{iii}$  'bridge', as well as a symmetry-related chain on both sides of the plane formed by the metal and oxalate ions. The water molecules in these chains also connect one dimer to another through weak  $C1-H1B\cdots O1W^{ii}$  interactions (Fig. 4; Tables 1 and 2).

The other half of the solvent molecules in the unit cell, the electron densities of which have been removed with the SQUEEZE routine in *PLATON* (Spek, 2015) because of being highly disordered, also contribute to the overall hydrogen-bonding network. This is inferred from the positions of the four main electron-density peaks, which have been assigned to oxygen atoms from the disordered solvents and may give rise to medium-strength to weak hydrogen-bond interactions. For **1**, O···O distances involving three of these peaks amount to 2.66–2.78 Å as far as O···O1*W* contacts are



#### Figure 4

Representation of the dimeric molecules of **1** viewed approximately down the *b* axis of the unit cell. The binuclear complexes are linked through medium-strength hydrogen bonds to solvating water and methanol molecules, and through weak  $C1-H1B\cdots O1W^{ii}-H\cdots O_{phenolate}$  interactions to one another [symmetry code: (ii) -x + 1, -y + 1, -z + 1.].

concerned, with O1W acting as a potential electron-density acceptor, and are larger than 3.1 Å for O···O30 (numbering scheme in Fig. 3). For **2**, in turn, the corresponding distances are longer than for **1** at 2.88–3.84 Å for O···O1W, and even larger (> 4.6 Å) for O···O30. On the other hand, any possible interaction involving the phenolate oxygen atoms would be very weak, with the shortest O···O contact with the disordered solvents being longer than 4.0 Å.

### 4. Database survey

Examples of mononuclear lanthanide(III) complexes with  $bbpen^{2-}$  and related ligands appear in the literature (Molloy *et al.*, 2017; Liu *et al.*, 2016; Yamada *et al.*, 2016; Gregório *et al.*, 2015; Qin *et al.*, 2014; Yamada *et al.*, 2010; Morss & Rogers, 1997). Binuclear structures with these hexadentate ligands have been reported by Chatterton *et al.* (2005), and by Setyawati *et al.* (2000).

### 5. Synthesis and crystallization

 $LnCl_3 \cdot 6H_2O$  ( $Ln^{III} = Gd$  or Dy) and  $K_2C_2O_4 \cdot H_2O$  were purchased from Aldrich and used without purification. N,N'-Bis(2-hydroxybenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine ( $H_2$ bbpen) (Neves *et al.*, 1992) and the [Ln(bbpen)Cl] precursors, with Ln = Gd or Dy (Liu *et al.*, 2016), were prepared using adapted procedures described in the literature. Methanol and diethyl ether (Vetec) were used without treatment. Ultrapure water (Milli-Q, Millipore type 1, resistivity of 18.2 M $\Omega$  cm at 298 K) was employed as described below.

### Synthesis of $[{Gd(bbpen)}_2(\mu-ox)] \cdot 4CH_3OH \cdot 4H_2O$ (compound 1)

A solution of 8.11 mg (0.0440 mmol) of K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·H<sub>2</sub>O in 1.0 ml of water was slowly added to a methanol solution of 61.1 mg (0.0947 mmol) of [Gd(bbpen)Cl]. The colourless reaction mixture was stirred at room temperature for ca 5 min, and was then cooled down to 277 K to give block-shaped colourless crystals after four days. These were isolated by filtration, washed with diethyl ether and dried. Total yield: 49.0 mg (68.6%) based on the  $[{Gd(bbpen)}_2(\mu$ ox)]·4CH<sub>3</sub>OH·4H<sub>2</sub>O formulation, compound **1**. FTIR (emulsion in mineral oil): 3362, 3198 [s, v(OH)]; 1655 [s, v(CO)<sub>ox</sub>]; 1590, 1568 [s,  $\nu$ (C=N) +  $\nu$ (C=C)], 1290 [s,  $\nu$ (CO)<sub>phenolate</sub>], 762 and 768 [m,  $\delta(C-H)_{Ar+py}$ ]. Product **1** is soluble in acetonitrile, 1,2-dimethoxyethane (dme), dichloromethane and tetrahydrofuran. Elemental analysis: calculated for 1 (C<sub>62</sub>H<sub>80</sub>Gd<sub>2</sub>N<sub>8</sub>O<sub>16</sub>) C 49.39, H 5.35, N 7.43%. Found: C 48.56, H 5.49, N 7.45%.

### Synthesis of $[{Dy(bbpen)}_2(\mu-ox)] \cdot 4CH_3OH \cdot 4H_2O$ (compound 2)

A mixture of 61.0 mg (0.0938 mmol) of [Dy(bbpen)Cl] in 9.0 ml of methanol and 8.90 mg (0.0483 mmol) of  $K_2C_2O_4$ ·H<sub>2</sub>O in 1.0 ml of water was prepared as described for **1**. The resulting solution was cooled at 277 K to produce colourless block-shaped crystals, which were recovered by filtration and washed with diethyl ether. Total yield: 53.9 mg (75.7%) based on the [{Dy(bbpen)}\_2( $\mu$ -ox)]·4CH<sub>3</sub>OH·4H<sub>2</sub>O formulation, compound **2**. FTIR (emulsion in mineral oil): 3363, 3198 [*s*,  $\nu$ (OH)], 1590 [*s*,  $\nu$ (CO)<sub>ox</sub>]; 1570 (*m*), 1481 (*s*), 1459 [*s*,  $\nu$ (C=N) +  $\nu$ (C=C)]; 1290 [*s*,  $\nu$ (CO)<sub>Ph</sub>], 762 and 768 [*m*,  $\delta$ (C-H)<sub>Ar+ py</sub>]. The product solubility is similar to that described for **1**. Elemental analysis: calculated for **2** (C<sub>62</sub>H<sub>80</sub>Dy<sub>2</sub>N<sub>8</sub>O<sub>16</sub>) C 49.04, H 5.31, N 7.38%. Found: C 49.02, H 5.71, N 7.56%.

### 6. Refinement

Crystal data, data collection and structure refinement details for the two structures are summarized in Table 3. Both 1 and 2 showed high susceptibility to the loss of the crystallization solvent molecules once removed from the mother liquor. Hydrogen atoms in 1 and 2 were included in idealized positions with methyl, methylene and aromatic C—H distances set at 0.98, 0.99 and 0.95 Å, respectively, and O—H at 0.84 Å and refined as riding with  $U_{iso}(H) = 1.2-1.5U_{eq}(C,O)$ . Hydrogen atoms on the water molecules were located in difference-Fourier maps and were refined with distance restraints (DFIX O—H = 0.82 Å for 1 and 2, DANG = 1.45 Å for 2).

Both structures present four methanol and four water molecules per unit cell; two of each were treated as diffuse contribution to the overall scattering without specific atom positions and were eventually removed by the use of the SQUEEZE procedure in PLATON (Spek, 2015). The proposed identity of these highly disordered molecules as '2H<sub>2</sub>O + 2MeOH' per unit cell finds support in the total calculated count of 58 and 59 electrons provided by SQUEEZE for 1 and 2, respectively, as compared with the expected count of 56 electrons. The volume of the void filled by the disordered solvent amounts to 269 and 260  $\text{\AA}^3$  for **1** and 2, respectively, and corresponds to 16.0–16.5% of the unit cell, in very good agreement with the volume expected for small molecules such as water and methanol. The ratio between the total solvent-accessible void volume and the experimental electron count is of  $ca 4.5 \text{ Å}^3$  per electron.

### Acknowledgements

GAB and JFS thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships. The authors thank Dr David L. Hughes (University of East Anglia, UK) for training and discussions, and the late Professor Sueli M. Drechsel for helpful suggestions.

### **Funding information**

Funding for this research was provided by: Fundação Araucária (grant No. 283/2014 - protocol 37509); Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (grant No. 308426/2016-9); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (grant No. 001).

### research communications

Table 3 Experimental details.

|                                                                            | 1                                                                             | 2                                                                         |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Crystal data                                                               |                                                                               |                                                                           |
| Chemical formula                                                           | $[Gd_{2}(C_{28}H_{28}N_{4}O_{2})_{2}(C_{2}O_{4})]\cdot 4CH_{4}O\cdot 4H_{2}O$ | $[Dv_2(C_{28}H_{28}N_4O_2)_2(C_2O_4)] \cdot 4CH_4O \cdot 4H_2O$           |
| $M_r$                                                                      | 1507.84                                                                       | 1518.34                                                                   |
| Crystal system, space group                                                | Triclinic, $P\overline{1}$                                                    | Triclinic, $P\overline{1}$                                                |
| Temperature (K)                                                            | 100                                                                           | 100                                                                       |
| a, b, c (Å)                                                                | 9.8778 (11), 12.8720 (16), 14.8025 (18)                                       | 9.883 (2), 12.838 (3), 14.832 (4)                                         |
| $\alpha, \beta, \gamma$ (°)                                                | 69.092 (4), 74.786 (4), 70.324 (4)                                            | 68.213 (9), 74.653 (8), 70.552 (8)                                        |
| $V(\dot{A}^3)$                                                             | 1633.7 (3)                                                                    | 1626.3 (7)                                                                |
| Z                                                                          | 1                                                                             | 1                                                                         |
| Radiation type                                                             | Μο Κα                                                                         | Μο Κα                                                                     |
| $\mu (\mathrm{mm}^{-1})$                                                   | 2.08                                                                          | 2.35                                                                      |
| Crystal size (mm)                                                          | $0.30 \times 0.28 \times 0.15$                                                | $0.35 \times 0.16 \times 0.12$                                            |
| Data collection                                                            |                                                                               |                                                                           |
| Diffractometer                                                             | Bruker D8 Venture/Photon 100 CMOS                                             | Bruker D8 Venture/Photon 100 CMOS                                         |
| Absorption correction                                                      | Multi-scan (SADABS; Krause et al., 2015)                                      | Multi-scan (SADABS; Krause et al., 2015)                                  |
| $T_{\min}, \hat{T}_{\max}$                                                 | 0.613, 0.746                                                                  | 0.629, 0.746                                                              |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 101878, 7108, 6476                                                            | 93133, 7091, 6385                                                         |
| R <sub>int</sub>                                                           | 0.052                                                                         | 0.059                                                                     |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                       | 0.639                                                                         | 0.639                                                                     |
| Refinement                                                                 |                                                                               |                                                                           |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.020, 0.046, 1.07                                                            | 0.025, 0.060, 1.06                                                        |
| No. of reflections                                                         | 7108                                                                          | 7091                                                                      |
| No. of parameters                                                          | 380                                                                           | 380                                                                       |
| No. of restraints                                                          | 2                                                                             | 3                                                                         |
| H-atom treatment                                                           | H atoms treated by a mixture of independent<br>and constrained refinement     | H atoms treated by a mixture of independent<br>and constrained refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 1.20, -0.55                                                                   | 1.94, -0.63                                                               |

Computer programs: APEX3 (Bruker, 2015), SAINT (Bruker, 2002), SHELXT2015 (Sheldrick 2015a), SHELXL2017/1 (Sheldrick 2015b), ORTEP (Johnson, 1976 and Farrugia, 2012), DIAMOND (Brandenburg, 2006), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999, 2012).

#### References

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chatterton, N. Y., Bretonnière, J., Pécaut, J. & Mazzanti, M. (2005). Angew. Chem. Int. Ed. 44, 7595–7598.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Feng, X., Chen, J., Wang, L., Xie, S.-Y., Yang, S., Huo, S. & Ng, S. (2014). CrystEngComm, 16, 1334–1343.
- Gregório, T., Rüdiger, A. L., Nunes, G. G., Soares, J. F. & Hughes, D. L. (2015). Acta Cryst. E71, 65–68.
- Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694–8695.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Krishnamurty, K. V. & Harris, G. M. (1960). J. Phys. Chem. 64, 346– 349.
- Liu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441–5450.
- Llunell, M., Casanova, D., Cirera, J., Bofill, J. M., Alemany, P., Alvarez, S., Pinsky, M. & Avnir, D. (2005). *SHAPE*. University of Barcelona and The Hebrew University of Jerusalem, Barcelona, Spain.

Molloy, J., Jarjayes, O., Philouze, C., Fedele, L., Imbert, D. & Thomas, F. (2017). *Chem. Commun.* **53**, 605–608.

- Morss, L. & Rogers, R. (1997). Inorg. Chim. Acta, 255, 193– 197.
- Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). *Inorg. Chem.* 31, 4749–4755.
- Piquer, L. P. & Sañudo, E. C. (2015). Dalton Trans. 44, 8771-8780.
- Qin, J., Wang, P., Li, Q., Zhang, Y., Yuan, D. & Yao, Y. (2014). Chem. Commun. 50, 10952–10955.
- Setyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). *Inorg. Chem.* **39**, 496–507.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Xu, G. F., Gamez, P., Tang, J., Clérac, R., Guo, Y. N. & Guo, Y. (2012). *Inorg. Chem.* **51**, 5693–5698.
- Xu, G.-F., Wang, Q.-L., Gamez, P., Ma, Y., Clérac, R., Tang, J., Yan, S.-P., Cheng, P. & Liao, D.-Z. (2010). *Chem. Commun.* 46, 1506– 1508.
- Yamada, Y., Koori, D., Mori, K. & Oshikawa, Y. (2016). J. Coord. Chem. 69, 3735–3744.
- Yamada, Y., Takenouchi, S. I., Miyoshi, Y. & Okamoto, K. I. (2010). J. Coord. Chem. 63, 996–1012.
- Zhang, S., Ke, H., Liu, X., Wei, Q., Xie, G. & Chen, S. (2015). *Chem. Commun.* **51**, 15188–15191.

### Acta Cryst. (2019). E75, 418-422 [https://doi.org/10.1107/S2056989019002998]

Crystal structures of binuclear complexes of gadolinium(III) and dysprosium(III) with oxalate bridges and chelating N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine (bbpen<sup>2-</sup>)

### Guilherme Augusto Barbosa, Francielli Sousa Santana, Giovana Gioppo Nunes and Jaísa Fernandes Soares

**Computing details** 

For both structures, data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT* (Bruker, 2002); program(s) used to solve structure: SHELXT2015 (Sheldrick 2015a); program(s) used to refine structure: *SHELXL2017/1* (Sheldrick 2015b); molecular graphics: *ORTEP* (Johnson, 1976 and Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006). Software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *WinGX* (Farrugia, 1999, 2012) for (1); *SHELXL97* (Sheldrick, 2008) and *WinGX* (Farrugia, 1999, Farrugia, 2012) for (2).

 $(\mu$ -Oxalato)bis{[N,N'-bis(2-oxidobenzyl- $\kappa$ O)-N,N'-bis(pyridin-2-ylmethyl- $\kappa$ N)ethylenediamine- $\kappa^2 N,N'$ ]gadolinium(III)}-methanol-water (1/4/4) (1)

### Crystal data

| •                                                                            |                                                       |
|------------------------------------------------------------------------------|-------------------------------------------------------|
| $[Gd_2(C_{28}H_{28}N_4O_2)_2(C_2O_4)]$ ·4CH <sub>4</sub> O·4H <sub>2</sub> O | Z = 1                                                 |
| $M_r = 1507.84$                                                              | F(000) = 764                                          |
| Triclinic, $P\overline{1}$                                                   | $D_{\rm x} = 1.533 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 9.8778 (11)  Å                                                           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 12.8720 (16)  Å                                                          | Cell parameters from 9519 reflections                 |
| c = 14.8025 (18)  Å                                                          | $\theta = 3.0 - 27.9^{\circ}$                         |
| $\alpha = 69.092 \ (4)^{\circ}$                                              | $\mu = 2.08 \text{ mm}^{-1}$                          |
| $\beta = 74.786 \ (4)^{\circ}$                                               | T = 100  K                                            |
| $\gamma = 70.324 \ (4)^{\circ}$                                              | Prism, colourless                                     |
| $V = 1633.7 (3) Å^3$                                                         | $0.30 \times 0.28 \times 0.14 \text{ mm}$             |
|                                                                              |                                                       |

### Data collection

Bruker D8 Venture/Photon 100 CMOS101878 measdiffractometer7108 independenceRadiation source: fine-focus sealed tube6476 reflectionGraphite monochromator $R_{int} = 0.052$ Detector resolution: 10.4167 pixels mm<sup>-1</sup> $\theta_{max} = 27.0^{\circ}, \phi$  $\varphi$  and  $\omega$  scans $h = -12 \rightarrow 12$ Absorption correction: multi-scan $k = -16 \rightarrow 16$ (SADABS; Krause et al., 2015) $l = -18 \rightarrow 18$  $T_{min} = 0.613, T_{max} = 0.746$  $T_{max} = 0.746$ 

101878 measured reflections 7108 independent reflections 6476 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.052$  $\theta_{max} = 27.0^{\circ}, \theta_{min} = 3.0^{\circ}$  $h = -12 \rightarrow 12$  $k = -16 \rightarrow 16$  $l = -18 \rightarrow 18$  Refinement

| Refinement on $F^2$              | Secondary atom site location: difference Fourier                                                           |
|----------------------------------|------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full       | map                                                                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.020$  | Hydrogen site location: mixed                                                                              |
| $wR(F^2) = 0.046$                | H atoms treated by a mixture of independent                                                                |
| S = 1.07                         | and constrained refinement                                                                                 |
| 7108 reflections                 | $w = 1/[\sigma^2(F_o^2) + (0.0132P)^2 + 1.5506P]$                                                          |
| 380 parameters                   | where $P = (F_o^2 + 2F_c^2)/3$                                                                             |
| 2 restraints                     | $(\Delta/\sigma)_{max} = 0.001$                                                                            |
| Primary atom site location: dual | $\Delta\rho_{max} = 1.20 \text{ e} \text{ Å}^{-3}$                                                         |
| Frinary atom site location, duar | $\Delta \rho_{\rm max} = 1.20 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$ |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x             | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|---------------|--------------|--------------|-------------------------------|
| Gd1 | 0.14723 (2)   | 0.64026 (2)  | 0.30503 (2)  | 0.02451 (4)                   |
| N1  | 0.3709 (2)    | 0.68776 (16) | 0.33127 (13) | 0.0308 (4)                    |
| N2  | 0.26964 (19)  | 0.76071 (16) | 0.13842 (13) | 0.0302 (4)                    |
| N3  | 0.0847 (2)    | 0.83950 (16) | 0.33400 (14) | 0.0345 (4)                    |
| N4  | 0.1895 (2)    | 0.56231 (17) | 0.16178 (14) | 0.0341 (4)                    |
| 01  | 0.32272 (17)  | 0.47047 (14) | 0.33368 (13) | 0.0384 (4)                    |
| O2  | -0.04416 (16) | 0.74756 (14) | 0.22275 (11) | 0.0348 (4)                    |
| O3  | 0.10169 (17)  | 0.59622 (14) | 0.47919 (11) | 0.0326 (3)                    |
| O4  | 0.00913 (17)  | 0.48457 (14) | 0.62012 (11) | 0.0317 (3)                    |
| O30 | 0.2560 (3)    | 0.2853 (2)   | 0.46553 (17) | 0.0708 (6)                    |
| H30 | 0.279892      | 0.342451     | 0.422530     | 0.106*                        |
| C1  | 0.4553 (3)    | 0.7393 (2)   | 0.23546 (17) | 0.0366 (5)                    |
| H1A | 0.526548      | 0.676065     | 0.211006     | 0.044*                        |
| H1B | 0.510810      | 0.783956     | 0.246233     | 0.044*                        |
| C2  | 0.3634 (3)    | 0.8170 (2)   | 0.15829 (17) | 0.0356 (5)                    |
| H2A | 0.300546      | 0.885400     | 0.179071     | 0.043*                        |
| H2B | 0.428067      | 0.844484     | 0.096725     | 0.043*                        |
| C3  | 0.4722 (3)    | 0.5828 (2)   | 0.38753 (18) | 0.0371 (5)                    |
| H3A | 0.545817      | 0.607522     | 0.403134     | 0.045*                        |
| H3B | 0.415669      | 0.547543     | 0.450400     | 0.045*                        |
| C4  | 0.5499 (3)    | 0.4925 (2)   | 0.33652 (18) | 0.0376 (5)                    |
| C5  | 0.7021 (3)    | 0.4568 (3)   | 0.3171 (2)   | 0.0530 (7)                    |
| Н5  | 0.757587      | 0.492628     | 0.334115     | 0.064*                        |
| C6  | 0.7724 (3)    | 0.3699 (3)   | 0.2734 (3)   | 0.0662 (9)                    |
| H6  | 0.875802      | 0.345578     | 0.260954     | 0.079*                        |
| C7  | 0.6921 (3)    | 0.3189 (3)   | 0.2482 (2)   | 0.0595 (8)                    |
| H7  | 0.740815      | 0.259677     | 0.217648     | 0.071*                        |
| C8  | 0.5402 (3)    | 0.3526 (2)   | 0.2666 (2)   | 0.0473 (6)                    |

| H8   | 0.485806    | 0.316915     | 0.248361      | 0.057*      |
|------|-------------|--------------|---------------|-------------|
| C9   | 0.4686 (3)  | 0.4392 (2)   | 0.31219 (17)  | 0.0359 (5)  |
| C10  | 0.1601 (3)  | 0.8573 (2)   | 0.08153 (18)  | 0.0361 (5)  |
| H10A | 0.213640    | 0.898996     | 0.020397      | 0.043*      |
| H10B | 0.109274    | 0.912135     | 0.120374      | 0.043*      |
| C11  | 0.0468 (2)  | 0.82508 (19) | 0.05439 (17)  | 0.0327 (5)  |
| C12  | 0.0333 (3)  | 0.8522 (2)   | -0.04292 (19) | 0.0419 (6)  |
| H12  | 0.103411    | 0.884025     | -0.093012     | 0.050*      |
| C13  | -0.0798 (3) | 0.8339 (2)   | -0.0688(2)    | 0.0483 (7)  |
| H13  | -0.087322   | 0.852986     | -0.135819     | 0.058*      |
| C14  | -0.1812 (3) | 0.7878 (3)   | 0.0040 (2)    | 0.0514 (7)  |
| H14  | -0.260080   | 0.776115     | -0.012986     | 0.062*      |
| C15  | -0.1695 (3) | 0.7584 (2)   | 0.1014 (2)    | 0.0438 (6)  |
| H15  | -0.239531   | 0.725264     | 0.150492      | 0.053*      |
| C16  | -0.0560(2)  | 0.77657 (19) | 0.12913 (17)  | 0.0318 (5)  |
| C17  | 0.3155 (3)  | 0.7667 (2)   | 0.39309 (19)  | 0.0399 (6)  |
| H17A | 0.393828    | 0.801043     | 0.388604      | 0.048*      |
| H17B | 0.293976    | 0.720619     | 0.462140      | 0.048*      |
| C18  | 0.1824 (3)  | 0.8622 (2)   | 0.36726 (18)  | 0.0379 (5)  |
| C19  | 0.1574 (4)  | 0.9676 (3)   | 0.3832 (2)    | 0.0555 (7)  |
| H19  | 0.230010    | 0.983182     | 0.403804      | 0.067*      |
| C20  | 0.0264 (4)  | 1.0490 (3)   | 0.3690 (3)    | 0.0643 (9)  |
| H20  | 0.006686    | 1.120691     | 0.381254      | 0.077*      |
| C21  | -0.0753 (3) | 1.0259 (2)   | 0.3370 (2)    | 0.0537 (7)  |
| H21  | -0.167055   | 1.080485     | 0.327493      | 0.064*      |
| C22  | -0.0409 (3) | 0.9211 (2)   | 0.31884 (19)  | 0.0427 (6)  |
| H22  | -0.110029   | 0.906124     | 0.294343      | 0.051*      |
| C23  | 0.3579 (3)  | 0.6806 (2)   | 0.08111 (18)  | 0.0379 (5)  |
| H23A | 0.448335    | 0.634954     | 0.109017      | 0.046*      |
| H23B | 0.386281    | 0.726014     | 0.012906      | 0.046*      |
| C24  | 0.2797 (2)  | 0.5989 (2)   | 0.07971 (17)  | 0.0339 (5)  |
| C25  | 0.3037 (3)  | 0.5614 (2)   | -0.00088 (19) | 0.0468 (6)  |
| H25  | 0.369457    | 0.587595     | -0.057776     | 0.056*      |
| C26  | 0.2311 (3)  | 0.4857 (3)   | 0.0022 (2)    | 0.0563 (8)  |
| H26  | 0.245896    | 0.459136     | -0.052756     | 0.068*      |
| C27  | 0.1367 (3)  | 0.4485 (3)   | 0.0856 (2)    | 0.0547 (7)  |
| H27  | 0.084898    | 0.396546     | 0.089189      | 0.066*      |
| C28  | 0.1195 (3)  | 0.4888 (2)   | 0.1637 (2)    | 0.0452 (6)  |
| H28  | 0.054965    | 0.463138     | 0.221597      | 0.054*      |
| C29  | 0.0323 (2)  | 0.52339 (19) | 0.52893 (15)  | 0.0270 (4)  |
| C30  | 0.1948 (4)  | 0.2316 (3)   | 0.4227 (3)    | 0.0712 (10) |
| H30A | 0.185641    | 0.156599     | 0.468653      | 0.107*      |
| H30B | 0.258399    | 0.220344     | 0.361943      | 0.107*      |
| H30C | 0.098312    | 0.281001     | 0.408213      | 0.107*      |
| O1W  | 0.3109 (2)  | 0.2151 (2)   | 0.65369 (19)  | 0.0644 (6)  |
| H1W  | 0.236 (3)   | 0.229 (3)    | 0.694 (2)     | 0.058 (10)* |
| H2W  | 0.290 (4)   | 0.245 (3)    | 0.5939 (16)   | 0.080 (13)* |
|      |             |              |               |             |

Atomic displacement parameters  $(Å^2)$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gd1 | 0.02416 (5) | 0.02753 (6) | 0.02339 (6) | -0.01192 (4) | -0.00064 (4) | -0.00698 (4) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N1  | 0.0324 (10) | 0.0350 (10) | 0.0268 (9)  | -0.0153 (8)  | -0.0065 (7)  | -0.0041 (8)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N2  | 0.0287 (9)  | 0.0350 (10) | 0.0276 (10) | -0.0149 (8)  | -0.0022 (7)  | -0.0059 (8)  |
| N4         0.0412 (11)         0.0324 (10)         0.0293 (10) $-0.0113 (8)$ $-0.0030 (8)$ $-0.0104 (8)$ O1         0.0309 (8)         0.0337 (9)         0.0529 (11) $-0.0067 (7)$ $-0.0099 (7)$ $-0.0112 (7)$ O3         0.0387 (9)         0.0427 (9)         0.0272 (8) $-0.0279 (7)$ 0.0007 (6) $-0.0112 (7)$ O4         0.0386 (8)         0.0444 (9)         0.0215 (8) $-0.0259 (7)$ $-0.0012 (6)$ $-0.0097 (7)$ O30         0.1066 (19)         0.0616 (15)         0.00114 (14) $-0.0456 (14)$ $-0.0035 (10)$ $-0.0022 (10)$ C1         0.0330 (12)         0.0447 (14)         0.0358 (13) $-0.0202 (10)$ $-0.0033 (9)$ $-0.0022 (10)$ C3         0.0353 (12)         0.0414 (14)         0.0365 (13) $-0.0137 (10)$ $-0.0160 (10)$ $-0.032 (11)$ C4         0.0316 (12)         0.0351 (13) $-0.0071 (10)$ $-0.0087 (14)$ $-0.0032 (12)$ C4         0.0336 (14)         0.0566 (17)         0.0624 (19) $-0.0070 (12)$ $-0.0130 (12)$ $-0.0027 (14)$ C5         0.0336 (14)         0.0561 (17) <t< td=""><td>N3</td><td>0.0390 (11)</td><td>0.0297 (10)</td><td>0.0347 (11)</td><td>-0.0105 (8)</td><td>-0.0042 (8)</td><td>-0.0096 (8)</td></t<> | N3  | 0.0390 (11) | 0.0297 (10) | 0.0347 (11) | -0.0105 (8)  | -0.0042 (8)  | -0.0096 (8)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N4  | 0.0412 (11) | 0.0324 (10) | 0.0293 (10) | -0.0113 (8)  | -0.0030 (8)  | -0.0104 (8)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01  | 0.0309 (8)  | 0.0337 (9)  | 0.0529 (11) | -0.0067 (7)  | -0.0099 (7)  | -0.0151 (8)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O2  | 0.0288 (8)  | 0.0438 (9)  | 0.0317 (9)  | -0.0098 (7)  | -0.0044 (6)  | -0.0112 (7)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03  | 0.0387 (9)  | 0.0427 (9)  | 0.0272 (8)  | -0.0279 (7)  | 0.0007 (6)   | -0.0112 (7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O4  | 0.0386 (8)  | 0.0444 (9)  | 0.0215 (8)  | -0.0259 (7)  | -0.0012 (6)  | -0.0097 (7)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O30 | 0.1006 (19) | 0.0616 (15) | 0.0601 (14) | -0.0466 (14) | -0.0135 (13) | -0.0058 (11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1  | 0.0330 (12) | 0.0437 (14) | 0.0358 (13) | -0.0222 (10) | -0.0053 (10) | -0.0042 (11) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2  | 0.0369 (12) | 0.0364 (13) | 0.0316 (12) | -0.0202 (10) | -0.0003 (9)  | -0.0022 (10) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C3  | 0.0353 (12) | 0.0414 (14) | 0.0365 (13) | -0.0137 (10) | -0.0160 (10) | -0.0032 (11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C4  | 0.0310 (12) | 0.0391 (13) | 0.0351 (13) | -0.0071 (10) | -0.0087 (10) | -0.0019 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C5  | 0.0336 (14) | 0.0506 (17) | 0.0624 (19) | -0.0070 (12) | -0.0130 (12) | -0.0027 (14) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C6  | 0.0333 (15) | 0.062 (2)   | 0.073 (2)   | 0.0010 (14)  | 0.0003 (14)  | -0.0043 (17) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C7  | 0.0556 (18) | 0.0416 (16) | 0.0500 (17) | 0.0096 (14)  | 0.0026 (14)  | -0.0065 (13) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C8  | 0.0543 (16) | 0.0352 (14) | 0.0424 (15) | -0.0020 (12) | -0.0084 (12) | -0.0091 (12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C9  | 0.0345 (12) | 0.0324 (12) | 0.0318 (12) | -0.0021 (10) | -0.0082 (9)  | -0.0033 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C10 | 0.0411 (13) | 0.0301 (12) | 0.0344 (13) | -0.0143 (10) | -0.0081 (10) | -0.0006 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C11 | 0.0339 (12) | 0.0268 (11) | 0.0347 (12) | -0.0047 (9)  | -0.0081 (9)  | -0.0073 (9)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C12 | 0.0500 (15) | 0.0333 (13) | 0.0361 (13) | -0.0061 (11) | -0.0109 (11) | -0.0047 (11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13 | 0.0592 (17) | 0.0458 (15) | 0.0416 (15) | -0.0034 (13) | -0.0221 (13) | -0.0149 (12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C14 | 0.0476 (16) | 0.0574 (18) | 0.0617 (19) | -0.0079 (13) | -0.0215 (14) | -0.0290 (15) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C15 | 0.0333 (12) | 0.0560 (16) | 0.0490 (15) | -0.0134 (11) | -0.0070 (11) | -0.0220 (13) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C16 | 0.0293 (11) | 0.0301 (11) | 0.0355 (12) | -0.0030 (9)  | -0.0067 (9)  | -0.0127 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C17 | 0.0421 (13) | 0.0437 (14) | 0.0435 (14) | -0.0163 (11) | -0.0125 (11) | -0.0156 (12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C18 | 0.0475 (14) | 0.0371 (13) | 0.0337 (13) | -0.0179 (11) | -0.0023 (10) | -0.0127 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C19 | 0.074 (2)   | 0.0444 (16) | 0.0619 (19) | -0.0200 (15) | -0.0167 (16) | -0.0240 (14) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C20 | 0.090(2)    | 0.0409 (16) | 0.070(2)    | -0.0141 (16) | -0.0138 (18) | -0.0284 (16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C21 | 0.0620 (18) | 0.0353 (14) | 0.0529 (17) | 0.0005 (13)  | -0.0088 (14) | -0.0135 (13) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C22 | 0.0426 (14) | 0.0375 (14) | 0.0446 (15) | -0.0077 (11) | -0.0046 (11) | -0.0128 (11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C23 | 0.0324 (12) | 0.0463 (14) | 0.0311 (12) | -0.0132 (10) | 0.0023 (9)   | -0.0097 (11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C24 | 0.0326 (12) | 0.0341 (12) | 0.0291 (12) | 0.0005 (9)   | -0.0064 (9)  | -0.0102 (10) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C25 | 0.0471 (15) | 0.0544 (17) | 0.0348 (14) | -0.0071 (13) | 0.0002 (11)  | -0.0192 (12) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C26 | 0.0669 (19) | 0.0640 (19) | 0.0470 (17) | -0.0125 (15) | -0.0055 (14) | -0.0342 (15) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C27 | 0.0655 (19) | 0.0513 (17) | 0.0620 (19) | -0.0211 (14) | -0.0082 (15) | -0.0301 (15) |
| C290.0263 (10)0.0321 (11)0.0270 (11)-0.0126 (9)-0.0008 (8)-0.0119 (9)C300.094 (3)0.0534 (19)0.076 (2)-0.0322 (18)0.001 (2)-0.0293 (18)O1W0.0331 (11)0.1015 (19)0.0682 (16)-0.0197 (11)-0.0019 (11)-0.0393 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C28 | 0.0586 (16) | 0.0432 (15) | 0.0410 (14) | -0.0220 (13) | -0.0014 (12) | -0.0178 (12) |
| C300.094 (3)0.0534 (19)0.076 (2)-0.0322 (18)0.001 (2)-0.0293 (18)O1W0.0331 (11)0.1015 (19)0.0682 (16)-0.0197 (11)-0.0019 (11)-0.0393 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C29 | 0.0263 (10) | 0.0321 (11) | 0.0270 (11) | -0.0126 (9)  | -0.0008 (8)  | -0.0119 (9)  |
| O1W 0.0331 (11) 0.1015 (19) 0.0682 (16) -0.0197 (11) -0.0019 (11) -0.0393 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C30 | 0.094 (3)   | 0.0534 (19) | 0.076 (2)   | -0.0322 (18) | 0.001 (2)    | -0.0293 (18) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O1W | 0.0331 (11) | 0.1015 (19) | 0.0682 (16) | -0.0197 (11) | -0.0019 (11) | -0.0393 (15) |

Geometric parameters (Å, °)

| Gd1—01              | 2.2659 (16) | C10-C11              | 1.501 (3)  |
|---------------------|-------------|----------------------|------------|
| Gd1—O2              | 2.2835 (16) | C10—H10A             | 0.9900     |
| Gd1—O3              | 2.3855 (15) | C10—H10B             | 0.9900     |
| Gd1—O4 <sup>i</sup> | 2.3869 (14) | C11—C12              | 1.388 (3)  |
| Gd1—N4              | 2.5394 (19) | C11—C16              | 1.410 (3)  |
| Gd1—N3              | 2.5926 (19) | C12—C13              | 1.384 (4)  |
| Gd1—N2              | 2.6299 (18) | C12—H12              | 0.9500     |
| Gd1—N1              | 2.6334 (18) | C13—C14              | 1.376 (4)  |
| N1—C17              | 1.482 (3)   | C13—H13              | 0.9500     |
| N1—C1               | 1.492 (3)   | C14—C15              | 1.379 (4)  |
| N1—C3               | 1.498 (3)   | C14—H14              | 0.9500     |
| N2—C23              | 1.475 (3)   | C15—C16              | 1.403 (3)  |
| N2—C2               | 1.489 (3)   | C15—H15              | 0.9500     |
| N2                  | 1.500 (3)   | C17—C18              | 1.492 (4)  |
| N3—C22              | 1.339 (3)   | C17—H17A             | 0.9900     |
| N3—C18              | 1.343 (3)   | C17—H17B             | 0.9900     |
| N4—C28              | 1.336 (3)   | C18—C19              | 1.389 (4)  |
| N4—C24              | 1.340 (3)   | C19—C20              | 1.374 (5)  |
| O1—C9               | 1.342 (3)   | C19—H19              | 0.9500     |
| O2—C16              | 1.327 (3)   | C20—C21              | 1.369 (5)  |
| O3—C29              | 1.252 (3)   | C20—H20              | 0.9500     |
| O4—C29              | 1.248 (3)   | C21—C22              | 1.382 (4)  |
| O30—C30             | 1.429 (4)   | C21—H21              | 0.9500     |
| O30—H30             | 0.8400      | C22—H22              | 0.9500     |
| C1—C2               | 1.499 (3)   | C23—C24              | 1.508 (3)  |
| C1—H1A              | 0.9900      | C23—H23A             | 0.9900     |
| C1—H1B              | 0.9900      | C23—H23B             | 0.9900     |
| C2—H2A              | 0.9900      | C24—C25              | 1.377 (3)  |
| C2—H2B              | 0.9900      | C25—C26              | 1.375 (4)  |
| C3—C4               | 1.494 (4)   | C25—H25              | 0.9500     |
| С3—НЗА              | 0.9900      | C26—C27              | 1.377 (4)  |
| С3—Н3В              | 0.9900      | C26—H26              | 0.9500     |
| C4—C9               | 1.393 (4)   | C27—C28              | 1.379 (4)  |
| C4—C5               | 1.399 (3)   | C27—H27              | 0.9500     |
| C5—C6               | 1.382 (5)   | C28—H28              | 0.9500     |
| С5—Н5               | 0.9500      | C29—C29 <sup>i</sup> | 1.554 (4)  |
| C6—C7               | 1.371 (5)   | C30—H30A             | 0.9800     |
| С6—Н6               | 0.9500      | C30—H30B             | 0.9800     |
| C7—C8               | 1.395 (4)   | C30—H30C             | 0.9800     |
| С7—Н7               | 0.9500      | O1W—H1W              | 0.831 (18) |
| C8—C9               | 1.398 (4)   | O1W—H2W              | 0.879 (18) |
| С8—Н8               | 0.9500      |                      |            |
| O1—Gd1—O2           | 144.65 (6)  | С7—С8—Н8             | 120.3      |
| O1—Gd1—O3           | 83.85 (6)   | С9—С8—Н8             | 120.3      |
| O2—Gd1—O3           | 117.78 (6)  | O1—C9—C4             | 119.8 (2)  |

| O1—Gd1—O4 <sup>i</sup>     | 82.26 (6)                | O1—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.6 (2)            |
|----------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $O2$ — $Gd1$ — $O4^i$      | 81.09 (6)                | C4—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.6 (2)            |
| O3—Gd1—O4 <sup>i</sup>     | 68.12 (5)                | N2—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.04 (19)          |
| O1—Gd1—N4                  | 72.72 (6)                | N2—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.0                |
| O2—Gd1—N4                  | 74.51 (6)                | C11—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.0                |
| O3—Gd1—N4                  | 145.21 (6)               | N2-C10-H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.0                |
| O4 <sup>i</sup> —Gd1—N4    | 83.25 (6)                | C11—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.0                |
| O1—Gd1—N3                  | 137.96 (6)               | H10A—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.3                |
| O2—Gd1—N3                  | 76.82 (6)                | C12—C11—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.5 (2)            |
| O3—Gd1—N3                  | 76.31 (6)                | C12—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.9 (2)            |
| O4 <sup>i</sup> —Gd1—N3    | 121.96 (6)               | C16—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.3 (2)            |
| N4—Gd1—N3                  | 137.77 (6)               | C13—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.6 (3)            |
| $\Omega_1$ —Gd1—N2         | 101.15 (6)               | C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2                |
| $\Omega_{2}$ -Gd1-N2       | 76.69 (6)                | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2                |
| O3-Gd1-N2                  | 146 18 (5)               | C14-C13-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.0(3)             |
| $O4^{i}$ —Gd1—N2           | 145.50 (5)               | C14—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.5                |
| N4—Gd1—N2                  | 65 63 (6)                | C12—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.5                |
| N3—Gd1—N2                  | 78.07 (6)                | $C_{13}$ $C_{14}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3<br>120.7(3)    |
| $\Omega_1 - Gd_1 - N_1$    | 74 44 (6)                | $C_{13}$ $C_{14}$ $H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.6                |
| $\Omega^2$ —Gd1—N1         | 133 51 (6)               | $C_{15}$ $C_{14}$ $H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.6                |
| $O_3$ —Gd1—N1              | 80.10(5)                 | $C_{14}$ $C_{15}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.1(3)             |
| $O4^{i}$ Gd1 N1            | 142 30 (5)               | C14 - C15 - H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.4                |
| N4—Gd1—N1                  | 116 30 (6)               | C16-C15-H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.4                |
| N3_Gd1_N1                  | 65 93 (6)                | $0^{2}-C_{16}-C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.4<br>121 1 (2)   |
| N2 Gd1 N1                  | 69.43 (6)                | 02 - C16 - C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.1(2)<br>120.8(2) |
| 12 - 0                     | 111 49 (19)              | $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0(2)<br>118.0(2) |
| C17 N1 C3                  | 111.49(19)<br>105.29(18) | N1 C17 C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.0(2)<br>115.3(2) |
| C1 - N1 - C3               | 103.29(18)<br>108.47(18) | $N1 - C17 - H17\Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.5                |
| C17 N1 Gd1                 | 108.47(18)<br>108.34(13) | 11 - 17 - 117 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.5                |
| C1 N1 $Gd1$                | 100.54(13)<br>110.08(13) | N1 C17 H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.5                |
| $C_1 = N_1 = Gd_1$         | 110.96(13)<br>112.16(13) | 11-017-1117B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.5                |
| $C_{23}$ N2 C2             | 112.10(13)<br>110.38(18) | H17A C17 H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.5                |
| $C_{23} = N_2 = C_2$       | 110.38(18)<br>110.00(18) | $\frac{111}{A} = \frac{11}{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.3<br>121.8 (3)   |
| $C_{23} = N_{2} = C_{10}$  | 110.90(18)<br>105.60(17) | $N_{3} = C_{18} = C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.0(3)<br>117.2(2) |
| $C_2 = N_2 = C_{10}$       | 103.00(17)<br>107.83(13) | $N_{3}$ $C_{10}$ $C_{18}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.3(2)<br>120.8(2) |
| $C_2 = N_2 = Cd_1$         | 107.63(13)<br>100.63(13) | $C_{19} = C_{18} = C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0(2)             |
| $C_2 = N_2 = G_{d1}$       | 109.03(13)<br>112.50(13) | $C_{20} = C_{19} = C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5 (5)            |
| $C_{10} = N_2 = C_{10}$    | 112.30(13)<br>117.8(2)   | $C_{20} = C_{19} = 1119$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.4                |
| $C_{22} = N_3 = C_{10}$    | 117.0(2)<br>123.60(17)   | $C_{10} = C_{10} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.4                |
| $C_{22}$ N2 $C_{41}$       | 123.09(17)<br>118.52(15) | $C_{21} = C_{20} = C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4 (5)            |
| $C_{10}$ $M_{10}$ $C_{24}$ | 110.32(13)<br>118.2(2)   | $C_{21} = C_{20} = H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3                |
| $C_{20} = 104 - C_{24}$    | 110.3(2)<br>121.00(16)   | C19 - C20 - H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.3                |
| $C_{20}$ N4 $C_{41}$       | 121.90 (10)              | $C_{20} = C_{21} = C_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.2 (5)            |
| $C_2 + N_4 - C_4 $         | 119.79(13)<br>125.00(15) | $C_{20} = C_{21} = \Pi_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.9                |
|                            | 133.00(13)<br>121.61(12) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.9                |
| $C_{10} = 02 = C_{01}$     | 131.01(13)<br>110.02(13) | $1N_{3} - C_{22} - C_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.4 (3)<br>118 2   |
|                            | 119.02(13)               | $H_{2} = - \frac{1}{2} + \frac{1}$ | 118.3                |
| C29-020 U20                | 119.12 (13)              | $U_{21} - U_{22} - H_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.3                |
| C30—O30—H30                | 109.5                    | N2—C23—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113.32 (18)          |

| N1—C1—C2                   | 114.19 (18)          | N2—C23—H23A                         | 108.9       |
|----------------------------|----------------------|-------------------------------------|-------------|
| N1—C1—H1A                  | 108.7                | C24—C23—H23A                        | 108.9       |
| C2—C1—H1A                  | 108.7                | N2—C23—H23B                         | 108.9       |
| N1—C1—H1B                  | 108.7                | C24—C23—H23B                        | 108.9       |
| C2—C1—H1B                  | 108.7                | H23A—C23—H23B                       | 107.7       |
| H1A—C1—H1B                 | 107.6                | N4—C24—C25                          | 122.1 (2)   |
| N2—C2—C1                   | 113.77 (19)          | N4—C24—C23                          | 116.5 (2)   |
| N2—C2—H2A                  | 108.8                | C25—C24—C23                         | 121.4 (2)   |
| C1—C2—H2A                  | 108.8                | C26—C25—C24                         | 119.0 (3)   |
| N2—C2—H2B                  | 108.8                | C26—C25—H25                         | 120.5       |
| C1—C2—H2B                  | 108.8                | C24—C25—H25                         | 120.5       |
| H2A—C2—H2B                 | 107.7                | C25—C26—C27                         | 119.5 (3)   |
| C4—C3—N1                   | 115.32 (19)          | C25—C26—H26                         | 120.2       |
| C4—C3—H3A                  | 108.4                | C27—C26—H26                         | 120.2       |
| N1—C3—H3A                  | 108.4                | $C_{26} - C_{27} - C_{28}$          | 1181(3)     |
| C4—C3—H3B                  | 108.4                | $C_{26} - C_{27} - H_{27}$          | 120.9       |
| N1-C3-H3B                  | 108.4                | $C_{28} - C_{27} - H_{27}$          | 120.9       |
| $H_{3}A = C_{3} = H_{3}B$  | 107.5                | N4-C28-C27                          | 123.0(3)    |
| C9-C4-C5                   | 119.6 (3)            | N4-C28-H28                          | 118 5       |
| C9-C4-C3                   | 119.0(2)             | $C_{27}$ $C_{28}$ $H_{28}$          | 118.5       |
| $C_{5} - C_{4} - C_{3}$    | 121.3(2)             | $04-C^{29}-03$                      | 126.83 (19) |
| C6-C5-C4                   | 121.5(2)<br>120.6(3) | $04-029-029^{i}$                    | 126.65(19)  |
| Сб-С5-Н5                   | 119 7                | $C_{1}^{3}$ $C_{2}^{3}$ $C_{2}^{3}$ | 116.6(2)    |
| C4-C5-H5                   | 119.7                | 030-029 - 029                       | 109.5       |
| C7 - C6 - C5               | 119.7                | $O_{30}$ $C_{30}$ $H_{30B}$         | 109.5       |
| C7—C6—H6                   | 120.2                | $H_{30A} - C_{30} - H_{30B}$        | 109.5       |
| C5-C6-H6                   | 120.2                | O30-C30-H30C                        | 109.5       |
| C6-C7-C8                   | 120.2<br>1211(3)     | $H_{30A} - C_{30} - H_{30C}$        | 109.5       |
| C6-C7-H7                   | 119.4                | H30B-C30-H30C                       | 109.5       |
| C8-C7-H7                   | 119.1                | H1W = 01W = H2W                     | 110(3)      |
| C7 - C8 - C9               | 119.4 (3)            |                                     | 110 (5)     |
|                            | 11)(5)               |                                     |             |
| C17 - N1 - C1 - C2         | -850(2)              | C10-C11-C16-O2                      | -74(3)      |
| $C_{3}-N_{1}-C_{1}-C_{2}$  | 159 5 (2)            | $C_{12}$ $C_{11}$ $C_{16}$ $C_{15}$ | -0.5(3)     |
| Gd1—N1—C1—C2               | 35 9 (2)             | C10-C11-C16-C15                     | 1735(2)     |
| $C_{23} N_{2} C_{2} C_{1}$ | -74.8(2)             | C1 - N1 - C17 - C18                 | 79.1.(2)    |
| C10 - N2 - C2 - C1         | 165.3 (2)            | $C_3 - N_1 - C_{17} - C_{18}$       | -163.5(2)   |
| Gd1 - N2 - C2 - C1         | 43.8 (2)             | Gd1 - N1 - C17 - C18                | -433(2)     |
| N1-C1-C2-N2                | -561(3)              | $C^{22}$ N3 $C^{18}$ $C^{19}$       | -1.7(4)     |
| C17 - N1 - C3 - C4         | -1763(2)             | Gd1 - N3 - C18 - C19                | 1791(2)     |
| C1 - N1 - C3 - C4          | -56.9(2)             | $C^{22}$ N3 $C^{18}$ $C^{17}$       | 1742(2)     |
| Gd1—N1—C3—C4               | 66.1(2)              | Gd1 - N3 - C18 - C17                | -5.0(3)     |
| N1—C3—C4—C9                | -61.9 (3)            | N1—C17—C18—N3                       | 34.3 (3)    |
| N1—C3—C4—C5                | 121.1 (2)            | N1—C17—C18—C19                      | -149.8(2)   |
| C9—C4—C5—C6                | 0.5 (4)              | N3—C18—C19—C20                      | 3.0 (4)     |
| C3—C4—C5—C6                | 177.4 (3)            | C17—C18—C19—C20                     | -172.8(3)   |
| C4—C5—C6—C7                | 0.5 (5)              | C18—C19—C20—C21                     | -1.6 (5)    |
| C5—C6—C7—C8                | -0.6 (5)             | C19—C20—C21—C22                     | -0.9 (5)    |

| C6—C7—C8—C9     | -0.4 (4)   | C18—N3—C22—C21                   | -1.0 (4)     |
|-----------------|------------|----------------------------------|--------------|
| Gd1-01-C9-C4    | 52.5 (3)   | Gd1—N3—C22—C21                   | 178.2 (2)    |
| Gd1             | -128.3 (2) | C20-C21-C22-N3                   | 2.3 (4)      |
| C5-C4-C9-O1     | 177.8 (2)  | C2—N2—C23—C24                    | 165.50 (19)  |
| C3—C4—C9—O1     | 0.8 (3)    | C10—N2—C23—C24                   | -77.8 (2)    |
| C5-C4-C9-C8     | -1.5 (4)   | Gd1—N2—C23—C24                   | 45.8 (2)     |
| C3—C4—C9—C8     | -178.4 (2) | C28—N4—C24—C25                   | -1.2 (4)     |
| C7—C8—C9—O1     | -177.8 (2) | Gd1-N4-C24-C25                   | -178.42 (18) |
| C7—C8—C9—C4     | 1.4 (4)    | C28—N4—C24—C23                   | -179.2 (2)   |
| C23—N2—C10—C11  | 62.5 (3)   | Gd1-N4-C24-C23                   | 3.6 (3)      |
| C2-N2-C10-C11   | -177.9 (2) | N2-C23-C24-N4                    | -35.2 (3)    |
| Gd1-N2-C10-C11  | -58.3 (2)  | N2—C23—C24—C25                   | 146.8 (2)    |
| N2-C10-C11-C12  | -120.9 (2) | N4—C24—C25—C26                   | 1.1 (4)      |
| N2-C10-C11-C16  | 65.2 (3)   | C23—C24—C25—C26                  | 179.1 (3)    |
| C16—C11—C12—C13 | 0.7 (4)    | C24—C25—C26—C27                  | -0.3 (4)     |
| C10-C11-C12-C13 | -173.2 (2) | C25—C26—C27—C28                  | -0.4 (5)     |
| C11—C12—C13—C14 | 0.0 (4)    | C24—N4—C28—C27                   | 0.5 (4)      |
| C12—C13—C14—C15 | -1.0 (4)   | Gd1-N4-C28-C27                   | 177.6 (2)    |
| C13—C14—C15—C16 | 1.2 (4)    | C26—C27—C28—N4                   | 0.3 (5)      |
| Gd1             | 128.8 (2)  | Gd1 <sup>i</sup> —O4—C29—O3      | 174.05 (18)  |
| Gd1             | -50.2 (3)  | $Gd1^i$ —O4—C29—C29 <sup>i</sup> | -5.8 (3)     |
| C14—C15—C16—O2  | -179.5 (2) | Gd1O3C29O4                       | 174.16 (17)  |
| C14—C15—C16—C11 | -0.5 (4)   | Gd1-03-C29-C29 <sup>i</sup>      | -6.0 (3)     |
| C12-C11-C16-O2  | 178.6 (2)  |                                  |              |
|                 |            |                                  |              |

Symmetry code: (i) -x, -y+1, -z+1.

### Hydrogen-bond geometry (Å, °)

| D—H···A                         | D—H      | H···A    | D···A     | D—H··· $A$ |
|---------------------------------|----------|----------|-----------|------------|
| O30—H30…O1                      | 0.84     | 1.80     | 2.643 (3) | 177        |
| $C1$ — $H1B$ ···· $O1W^{ii}$    | 0.99     | 2.59     | 3.459 (3) | 147        |
| $O1W$ — $H1W$ ··· $O2^{i}$      | 0.83 (2) | 1.96 (2) | 2.786 (3) | 170 (3)    |
| O1 <i>W</i> —H2 <i>W</i> ···O30 | 0.88 (2) | 1.87 (2) | 2.745 (3) | 171 (4)    |

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

 $(\mu - Oxalato) bis \{ [N, N' - bis (2 - oxidobenzy l - \kappa O) - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine - N, N' - bis (pyridin - 2 - ylmethy l - \kappa N) ethylenediamine -$ 

 $\kappa^2 N, N'$ ]dysprosium(III)}-methanol-water (1/4/4) (2)

### Crystal data

| $[Dy_2(C_{28}H_{28}N_4O_2)_2(C_2O_4)] \cdot 4CH_4O \cdot 4H_2O$ | Z = 1                                                 |
|-----------------------------------------------------------------|-------------------------------------------------------|
| $M_r = 1518.34$                                                 | F(000) = 768                                          |
| Triclinic, $P\overline{1}$                                      | $D_{\rm x} = 1.550 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 9.883 (2) Å                                                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 12.838 (3) Å                                                | Cell parameters from 9284 reflections                 |
| c = 14.832 (4) Å                                                | $\theta = 3.0 - 27.7^{\circ}$                         |
| $\alpha = 68.213 \ (9)^{\circ}$                                 | $\mu = 2.35 \text{ mm}^{-1}$                          |
| $\beta = 74.653 \ (8)^{\circ}$                                  | T = 100  K                                            |
| $\gamma = 70.552 \ (8)^{\circ}$                                 | Prism, colourless                                     |
| V = 1626.3 (7) Å <sup>3</sup>                                   | $0.35 \times 0.16 \times 0.12 \text{ mm}$             |

Data collection

| Bruker D8 Venture/Photon 100 CMOS diffractometer     | 93133 measured reflections<br>7091 independent reflections      |
|------------------------------------------------------|-----------------------------------------------------------------|
| Radiation source: fine-focus sealed tube             | 6385 reflections with $I > 2\sigma(I)$                          |
| Graphite monochromator                               | $R_{\rm int} = 0.059$                                           |
| Detector resolution: 10.4167 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 3.0^\circ$ |
| $\varphi$ and $\omega$ scans                         | $h = -12 \rightarrow 12$                                        |
| Absorption correction: multi-scan                    | $k = -16 \rightarrow 16$                                        |
| (SADABS; Krause et al., 2015)                        | $l = -18 \rightarrow 18$                                        |
| $T_{\min} = 0.629, \ T_{\max} = 0.746$               |                                                                 |
| Refinement                                           |                                                                 |
| Refinement on $F^2$                                  | Secondary atom site location: difference Fourier                |
| Least-squares matrix: full                           | map                                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.025$                      | Hydrogen site location: mixed                                   |
| $wR(F^2) = 0.060$                                    | H atoms treated by a mixture of independent                     |
| <i>S</i> = 1.06                                      | and constrained refinement                                      |
| 7091 reflections                                     | $w = 1/[\sigma^2(F_o^2) + (0.0244P)^2 + 1.9868P]$               |
| 380 parameters                                       | where $P = (F_0^2 + 2F_c^2)/3$                                  |
| 3 restraints                                         | $(\Delta/\sigma)_{\rm max} = 0.002$                             |
| Primary atom site location: dual                     | $\Delta \rho_{\rm max} = 1.94 \text{ e} \text{ Å}^{-3}$         |
|                                                      | $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$      |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|--------------|--------------|-----------------------------|
| Dy1 | 0.85062 (2) | 0.36072 (2)  | 0.69594 (2)  | 0.02699 (5)                 |
| N1  | 0.6306 (3)  | 0.3122 (2)   | 0.66909 (18) | 0.0352 (5)                  |
| N2  | 0.7282 (3)  | 0.2394 (2)   | 0.86207 (18) | 0.0351 (5)                  |
| N3  | 0.9135 (3)  | 0.1612 (2)   | 0.66925 (19) | 0.0383 (6)                  |
| N4  | 0.8096 (3)  | 0.4397 (2)   | 0.83619 (18) | 0.0370 (6)                  |
| 01  | 0.6811 (2)  | 0.52962 (19) | 0.66391 (17) | 0.0430 (5)                  |
| O2  | 1.0390 (2)  | 0.25545 (19) | 0.77711 (15) | 0.0370 (5)                  |
| O3  | 0.8993 (2)  | 0.40098 (19) | 0.52306 (14) | 0.0370 (5)                  |
| O4  | 0.9940 (2)  | 0.51292 (19) | 0.38014 (14) | 0.0362 (5)                  |
| O30 | 0.7330 (4)  | 0.7243 (3)   | 0.5351 (2)   | 0.0764 (9)                  |
| H30 | 0.718496    | 0.661941     | 0.576725     | 0.115*                      |
| C1  | 0.5449 (3)  | 0.2587 (3)   | 0.7655 (2)   | 0.0439 (8)                  |
| H1A | 0.472908    | 0.321693     | 0.789304     | 0.053*                      |
| H1B | 0.490545    | 0.213183     | 0.754747     | 0.053*                      |
| C2  | 0.6350 (4)  | 0.1817 (3)   | 0.8429 (2)   | 0.0420 (7)                  |
| H2A | 0.698079    | 0.113165     | 0.823044     | 0.050*                      |
| H2B | 0.570144    | 0.153596     | 0.904753     | 0.050*                      |
| C3  | 0.5280 (3)  | 0.4178 (3)   | 0.6129 (2)   | 0.0425 (7)                  |
| H3A | 0.583081    | 0.454137     | 0.548988     | 0.051*                      |

| H3B  | 0.453500   | 0.392579   | 0.598837   | 0.051*      |
|------|------------|------------|------------|-------------|
| C4   | 0.4534 (3) | 0.5066 (3) | 0.6633 (2) | 0.0429 (7)  |
| C5   | 0.3007 (4) | 0.5435 (4) | 0.6832 (3) | 0.0612 (10) |
| Н5   | 0.244013   | 0.508835   | 0.666133   | 0.073*      |
| C6   | 0.2325 (5) | 0.6292 (4) | 0.7271 (4) | 0.0755 (14) |
| H6   | 0.129331   | 0.653494   | 0.739876   | 0.091*      |
| C7   | 0.3137 (5) | 0.6797 (4) | 0.7526 (3) | 0.0699 (13) |
| H7   | 0.266094   | 0.738051   | 0.783716   | 0.084*      |
| C8   | 0.4657 (4) | 0.6458 (3) | 0.7330 (3) | 0.0541 (9)  |
| H8   | 0.521300   | 0.680638   | 0.750940   | 0.065*      |
| C9   | 0.5350 (3) | 0.5603 (3) | 0.6870(2)  | 0.0414 (7)  |
| C10  | 0.8356 (4) | 0.1433 (3) | 0.9201 (2) | 0.0403 (7)  |
| H10A | 0.885352   | 0.087425   | 0.882625   | 0.048*      |
| H10B | 0.781416   | 0.102000   | 0.982074   | 0.048*      |
| C11  | 0.9506 (3) | 0.1755 (3) | 0.9460 (2) | 0.0367 (6)  |
| C12  | 0.9649 (4) | 0.1478 (3) | 1.0434 (2) | 0.0462 (8)  |
| H12  | 0.894743   | 0.115714   | 1.094305   | 0.055*      |
| C13  | 1.0791 (4) | 0.1657 (3) | 1.0681 (3) | 0.0538(9)   |
| H13  | 1.087727   | 0.145829   | 1.135118   | 0.065*      |
| C14  | 1,1796 (4) | 0.2126 (3) | 0.9944(3)  | 0.0552(9)   |
| H14  | 1.259234   | 0.224058   | 1.010739   | 0.066*      |
| C15  | 1,1668 (4) | 0.2435 (3) | 0.8968 (3) | 0.0458 (8)  |
| H15  | 1.236347   | 0.277543   | 0.846914   | 0.055*      |
| C16  | 1.0523 (3) | 0.2253(3)  | 0.8705 (2) | 0.0354 (6)  |
| C17  | 0.6850(4)  | 0.2350(3)  | 0.6072(2)  | 0.0435(7)   |
| H17A | 0.706153   | 0.282658   | 0.537894   | 0.052*      |
| H17B | 0.606877   | 0.200092   | 0.611962   | 0.052*      |
| C18  | 0.8178 (4) | 0.1396 (3) | 0.6332 (2) | 0.0423(7)   |
| C19  | 0.8446 (5) | 0.0344(3)  | 0.6155 (3) | 0.0616 (10) |
| H19  | 0.773484   | 0.019132   | 0.593305   | 0.074*      |
| C20  | 0.9743 (5) | -0.0461(4) | 0.6304 (3) | 0.0690 (12) |
| H20  | 0.995152   | -0.117133  | 0.616886   | 0.083*      |
| C21  | 1.0750 (5) | -0.0245(3) | 0.6651 (3) | 0.0605 (10) |
| H21  | 1 166397   | -0.079264  | 0.675028   | 0.073*      |
| C22  | 1.0391 (4) | 0.0793 (3) | 0.6851 (3) | 0.0477(8)   |
| H22  | 1.106771   | 0.093468   | 0.711293   | 0.057*      |
| C23  | 0.6396 (3) | 0.3207 (3) | 0.9182(2)  | 0.0432 (7)  |
| H23A | 0.609733   | 0.275136   | 0.986865   | 0.052*      |
| H23B | 0.550307   | 0.367032   | 0.889121   | 0.052*      |
| C24  | 0.7191 (3) | 0.4020(3)  | 0.9188(2)  | 0.0382(7)   |
| C25  | 0.6957(4)  | 0.4392(3)  | 0.9992(3)  | 0.0525(9)   |
| H25  | 0.629682   | 0.412743   | 1.056475   | 0.063*      |
| C26  | 0.7693(5)  | 0.5151(4)  | 0.9953 (3) | 0.0623 (10) |
| H26  | 0.756092   | 0.540626   | 1.050250   | 0.075*      |
| C27  | 0.8620 (5) | 0.5537(4)  | 0.9110 (3) | 0.0611 (10) |
| H27  | 0.912648   | 0.607246   | 0.906183   | 0.073*      |
| C28  | 0 8803 (4) | 0 5130 (3) | 0.8334(3)  | 0.0491 (8)  |
| H28  | 0 945997   | 0 538471   | 0.0004 (0) | 0.059*      |
| 1140 | 0.7 10771  | 0.0007/1   | 0.110010   | 0.000       |

| C29  | 0.9690 (3) | 0.4748 (3) | 0.4720 (2)  | 0.0312 (6)  |  |
|------|------------|------------|-------------|-------------|--|
| C30  | 0.8049 (6) | 0.7736 (4) | 0.5747 (4)  | 0.0874 (16) |  |
| H30A | 0.794694   | 0.855829   | 0.536520    | 0.131*      |  |
| H30B | 0.908275   | 0.732038   | 0.571185    | 0.131*      |  |
| H30C | 0.761049   | 0.766725   | 0.643423    | 0.131*      |  |
| O1W  | 0.6925 (3) | 0.7827 (4) | 0.3435 (3)  | 0.0742 (9)  |  |
| H1W  | 0.768 (3)  | 0.763 (4)  | 0.307 (3)   | 0.090 (17)* |  |
| H2W  | 0.711 (6)  | 0.746 (4)  | 0.4022 (18) | 0.10 (2)*   |  |
|      |            |            |             |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Dy1 | 0.02658 (7) | 0.03170 (7) | 0.02368 (7) | -0.01256 (5) | 0.00064 (4)  | -0.00858 (5) |
| N1  | 0.0363 (13) | 0.0385 (14) | 0.0313 (12) | -0.0163 (11) | -0.0087 (10) | -0.0036 (10) |
| N2  | 0.0336 (12) | 0.0423 (14) | 0.0304 (12) | -0.0180 (11) | -0.0002 (10) | -0.0087 (11) |
| N3  | 0.0425 (14) | 0.0350 (13) | 0.0359 (14) | -0.0110 (11) | -0.0056 (11) | -0.0093 (11) |
| N4  | 0.0407 (14) | 0.0359 (13) | 0.0323 (13) | -0.0075 (11) | -0.0023 (10) | -0.0128 (11) |
| 01  | 0.0384 (12) | 0.0367 (12) | 0.0539 (14) | -0.0058 (9)  | -0.0119 (10) | -0.0147 (10) |
| O2  | 0.0304 (10) | 0.0478 (12) | 0.0321 (11) | -0.0086 (9)  | -0.0052 (8)  | -0.0131 (9)  |
| 03  | 0.0450 (12) | 0.0477 (12) | 0.0279 (10) | -0.0287 (10) | 0.0019 (9)   | -0.0130 (9)  |
| O4  | 0.0443 (11) | 0.0502 (12) | 0.0235 (10) | -0.0289 (10) | 0.0004 (8)   | -0.0114 (9)  |
| O30 | 0.101 (2)   | 0.0593 (18) | 0.070 (2)   | -0.0406 (18) | -0.0105 (18) | -0.0069 (15) |
| C1  | 0.0382 (16) | 0.055 (2)   | 0.0406 (17) | -0.0265 (15) | -0.0046 (13) | -0.0054 (15) |
| C2  | 0.0447 (17) | 0.0437 (18) | 0.0367 (16) | -0.0230 (15) | -0.0010 (13) | -0.0054 (14) |
| C3  | 0.0405 (17) | 0.0515 (19) | 0.0359 (16) | -0.0180 (15) | -0.0163 (13) | -0.0018 (14) |
| C4  | 0.0380 (16) | 0.0435 (18) | 0.0363 (17) | -0.0063 (14) | -0.0113 (13) | -0.0005 (14) |
| C5  | 0.0369 (18) | 0.064 (3)   | 0.065 (3)   | -0.0081 (18) | -0.0109 (17) | -0.004 (2)   |
| C6  | 0.041 (2)   | 0.069 (3)   | 0.079 (3)   | 0.005 (2)    | 0.000(2)     | -0.005 (2)   |
| C7  | 0.065 (3)   | 0.051 (2)   | 0.054 (2)   | 0.014 (2)    | 0.002 (2)    | -0.0050 (19) |
| C8  | 0.059 (2)   | 0.0417 (19) | 0.047 (2)   | 0.0006 (17)  | -0.0085 (17) | -0.0100 (16) |
| C9  | 0.0391 (16) | 0.0387 (17) | 0.0331 (16) | -0.0033 (13) | -0.0080 (13) | -0.0013 (13) |
| C10 | 0.0472 (18) | 0.0344 (16) | 0.0356 (16) | -0.0159 (14) | -0.0071 (13) | -0.0021 (13) |
| C11 | 0.0384 (16) | 0.0292 (15) | 0.0391 (16) | -0.0056 (12) | -0.0068 (13) | -0.0093 (12) |
| C12 | 0.055 (2)   | 0.0376 (17) | 0.0387 (17) | -0.0062 (15) | -0.0128 (15) | -0.0054 (14) |
| C13 | 0.067 (2)   | 0.052 (2)   | 0.046 (2)   | -0.0057 (18) | -0.0245 (18) | -0.0162 (17) |
| C14 | 0.052 (2)   | 0.063 (2)   | 0.061 (2)   | -0.0081 (18) | -0.0208 (18) | -0.029 (2)   |
| C15 | 0.0351 (16) | 0.059 (2)   | 0.0495 (19) | -0.0113 (15) | -0.0069 (14) | -0.0251 (17) |
| C16 | 0.0334 (15) | 0.0344 (15) | 0.0368 (16) | -0.0017 (12) | -0.0071 (12) | -0.0147 (13) |
| C17 | 0.0513 (19) | 0.0443 (18) | 0.0423 (18) | -0.0168 (15) | -0.0141 (15) | -0.0132 (15) |
| C18 | 0.0545 (19) | 0.0415 (17) | 0.0352 (16) | -0.0192 (15) | -0.0043 (14) | -0.0129 (14) |
| C19 | 0.083 (3)   | 0.051 (2)   | 0.064 (2)   | -0.019 (2)   | -0.016 (2)   | -0.0283 (19) |
| C20 | 0.096 (3)   | 0.048 (2)   | 0.069 (3)   | -0.014 (2)   | -0.011 (2)   | -0.032 (2)   |
| C21 | 0.069 (3)   | 0.042 (2)   | 0.056 (2)   | 0.0030 (18)  | -0.0085 (19) | -0.0170 (18) |
| C22 | 0.0507 (19) | 0.0397 (18) | 0.048 (2)   | -0.0061 (15) | -0.0073 (15) | -0.0143 (15) |
| C23 | 0.0352 (16) | 0.054 (2)   | 0.0325 (16) | -0.0134 (14) | 0.0043 (12)  | -0.0098 (14) |
| C24 | 0.0368 (15) | 0.0381 (16) | 0.0290 (15) | 0.0035 (13)  | -0.0053 (12) | -0.0105 (13) |
| C25 | 0.054 (2)   | 0.061 (2)   | 0.0399 (19) | -0.0074 (18) | -0.0015 (15) | -0.0234 (17) |
| C26 | 0.075 (3)   | 0.071 (3)   | 0.048 (2)   | -0.012 (2)   | -0.0042 (19) | -0.036 (2)   |

| C27<br>C28 | 0.073 (3)<br>0.061 (2) | 0.060 (2)<br>0.0468 (19) | 0.064 (3)<br>0.0449 (19) | -0.023(2)<br>-0.0197(17) | -0.004 (2)<br>-0.0011 (16) | -0.035 (2)<br>-0.0204 (16) |
|------------|------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------------|
| C29        | 0.0299 (14)            | 0.0376 (15)              | 0.0295 (14)              | -0.0142 (12)             | 0.0009 (11)                | -0.0134 (12)               |
| C30        | 0.111 (4)              | 0.073 (3)                | 0.093 (4)                | -0.046 (3)               | 0.016 (3)                  | -0.044 (3)                 |
| O1W        | 0.0373 (14)            | 0.123 (3)                | 0.079 (2)                | -0.0221 (16)             | 0.0020 (15)                | -0.056 (2)                 |

Geometric parameters (Å, °)

| Dy1-01              | 2.230 (2)   | C10—C11              | 1.508 (4)  |
|---------------------|-------------|----------------------|------------|
| Dy1—O2              | 2.246 (2)   | C10—H10A             | 0.9900     |
| Dy1—O3              | 2.367 (2)   | C10—H10B             | 0.9900     |
| Dy1—O4 <sup>i</sup> | 2.3762 (19) | C11—C12              | 1.388 (5)  |
| Dy1—N4              | 2.523 (3)   | C11—C16              | 1.405 (4)  |
| Dy1—N3              | 2.581 (3)   | C12—C13              | 1.384 (5)  |
| Dy1—N2              | 2.606 (2)   | C12—H12              | 0.9500     |
| Dy1—N1              | 2.612 (2)   | C13—C14              | 1.371 (6)  |
| N1—C17              | 1.473 (4)   | C13—H13              | 0.9500     |
| N1—C1               | 1.500 (4)   | C14—C15              | 1.381 (5)  |
| N1—C3               | 1.501 (4)   | C14—H14              | 0.9500     |
| N2-C23              | 1.483 (4)   | C15—C16              | 1.402 (4)  |
| N2-C10              | 1.488 (4)   | C15—H15              | 0.9500     |
| N2—C2               | 1.492 (4)   | C17—C18              | 1.490 (5)  |
| N3—C22              | 1.343 (4)   | C17—H17A             | 0.9900     |
| N3—C18              | 1.345 (4)   | C17—H17B             | 0.9900     |
| N4—C28              | 1.330 (4)   | C18—C19              | 1.398 (5)  |
| N4—C24              | 1.343 (4)   | C19—C20              | 1.363 (6)  |
| O1—C9               | 1.348 (4)   | C19—H19              | 0.9500     |
| O2—C16              | 1.324 (4)   | C20—C21              | 1.376 (6)  |
| O3—C29              | 1.254 (3)   | C20—H20              | 0.9500     |
| O4—C29              | 1.251 (3)   | C21—C22              | 1.384 (5)  |
| O30—C30             | 1.431 (6)   | C21—H21              | 0.9500     |
| O30—H30             | 0.8400      | C22—H22              | 0.9500     |
| C1—C2               | 1.483 (5)   | C23—C24              | 1.506 (5)  |
| C1—H1A              | 0.9900      | C23—H23A             | 0.9900     |
| C1—H1B              | 0.9900      | C23—H23B             | 0.9900     |
| C2—H2A              | 0.9900      | C24—C25              | 1.381 (5)  |
| C2—H2B              | 0.9900      | C25—C26              | 1.374 (6)  |
| C3—C4               | 1.479 (5)   | C25—H25              | 0.9500     |
| С3—НЗА              | 0.9900      | C26—C27              | 1.373 (6)  |
| С3—Н3В              | 0.9900      | C26—H26              | 0.9500     |
| C4—C9               | 1.396 (5)   | C27—C28              | 1.379 (5)  |
| C4—C5               | 1.407 (5)   | C27—H27              | 0.9500     |
| C5—C6               | 1.376 (7)   | C28—H28              | 0.9500     |
| С5—Н5               | 0.9500      | C29—C29 <sup>i</sup> | 1.555 (5)  |
| С6—С7               | 1.377 (7)   | C30—H30A             | 0.9800     |
| С6—Н6               | 0.9500      | C30—H30B             | 0.9800     |
| С7—С8               | 1.400 (6)   | C30—H30C             | 0.9800     |
| С7—Н7               | 0.9500      | O1W—H1W              | 0.824 (19) |

| C8—C9                     | 1.395 (5)   | O1W—H2W                             | 0.859 (19)          |
|---------------------------|-------------|-------------------------------------|---------------------|
| C8—H8                     | 0.9500      |                                     |                     |
|                           |             |                                     |                     |
| O1—Dy1—O2                 | 144.63 (8)  | C9—C8—H8                            | 120.3               |
| O1—Dy1—O3                 | 84.42 (8)   | С7—С8—Н8                            | 120.3               |
| O2—Dy1—O3                 | 116.58 (8)  | O1—C9—C8                            | 120.5 (3)           |
| O1—Dy1—O4 <sup>i</sup>    | 81.35 (8)   | O1—C9—C4                            | 119.3 (3)           |
| $O2$ — $Dy1$ — $O4^{i}$   | 80.87 (8)   | C8—C9—C4                            | 120.2 (3)           |
| $O3$ — $Dy1$ — $O4^i$     | 68.63 (6)   | N2-C10-C11                          | 117.3 (2)           |
| O1—Dy1—N4                 | 72.89 (8)   | N2-C10-H10A                         | 108.0               |
| O2—Dy1—N4                 | 74.69 (8)   | C11—C10—H10A                        | 108.0               |
| O3—Dy1—N4                 | 145.79 (8)  | N2-C10-H10B                         | 108.0               |
| O4 <sup>i</sup> —Dy1—N4   | 82.64 (8)   | C11—C10—H10B                        | 108.0               |
| O1—Dy1—N3                 | 138.31 (8)  | H10A-C10-H10B                       | 107.2               |
| O2—Dy1—N3                 | 76.73 (8)   | C12—C11—C16                         | 119.5 (3)           |
| O3—Dy1—N3                 | 75.05 (8)   | C12—C11—C10                         | 120.9 (3)           |
| O4 <sup>i</sup> —Dy1—N3   | 121.88 (8)  | C16—C11—C10                         | 119.4 (3)           |
| N4—Dy1—N3                 | 138.23 (8)  | C13—C12—C11                         | 121.5 (3)           |
| 01—Dy1—N2                 | 102.00 (8)  | C13—C12—H12                         | 119.2               |
| O2—Dy1—N2                 | 77.22 (8)   | C11—C12—H12                         | 119.2               |
| O3—Dy1—N2                 | 145.35 (7)  | C14—C13—C12                         | 119.0 (3)           |
| O4 <sup>i</sup> —Dy1—N2   | 145.73 (7)  | C14—C13—H13                         | 120.5               |
| N4—Dy1—N2                 | 66.38 (8)   | C12—C13—H13                         | 120.5               |
| N3—Dy1—N2                 | 78.08 (8)   | C13—C14—C15                         | 120.9 (3)           |
| 01—Dy1—N1                 | 75.09 (8)   | C13—C14—H14                         | 119.6               |
| O2—Dy1—N1                 | 133.82 (8)  | C15—C14—H14                         | 119.6               |
| O3—Dy1—N1                 | 79.56 (7)   | C14—C15—C16                         | 120.8 (3)           |
| $O4^{i}$ —Dy1—N1          | 141.93 (7)  | C14—C15—H15                         | 119.6               |
| N4—Dv1—N1                 | 117.22 (8)  | C16—C15—H15                         | 119.6               |
| N3—Dv1—N1                 | 65.83 (8)   | O2—C16—C15                          | 121.0 (3)           |
| N2—Dv1—N1                 | 69.63 (8)   | O2—C16—C11                          | 120.7 (3)           |
| C17—N1—C1                 | 111.6 (3)   | C15—C16—C11                         | 118.3 (3)           |
| C17—N1—C3                 | 105.0 (2)   | N1 - C17 - C18                      | 114.9 (3)           |
| C1-N1-C3                  | 107.6 (2)   | N1-C17-H17A                         | 108.5               |
| C17—N1—Dv1                | 108.94 (18) | C18—C17—H17A                        | 108.5               |
| C1 - N1 - Dv1             | 111.06 (17) | N1—C17—H17B                         | 108.5               |
| C3-N1-Dv1                 | 112.49 (17) | C18—C17—H17B                        | 108.5               |
| $C_{23}$ N2 $C_{10}$      | 110.9 (2)   | H17A—C17—H17B                       | 107.5               |
| $C_{23}$ $N_{2}$ $C_{2}$  | 110.7 (2)   | N3—C18—C19                          | 121.8 (3)           |
| C10-N2-C2                 | 105.4 (2)   | N3-C18-C17                          | 117.4 (3)           |
| $C_{23}$ N2 $D_{v1}$      | 107.39(18)  | C19-C18-C17                         | 120.7(3)            |
| C10-N2-Dy1                | 112.67 (17) | $C_{20}$ $C_{19}$ $C_{18}$          | 120.7(3)<br>1191(4) |
| C2-N2-Dv1                 | 109.85 (17) | C20-C19-H19                         | 120.5               |
| $C_{22} = N_{2} = D_{31}$ | 117 8 (3)   | C18-C19-H19                         | 120.5               |
| $C_{22} = N_3 = D_{v1}$   | 123 9 (2)   | C19-C20-C21                         | 120.0(4)            |
| C18 - N3 - Dv1            | 118.3 (2)   | C19-C20-H20                         | 120.0 (1)           |
| $C_{28}$ N4 $C_{24}$      | 118.4(3)    | $C_{21}$ $C_{20}$ $H_{20}$          | 120.0               |
| $C_{28}$ N4 $D_{v1}$      | 122 3 (2)   | $C_{20}$ $C_{21}$ $C_{22}$ $C_{22}$ | 1180(4)             |
|                           |             |                                     |                     |

| C24—N4—Dy1                 | 119.1 (2)   | C20—C21—H21                        | 121.0     |
|----------------------------|-------------|------------------------------------|-----------|
| C9—O1—Dy1                  | 133.9 (2)   | C22—C21—H21                        | 121.0     |
| C16—O2—Dy1                 | 132.11 (18) | N3—C22—C21                         | 123.4 (4) |
| C29—O3—Dy1                 | 118.66 (17) | N3—C22—H22                         | 118.3     |
| C29—O4—Dy1 <sup>i</sup>    | 119.02 (17) | C21—C22—H22                        | 118.3     |
| C30—O30—H30                | 109.5       | N2—C23—C24                         | 113.1 (2) |
| C2-C1-N1                   | 114.0 (3)   | N2—C23—H23A                        | 109.0     |
| C2—C1—H1A                  | 108.8       | С24—С23—Н23А                       | 109.0     |
| N1—C1—H1A                  | 108.8       | N2—C23—H23B                        | 109.0     |
| C2—C1—H1B                  | 108.8       | C24—C23—H23B                       | 109.0     |
| N1—C1—H1B                  | 108.8       | H23A—C23—H23B                      | 107.8     |
| H1A—C1—H1B                 | 107.7       | N4—C24—C25                         | 121.9 (3) |
| C1—C2—N2                   | 113.7 (3)   | N4—C24—C23                         | 116.7 (3) |
| C1—C2—H2A                  | 108.8       | C25—C24—C23                        | 121.4 (3) |
| N2—C2—H2A                  | 108.8       | C26—C25—C24                        | 119.1 (3) |
| C1—C2—H2B                  | 108.8       | C26—C25—H25                        | 120.5     |
| N2—C2—H2B                  | 108.8       | C24—C25—H25                        | 120.5     |
| $H_2A - C_2 - H_2B$        | 107.7       | $C_{27}$ $C_{26}$ $C_{25}$         | 119.2 (3) |
| C4—C3—N1                   | 115.0 (3)   | C27—C26—H26                        | 120.4     |
| C4—C3—H3A                  | 108.5       | C25—C26—H26                        | 120.4     |
| N1—C3—H3A                  | 108.5       | C26—C27—C28                        | 118.7 (4) |
| C4—C3—H3B                  | 108.5       | С26—С27—Н27                        | 120.7     |
| N1—C3—H3B                  | 108.5       | С28—С27—Н27                        | 120.7     |
| H3A—C3—H3B                 | 107.5       | N4—C28—C27                         | 122.7(3)  |
| C9—C4—C5                   | 118.8 (3)   | N4—C28—H28                         | 118.7     |
| C9—C4—C3                   | 119.7 (3)   | C27—C28—H28                        | 118.7     |
| C5—C4—C3                   | 121.4 (3)   | 04-C29-O3                          | 126.9 (3) |
| C6—C5—C4                   | 120.9 (4)   | $04-C29-C29^{i}$                   | 116.1 (3) |
| С6—С5—Н5                   | 119.5       | Q3—C29—C29 <sup>i</sup>            | 117.0 (3) |
| C4—C5—H5                   | 119.5       | O30—C30—H30A                       | 109.5     |
| C5—C6—C7                   | 120.0 (4)   | O30—C30—H30B                       | 109.5     |
| С5—С6—Н6                   | 120.0       | H30A—C30—H30B                      | 109.5     |
| C7—C6—H6                   | 120.0       | O30—C30—H30C                       | 109.5     |
| C6-C7-C8                   | 120.5 (4)   | H30A—C30—H30C                      | 109.5     |
| C6—C7—H7                   | 119.7       | H30B—C30—H30C                      | 109.5     |
| C8—C7—H7                   | 119.7       | H1W - O1W - H2W                    | 105 (4)   |
| C9—C8—C7                   | 119.5 (4)   |                                    | 100 (1)   |
|                            |             |                                    |           |
| C17—N1—C1—C2               | 86.2 (3)    | C10-C11-C16-O2                     | 7.2 (4)   |
| $C_3 - N_1 - C_1 - C_2$    | -159.1(3)   | C12-C11-C16-C15                    | 1.0 (4)   |
| Dv1-N1-C1-C2               | -356(3)     | C10-C11-C16-C15                    | -1736(3)  |
| N1-C1-C2-N2                | 55 5 (4)    | C1-N1-C17-C18                      | -79.8(3)  |
| $C^{23} N^{2} C^{2} C^{1}$ | 74 6 (3)    | $C_{3}$ N1 $-C_{17}$ $-C_{18}$     | 163.9(3)  |
| $C_{10} - N_2 - C_2 - C_1$ | -165.5(3)   | Dv1-N1-C17-C18                     | 43.2 (3)  |
| $Dv_1 - N_2 - C_2 - C_1$   | -43.9(3)    | $C_{22}$ N3 $C_{18}$ $C_{19}$      | 2.1 (5)   |
| $C_{17} N_{1} C_{3} C_{4}$ | 177.2 (3)   | Dv1-N3-C18-C19                     | 179.2 (3) |
| C1 - N1 - C3 - C4          | 58.2 (3)    | $C_{22}$ N3 $C_{18}$ $C_{17}$      | -1745(3)  |
| $D_{V1} = N1 = C3 = C4$    | -644(3)     | $D_{v1} = N_{3} = C_{18} = C_{17}$ | 26(4)     |
| Dy1 -111-03-04             | (J) T.T     | Dy1 -113-010-01/                   | 2.0 (7)   |

| N1—C3—C4—C9     | 61.3 (4)   | N1-C17-C18-N3               | -32.3 (4)  |
|-----------------|------------|-----------------------------|------------|
| N1—C3—C4—C5     | -122.4 (3) | N1-C17-C18-C19              | 151.0 (3)  |
| C9—C4—C5—C6     | -1.4 (5)   | N3-C18-C19-C20              | -3.4 (6)   |
| C3—C4—C5—C6     | -177.7 (4) | C17—C18—C19—C20             | 173.1 (4)  |
| C4—C5—C6—C7     | -0.3 (6)   | C18—C19—C20—C21             | 1.8 (7)    |
| C5—C6—C7—C8     | 0.9 (7)    | C19—C20—C21—C22             | 0.9 (6)    |
| C6—C7—C8—C9     | 0.2 (6)    | C18—N3—C22—C21              | 0.8 (5)    |
| Dy1-01-C9-C8    | 126.2 (3)  | Dy1-N3-C22-C21              | -176.1 (3) |
| Dy1-01-C9-C4    | -54.6 (4)  | C20-C21-C22-N3              | -2.3 (6)   |
| C7—C8—C9—O1     | 177.3 (3)  | C10-N2-C23-C24              | 77.3 (3)   |
| C7—C8—C9—C4     | -1.9 (5)   | C2—N2—C23—C24               | -166.1 (3) |
| C5—C4—C9—O1     | -176.8 (3) | Dy1-N2-C23-C24              | -46.2 (3)  |
| C3—C4—C9—O1     | -0.4 (4)   | C28—N4—C24—C25              | 1.4 (5)    |
| C5—C4—C9—C8     | 2.4 (5)    | Dy1-N4-C24-C25              | 178.0 (2)  |
| C3—C4—C9—C8     | 178.9 (3)  | C28—N4—C24—C23              | 179.0 (3)  |
| C23—N2—C10—C11  | -63.2 (3)  | Dy1-N4-C24-C23              | -4.4 (3)   |
| C2-N2-C10-C11   | 176.9 (3)  | N2-C23-C24-N4               | 36.1 (4)   |
| Dy1-N2-C10-C11  | 57.1 (3)   | N2-C23-C24-C25              | -146.3 (3) |
| N2-C10-C11-C12  | 121.6 (3)  | N4—C24—C25—C26              | -1.3 (5)   |
| N2-C10-C11-C16  | -63.9 (4)  | C23—C24—C25—C26             | -178.8 (3) |
| C16—C11—C12—C13 | -1.4 (5)   | C24—C25—C26—C27             | 1.2 (6)    |
| C10-C11-C12-C13 | 173.1 (3)  | C25—C26—C27—C28             | -1.2 (6)   |
| C11—C12—C13—C14 | 0.4 (5)    | C24—N4—C28—C27              | -1.4 (5)   |
| C12—C13—C14—C15 | 1.0 (6)    | Dy1-N4-C28-C27              | -177.8 (3) |
| C13—C14—C15—C16 | -1.4 (6)   | C26—C27—C28—N4              | 1.3 (6)    |
| Dy1-02-C16-C15  | -129.4 (3) | Dy1 <sup>i</sup> —O4—C29—O3 | -174.1 (2) |
| Dy1-02-C16-C11  | 49.8 (4)   | $Dy1^{i}$                   | 6.2 (4)    |
| C14—C15—C16—O2  | 179.6 (3)  | Dy1O3C29O4                  | -173.9 (2) |
| C14—C15—C16—C11 | 0.4 (5)    | Dy1-03-C29-C29 <sup>i</sup> | 5.8 (4)    |
| C12—C11—C16—O2  | -178.2 (3) |                             |            |

Symmetry code: (i) -x+2, -y+1, -z+1.

### Hydrogen-bond geometry (Å, °)

| D—H···A                                     | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H… <i>A</i> |
|---------------------------------------------|-------------|----------|--------------|-----------------------|
| O30—H30…O1                                  | 0.84        | 1.80     | 2.636 (4)    | 178                   |
| $C1$ — $H1B$ ···O1 $W^{ii}$                 | 0.99        | 2.58     | 3.448 (4)    | 146                   |
| O1 <i>W</i> —H1 <i>W</i> ···O2 <sup>i</sup> | 0.82 (2)    | 1.97 (2) | 2.785 (4)    | 167 (5)               |
| O1 <i>W</i> —H2 <i>W</i> ···O30             | 0.86 (2)    | 1.95 (3) | 2.759 (5)    | 158 (5)               |

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.