CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 29 January 2019
Accepted 6 February 2019

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$; arsenate; hydrogen arsenate.

CCDC reference: 1895785

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

$\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$, the first Ga representative of the $\mathrm{RbAl}\left(\mathrm{HAsO}_{4}\right)_{2}$ structure type

Karolina Schwendtner ${ }^{\text {a* }}$ and Uwe Kolitsch ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and ${ }^{\mathbf{b}}$ Naturhistorisches Museum, Burgring 7, 1010 Vienna, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria. *Correspondence e-mail:
karolina.schwendtner@tuwien.ac.at

The crystal structure of hydrothermally synthesized ($T=493 \mathrm{~K}, 7 \mathrm{~d}$) caesium gallium bis[hydrogen arsenate (V)], $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$, was solved by single-crystal X-ray diffraction. The compound crystallizes in the common $\mathrm{RbAl}\left(\mathrm{HAsO}_{4}\right)_{2}$ structure type (R32) and consists of a basic tetrahedral-octahedral framework topology that houses Cs^{+}cations in its channels. The AsO_{4} tetrahedron is disordered over two positions with site occupancy factors of 0.946 (1) and 0.054 (1). Strong hydrogen bonds strengthen the network. The structure was refined as inversion twin.

1. Chemical context

Compounds with mixed tetrahedral-octahedral (T-O) framework structures are characterized by a broad range of different atomic arrangements. These topologies result in several interesting properties such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or non-linear optical features (frequency doubling; Sun et al., 2017).
$\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ was obtained during our extensive experimental study of the system $M^{+}-M^{3+}-\mathrm{As}^{5+}-\mathrm{O}-(\mathrm{H})\left(M^{+}=\mathrm{Li}\right.$, $\left.\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Ag}, \mathrm{Tl}, \mathrm{NH}_{4} ; M^{3+}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}, \mathrm{Sc}, \mathrm{Fe}, \mathrm{Cr}, \mathrm{Tl}\right)$, which resulted in the discovery of an unusually large variety of new structure types (Schwendtner \& Kolitsch, 2004, 2005, 2007a,b,c, 2017a, 2018a, 2019; Schwendtner, 2006). One atomic arrangement, the $\mathrm{RbFe}\left(\mathrm{HPO}_{4}\right)_{2}$ type ($\mathrm{Lii} \& \mathrm{Wu}, 1994$; rhombohedral, $R \overline{3} c$), and its two relatives, the $\mathrm{CsAl}_{2} \mathrm{As}$ $\left(\mathrm{HAsO}_{4}\right)_{6}$ type (Schwendtner \& Kolitsch, 2018a, rhombohedral, $R \overline{3} c$) and the $\mathrm{RbAl}\left(\mathrm{HAsO}_{4}\right)_{2}$ type (Schwendtner \& Kolitsch, 2018a, rhombohedral, R32), were found to exhibit a large crystal-chemical flexibility, which allows the incorporation of a wide variety of M^{+}and M^{3+} cations. So far the $\mathrm{RbFe}\left(\mathrm{HPO}_{4}\right)_{2}$-type is represented by eight arsenate members with the following $M^{+} M^{3+}$ combinations: TlAl, $\left(\mathrm{NH}_{4}\right) \mathrm{Ga}$, RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner \& Kolitsch, 2017b, 2018a,b,c,e). Six arsenates of the $\mathrm{CsAl}_{2} \mathrm{As}$ $\left(\mathrm{HAsO}_{4}\right)_{6}$ type are known with the following $M^{+} M^{3+}$ combinations: RbGa, CsGa, TlGa, RbAl, CsAl and CsFe (Schwendtner \& Kolitsch, 2018a,c,d). $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ represents the third representative of the $\mathrm{RbAl}\left(\mathrm{HAsO}_{4}\right)_{2}$-type atomic arrangement, of which previously only the two $M^{+} M^{3+}$ combinations RbAl and CsFe (Schwendtner \& Kolitsch, 2018a) were known. The 12 -coordinated M^{+}cations present in

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H}_{\cdots} \cdots 3^{\mathrm{iii}}$	$0.81(4)$	$1.78(4)$	$2.589(5)$	$175(6)$

Symmetry code: (iii) $-x+y+1,-x+1, z$.
these types of compounds are rather large ($M=\mathrm{Cs}, \mathrm{Rb}, \mathrm{Tl}$ and NH_{4}), with ionic radii ranging from 1.70 to $1.88 \AA$ (Shannon, 1976). No members containing K^{+}or any smaller M^{+}cations are presently known, suggesting that the ionic radius of K^{+} ($1.64 \AA$, Shannon, 1976) is already slightly too small for this type of framework. The ionic radii of the six-coordinated M^{3+} cations ($M=\mathrm{Al}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{In}$) range from 0.535 to $0.800 \AA$ (Shannon, 1976) and nearly all M^{3+} cations we studied are represented in these types of compounds, with the exception of Sc^{3+} and Tl^{3+}. Syntheses aimed at preparing $\left(\mathrm{NH}_{4}\right) \mathrm{Sc}\left(\mathrm{HAsO}_{4}\right)_{2}, \quad \mathrm{RbSc}\left(\mathrm{HAsO}_{4}\right)_{2} \quad$ and $\quad \mathrm{TlSc}\left(\mathrm{HAsO}_{4}\right)_{2}$ instead led to the crystallization of the diarsenate compounds $\left(\mathrm{NH}_{4}\right) \mathrm{ScAs}_{2} \mathrm{O}_{7}$ (Kolitsch, 2004), $\mathrm{RbScAs}_{2} \mathrm{O}_{7}$ (Schwendtner \& Kolitsch, 2004) and $\mathrm{TlScAs}_{2} \mathrm{O}_{7}$ (Baran et al., 2006), respectively.

There exist only three other $\mathrm{Cs}-\mathrm{Ga}$ arsenates: The structurally closely related $\mathrm{CsGa}_{2} \mathrm{As}\left(\mathrm{HAsO}_{4}\right)_{6}$ (Schwendtner \& Kolitsch, 2018b), in which one third of the $\mathrm{M}^{3+} \mathrm{O}_{6}$ octahedra are replaced by AsO_{6} octahedra; $\mathrm{CsGa}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}$ (Schwendtner \& Kolitsch, 2005) which was encountered in the same synthesis batch as the title compound; and $\mathrm{Cs}_{2} \mathrm{Ga}_{3}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{Lin} \& \mathrm{Lii}, 1996)$.

2. Structural commentary

$\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ is a representative of the $\mathrm{RbAl}\left(\mathrm{HAsO}_{4}\right)_{2}$ structure type (R32; Schwendtner \& Kolitsch, 2018a) and has a basic tetrahedral-octahedral framework structure featuring interpenetrating channels, which host the M^{+}cations (Fig. 1). This structure type is closely related to the $\mathrm{RbFe}\left(\mathrm{HPO}_{4}\right)_{2}$ structure type $\left(R \overline{3} c\right.$; Lii \& Wu, 1994), the $\mathrm{RbAl}_{2} \mathrm{As}\left(\mathrm{HAsO}_{4}\right)_{6}$ type $(R \overline{3} c$; Schwendtner \& Kolitsch, 2018a) and the triclinic $\left(\mathrm{NH}_{4}\right) \mathrm{Fe}\left(\mathrm{HPO}_{4}\right)_{2}$ type $(P \overline{1}$; Yakubovich, 1993). The fundamental building unit in all these structure types contains $M^{3+} \mathrm{O}_{6}$ octahedra, which are connected via their six corners to six protonated AsO_{4} tetrahedra, thereby forming an

Figure 1
General outline of the crystal structure of $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ viewed along a. Only the main AsO_{4} tetrahedra are shown (the $\mathrm{As} B$-centred tetrahedra are omitted for clarity). Hydrogen bonds are shown as blue dotted lines.

Table 2
Selected bond lengths (A).

$\mathrm{Cs} 1-\mathrm{O} 4(6 \times)$	$3.338(3)$	$\mathrm{As}-\mathrm{O} 1$	$1.659(3)$
$\mathrm{Cs} 1-\mathrm{O} 2(6 \times)$	$3.451(3)$	$\mathrm{As}-\mathrm{O} 2$	$1.667(3)$
$\mathrm{Cs} 2-\mathrm{O} 4(3 \times)$	$3.014(3)$	$\mathrm{As}-\mathrm{O} 3$	$1.691(3)$
$\mathrm{Cs} 2-\mathrm{O} 1(3 \times)$	$3.445(3)$	$\mathrm{As}-\mathrm{O} 4$	$1.740(3)$
$\mathrm{Cs} 2-\mathrm{O} 4(3 \times)$	$3.459(3)$	$\mathrm{As} B-\mathrm{O} 1$	$1.625(7)$
$\mathrm{Cs} 2-\mathrm{O} 3(3 \times)$	$3.516(3)$	$\mathrm{As} B-\mathrm{O} 3 B$	$1.66(6)$
$\mathrm{Ga} 1-\mathrm{O} 2(3 \times)$	$1.958(3)$	$\mathrm{As} B-\mathrm{O} 4 B^{\mathrm{i}}$	$1.69(6)$
$\mathrm{Ga} 1-\mathrm{O} 3(3 \times)$	$1.982(3)$	$\mathrm{As} B-\mathrm{O} 2 B^{\mathrm{ii}}$	$1.76(7)$
$\mathrm{Ga} 2-\mathrm{O} 1(6 \times)$	$1.967(3)$		

Symmetry codes: (i) $-y+1, x-y, z$; (ii) $-x+y,-x, z$.
$M^{3+} \mathrm{As}_{6} \mathrm{O}_{24}$ unit. These units are in turn connected via three corners to other $M^{3+} \mathrm{O}_{6}$ octahedra. The free, protonated corner of each AsO_{4} tetrahedron forms a medium-to-strong hydrogen bond (Table 1) to the neighbouring $M^{3+} \mathrm{As}_{6} \mathrm{O}_{24}$ group (Fig. 2a,b). The $M^{3+} \mathrm{As}_{6} \mathrm{O}_{24}$ units are arranged in layers perpendicular to the $c_{\text {hex }}$ axis (Fig. 1). The units within these

Figure 2
Detailed view of the different layers in the structure of $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$. The alternative $\mathrm{As} B \mathrm{O}_{4}$ tetrahedra, the alternative hydrogen bonds and $\mathrm{O} B$ atoms are shown in transparent mode. (a) The layer showing the $\mathrm{Ga} 1 \mathrm{As}_{6} \mathrm{O}_{24}$ group including the alternative $\mathrm{As} \mathrm{BO}_{4}$ tetrahedra. (b) The layer showing the $\mathrm{Ga} 2 \mathrm{As}_{6} \mathrm{O}_{24}$ group including the alternative As BO_{4} tetrahedra and the strongly overbonded Cs 2 atom in its void.
layers are held together by medium-strong hydrogen bonds (Table 2). Nearly all of the representatives of these closely related structure types show pseudo-hexagonal to pseudooctahedral crystal habits. In line with this observation, $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ forms tiny pseudo-hexagonal platelets.

The two Cs atoms in the framework voids are 12-coordinated. While the average Cs $1-\mathrm{O}$ bond length, $3.395 \AA$, is slightly longer than the grand mean average of $3.377 \AA$ (Gagné \& Hawthorne, 2016), it fits the low bond-valence sum (BVS) of 0.84 valence units (v.u.) which was calculated with the bond-valence parameters of Gagné \& Hawthorne (2015). In contrast, the average $\mathrm{Cs} 2-\mathrm{O}$ bond length is slightly shorter ($3.359 \AA$) and the individual $\mathrm{Cs} 2-\mathrm{O}$ bond lengths (Table 2) show a much wider bond-length range, resulting in a much too high bond-valence sum of 1.38 v.u. This is mainly caused by four very short $\mathrm{Cs} 2-\mathrm{O}$ bond lengths of only $3.014 \AA$, although even shorter Cs -O bond lengths, as low as $2.910 \AA$, have been reported for 12 -coordinated Cs^{+}cations (Gagné \& Hawthorne, 2016).

The Ga atoms at the centre of the two GaO_{6} octahedra are also slightly overbonded with BVSs of 3.05 and 3.07 v.u., and average $\mathrm{Ga}-\mathrm{O}$ bond lengths of 1.970 and $1.967 \AA$ for Ga 1 and Ga 2 , respectively. These values are somewhat shorter than the grand mean average for six-coordinated Ga of $1.978 \AA$ (Gagné \& Hawthorne, 2018). The AsO_{4} tetrahedra show the typical bond-length geometry of HAsO_{4} groups with three short and one long As-O bond. The average As-O bond length $(1.689 \AA)$ is very close to the observed average of HAsO_{4} groups (1.687 \AA; Schwendtner \& Kolitsch, 2019), but the AsO bond length to the protonated O 4 atom (1.740 \AA, Table 2$)$ is notably longer than the average of $1.728 \AA$ for $\mathrm{As}-\mathrm{OH}$ bonds in singly protonated AsO_{4} groups (Schwendtner \& Kolitsch, 2019). The BVS for the As atom is close to ideal with 4.98 v.u. All its O ligands are underbonded to a varying degree, with BVSs ranging from 1.39 v.u. for O 4 to 1.92 v.u. for O 1 .

The As atom is characterized by a split position. The AsB site, $1.27 \AA$ away from the main As position, has a refined occupancy of about 5%. The As B site shares one apical ligand (O1) with the main AsO_{4} tetrahedron and has three additional low-occupancy O atoms $(\mathrm{O} 2 B, \mathrm{O} 3 B$ and $\mathrm{O} 4 B)$ as remaining ligands. The split position can roughly be explained by a mirror plane in (110). The average $\mathrm{As} B-\mathrm{O}$ bond length of $1.684 \AA$ is slightly shorter than the corresponding value of the main AsO_{4} tetrahedron ($1.689 \AA$), and the $\mathrm{As} B-\mathrm{O}$ bonds also show a wider bond-length range (Table 2). The calculated BVS for the $\operatorname{As} B$ site (5.09 v.u.) is reasonable considering the high estimated uncertainty of this value in view of the relatively large positional and bond-length errors for the $\mathrm{As} B$ site (Table 2).

3. Synthesis and crystallization

Small pseudo-hexagonal colorless platelets of $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ were prepared hydrothermally ($T=493 \mathrm{~K}, 7 \mathrm{~d}$) in a Teflonlined stainless steel autoclave from a mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, $\mathrm{Ga}_{2} \mathrm{O}_{3}$ (approximate molar ratio $\mathrm{Cs}: \mathrm{Ga}$ of $1: 1$), arsenic acid and distilled water. Enough arsenic acid was added to keep the

Table 3
Experimental details.

Crystal data

Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
$0.019,0.042,1.07$
No. of reflections
No. of parameters
No. of restraints H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure
Absolute structure parameter
$\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$
482.49

Trigonal, R32:H
293
8.481 (1), 27.050 (5)
1685.0 (5)

9
Mo $K \alpha$
17.24
$0.03 \times 0.03 \times 0.01$ four-circle Otwinowski et al., 2003)
0.626, 0.846

2738, 1375, 1283
0.018
0.757

Nonius KappaCCD single-crystal
Multi-scan (HKL SCALEPACK;
$0.019,0.042,1.07$
1375
76
2
All H-atom parameters refined
$0.72,-0.74$
Refined as an inversion twin
$0.46(2)$

Computer programs: COLLECT (Nonius, 2003), HKL DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).
pH between about 1.5 and 0.5 . The Teflon cylinders were filled with distilled water up to approximately 80% of their inner volume. Initial and final pH values were about 1.5 and 1 , respectively. The platelets were accompanied by large colourless glassy prisms of $\mathrm{CsGa}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)\left(\mathrm{H}_{1.5} \mathrm{AsO}_{4}\right)_{2}$ (Schwendtner \& Kolitsch, 2005), which made up about 80% of the reaction products.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

The refinement of $\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$ revealed a considerable residual electron-density peak of 5.1 e $\AA^{-3} 1.27 \AA$ away from As and $1.62 \AA$ away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore was assumed to be an alternative flipped As position (sharing the same O 1 atom), similar to what was encountered in related $\mathrm{TlAl}\left(\mathrm{HAsO}_{4}\right)$ and $\mathrm{CsIn}\left(\mathrm{HAsO}_{4}\right)_{2}(R \overline{3} c$ type; Schwendtner \& Kolitsch, 2017b, 2018e). An inclusion of the alternative position led to a considerable drop in the conventional R factor and weight parameters and the highest residual electron densities also decreased considerably. Three electron-density peaks between 1.15 and $1.19 \mathrm{e}_{\AA^{-3}}$ close to this $\mathrm{As} B$ position could be attributed to the O ligands of this flipped AsO_{4} tetrahedra and, after including them into the
structure model, the conventional R factor dropped from 3.5 to 1.99%. The remaining highest residual electron densities of 0.72 and -0.74 e \AA^{-3} are located close to the Cs positions. The occupancy of the alternative As position (Fig. 2) refined to about 5%, while the independently refined occupancy of the main As position was about 95%. For the final refinement, the displacement parameters of the $\mathrm{As} B, \mathrm{O} 2 B, \mathrm{O} 3 B$ and $\mathrm{O} 4 B$ sites were restrained to be the same as that of the main AsO_{4} tetrahedron position, and the occupancy sums of both tetrahedra were restrained to give a total occupancy of 1.00 . The structure was refined as inversion twin with a Flack parameter of 0.46 (2).

Acknowledgements

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Funding information

Funding for this research was provided by: Austrian Academy of Sciences (award No. Doc fForte Fellowship to K. Schwendtner).

References

Baran, E. J., Schwendtner, K. \& Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335-1340.
Brandenburg, K. (2005). DIAMOND. Bonn, Germany.
Chouchene, S., Jaouadi, K., Mhiri, T. \& Zouari, N. (2017). Solid State Ionics, 301, 78-85.
Gagné, O. C. \& Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.

Gagné, O. C. \& Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625. Gagné, O. C. \& Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.
Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.
Lii, K.-H. \& Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.
Lin, K.-J. \& Lii, K.-H. (1996). Chem. Commun. pp. 1137-1138.
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. \& Goodenough, J. B. (1996). Proceedings of the, 37th Power Sources Conference, June 17-20, 1996, pp. 188-191. Cherry Hill, New Jersey, Fort Monmouth, NJ: US Army Research Laboratory.
Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.
Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. \& Driss, A. (2007). J. Solid State Chem. 180, 2942-2949.

Ren, J., Ma, Z., He, C., Sa, R., Li, Q. \& Wu, K. (2015). Comput. Mater. Sci. 106, 1-4.
Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.
Schwendtner, K. \& Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.
Schwendtner, K. \& Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.
Schwendtner, K. \& Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.
Schwendtner, K. \& Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.
Schwendtner, K. \& Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.
Schwendtner, K. \& Kolitsch, U. (2017a). Acta Cryst. C73, 600-608.
Schwendtner, K. \& Kolitsch, U. (2017b). Acta Cryst. E73, 1580-1586.
Schwendtner, K. \& Kolitsch, U. (2018a). Acta Cryst. C74, 721-727.
Schwendtner, K. \& Kolitsch, U. (2018b). Acta Cryst. E74, 766-771.
Schwendtner, K. \& Kolitsch, U. (2018c). Acta Cryst. E74, 1244-1249.
Schwendtner, K. \& Kolitsch, U. (2018d). Acta Cryst. E74, 1163-1167.
Schwendtner, K. \& Kolitsch, U. (2018e). Acta Cryst. E74, 1504-1508.
Schwendtner, K. \& Kolitsch, U. (2019). Acta Cryst. C. Submitted.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sun, Y., Yang, Z., Hou, D. \& Pan, S. (2017). RSC Adv. 7, 2804-2809.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.

supporting information

$\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$, the first Ga representative of the $\mathrm{RbAl}\left(\mathrm{HAsO}_{4}\right)_{2}$ structure type

Karolina Schwendtner and Uwe Kolitsch

Computing details

Data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Caesium gallium bis[hydrogen arsenate(V)]

Crystal data

$\mathrm{CsGa}\left(\mathrm{HAsO}_{4}\right)_{2}$
$M_{r}=482.49$
Trigonal, R32:H
$a=8.481$ (1) \AA
$c=27.050(5) \AA$
$V=1685.0(5) \AA^{3}$
$Z=9$
$F(000)=1962$

Data collection

Nonius KappaCCD single-crystal four-circle diffractometer
Radiation source: fine-focus sealed tube
φ and ω scans
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
$T_{\min }=0.626, T_{\text {max }}=0.846$
2738 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.042$
$S=1.07$
1375 reflections
76 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
$D_{\mathrm{x}}=4.279 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1370 reflections
$\theta=2.3-32.5^{\circ}$
$\mu=17.24 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Tiny hexagonal platelets, colourless
$0.03 \times 0.03 \times 0.01 \mathrm{~mm}$

1375 independent reflections
1283 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=32.5^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-40 \rightarrow 40$

All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0194 P)^{2}+2.6152 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.72$ e \AA^{-3}
$\Delta \rho_{\min }=-0.74 \mathrm{e}^{-3}$
Extinction correction: SHELXL2016
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00041 (4)
Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.46 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
O1	$0.2225(4)$	$0.1039(5)$	$0.04039(9)$	$0.0161(5)$	
Cs1	0.333333	0.666667	0.166667	$0.02717(16)$	
Cs2	0.333333	0.666667	$0.00046(2)$	$0.02105(12)$	
Ga1	0.000000	0.000000	$0.17439(2)$	$0.00792(13)$	
Ga2	0.000000	0.000000	0.000000	$0.00791(17)$	
As	$0.29653(6)$	$0.22380(6)$	$0.09219(2)$	$0.00852(10)$	$0.9461(12)$
O2	$0.1465(4)$	$0.2152(5)$	$0.13347(13)$	$0.0110(6)$	$0.9461(12)$
O3	$0.4566(4)$	$0.1811(5)$	$0.11541(11)$	$0.0110(5)$	$0.9461(12)$
O4	$0.4135(4)$	$0.4521(4)$	$0.07510(12)$	$0.0151(5)$	$0.9461(12)$
AsB	$0.2984(10)$	$0.0710(10)$	$0.0923(3)$	$0.00852(10)$	$0.0540(12)$
O2B	$0.081(9)$	$0.213(10)$	$0.134(2)$	$0.0110(6)$	$0.0540(12)$
O3B	$0.457(7)$	$0.265(8)$	$0.117(2)$	$0.0110(5)$	$0.0540(12)$
O4B	$0.549(8)$	$0.587(7)$	$0.077(2)$	$0.0151(5)$	$0.0540(12)$
H	$0.510(7)$	$0.474(8)$	$0.0874(17)$	$0.017(13)^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0123(12)$	$0.0253(16)$	$0.0101(11)$	$0.0090(14)$	$-0.0040(9)$	$-0.0056(13)$
Cs1	$0.0313(2)$	$0.0313(2)$	$0.0188(3)$	$0.01567(12)$	0.000	0.000
Cs2	$0.02470(15)$	$0.02470(15)$	$0.01374(19)$	$0.01235(8)$	0.000	0.000
Ga1	$0.00859(18)$	$0.00859(18)$	$0.0066(3)$	$0.00430(9)$	0.000	0.000
Ga2	$0.0088(3)$	$0.0088(3)$	$0.0062(4)$	$0.00438(13)$	0.000	0.000
As	$0.00777(17)$	$0.01075(19)$	$0.00680(16)$	$0.00446(15)$	$-0.00031(14)$	$0.00020(14)$
O2	$0.0107(14)$	$0.0127(13)$	$0.0097(12)$	$0.0060(13)$	$0.0045(11)$	$0.0008(10)$
O3	$0.0110(13)$	$0.0138(14)$	$0.0104(12)$	$0.0078(10)$	$-0.0029(11)$	$-0.0029(11)$
O4	$0.0103(14)$	$0.0123(14)$	$0.0207(14)$	$0.0042(12)$	$-0.0013(12)$	$0.0052(12)$
AsB	$0.00777(17)$	$0.01075(19)$	$0.00680(16)$	$0.00446(15)$	$-0.00031(14)$	$0.00020(14)$
O2B	$0.0107(14)$	$0.0127(13)$	$0.0097(12)$	$0.0060(13)$	$0.0045(11)$	$0.0008(10)$
O3B	$0.0110(13)$	$0.0138(14)$	$0.0104(12)$	$0.0078(10)$	$-0.0029(11)$	$-0.0029(11)$
O4B	$0.0103(14)$	$0.0123(14)$	$0.0207(14)$	$0.0042(12)$	$-0.0013(12)$	$0.0052(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1 — \mathrm{AsB}$	$1.625(7)$	$\mathrm{Ga} 1-\mathrm{O} 3^{\mathrm{iv}}$	$1.982(3)$
$\mathrm{O} 1 — \mathrm{As}$	$1.659(3)$	$\mathrm{Ga} 1-\mathrm{O} 3^{\text {xi }}$	$1.982(3)$
$\mathrm{O} 1 — \mathrm{Ga} 2$	$1.967(3)$	$\mathrm{Ga} 1-\mathrm{O} 3^{\text {xii }}$	$1.982(3)$
$\mathrm{O} 1 — \mathrm{Cs}^{\mathrm{i}}$	$3.445(3)$	$\mathrm{As}-\mathrm{O} 2$	$1.667(3)$

Cs1-O4	3.338 (3)
$\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {ii }}$	3.338 (3)
Cs1-O4 $4^{\text {iii }}$	3.338 (3)
Cs1-O4 $4^{\text {iv }}$	3.338 (3)
Cs1-O4 ${ }^{\text {v }}$	3.338 (3)
Cs1-O4 ${ }^{\text {vi }}$	3.338 (3)
$\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iv }}$	3.451 (3)
$\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {ii }}$	3.451 (3)
Cs1-O2	3.451 (3)
$\mathrm{Cs} 1-\mathrm{O} 2^{\text {iii }}$	3.451 (3)
$\mathrm{Cs} 1-\mathrm{O} 2^{\text {v }}$	3.451 (3)
$\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	3.451 (3)
Cs1-H	3.46 (5)
Cs2-O4 $4^{\text {iii }}$	3.014 (3)
Cs2-O4i	3.014 (3)
Cs2-O4	3.014 (3)
Cs2-O44ii	3.459 (3)
Cs2-O4 $4^{\text {viii }}$	3.459 (3)
Cs2-O4 ${ }^{\text {i }}$	3.459 (3)
Cs2-O3 ${ }^{\text {i }}$	3.516 (3)
Cs2-O3 ${ }^{\text {vii }}$	3.516 (3)
Cs2-O3 ${ }^{\text {viii }}$	3.516 (3)
$\mathrm{Ga} 1-\mathrm{O} 2{ }^{\text {ix }}$	1.958 (3)
$\mathrm{Ga} 1-\mathrm{O} 2$	1.958 (3)
$\mathrm{Ga} 1-\mathrm{O} 2^{\text {x }}$	1.958 (3)
As-O1-Ga2	136.69 (19)
AsB- $\mathrm{O} 1-\mathrm{Cs} 2^{\text {i }}$	87.7 (3)
As- $\mathrm{O} 1-\mathrm{Cs} 2^{2}$	87.31 (11)
$\mathrm{Ga} 2-\mathrm{O} 1-\mathrm{Cs} 2^{\mathrm{i}}$	127.46 (10)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {ii }}$	70.99 (9)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {iii }}$	70.99 (9)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {iii }}$	70.99 (9)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {iv }}$	99.40 (11)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 4^{\mathrm{iv}}$	123.13 (11)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {iv }}$	160.35 (10)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {v }}$	123.13 (11)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {v }}$	160.35 (10)
$\mathrm{O} 4{ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{O} 4{ }^{\mathrm{v}}$	99.40 (11)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 4^{\text {v }}$	70.99 (9)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {vi }}$	160.35 (10)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {vi }}$	99.40 (11)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 4^{\text {vi }}$	123.13 (11)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 4^{\text {vi }}$	70.99 (9)
$\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{O} 4{ }^{\text {vi }}$	70.99 (9)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iv }}$	63.50 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {iv }}$	126.94 (7)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {iv }}$	115.11 (8)

As-O3	1.691 (3)
As-O4	1.740 (3)
As-H	1.99 (6)
O4-H	0.81 (4)
AsB-O3B	1.66 (6)
AsB-O4B ${ }^{\text {xiii }}$	1.69 (6)
AsB-O2B ${ }^{\text {x }}$	1.76 (7)
O4B-H	0.88 (7)
Cs1-O4 (6x)	3.338 (3)
Cs1-O2 (6x)	3.451 (3)
Cs2-O4 (3x)	3.014 (3)
Cs2-O1 (3x)	3.445 (3)
Cs2-O4 (3x)	3.459 (3)
Cs2-O3 (3x)	3.516 (3)
$\mathrm{Ga} 1-\mathrm{O} 2$ (3x)	1.958 (3)
$\mathrm{Ga}-\mathrm{O} 3$ (3x)	1.982 (3)
$\mathrm{Ga} 2-\mathrm{O} 1$ (6x)	1.967 (3)
As-O1	1.659 (3)
As-O2	1.667 (3)
As-O3	1.691 (3)
As-O4	1.740 (3)
AsB-O1	1.625 (7)
AsB-O3B	1.66 (6)
AsB-O4B ${ }^{\text {xiii }}$	1.69 (6)
AsB-O2B ${ }^{\text {x }}$	1.76 (7)
$\mathrm{O} 1{ }^{\text {vii }}-\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {i }}$	124.15 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cs} 2-\mathrm{O} 4^{\mathrm{i}}$	46.56 (8)
O1 ${ }^{\text {viii }}$ - $\mathrm{Cs} 2-\mathrm{O} 4^{\text {i }}$	63.74 (8)
$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Cs} 2-\mathrm{O} 4^{\text {i }}$	88.64 (8)
O4 ${ }^{\text {viii }}$ - $\mathrm{Cs} 2-\mathrm{O} 4^{\text {i }}$	88.64 (8)
$\mathrm{O} 4{ }^{\text {iii] }}-\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {i }}$	159.00 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 2-\mathrm{O} 3^{\text {i }}$	115.45 (8)
$\mathrm{O} 4-\mathrm{Cs} 2-\mathrm{O}^{\text {i }}$	115.32 (8)
$\mathrm{O}^{\text {vii }}-\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {i }}$	80.58 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cs} 2-\mathrm{O} 3^{\mathrm{i}}$	45.29 (7)
O1 ${ }^{\text {viii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {i }}$	90.53 (7)
$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Cs} 2-\mathrm{O} 3^{\text {i }}$	43.57 (8)
O4 $4^{\text {viii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {i }}$	80.71 (8)
O 4 - $\mathrm{Cs} 2-\mathrm{O} 3^{\mathrm{i}}$	46.05 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {vii }}$	115.45 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {vii }}$	115.32 (8)
$\mathrm{O} 4-\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {vii }}$	159.00 (8)
$\mathrm{O} 1^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {vii }}$	45.29 (7)
O1- $\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {vii }}$	90.53 (7)
O1 ${ }^{\text {viii- }} \mathrm{Cs} 2-3^{\text {vii }}$	80.58 (7)
O4 ${ }^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {vii }}$	46.05 (8)
O4 $4^{\text {viii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {vii }}$	43.57 (8)

$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {iv }}$	46.21 (8)
$\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iv }}$	72.50 (8)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iv }}$	114.43 (8)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O}^{2 i}$	114.43 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {ii }}$	46.21 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {ii }}$	72.51 (8)
$\mathrm{O} 4{ }^{\text {iv- }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {ii }}$	126.94 (8)
$\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {ii }}$	115.11 (8)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {ii }}$	63.50 (8)
$\mathrm{O} 2{ }^{\text {iv- }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {ii }}$	169.02 (11)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 2$	46.21 (8)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{O} 2$	72.50 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2$	114.43 (8)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 2$	63.50 (8)
O4 ${ }^{\text {v }}$ - $\mathrm{Cs} 1-\mathrm{O} 2$	126.94 (7)
$\mathrm{O} 4{ }^{\text {vi}}-\mathrm{Cs} 1-\mathrm{O} 2$	115.11 (8)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 2$	56.73 (11)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{Cs} 1-\mathrm{O} 2$	113.48 (5)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iii }}$	72.50 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {iii }}$	114.43 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iii }}$	46.21 (8)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iii }}$	115.11 (8)
$\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {iii }}$	63.50 (9)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iii }}$	126.94 (8)
$\mathrm{O} 2{ }^{\text {iv- }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iii }}$	76.70 (11)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {iii }}$	113.48 (5)
$\mathrm{O} 2-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {iii }}$	113.48 (5)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 2^{\text {v }}$	126.94 (8)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{O} 2^{\mathrm{v}}$	115.11 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {v }}$	63.50 (9)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {v }}$	114.43 (8)
$\mathrm{O} 4{ }^{v}-\mathrm{Cs} 1-\mathrm{O} 2^{\mathrm{v}}$	46.21 (8)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Cs} 1-\mathrm{O}^{\text {v }}$	72.50 (8)
$\mathrm{O} 2{ }^{\text {iv}}-\mathrm{Cs} 1-\mathrm{O} 2^{\mathrm{v}}$	113.48 (5)
$\mathrm{O} 2^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {v }}$	76.70 (11)
$\mathrm{O} 2-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {v }}$	169.02 (11)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {v }}$	56.74 (11)
$\mathrm{O} 4-\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	115.11 (8)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {vi }}$	63.50 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	126.94 (7)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	72.50 (8)
$\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	114.43 (8)
$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	46.21 (8)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {vi }}$	113.48 (5)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{O} 2{ }^{\text {vi }}$	56.73 (11)
$\mathrm{O} 2-\mathrm{Cs} 1-\mathrm{O}^{\text {vi }}$	76.70 (11)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	169.02 (11)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{O} 2^{\text {vi }}$	113.48 (5)

$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {vii }}$	80.71 (8)
$\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {vii }}$	46.22 (9)
$\mathrm{O} 4{ }^{\text {iii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {viii }}$	115.32 (8)
$\mathrm{O} 4{ }^{\text {ii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {viii }}$	159.00 (8)
O4-Cs2-O3 ${ }^{\text {viii }}$	115.45 (8)
$\mathrm{O} 1{ }^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {viii }}$	90.53 (7)
$\mathrm{O} 1^{\text {i }}$ - $\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {viii }}$	80.58 (7)
O1 ${ }^{\text {viii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {viii }}$	45.29 (7)
O4 $4^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 3^{\text {viii }}$	80.71 (8)
$\mathrm{O} 4{ }^{\text {viii- }} \mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {viii }}$	46.05 (8)
O4 $4^{\text {i }}$ - $\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {viii }}$	43.57 (8)
O3 - ${ }^{\text {i }}$ - $2-\mathrm{O} 3{ }^{\text {viii }}$	46.22 (9)
$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{Cs} 2-\mathrm{O} 3{ }^{\text {viii }}$	46.22 (9)
$\mathrm{O} 2{ }^{\text {ix }}$ - $\mathrm{Ga} 1-\mathrm{O} 2$	91.18 (14)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{Ga} 1-\mathrm{O} 2^{\mathrm{x}}$	91.18 (14)
$\mathrm{O} 2-\mathrm{Ga} 1-\mathrm{O} 2^{\mathrm{x}}$	91.18 (14)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{Ga} 1-\mathrm{O}^{\text {iv }}$	176.98 (13)
$\mathrm{O} 2-\mathrm{Ga} 1-\mathrm{O}^{\text {iv }}$	91.84 (14)
$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Ga} 1-\mathrm{O}^{\text {iv }}$	88.69 (14)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{Ga} 1-\mathrm{O} 3^{\text {xi }}$	88.69 (14)
$\mathrm{O} 2-\mathrm{Ga} 1-\mathrm{O} 3^{\text {xi }}$	176.98 (13)
$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Ga} 1-\mathrm{O} 3^{\text {xi }}$	91.84 (14)
$\mathrm{O}^{\text {iv }}-\mathrm{Ga} 1-\mathrm{O} 3^{\text {xi }}$	88.30 (14)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{Ga} 1-\mathrm{O} 3^{\text {xii }}$	91.84 (14)
$\mathrm{O} 2-\mathrm{Ga} 1-\mathrm{O} 3{ }^{\text {xii }}$	88.69 (14)
$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Ga} 1-\mathrm{O} 3^{\text {xii }}$	176.98 (13)
$\mathrm{O}^{\text {iv }}-\mathrm{Ga} 1-\mathrm{O} 3{ }^{\text {xii }}$	88.30 (14)
$\mathrm{O} 3{ }^{\text {xi }}-\mathrm{Ga} 1-\mathrm{O} 3^{\text {xii }}$	88.30 (14)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{Ga} 1-\mathrm{Cs} 2^{\text {xiv }}$	124.43 (10)
$\mathrm{O} 2-\mathrm{Ga} 1-\mathrm{Cs} 2^{2 \mathrm{iv}}$	124.43 (10)
$\mathrm{O} 2{ }^{\mathrm{x}}-\mathrm{Ga} 1-\mathrm{Cs} 2^{\text {xiv }}$	124.43 (10)
$\mathrm{O}^{3 \mathrm{iv}}-\mathrm{Ga} 1-\mathrm{Cs} 2^{\text {xiv }}$	53.54 (10)
$\mathrm{O} 3{ }^{\text {xi }}-\mathrm{Ga} 1-\mathrm{Cs} 2^{\text {xiv }}$	53.54 (10)
O3 ${ }^{\text {xii }}-\mathrm{Ga} 1-\mathrm{Cs} 2^{\text {xiv }}$	53.54 (10)
$\mathrm{O} 1-\mathrm{Ga} 2-\mathrm{O}^{\text {xv }}$	176.3 (2)
$\mathrm{O} 1-\mathrm{Ga} 2-\mathrm{Ol}^{\text {ix }}$	92.14 (11)
$\mathrm{O} 1^{\text {xv }}-\mathrm{Ga} 2-\mathrm{O} 1^{\text {ix }}$	90.55 (19)
$\mathrm{O} 1-\mathrm{Ga} 2-\mathrm{O} 1^{\text {xvi }}$	85.29 (19)
$\mathrm{O} 1^{\mathrm{xv}}-\mathrm{Ga} 2-\mathrm{O} 1^{\text {xvi }}$	92.13 (11)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Ga} 2-\mathrm{O} 1^{\text {xvi }}$	176.3 (2)
$\mathrm{O} 1-\mathrm{Ga} 2-\mathrm{O} 1^{\text {x }}$	92.14 (11)
$\mathrm{O}^{\mathrm{xv}}-\mathrm{Ga} 2-\mathrm{O} 1^{\mathrm{x}}$	85.29 (19)
$\mathrm{O} 1^{\text {ix }}-\mathrm{Ga} 2-\mathrm{O} 1^{\mathrm{x}}$	92.13 (11)
$\mathrm{O} 1^{\text {xvi }}-\mathrm{Ga} 2-\mathrm{Ol}^{\text {x }}$	90.55 (19)
$\mathrm{O} 1-\mathrm{Ga} 2-\mathrm{O} 1^{\mathrm{i}}$	90.55 (19)
$\mathrm{O}^{\text {xv }}-\mathrm{Ga} 2-\mathrm{Ol}^{\text {i }}$	92.13 (11)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Ga} 2-\mathrm{O} 1^{\mathrm{i}}$	85.29 (19)
$\mathrm{O} 1^{\text {xvi }}-\mathrm{Ga} 2-\mathrm{O} 1^{\text {i }}$	92.13 (11)

O4-Cs1-H	13.6 (7)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{H}$	84.3 (7)
O4 $4^{\text {iii] }}$ - $\mathrm{Cs} 1-\mathrm{H}$	71.9 (10)
O4 ${ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{H}$	94.7 (9)
O4- ${ }^{\text {v }}$ - $1-\mathrm{H}$	109.6 (7)
O4 ${ }^{\text {vi }}-\mathrm{Cs} 1-\mathrm{H}$	164.9 (10)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Cs} 1-\mathrm{H}$	53.6 (8)
$\mathrm{O} 2{ }^{\text {ii- }} \mathrm{Cs} 1-\mathrm{H}$	126.1 (7)
O2-Cs1-H	51.8 (10)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cs} 1-\mathrm{H}$	62.9 (9)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Cs} 1-\mathrm{H}$	119.3 (10)
$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Cs} 1-\mathrm{H}$	126.0 (9)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {ii }}$	80.04 (10)
O4 ${ }^{\text {iiii }}$ - $\mathrm{Cs} 2-\mathrm{O} 4$	80.04 (10)
$\mathrm{O} 4{ }^{\mathrm{ii}}$ - $\mathrm{Cs} 2-\mathrm{O} 4$	80.04 (10)
O4 $4^{\text {iii- }}$ - $\mathrm{Cs} 2-\mathrm{O} 1^{\text {vii }}$	90.97 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 2-\mathrm{O} 1^{\text {vii }}$	74.30 (8)
$\mathrm{O} 4-\mathrm{Cs} 2-\mathrm{Ol}^{\text {vii }}$	153.94 (8)
$\mathrm{O} 4^{\text {iii }}-\mathrm{Cs} 2-\mathrm{O} 1^{\mathrm{i}}$	153.94 (8)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cs} 2-\mathrm{O}^{\mathrm{i}}$	90.97 (8)
$\mathrm{O} 4-\mathrm{Cs} 2-\mathrm{O} 1^{\text {i }}$	74.30 (8)
$\mathrm{O} 1^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 1^{\text {i }}$	110.22 (4)
$\mathrm{O} 4{ }^{\text {iiii }}$ - $\mathrm{Cs} 2-\mathrm{O} 1^{\text {viii }}$	74.30 (8)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 2-\mathrm{O} 1^{\text {viii }}$	153.94 (8)
$\mathrm{O} 4-\mathrm{Cs} 2-\mathrm{O} 1^{\text {viii }}$	90.97 (8)
$\mathrm{O} 1^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 1^{\text {viii }}$	110.22 (4)
$\mathrm{O} 1^{\mathrm{i}}$ - $\mathrm{Cs} 2-\mathrm{Ol}^{\text {viii }}$	110.22 (4)
O4 $4^{\text {iii- }}$ - $\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {vii }}$	136.20 (4)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {vii }}$	78.31 (9)
O4-Cs2-O4 ${ }^{\text {vii }}$	131.91 (5)
O1 $1^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {vii }}$	46.56 (8)
$\mathrm{O} 1^{\mathrm{i}}$ - $\mathrm{Cs} 2-\mathrm{O} 4^{\text {vii }}$	63.74 (8)
O1 ${ }^{\text {viii }}$-Cs2-O4 $4^{\text {vii }}$	124.15 (7)
O4iii-Cs2-O4 ${ }^{\text {viii }}$	78.31 (9)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {viii }}$	131.91 (5)
$\mathrm{O} 4-\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {viii }}$	136.20 (4)
O1 ${ }^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {viii }}$	63.74 (8)
$\mathrm{O} 1^{\text {i }}$ - $\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {viii }}$	124.15 (7)
O1 ${ }^{\text {viii }}$ - $\mathrm{Cs} 2-\mathrm{O} 4{ }^{\text {viii }}$	46.56 (8)
O4 $4^{\text {vii }}$ - $\mathrm{Cs} 2-\mathrm{O} 4^{\text {viii }}$	88.64 (8)
O4iii - $\mathrm{Cs} 2-\mathrm{O} 4^{\text {i }}$	131.91 (5)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Cs} 2-\mathrm{O} 4^{\text {i }}$	136.20 (4)
O4-Cs2-O4 ${ }^{\text {i }}$	78.32 (9)

$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Ga} 2-\mathrm{O} 1^{\mathrm{i}}$	176.3 (2)
$\mathrm{O} 1-\mathrm{As}-\mathrm{O} 2$	119.51 (15)
$\mathrm{O} 1-\mathrm{As}-\mathrm{O} 3$	106.29 (15)
$\mathrm{O} 2-\mathrm{As}-\mathrm{O} 3$	114.75 (17)
O1-As-O4	106.75 (16)
$\mathrm{O} 2-\mathrm{As}-\mathrm{O} 4$	102.97 (16)
$\mathrm{O} 3-\mathrm{As}-\mathrm{O} 4$	105.36 (17)
O1-As-Cs2 ${ }^{\text {i }}$	66.48 (10)
$\mathrm{O} 2-\mathrm{As}-\mathrm{Cs} 2{ }^{\text {i }}$	169.73 (12)
O3-As-Cs2 ${ }^{\text {i }}$	68.86 (11)
O4-As-Cs2 ${ }^{\text {i }}$	66.81 (11)
O1-As-Cs1	143.32 (12)
$\mathrm{O} 2-\mathrm{As}-\mathrm{Cs} 1$	54.72 (12)
O3-As-Cs1	108.02 (11)
O4-As-Cs1	51.41 (11)
$\mathrm{Cs} 2{ }^{\text {i }}$ - $\mathrm{As}-\mathrm{Cs} 1$	115.260 (12)
O1-As-H	117.5 (13)
O2-As-H	110.9 (13)
O3-As-H	81.6 (12)
O4-As-H	24.0 (12)
Cs2 ${ }^{\text {i }}$-As- H	59.4 (13)
Cs1-As-H	56.4 (13)
As-O2-Ga1	122.30 (19)
As-O2-Cs1	102.06 (14)
$\mathrm{Ga} 1-\mathrm{O} 2-\mathrm{Cs} 1$	127.77 (14)
As-O3-Ga1 ${ }^{\text {xvii }}$	129.62 (19)
As-O3-Cs2 ${ }^{\text {i }}$	84.49 (12)
$\mathrm{Ga} 1^{\text {xvii }}-\mathrm{O} 3-\mathrm{Cs} 2^{\text {i }}$	99.51 (12)
As-O4-Cs2	132.43 (15)
As-O4-Cs1	104.56 (13)
Cs2-O4-Cs1	89.95 (9)
As-O4-Cs2 ${ }^{\text {i }}$	85.66 (12)
Cs2-O4-Cs2 ${ }^{\text {i }}$	98.06 (9)
Cs1-O4-Cs2 ${ }^{\text {i }}$	157.27 (10)
As-O4-H	96 (4)
Cs2-O4-H	130 (4)
Cs1-O4-H	92 (3)
Cs2 ${ }^{\text {i }}$-O4- H	67 (3)
$\mathrm{O} 1-\mathrm{AsB}-\mathrm{O} 3 \mathrm{~B}$	112 (2)
$\mathrm{O} 1-\mathrm{AsB}-\mathrm{O} 4 \mathrm{~B}^{\text {xiii }}$	105.6 (18)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{AsB}-\mathrm{O} 4 \mathrm{~B}^{\text {xiii }}$	104 (3)
$\mathrm{O} 1-\mathrm{AsB}-\mathrm{O} 2 \mathrm{~B}^{\mathrm{x}}$	116 (2)
AsB ${ }^{\text {xviii }}$-O4B-H	105 (6)

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} \cdots \mathrm{O} 3^{\text {xvii }}$	$0.81(4)$	$1.78(4)$	$2.589(5)$	$175(6)$

Symmetry code: (xviii) $-x+y+1,-x+1, z$.

[^0]: Symmetry codes: (i) $y, x,-z$; (ii) $-x+y,-x+1, z$; (iii) $-y+1, x-y+1, z$; (iv) $-x+2 / 3,-x+y+1 / 3,-z+1 / 3$; (v) $x-y+2 / 3,-y+4 / 3,-z+1 / 3$; (vi) $y-1 / 3, x+1 / 3$, $-z+1 / 3$; (vii) $x-y,-y+1,-z$; (viii) $-x+1,-x+y+1,-z$; (ix) $-y, x-y, z$; (x) $-x+y,-x, z$; (xi) $y-1 / 3, x-2 / 3,-z+1 / 3$; (xii) $x-y-1 / 3,-y+1 / 3,-z+1 / 3$; (xiii) $-y+1$, $x-y, z$; (xiv) $x-1 / 3, y-2 / 3, z+1 / 3$; (xv) $-x,-x+y,-z$; (xvi) $x-y,-y,-z$; (xvii) $y+2 / 3, x+1 / 3,-z+1 / 3$; (xviii) $-x+y+1,-x+1, z$.

