

Received 29 January 2019 Accepted 6 February 2019

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; CsGa(HAsO₄)₂; arsenate; hydrogen arsenate.

CCDC reference: 1895785

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

$CsGa(HAsO_4)_2$, the first Ga representative of the RbAl(HAsO_4)_2 structure type

Karolina Schwendtner^a* and Uwe Kolitsch^b

^aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and ^bNaturhistorisches Museum, Burgring 7, 1010 Vienna, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria. *Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

The crystal structure of hydrothermally synthesized (T = 493 K, 7 d) caesium gallium bis[hydrogen arsenate(V)], CsGa(HAsO₄)₂, was solved by single-crystal X-ray diffraction. The compound crystallizes in the common RbAl(HAsO₄)₂ structure type (R32) and consists of a basic tetrahedral–octahedral framework topology that houses Cs⁺ cations in its channels. The AsO₄ tetrahedron is disordered over two positions with site occupancy factors of 0.946 (1) and 0.054 (1). Strong hydrogen bonds strengthen the network. The structure was refined as inversion twin.

1. Chemical context

Compounds with mixed tetrahedral-octahedral (T–O) framework structures are characterized by a broad range of different atomic arrangements. These topologies result in several interesting properties such as ion exchange (Masquelier *et al.*, 1996) and ion conductivity (Chouchene *et al.*, 2017), as well as unusual piezoelectric (Ren *et al.*, 2015), magnetic (Ouerfelli *et al.*, 2007) or non-linear optical features (frequency doubling; Sun *et al.*, 2017).

CsGa(HAsO₄)₂ was obtained during our extensive experimental study of the system $M^+ - M^{3+} - As^{5+} - O - (H)$ ($M^+ = Li$, Na, K, Rb, Cs, Ag, Tl, NH₄; M^{3+} = Al, Ga, In, Sc, Fe, Cr, Tl), which resulted in the discovery of an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007*a*,*b*,*c*, 2017*a*, 2018*a*, 2019; Schwendtner, 2006). One atomic arrangement, the $RbFe(HPO_4)_2$ type (Lii & Wu, 1994; rhombohedral, $R\overline{3}c$), and its two relatives, the CsAl₂As-(HAsO₄)₆ type (Schwendtner & Kolitsch, 2018a, rhombohedral, $R\overline{3}c$) and the RbAl(HAsO₄)₂ type (Schwendtner & Kolitsch, 2018a, rhombohedral, R32), were found to exhibit a large crystal-chemical flexibility, which allows the incorporation of a wide variety of M^+ and M^{3+} cations. So far the RbFe(HPO₄)₂-type is represented by eight arsenate members with the following M^+M^{3+} combinations: TlAl, (NH₄)Ga, RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b, 2018a,b,c,e). Six arsenates of the CsAl₂As- $(HAsO_4)_6$ type are known with the following M^+M^{3+} combinations: RbGa, CsGa, TlGa, RbAl, CsAl and CsFe (Schwendtner & Kolitsch, 2018a,c,d). CsGa(HAsO₄)₂ represents the third representative of the RbAl(HAsO₄)₂-type atomic arrangement, of which previously only the two M^+M^{3+} combinations RbAl and CsFe (Schwendtner & Kolitsch, 2018a) were known. The 12-coordinated M^+ cations present in

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathrm{H} \cdots A$
$O4-H\cdots O3^{iii}$	0.81 (4)	1.78 (4)	2.589 (5)	175 (6)

Symmetry code: (iii) -x + y + 1, -x + 1, z.

these types of compounds are rather large (M = Cs, Rb, Tl and NH₄), with ionic radii ranging from 1.70 to 1.88 Å (Shannon, 1976). No members containing K⁺ or any smaller M^+ cations are presently known, suggesting that the ionic radius of K⁺ (1.64 Å, Shannon, 1976) is already slightly too small for this type of framework. The ionic radii of the six-coordinated M^{3+} cations (M = Al, Cr, Fe, Ga, In) range from 0.535 to 0.800 Å (Shannon, 1976) and nearly all M^{3+} cations we studied are represented in these types of compounds, with the exception of Sc³⁺ and Tl³⁺. Syntheses aimed at preparing (NH₄)Sc(HAsO₄)₂, RbSc(HAsO₄)₂ and TlSc(HAsO₄)₂ instead led to the crystallization of the diarsenate compounds (NH₄)ScAs₂O₇ (Kolitsch, 2004), RbScAs₂O₇ (Schwendtner & Kolitsch, 2004) and TlScAs₂O₇ (Baran *et al.*, 2006), respectively.

There exist only three other Cs–Ga arsenates: The structurally closely related $CsGa_2As(HAsO_4)_6$ (Schwendtner & Kolitsch, 2018*b*), in which one third of the $M^{3+}O_6$ octahedra are replaced by AsO₆ octahedra; $CsGa(H_2AsO_4)(H_{1.5}AsO_4)_2$ (Schwendtner & Kolitsch, 2005) which was encountered in the same synthesis batch as the title compound; and $Cs_2Ga_3(As_3O_{10})(AsO_4)_2$ (Lin & Lii, 1996).

2. Structural commentary

CsGa(HAsO₄)₂ is a representative of the RbAl(HAsO₄)₂ structure type (*R*32; Schwendtner & Kolitsch, 2018*a*) and has a basic tetrahedral–octahedral framework structure featuring interpenetrating channels, which host the M^+ cations (Fig. 1). This structure type is closely related to the RbFe(HPO₄)₂ structure type (*R*3*c*; Lii & Wu, 1994), the RbAl₂As(HAsO₄)₆ type (*R*3*c*; Schwendtner & Kolitsch, 2018*a*) and the triclinic (NH₄)Fe(HPO₄)₂ type (*P*1; Yakubovich, 1993). The fundamental building unit in all these structure types contains $M^{3+}O_6$ octahedra, which are connected *via* their six corners to six protonated AsO₄ tetrahedra, thereby forming an

Figure 1

General outline of the crystal structure of $CsGa(HAsO_4)_2$ viewed along *a*. Only the main AsO₄ tetrahedra are shown (the As*B*-centred tetrahedra are omitted for clarity). Hydrogen bonds are shown as blue dotted lines.

Table	2	
Selecte	ed bond length	s (Å).

-			
$Cs1-O4(6\times)$	3.338 (3)	As-O1	1.659 (3)
$Cs1 - O2(6 \times)$	3.451 (3)	As-O2	1.667 (3)
$Cs2-O4(3\times)$	3.014 (3)	As-O3	1.691 (3)
$Cs2-O1(3\times)$	3.445 (3)	As-O4	1.740 (3)
$Cs2-O4(3\times)$	3.459 (3)	AsB-O1	1.625 (7)
$Cs2-O3(3\times)$	3.516 (3)	AsB-O3B	1.66 (6)
$Ga1-O2(3\times)$	1.958 (3)	$AsB - O4B^{i}$	1.69 (6)
$Ga1-O3(3\times)$	1.982 (3)	$AsB - O2B^{ii}$	1.76(7)
Ga2-O1 (6×)	1.967 (3)		

Symmetry codes: (i) -y + 1, x - y, z; (ii) -x + y, -x, z.

 M^{3+} As₆O₂₄ unit. These units are in turn connected *via* three corners to other M^{3+} O₆ octahedra. The free, protonated corner of each AsO₄ tetrahedron forms a medium-to-strong hydrogen bond (Table 1) to the neighbouring M^{3+} As₆O₂₄ group (Fig. 2*a*,*b*). The M^{3+} As₆O₂₄ units are arranged in layers perpendicular to the c_{hex} axis (Fig. 1). The units within these

Detailed view of the different layers in the structure of $CsGa(HAsO_4)_2$. The alternative $AsBO_4$ tetrahedra, the alternative hydrogen bonds and OB atoms are shown in transparent mode. (*a*) The layer showing the $Ga1As_6O_{24}$ group including the alternative $AsBO_4$ tetrahedra. (*b*) The layer showing the $Ga2As_6O_{24}$ group including the alternative $AsBO_4$ tetrahedra. (*b*) The layer showing the $Ga2As_6O_{24}$ group including the alternative $AsBO_4$ tetrahedra.

layers are held together by medium–strong hydrogen bonds (Table 2). Nearly all of the representatives of these closely related structure types show pseudo-hexagonal to pseudo-octahedral crystal habits. In line with this observation, $CsGa(HAsO_4)_2$ forms tiny pseudo-hexagonal platelets.

The two Cs atoms in the framework voids are 12-coordinated. While the average Cs1–O bond length, 3.395 Å, is slightly longer than the grand mean average of 3.377 Å (Gagné & Hawthorne, 2016), it fits the low bond-valence sum (BVS) of 0.84 valence units (v.u.) which was calculated with the bond-valence parameters of Gagné & Hawthorne (2015). In contrast, the average Cs2–O bond length is slightly shorter (3.359 Å) and the individual Cs2–O bond lengths (Table 2) show a much wider bond-length range, resulting in a much too high bond-valence sum of 1.38 v.u. This is mainly caused by four very short Cs2–O bond lengths of only 3.014 Å, although even shorter Cs–O bond lengths, as low as 2.910 Å, have been reported for 12-coordinated Cs⁺ cations (Gagné & Hawthorne, 2016).

The Ga atoms at the centre of the two GaO₆ octahedra are also slightly overbonded with BVSs of 3.05 and 3.07 v.u., and average Ga-O bond lengths of 1.970 and 1.967 Å for Ga1 and Ga2, respectively. These values are somewhat shorter than the grand mean average for six-coordinated Ga of 1.978 Å (Gagné & Hawthorne, 2018). The AsO_4 tetrahedra show the typical bond-length geometry of HAsO4 groups with three short and one long As-O bond. The average As-O bond length (1.689 Å) is very close to the observed average of HAsO₄ groups (1.687 Å; Schwendtner & Kolitsch, 2019), but the As-O bond length to the protonated O4 atom (1.740 Å, Table 2) is notably longer than the average of 1.728 Å for As-OH bonds in singly protonated AsO₄ groups (Schwendtner & Kolitsch, 2019). The BVS for the As atom is close to ideal with 4.98 v.u. All its O ligands are underbonded to a varying degree, with BVSs ranging from 1.39 v.u. for O4 to 1.92 v.u. for O1.

The As atom is characterized by a split position. The As*B* site, 1.27 Å away from the main As position, has a refined occupancy of about 5%. The As*B* site shares one apical ligand (O1) with the main AsO₄ tetrahedron and has three additional low-occupancy O atoms (O2*B*, O3*B* and O4*B*) as remaining ligands. The split position can roughly be explained by a mirror plane in (110). The average As*B*–O bond length of 1.684 Å is slightly shorter than the corresponding value of the main AsO₄ tetrahedron (1.689 Å), and the As*B*–O bonds also show a wider bond-length range (Table 2). The calculated BVS for the As*B* site (5.09 v.u.) is reasonable considering the high estimated uncertainty of this value in view of the relatively large positional and bond-length errors for the As*B* site (Table 2).

3. Synthesis and crystallization

Small pseudo-hexagonal colorless platelets of $CsGa(HAsO_4)_2$ were prepared hydrothermally (T = 493 K, 7 d) in a Teflonlined stainless steel autoclave from a mixture of Cs_2CO_3 , Ga_2O_3 (approximate molar ratio Cs:Ga of 1:1), arsenic acid and distilled water. Enough arsenic acid was added to keep the

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	CsGa(HAsO ₄) ₂
M _r	482.49
Crystal system, space group	Trigonal, R32:H
Temperature (K)	293
a, c (Å)	8.481 (1), 27.050 (5)
$V(Å^3)$	1685.0 (5)
Ζ	9
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	17.24
Crystal size (mm)	$0.03\times0.03\times0.01$
Data collection	
Diffractometer	Nonius KappaCCD single-crystal four-circle
Absorption correction	Multi-scan (<i>HKL SCALEPACK</i> ; Otwinowski <i>et al.</i> , 2003)
T_{\min}, T_{\max}	0.626, 0.846
No. of measured, independent and	2738, 1375, 1283
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.018
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.757
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.042, 1.07
No. of reflections	1375
No. of parameters	76
No. of restraints	2
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.72, -0.74
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.46 (2)

Computer programs: COLLECT (Nonius, 2003), HKL DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publcIF (Westrip, 2010).

pH between about 1.5 and 0.5. The Teflon cylinders were filled with distilled water up to approximately 80% of their inner volume. Initial and final pH values were about 1.5 and 1, respectively. The platelets were accompanied by large colourless glassy prisms of $CsGa(H_2AsO_4)(H_{1.5}AsO_4)_2$ (Schwendtner & Kolitsch, 2005), which made up about 80% of the reaction products.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

The refinement of CsGa(HAsO₄)₂ revealed a considerable residual electron-density peak of 5.1 e Å⁻³ 1.27 Å away from As and 1.62 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore was assumed to be an alternative flipped As position (sharing the same O1 atom), similar to what was encountered in related TlAl(HAsO₄) and CsIn(HAsO₄)₂ ($R\overline{3}c$ type; Schwendtner & Kolitsch, 2017b, 2018e). An inclusion of the alternative position led to a considerable drop in the conventional *R* factor and weight parameters and the highest residual electron densities also decreased considerably. Three electron-density peaks between 1.15 and 1.19 e Å⁻³ close to this As*B* position could be attributed to the O ligands of this flipped AsO₄ tetrahedra and, after including them into the structure model, the conventional *R* factor dropped from 3.5 to 1.99%. The remaining highest residual electron densities of 0.72 and -0.74 e Å⁻³ are located close to the Cs positions. The occupancy of the alternative As position (Fig. 2) refined to about 5%, while the independently refined occupancy of the main As position was about 95%. For the final refinement, the displacement parameters of the As*B*, O2*B*, O3*B* and O4*B* sites were restrained to be the same as that of the main AsO₄ tetrahedron position, and the occupancy of 1.00. The structure was refined as inversion twin with a Flack parameter of 0.46 (2).

Acknowledgements

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Funding information

Funding for this research was provided by: Austrian Academy of Sciences (award No. Doc fForte Fellowship to K. Schwendtner).

References

- Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340.
- Brandenburg, K. (2005). DIAMOND. Bonn, Germany.
- Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). *Solid State Ionics*, **301**, 78–85.
- Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.

- Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.
- Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.
- Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.
- Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.
- Lin, K.-J. & Lii, K.-H. (1996). Chem. Commun. pp. 1137-1138.
- Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the, 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey, Fort Monmouth, NJ: US Army Research Laboratory.
- Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.
- Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
- Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.
- Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.
- Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.
- Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.
- Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.
- Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.
- Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.
- Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.
- Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.
- Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.
- Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771.
- Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249. Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167.
- Schwendtner, K. & Kolitsch, U. (2018e). Acta Cryst. E74, 1504–1508.
- Schwendtner, K. & Kolitsch, U. (2019). Acta Cryst. C. Submitted.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.

supporting information

Acta Cryst. (2019). E75, 346-349 [https://doi.org/10.1107/S2056989019002081]

CsGa(HAsO₄)₂, the first Ga representative of the RbAl(HAsO₄)₂ structure type

Karolina Schwendtner and Uwe Kolitsch

Computing details

Data collection: *COLLECT* (Nonius, 2003); cell refinement: *HKL SCALEPACK* (Otwinowski *et al.*, 2003); data reduction: *HKL DENZO* and *SCALEPACK* (Otwinowski *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Caesium gallium bis[hydrogen arsenate(V)]

Crystal data

CsGa(HAsO₄)₂ $M_r = 482.49$ Trigonal, R32:H a = 8.481 (1) Å c = 27.050 (5) Å V = 1685.0 (5) Å³ Z = 9F(000) = 1962

Data collection

Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski *et al.*, 2003) $T_{\min} = 0.626, T_{\max} = 0.846$ 2738 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.042$ S = 1.071375 reflections 76 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map

 $D_x = 4.279 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1370 reflections $\theta = 2.3-32.5^{\circ}$ $\mu = 17.24 \text{ mm}^{-1}$ T = 293 KTiny hexagonal platelets, colourless $0.03 \times 0.03 \times 0.01 \text{ mm}$

1375 independent reflections 1283 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 32.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -10 \rightarrow 10$ $l = -40 \rightarrow 40$

All H-atom parameters refined $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0194P)^{2} + 2.6152P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.72 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.74 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/\sin(2\theta)]^{-1/4} Extinction coefficient: 0.00041 (4) Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.46 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.2225 (4)	0.1039 (5)	0.04039 (9)	0.0161 (5)	
Cs1	0.333333	0.666667	0.166667	0.02717 (16)	
Cs2	0.333333	0.666667	0.00046 (2)	0.02105 (12)	
Gal	0.000000	0.000000	0.17439 (2)	0.00792 (13)	
Ga2	0.000000	0.000000	0.000000	0.00791 (17)	
As	0.29653 (6)	0.22380 (6)	0.09219 (2)	0.00852 (10)	0.9461 (12)
O2	0.1465 (4)	0.2152 (5)	0.13347 (13)	0.0110 (6)	0.9461 (12)
03	0.4566 (4)	0.1811 (5)	0.11541 (11)	0.0110 (5)	0.9461 (12)
O4	0.4135 (4)	0.4521 (4)	0.07510 (12)	0.0151 (5)	0.9461 (12)
AsB	0.2984 (10)	0.0710 (10)	0.0923 (3)	0.00852 (10)	0.0540 (12)
O2B	0.081 (9)	0.213 (10)	0.134 (2)	0.0110 (6)	0.0540 (12)
O3B	0.457 (7)	0.265 (8)	0.117 (2)	0.0110 (5)	0.0540 (12)
O4B	0.549 (8)	0.587 (7)	0.077 (2)	0.0151 (5)	0.0540 (12)
Н	0.510 (7)	0.474 (8)	0.0874 (17)	0.017 (13)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0123 (12)	0.0253 (16)	0.0101 (11)	0.0090 (14)	-0.0040 (9)	-0.0056 (13)
Cs1	0.0313 (2)	0.0313 (2)	0.0188 (3)	0.01567 (12)	0.000	0.000
Cs2	0.02470 (15)	0.02470 (15)	0.01374 (19)	0.01235 (8)	0.000	0.000
Gal	0.00859 (18)	0.00859 (18)	0.0066 (3)	0.00430 (9)	0.000	0.000
Ga2	0.0088 (3)	0.0088 (3)	0.0062 (4)	0.00438 (13)	0.000	0.000
As	0.00777 (17)	0.01075 (19)	0.00680 (16)	0.00446 (15)	-0.00031 (14)	0.00020 (14)
O2	0.0107 (14)	0.0127 (13)	0.0097 (12)	0.0060 (13)	0.0045 (11)	0.0008 (10)
O3	0.0110 (13)	0.0138 (14)	0.0104 (12)	0.0078 (10)	-0.0029 (11)	-0.0029 (11)
O4	0.0103 (14)	0.0123 (14)	0.0207 (14)	0.0042 (12)	-0.0013 (12)	0.0052 (12)
AsB	0.00777 (17)	0.01075 (19)	0.00680 (16)	0.00446 (15)	-0.00031 (14)	0.00020 (14)
O2B	0.0107 (14)	0.0127 (13)	0.0097 (12)	0.0060 (13)	0.0045 (11)	0.0008 (10)
O3B	0.0110 (13)	0.0138 (14)	0.0104 (12)	0.0078 (10)	-0.0029 (11)	-0.0029 (11)
O4B	0.0103 (14)	0.0123 (14)	0.0207 (14)	0.0042 (12)	-0.0013 (12)	0.0052 (12)

Geometric parameters (Å, °)

O1—AsB	1.625 (7)	Ga1—O3 ^{iv}	1.982 (3)
O1—As	1.659 (3)	Ga1—O3 ^{xi}	1.982 (3)
O1—Ga2	1.967 (3)	Ga1—O3 ^{xii}	1.982 (3)
O1—Cs2 ⁱ	3.445 (3)	As—O2	1.667 (3)

Cs1—O4	3.338 (3)	As—O3	1.691 (3)
Cs1—O4 ⁱⁱ	3.338 (3)	As—O4	1.740 (3)
Cs1—O4 ⁱⁱⁱ	3.338 (3)	As—H	1.99 (6)
Cs1—O4 ^{iv}	3.338 (3)	O4—H	0.81 (4)
Cs1—O4 ^v	3.338 (3)	AsB—O3B	1.66 (6)
Cs1—O4 ^{vi}	3.338 (3)	AsB-O4B ^{xiii}	1.69 (6)
Cs1—O2 ^{iv}	3.451 (3)	AsB—O2B ^x	1.76 (7)
Cs1—O2 ⁱⁱ	3.451 (3)	O4B—H	0.88 (7)
Cs1—O2	3.451 (3)	Cs1—O4 (6x)	3.338 (3)
Cs1—O2 ⁱⁱⁱ	3.451 (3)	Cs1-O2(6x)	3.451 (3)
Cs1—O2 ^v	3.451 (3)	Cs2-O4(3x)	3.014 (3)
Cs1—O2 ^{vi}	3.451 (3)	Cs2-O1(3x)	3.445 (3)
Cs1—H	3.46 (5)	Cs2-O4(3x)	3.459 (3)
Cs2—O4 ⁱⁱⁱ	3.014 (3)	Cs2-O3(3x)	3.516 (3)
Cs2—O4 ⁱⁱ	3.014 (3)	Ga1 - O2(3x)	1.958 (3)
Cs2—O4	3.014 (3)	Ga1 - O3 (3x)	1.982 (3)
Cs2—O4 ^{vii}	3.459 (3)	Ga2 - O1 (6x)	1.967 (3)
Cs2—O4 ^{viii}	3.459 (3)	As-O1	1.659 (3)
$Cs2 - O4^i$	3.459 (3)	As-O2	1.667 (3)
$Cs2-O3^{i}$	3.516 (3)	As-O3	1.691 (3)
$C_82 - O_3^{vii}$	3.516 (3)	As-04	1.740 (3)
$C_82 - O_3^{viii}$	3.516 (3)	AsB-O1	1.625 (7)
Ga1—O2 ^{ix}	1.958 (3)	AsB-O3B	1.66 (6)
Gal—O2	1.958 (3)	$AsB-O4B^{xiii}$	1.69 (6)
$Ga1 - O2^x$	1.958 (3)	$AsB-O2B^{x}$	1.05 (0)
641 02	1.900 (3)		1.70(7)
As-O1-Ga2	136.69 (19)	$O1^{vii}$ —Cs2—O4 ⁱ	124.15 (7)
AsB—O1—Cs2 ⁱ	87.7 (3)	$O1^{i}$ —Cs2—O4 ⁱ	46.56 (8)
As—O1—Cs2 ⁱ	87.31 (11)	$O1^{viii}$ —Cs2—O4 ⁱ	63.74 (8)
$Ga2-O1-Cs2^{i}$	127.46 (10)	O4 ^{vii} —Cs2—O4 ⁱ	88.64 (8)
04—Cs1—O4 ⁱⁱ	70.99 (9)	$O4^{viii}$ —Cs2—O4 ⁱ	88.64 (8)
$O4-Cs1-O4^{iii}$	70.99 (9)	$O4^{iii}$ —Cs2—O3 ⁱ	159.00 (8)
$O4^{ii}$ —Cs1—O4 ⁱⁱⁱ	70.99 (9)	04^{ii} —Cs2—O3 ⁱ	115.45 (8)
$O4-Cs1-O4^{iv}$	99.40 (11)	$04-Cs2-03^{i}$	115.32 (8)
$O4^{ii}$ —Cs1—O4 ^{iv}	123.13 (11)	01^{vii} Cs2 03^{i}	80.58 (7)
$O4^{iii}$ —Cs1—O4 ^{iv}	160 35 (10)	01^{i} Cs ² 03^{i}	45 29 (7)
$04-Cs1-04^{v}$	123 13 (11)	01^{viii} 032^{viii} 03^{i}	90.53(7)
04^{ii}	160 35 (10)	04^{vii} Cs2 03	43 57 (8)
04^{iii} Cs1 04^{v}	99 40 (11)	04^{viii} (s2 - 03	80 71 (8)
$O4^{iv}$ —Cs1—O4 ^v	70 99 (9)	04^{i} Cs2 03^{i}	46.05 (8)
$04-Cs1-04^{vi}$	160.35(10)	$01^{iii} - 03^{iii}$	115.45(8)
04^{ii}	99.40 (11)	04^{ii} Cs^{2} 03^{vii}	115.45 (8)
04^{iii} Cs1 04^{vi}	123 13 (11)	$04 - C_{s2} - 03^{vii}$	159.00 (8)
$O4^{iv}$ —Cs1—O4 ^{vi}	70 99 (9)	01^{vii} $C_{32} = 03^{vii}$	45 29 (7)
04^{v} Cs1 04^{vi}	70.99 (9)	01 - 032 - 03	73.23(7)
04 - 031 - 04	63 50 (8)	01 - 03 - 03 = 03	90.33 (7) 80 58 (7)
04^{ii} 02^{iv}	126 04 (7)	$O_1 = C_{32} = O_3$ $O_4^{\text{vii}} = C_{32} = O_2^{\text{vii}}$	A6 05 (9)
$O_{7} = O_{31} = O_{2}$	120.94(7) 115 11 (9)	$O_{7} = C_{52} = O_{5}$	40.05 (0) 12 57 (8)
07 - 031 - 02	113.11(0)	04 - 032 - 03	+3.3/(0)

$O4^{iv}$ —Cs1—O2 ^{iv}	46.21 (8)	O4 ⁱ —Cs2—O3 ^{vii}	80.71 (8)
$O4^v$ — $Cs1$ — $O2^{iv}$	72.50 (8)	O3 ⁱ —Cs2—O3 ^{vii}	46.22 (9)
$O4^{vi}$ — $Cs1$ — $O2^{iv}$	114.43 (8)	O4 ⁱⁱⁱ —Cs2—O3 ^{viii}	115.32 (8)
O4—Cs1—O2 ⁱⁱ	114.43 (8)	O4 ⁱⁱ —Cs2—O3 ^{viii}	159.00 (8)
O4 ⁱⁱ —Cs1—O2 ⁱⁱ	46.21 (8)	O4—Cs2—O3 ^{viii}	115.45 (8)
$O4^{iii}$ —Cs1—O2 ⁱⁱ	72.51 (8)	$O1^{vii}$ —Cs2—O3 ^{viii}	90.53 (7)
$O4^{iv}$ —Cs1—O2 ⁱⁱ	126.94 (8)	$O1^{i}$ —Cs2—O3 ^{viii}	80.58 (7)
$O4^{v}$ —Cs1—O2 ⁱⁱ	115.11 (8)	$O1^{viii}$ —Cs2—O3 ^{viii}	45.29 (7)
$O4^{vi}$ —Cs1—O2 ⁱⁱ	63.50 (8)	$O4^{\text{vii}}$ —Cs2—O3 ^{viii}	80.71 (8)
Ω^{2iv} —Cs1— Ω^{2ii}	169.02 (11)	$O4^{\text{viii}}$ —Cs2—O3 ^{viii}	46.05 (8)
04-Cs1-02	46.21 (8)	$O4^{i}$ —Cs2—O3 ^{viii}	43.57 (8)
$O4^{ii}$ —Cs1—O2	72.50 (8)	$O3^{i}$ $Cs2$ $O3^{viii}$	46.22 (9)
04^{iii} Cs1 02	114 43 (8)	03^{vii} Cs ² 03^{viii}	46.22 (9)
$O4^{iv}$ —Cs1—O2	63 50 (8)	Ω^{2ix} Gal Ω^{2ix}	91 18 (14)
04^{v} Cs1 02	126 94 (7)	Ω^{2ix} Gal Ω^{2x}	91.18 (14)
04^{vi} Cs1 02	115 11 (8)	Ω^2 Gal Ω^2	91.18 (14)
02^{iv} Cs1 02	56 73 (11)	$O2^{ix}$ $Ga1 O2^{iv}$	176.98 (13)
$O2^{ii} = Cs1 = O2$	113 48 (5)	$O_2 = Ga1 = O_3^{iv}$	01.84(14)
$02 - c_{s1} - 02$	72 50 (8)	02-0a1-03	88 69 (14)
$O_{1}^{ii} = C_{1}^{ii} = O_{2}^{iii}$	114 43 (8)	$O2^{ix}$ G_{21} $O3^{xi}$	88.69 (14)
$04 - c_{31} - 02$	114.45 (8) 46.21 (8)	$O_2 = G_{a1} = O_3^{xi}$	176.08(13)
O^{4iv} Cs1 O^{2iii}	115 11 (8)	O^{2x} Gal O^{3xi}	01.84(14)
$O_{4} = C_{s1} = O_{2}$	63 50 (9)	$O_2 = O_{a1} = O_3^{xi}$	91.84 (14) 88 30 (14)
O4 - Cs1 - O2	126.04(8)	O_{2}^{ix} Gal O_{2}^{xii}	01.84(14)
$O_4 = C_{s1} = O_2$	120.94(8)	$O_2 = Ga_1 = O_3$	91.84 (14) 88 60 (14)
$O_2^{ii} = C_{s1} = O_2^{iii}$	113 48 (5)	O^{2x} G_{21} O^{3xii}	176.08(14)
$O_2 = C_{s1} = O_2$	113.40(5)	O_2^{iv} $G_2 = O_3^{ii}$	170.98 (13) 88 30 (14)
$02 - c_{s1} - 02$	115.46(3) 126.04(8)	O_{3}^{xi} G_{2}^{xi} O_{3}^{xii}	88 30 (14)
$04 - c_{s1} - 02$	120.94(0)	O_{2ix}^{ix} C_{2i}^{1} C_{2}^{2xiy}	124 42 (10)
$04^{}Cs1^{}O2^{+}$	(3)	$O_2 = Ga_1 = Ca_2 x_i x_i$	124.43(10) 124.42(10)
$04 - c_{s1} - 0_{2}$	(9)	O_2 — O_{a1} — C_{a2} xiv	124.43(10) 124.42(10)
$04^{-1} - 02^{-1}$	114.43(8)	O_2^{ii} G_2^{ii} G_2^{ii} G_2^{ii}	124.43(10)
04^{-1} 02^{-1} 02^{-1}	40.21 (8)	O_{3}^{xi} G_{a1} C_{a2}^{xi}	53.54 (10)
$04^{\circ} - 031 - 02^{\circ}$	72.50 (8)	$O3^{\text{m}}$ — $Ga1$ — $Cs2^{\text{m}}$	53.54 (10)
$02^{*} - 02^{*}$	113.48 (5)	O_3^{AII} — Ga_1 — Cs_2^{AIV}	53.54 (10)
$02^{$	/6./0(11)	$OI = Ga2 = OI^{**}$	1/6.3(2)
$02 - Cs1 - 02^{\circ}$	169.02(11)	$OI - Ga2 - OI^{**}$	92.14 (11)
$02^{\text{m}} = 02^{\text{m}}$	56.74(11)	$OI_{\text{A}} - Ga2 - OI_{\text{A}}$	90.55 (19)
04 —Cs1— 02^{vi}	115.11 (8)	$O_1 = G_2 = O_1^{\text{AVI}}$	85.29 (19)
$04^{\text{H}} - 03^{\text{H}} = 02^{\text{H}}$	63.50 (8)	O_{1}^{iv} G_{2}^{iv} O_{1}^{iv}	92.13 (11)
04^{m} -02^{m}	126.94 (7)	$OI = Ga2 = OI^{**}$	1/6.3 (2)
$O4^{\text{N}}$ $Cs1$ $O2^{\text{N}}$	72.50 (8)	$OI - Ga2 - OI^*$	92.14 (11)
04^{v} $Cs1$ 02^{v1}	114.43 (8)	OI^{**} —Ga2— OI^{*}	85.29 (19)
$U4^{v_1}$ $U51$ $U2^{v_1}$	40.21 (8)	$O1^{-1}$ $Ga2 O1^{-1}$	92.13 (11)
$O2^{**}$ — $O3^{**}$	113.48 (5)	OI^{**} -Ga2-OI [*]	90.55 (19)
$O2^{n}$ $O2^{n}$ $O2^{n}$	56.75 (11) 76.70 (11)	$O1 - Ga2 - O1^{\circ}$	90.55 (19)
O_2 — C_{S1} — $O_2^{v_1}$	/6./0(11)	OI^{AV} —Ga2—OI ¹	92.13 (11)
$O2^{\text{III}}$ — $Cs1$ — $O2^{\text{VI}}$	169.02 (11)	$O1^{1x}$ —Ga2—O1 ¹	85.29 (19)
$O2^{v}$ —Cs1—O2 ^{v1}	113.48 (5)	$O1^{xvi}$ — $Ga2$ — $O1^{i}$	92.13 (11)

supporting information

O4—Cs1—H	13.6 (7)	O1 ^x —Ga2—O1 ⁱ	176.3 (2)
O4 ⁱⁱ —Cs1—H	84.3 (7)	O1—As—O2	119.51 (15)
O4 ⁱⁱⁱ —Cs1—H	71.9 (10)	O1—As—O3	106.29 (15)
O4 ^{iv} —Cs1—H	94.7 (9)	O2—As—O3	114.75 (17)
O4 ^v —Cs1—H	109.6 (7)	O1—As—O4	106.75 (16)
O4 ^{vi} —Cs1—H	164.9 (10)	O2—As—O4	102.97 (16)
O2 ^{iv} —Cs1—H	53.6 (8)	O3—As—O4	105.36 (17)
O2 ⁱⁱ —Cs1—H	126.1 (7)	O1—As—Cs2 ⁱ	66.48 (10)
O2—Cs1—H	51.8 (10)	O2—As—Cs2 ⁱ	169.73 (12)
O2 ⁱⁱⁱ —Cs1—H	62.9 (9)	O3—As—Cs2 ⁱ	68.86 (11)
O2 ^v —Cs1—H	119.3 (10)	O4—As—Cs2 ⁱ	66.81 (11)
O2 ^{vi} —Cs1—H	126.0 (9)	O1—As—Cs1	143.32 (12)
O4 ⁱⁱⁱ —Cs2—O4 ⁱⁱ	80.04 (10)	O2—As—Cs1	54.72 (12)
O4 ⁱⁱⁱ —Cs2—O4	80.04 (10)	O3—As—Cs1	108.02 (11)
O4 ⁱⁱ —Cs2—O4	80.04 (10)	O4—As—Cs1	51.41 (11)
O4 ⁱⁱⁱ —Cs2—O1 ^{vii}	90.97 (8)	Cs2 ⁱ —As—Cs1	115.260 (12)
O4 ⁱⁱ —Cs2—O1 ^{vii}	74.30 (8)	O1—As—H	117.5 (13)
O4—Cs2—O1 ^{vii}	153.94 (8)	O2—As—H	110.9 (13)
O4 ⁱⁱⁱ —Cs2—O1 ⁱ	153.94 (8)	O3—As—H	81.6 (12)
O4 ⁱⁱ —Cs2—O1 ⁱ	90.97 (8)	O4—As—H	24.0 (12)
O4—Cs2—O1 ⁱ	74.30 (8)	Cs2 ⁱ —As—H	59.4 (13)
$O1^{vii}$ — $Cs2$ — $O1^{i}$	110.22 (4)	Cs1—As—H	56.4 (13)
O4 ⁱⁱⁱ —Cs2—O1 ^{viii}	74.30 (8)	As—O2—Ga1	122.30 (19)
O4 ⁱⁱ —Cs2—O1 ^{viii}	153.94 (8)	As—O2—Cs1	102.06 (14)
O4—Cs2—O1 ^{viii}	90.97 (8)	Ga1—O2—Cs1	127.77 (14)
O1 ^{vii} —Cs2—O1 ^{viii}	110.22 (4)	As—O3—Ga1 ^{xvii}	129.62 (19)
$O1^{i}$ — $Cs2$ — $O1^{viii}$	110.22 (4)	As—O3—Cs2 ⁱ	84.49 (12)
O4 ⁱⁱⁱ —Cs2—O4 ^{vii}	136.20 (4)	Ga1 ^{xvii} —O3—Cs2 ⁱ	99.51 (12)
O4 ⁱⁱ —Cs2—O4 ^{vii}	78.31 (9)	As—O4—Cs2	132.43 (15)
O4—Cs2—O4 ^{vii}	131.91 (5)	As—O4—Cs1	104.56 (13)
O1 ^{vii} —Cs2—O4 ^{vii}	46.56 (8)	Cs2—O4—Cs1	89.95 (9)
$O1^{i}$ —Cs2—O4 ^{vii}	63.74 (8)	$As-O4-Cs2^{i}$	85.66 (12)
$O1^{viii}$ — $Cs2$ — $O4^{vii}$	124.15 (7)	$Cs2$ — $O4$ — $Cs2^i$	98.06 (9)
O4 ⁱⁱⁱ —Cs2—O4 ^{viii}	78.31 (9)	$Cs1$ — $O4$ — $Cs2^i$	157.27 (10)
O4 ⁱⁱ —Cs2—O4 ^{viii}	131.91 (5)	As—O4—H	96 (4)
O4—Cs2—O4 ^{viii}	136.20 (4)	Cs2—O4—H	130 (4)
O1 ^{vii} —Cs2—O4 ^{viii}	63.74 (8)	Cs1—O4—H	92 (3)
O1 ⁱ —Cs2—O4 ^{viii}	124.15 (7)	Cs2 ⁱ —O4—H	67 (3)
$O1^{viii}$ — $Cs2$ — $O4^{viii}$	46.56 (8)	O1—AsB—O3B	112 (2)
O4 ^{vii} —Cs2—O4 ^{viii}	88.64 (8)	O1—AsB—O4B ^{xiii}	105.6 (18)
$O4^{iii}$ — $Cs2$ — $O4^{i}$	131.91 (5)	O3B—AsB—O4B ^{xiii}	104 (3)
$O4^{ii}$ —Cs2—O4 ⁱ	136.20 (4)	O1—AsB—O2B ^x	116 (2)
$O4$ — $Cs2$ — $O4^{i}$	78.32 (9)	AsB ^{xviii} —O4B—H	105 (6)

Symmetry codes: (i) *y*, *x*, *-z*; (ii) *-x*+*y*, *-x*+1, *z*; (iii) *-y*+1, *x*-*y*+1, *z*; (iv) *-x*+2/3, *-x*+*y*+1/3, *-z*+1/3; (v) *x*-*y*+2/3, *-y*+4/3, *-z*+1/3; (vi) *y*-1/3, *x*+1/3, *-z*+1/3; (vii) *x*-*y*, *-y*+1, *-z*; (vii) *x*+1, *-x*+*y*+1, *-z*; (ix) *-y*, *x*-*y*, *z*; (x) *-x*+*y*, *-x*, *z*; (xi) *y*-1/3, *x*-2/3, *-z*+1/3; (xii) *x*-*y*-1/3, *-y*+1/3, *-z*+1/3; (xiii) *-y*+1, *x*-*y*, *z*; (xiv) *x*-1/3, *y*-2/3, *z*+1/3; (xv) *-x*, *-x*+*y*, *-z*; (xvi) *x*-*y*, *-z*; (xvii) *y*+2/3, *x*+1/3, (xviii) *-x*+*y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O4—H···O3 ^{xviii}	0.81 (4)	1.78 (4)	2.589 (5)	175 (6)

Symmetry code: (xviii) -x+y+1, -x+1, z.