

Received 3 December 2018 Accepted 31 January 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; Schiff base; hydrogen bonding; Hirshfeld surface analysis.

CCDC reference: 1587252

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure, Hirshfeld surface analysis and frontier molecular orbital analysis of (E)-4-bromo-N'-(2,3-dichlorobenzylidene)benzohydrazide

Palaniyappan Sivajeyanthi, Muthaiah Jeevaraj, Bellarmin Edison and Kasthuri Balasubramani*

Department of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur- 639 005, Tamil Nadu, India. *Correspondence e-mail: manavaibala@gmail.com

The title Schiff base compound, $C_{14}H_9BrCl_2N_2O$, displays a *trans* or *E* configuration with respect to the C=N bond, with a dihedral angle 15.7 (2)° formed between the benzene rings. In the crystal, molecules are linked by N-H···O and C-H···O hydrogen bonds, forming chains along [001] which enclose $R_2^1(6)$ loops. The intermolecular interactions were investigated by Hirshfeld surfaces analysis and two-dimensional fingerprint plots. The DFT-B3LYP/6-311 G++(d,p) method was used to determine the HOMO-LUMO energy levels.

1. Chemical context

Schiff bases are nitrogen-containing compounds that were first obtained by the condensation reactions of aromatic amines and aldehydes (Schiff, 1864). A wide range of these compounds, with the general formula RHC=NR1 (R and R1 can be alkyl, aryl, cycloalkyl or heterocyclic groups) have been synthesized. They are of great importance in the field of coordination chemistry as they are able to form stable complexes with many metal ions (Souza et al., 1985). The chemical and biological significance of Schiff bases can be attributed to the presence of a lone electron pair in the sp^2 hybridized orbital of the nitrogen atom of the azomethine group (Singh et al., 1975). These compounds are used in the fields of organic synthesis, chemical catalysis, medicine and pharmacy as well as other new technologies (Tanaka et al., 2010). Schiff bases are also used as probes in investigating the structure of DNA (Tiwari et al., 2011) and have gained special attention in pharmacophore research and in the development of several bioactive lead molecules (Muralisankar et al., 2016). They also exhibit photochromic and thermochromic properties and have been used in information storage, electronic display systems, optical switching devices, and ophthalmic glasses (Amimoto & Kawato, 2005). Herein, we report on the crystal structure, the Hirshfeld surface analysis and the molecular orbital analysis of the title compound, (E)-4-bromo-N'-(2,3-dichlorobenzylidene)benzohydrazide.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N1 - H1N1 \cdots O1^{i} \\ C8 - H8 \cdots O1^{i} \end{array}}$	0.86	2.20	3.003 (4)	155
	0.93	2.42	3.234 (5)	146

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The configuration about the C8=N2 bond, which has a bond length of 1.271 (5) Å, is *E*. The benzene rings (C1–C6 and C9–C14) are inclined to each other by 15.7 (2)°. The bond lengths and angles and the overall conformation of the molecule are close to those reported for a very similar compound, (*E*)-4-bromo-*N*'-(2-chlorobenzylidene)benzohydrazide (Shu *et al.*, 2009).

3. Supramolecular features

In the crystal, molecules are linked by $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming chains that propagate along the [001] direction and which enclose $R_2^1(6)$ ring motifs (Fig. 2 and Table 1). Here the oxygen atom O1 acts as a bifurcated acceptor. There are no other significant intermolecular interactions present (see Table 2 in *Hirshfeld surface analysis*).

Figure 1

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Atom1···Atom2	Length	Length - vdW radii	Symm. op. 2
H1 <i>N</i> 1···H5	2.136	-0.264	x, y, z
$O1 \cdot \cdot \cdot H1N1$	2.200	-0.520	$x, \frac{1}{2} - y, z - \frac{1}{2}$
$H1N1 \cdot \cdot \cdot H8$	2.242	-0.158	x, y, z
O1···H8	2.421	-0.299	$x, \frac{1}{2} - y, z - \frac{1}{2}$
O1···H1	2.520	-0.200	x, y, z
$N2 \cdot \cdot \cdot H14$	2.523	-0.227	x, y, z
$H1N1 \cdot \cdot \cdot C5$	2.608	-0.292	x, y, z
$N1 \cdot \cdot \cdot H5$	2.652	-0.098	x, y, z
$Cl1 \cdot \cdot \cdot H8$	2.733	-0.217	x, y, z
$H1 \cdot \cdot \cdot Cl1$	2.931	-0.019	$x, \frac{1}{2} - y, z - \frac{1}{2}$
$O1 \cdot \cdot \cdot N1$	3.003 (4)	-0.067	$x, \frac{1}{2} - y, z - \frac{1}{2}$
$H12 \cdot \cdot \cdot Cl2$	3.024	0.074	$x, \frac{3}{2} - y, z - \frac{1}{2}$
$O1 \cdot \cdot \cdot C8$	3.234 (5)	0.014	$x, \frac{1}{2} - y, z - \frac{1}{2}$
$N2 \cdot \cdot \cdot C5$	3.262 (5)	0.012	$x, \frac{1}{2} - y, z - \frac{1}{2}$
$C12 \cdot \cdot \cdot Cl2$	3.440 (5)	-0.010	$x, \frac{3}{2} - y, z - \frac{1}{2}$
$C9 \cdot \cdot \cdot C4$	3.468 (6)	0.068	$x, \frac{1}{2} - y, z - \frac{1}{2}$
C8···C12	3.475 (5)	0.075	-x, 1-y, -z

4. Hirshfeld surface analysis

Crystal Explorer (Wolff et al., 2012) was used to generate the Hirshfeld surface and two-dimensional fingerprint plots (Rohl et al., 2008). The three-dimensional d_{norm} surface is a useful tool for analysing and visualizing the intermolecular interactions, which are given in Table 2. The d_{norm} values are negative or positive depending on whether the intermolecular contact is shorter or longer than the sum of the van der Waals radii (Spackman & Jayatilaka, 2009; McKinnon et al., 2007). The total d_{norm} surface of the title compound is shown in Fig. 3. The red spots correspond to the N-H···O and C-H···O interactions, the most significant interactions in the crystal (Tables 1 and 2).

The two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 4. They indicate the percentage contributions of the various intermolecular contacts to the Hirshfeld surface, the most significant are Cl···H/H···Cl (22.5%), H···H (15.7%), C···H/H···C (13.2%), Br···H/H···Br (11.5%), C···C (9.8%), O···H/H···O (9.0%), N···H/H···N (4.9%), and Br···Cl/Cl···Br (3.3%), as shown in Fig. 4, *cf* Table 2.

Figure 2

A partial view along the a axis of the crystal packing of the title compound. Hydrogen bonds (Table 1) are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

Figure 3 Hirshfeld surface mapped over d_{norm} for the title compound. [add range of dnorm to legend]

research communications

Figure 4

Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

5. Frontier molecular orbital calculations

The HOMO (highest occupied molecular orbital) acts as an electron donor and the LUMO (lowest occupied molecular orbital) as an electron acceptor. If the energy gap is small then the molecule is highly polarizable and has high chemical reactivity. The energy levels of the title compound were computed using the DFT-B3LYP/6-311G++(d,p) method (Sivajeyanthi et al., 2017). The energy gap between HOMO-LUMO orbitals, which determines the chemical stability, chemical hardness, chemical potential, electronegativity and the electrophilicity index are shown in Fig. 5 and details are given in Table 3. The frontier molecular orbital LUMO is located over the whole of the molecule. The energy gap of the molecule clearly shows the charge-transfer interaction involving donor and acceptor groups. The chemical hardness and softness of a molecule is a sign of its chemical stability. From the HOMO-LUMO energy gap, we can see whether or not the molecule is hard or soft. If the energy gap is large, the molecule is hard and if small the molecule is soft. Soft molecules are more polarizable than hard ones because they need less energy for excitation. From the data presented in Table 3, we conclude that the energy gap is large, hence the title molecule is a hard material and will be difficult to polarize.

6. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom *et al.*, 2016) for 4-bromo-(benzylidene)benzohydrazides yielded six structures. They include the following analogues: 2,4-dihydroxybenzylidene [ATOSEJ (Mohanraj *et al.*, 2016) and ATOSEJ01 (Arunagiri

Table 3 Calculated frontier molecular orbital analysis of the title compared to the title compa	pound.
FHOMO -	_6 7318 e

EHOMO	-6.7318 eV
ELUMO	-2.4441 eV
EHOMO-1	-7.2556 eV
ELUMO+1	-1.6506 eV
EHOMO–ELUMO gap	4.2877 eV
EHOMO-1 ELUMO+1 gap	5.6050 eV
Chemical hardness (η)	2.1438 eV
Chemical potential (μ)	4.5879 eV
Electronegativity (χ)	-4.5879 eV
Electrophilicity index (ω)	4.9092 eV

et al., 2018)], 2-nitrobenzylidene (EGUSEF; Zhang *et al.*, 2009), 2-chlorobenzylidene (HOTDAW; Shu *et al.*, 2009), 2-hydroxy-1-naphthylmethylene (IFUSEI; Diao *et al.*, 2008), 2-hydroxy-5-methoxybenzylidene (OBUBUL; Wang *et al.*, 2017) and

4-hydroxy-3-methoxybenzylidene (YAWXOL; Horkaew *et al.*, 2012). They all have an *E* configuration about the C=N bond. The N-N bond lengths vary from 1.366 (4) to 1.396 (5) Å while the C=N bond lengths vary from 1.264 (4) to 1.285 (2) Å. The values observed for the title compound, respectively, 1.391 (4) and 1.271 (5) Å, fall within these limits. The dihedral angle between the two benzene rings varies from as little as 4.12 (17)° in EGUSEF to 49.08 (18)° in ATOSEJ01. In the title compound this dihedral angle is 15.7 (2)°, similar to the values observed for HOTDAW, the 2-chlorobenzylidene analogue, and for YAWXOL, the 4-hydroxy-3-methoxybenzylidene analogue, for which the dihedral angles are 11.43 (16) and 13.92 (6)°, respectively.

Figure 5 Molecular orbital energy levels of the title compound.

7. Synthesis and crystallization

The title compound was synthesized by the reaction of 1:1 molar ratio mixture of a hot ethanolic solution (20 ml) of 4-bromobenzohydrazide (0.213 mg, Aldrich) and 2,3-dichlorobenzaldehyde (0.175 mg, Aldrich), which was refluxed for 8 h. The solution was then cooled and kept at room temperature. The powder obtained was recrystallized from dimethyl sulfoxide (DMSO). Colourless block-like crystals suitable for the X-ray diffraction analysis were obtained in a few days.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The hydrogen atoms were positioned geometrically and refined using a riding model: C-H = 0.93 Å, N-H = 0.86 Å, with $U_{iso}(H) = 1.2U_{eq}(N, C)$.

Funding information

KB and PS thank the Department of Science and Technology (DST–SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.
- Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018). J. Mol. Struct. 1163, 368–378.
- Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Diao, Y.-P., Zhang, Q.-H., Wang, D.-C. & Deng, X.-M. (2008). Acta Cryst. E64, o2070.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.
- Mohanraj, M., Ayyannan, G., Raja, G. & Jayabalakrishnan, C. (2016). *Mater. Sci. Eng. C*, **69**, 1297–1306.
- Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). *Inorg. Chim. Acta*, **449**, 82–95.
- Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
- Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118-119.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Table 4
Experimental details.

Crystal data	
Chemical formula	C ₁₄ H ₉ BrCl ₂ N ₂ O
M _r	372.04
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	11.1952 (18), 14.055 (2), 9.3050 (12)
3 (°)	96.446 (6)
$V(\dot{A}^3)$	1454.8 (4)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	3.19
Trystal size (mm)	$0.30 \times 0.20 \times 0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.448, 0.568
No. of measured, independent and	11392, 3363, 1724
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.050
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.666
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.173, 0.94
No. of reflections	3363
No. of parameters	181
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.70, -0.63

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2017 (Sheldrick, 2015) and PLATON (Spek, 2009).

- Shu, X.-H., Diao, Y.-P., Li, M.-L., Yan, X. & Liu, J. (2009). *Acta Cryst.* E65, o1034.
- Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.
- Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). *Chem. Data Collect.* **11–12**, 220-231.
- Souza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). *Transition Met. Chem.* 10, 410–412.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.
- Tanaka, K., Shimoura, R. & Caira, M. R. (2010). *Tetrahedron Lett.* **51**,
- 449–452. Tiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). *Spectrochim. Acta A*, **79**, 1050–1056.
- Wang, J., Qu, D., Lei, J.-X. & You, Z. (2017). J. Coord. Chem. 70, 544– 555.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *Crystal Explorer*. University of Western Australia, Australia.
- Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, 0508.

supporting information

Acta Cryst. (2019). E75, 324-327 [https://doi.org/10.1107/S2056989019001816]

Crystal structure, Hirshfeld surface analysis and frontier molecular orbital analysis of (*E*)-4-bromo-*N*'-(2,3-dichlorobenzylidene)benzohydrazide

Palaniyappan Sivajeyanthi, Muthaiah Jeevaraj, Bellarmin Edison and Kasthuri Balasubramani

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2017* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

F(000) = 736

 $\theta = 4.7 - 47.5^{\circ}$

 $\mu = 3.19 \text{ mm}^{-1}$ T = 296 K

Block, colourless

 $0.30 \times 0.20 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.699 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3186 reflections

(E)-4-Bromo-N'-(2,3-dichlorobenzylidene)benzohydrazide

Crystal data C₁₄H₉BrCl₂N₂O $M_r = 372.04$ Monoclinic, $P2_1/c$ a = 11.1952 (18) Å b = 14.055 (2) Å c = 9.3050 (12) Å $\beta = 96.446$ (6)° V = 1454.8 (4) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	3363 independent reflections 1724 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.050$
ω and φ scan	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2004)	$k = -18 \rightarrow 18$
$T_{\min} = 0.448, \ T_{\max} = 0.568$	$l = -8 \rightarrow 12$
11392 measured reflections	
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.173$ S = 0.943363 reflections 181 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.70$ e Å⁻³ $\Delta\rho_{min} = -0.63$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.45376 (6)	-0.17154 (4)	0.33892 (7)	0.0891 (3)
Cl1	0.24263 (13)	0.60728 (9)	0.12531 (12)	0.0749 (4)
Cl2	0.11288 (14)	0.77291 (9)	-0.05544 (15)	0.0843 (5)
O1	0.2713 (3)	0.1659 (2)	-0.1706 (3)	0.0628 (9)
N1	0.2462 (3)	0.2532 (2)	0.0288 (3)	0.0456 (9)
H1N1	0.253851	0.257938	0.121571	0.055*
N2	0.1988 (3)	0.3275 (2)	-0.0585 (4)	0.0478 (9)
C6	0.3268 (4)	0.0931 (3)	0.0576 (4)	0.0439 (10)
C9	0.1358 (4)	0.4878 (3)	-0.0799 (4)	0.0470 (10)
C7	0.2801 (4)	0.1731 (3)	-0.0370 (4)	0.0452 (10)
C5	0.3717 (4)	0.1033 (3)	0.2017 (4)	0.0473 (10)
Н5	0.375456	0.163419	0.243713	0.057*
C10	0.1524 (4)	0.5818 (3)	-0.0321 (4)	0.0483 (10)
C3	0.4067 (4)	-0.0633 (3)	0.2236 (5)	0.0527 (11)
C4	0.4112 (4)	0.0249 (3)	0.2838 (5)	0.0539 (11)
H4	0.440892	0.032600	0.380460	0.065*
C8	0.1896 (4)	0.4073 (3)	0.0037 (4)	0.0496 (11)
H8	0.216763	0.414398	0.101258	0.060*
C11	0.0950 (5)	0.6564 (3)	-0.1127 (5)	0.0569 (12)
C12	0.0226 (5)	0.6387 (4)	-0.2402 (5)	0.0663 (14)
H12	-0.015996	0.688339	-0.292702	0.080*
C14	0.0639 (4)	0.4716 (3)	-0.2103 (5)	0.0555 (12)
H14	0.053241	0.409731	-0.244882	0.067*
C1	0.3261 (5)	0.0017 (3)	-0.0023 (5)	0.0636 (13)
H1	0.299196	-0.006402	-0.099732	0.076*
C13	0.0084 (5)	0.5456 (4)	-0.2885 (5)	0.0674 (14)
H13	-0.039161	0.533003	-0.374844	0.081*
C2	0.3643 (5)	-0.0761 (3)	0.0792 (6)	0.0716 (15)
H2	0.361649	-0.136545	0.038188	0.086*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0922 (5)	0.0604 (4)	0.1158 (6)	0.0313 (3)	0.0164 (4)	0.0248 (3)
Cl1	0.1014 (11)	0.0608 (7)	0.0589 (8)	-0.0126 (7)	-0.0069(7)	0.0007 (6)
C12	0.1127 (13)	0.0482 (7)	0.0933 (10)	0.0101 (7)	0.0175 (9)	0.0065 (6)

supporting information

01	0.094 (3)	0.0564 (19)	0.0371 (17)	-0.0015 (16)	0.0027 (16)	-0.0063 (13)
N1	0.062 (2)	0.0421 (19)	0.0319 (17)	-0.0021 (17)	0.0032 (16)	0.0005 (14)
N2	0.052 (2)	0.047 (2)	0.0430 (19)	-0.0024 (17)	0.0010 (17)	0.0065 (16)
C6	0.042 (3)	0.042 (2)	0.048 (2)	-0.0064 (19)	0.0082 (19)	-0.0053 (18)
C9	0.044 (3)	0.052 (2)	0.047 (2)	-0.001 (2)	0.012 (2)	0.0049 (19)
C7	0.049 (3)	0.046 (2)	0.041 (2)	-0.0128 (19)	0.004 (2)	-0.0007 (19)
C5	0.060 (3)	0.040 (2)	0.041 (2)	-0.003 (2)	0.005 (2)	-0.0070 (17)
C10	0.050 (3)	0.052 (2)	0.044 (2)	-0.003 (2)	0.013 (2)	0.0009 (18)
C3	0.041 (3)	0.052 (2)	0.066 (3)	0.013 (2)	0.013 (2)	0.008 (2)
C4	0.061 (3)	0.050(2)	0.050 (2)	0.009 (2)	0.004 (2)	0.002 (2)
C8	0.059 (3)	0.047 (2)	0.043 (2)	-0.004 (2)	0.007 (2)	0.0023 (19)
C11	0.062 (3)	0.053 (3)	0.060 (3)	0.003 (2)	0.025 (3)	0.010 (2)
C12	0.068 (4)	0.069 (3)	0.062 (3)	0.017 (3)	0.005 (3)	0.019 (3)
C14	0.058 (3)	0.061 (3)	0.047 (3)	0.006 (2)	0.004 (2)	-0.002 (2)
C1	0.085 (4)	0.051 (3)	0.051 (3)	0.000 (3)	-0.008 (2)	-0.018 (2)
C13	0.069 (4)	0.078 (4)	0.053 (3)	0.012 (3)	-0.004 (3)	0.002 (3)
C2	0.076 (4)	0.043 (3)	0.093 (4)	0.006 (2)	-0.004 (3)	-0.017 (3)

Geometric parameters (Å, °)

Br1—C3	1.901 (4)	С5—Н5	0.9300
Cl1—C10	1.721 (4)	C10—C11	1.402 (6)
Cl2—C11	1.727 (5)	C3—C4	1.359 (6)
O1—C7	1.240 (5)	C3—C2	1.385 (6)
N1—C7	1.356 (5)	C4—H4	0.9300
N1—N2	1.391 (4)	C8—H8	0.9300
N1—H1N1	0.8600	C11—C12	1.383 (7)
N2—C8	1.271 (5)	C12—C13	1.386 (7)
C6—C5	1.385 (5)	C12—H12	0.9300
C6—C1	1.400 (5)	C14—C13	1.377 (6)
C6—C7	1.486 (6)	C14—H14	0.9300
C9—C14	1.398 (6)	C1—C2	1.372 (7)
C9—C10	1.400 (6)	C1—H1	0.9300
С9—С8	1.464 (6)	C13—H13	0.9300
C5—C4	1.385 (6)	C2—H2	0.9300
C7 N1 N2	117 8 (3)	С3 С4 Ц4	110.0
C7 - N1 - N2	117.8 (5)	C_{3} C_{4} H_{4}	119.9
N2 N1 H1N1	121.1	$N_{2} C_{3} C_{4} C_{14}$	119.9
$N_2 = N_1 = M_1$	121.1 116.2(3)	N2 - C3 - C3	119.3 (4)
C_{0} C_{1} C_{1} C_{1}	110.2(3)	$C_{0} C_{8} H_{8}$	120.3
$C_{5} = C_{6} = C_{7}$	117.7(4) 124.1(4)	C_{3} C_{3} C_{11} C_{10}	120.3
$C_{1} C_{6} C_{7}$	124.1(4) 118.2(4)	$C_{12} = C_{11} = C_{10}$	120.9(4) 118.2(4)
C1 - C0 - C7	110.2(4)	C_{12} C_{11} C_{12} C_{12}	110.2(4)
C14 - C9 - C10	110.2 (4)	C10-C11-C12	121.0(4)
C14 - C9 - C8	119.9 (4)	C11 - C12 - C13	118.9 (4)
C10-C9-C8	121.9 (4)	C12 - C12 - H12	120.6
OI - C - NI	121.7 (4)	C13—C12—H12	120.6
UI-C/-C6	121.0 (4)	C13—C14—C9	121.2 (4)

N1—C7—C6	117.3 (3)	C13—C14—H14	119.4
C4—C5—C6	120.7 (4)	C9—C14—H14	119.4
С4—С5—Н5	119.7	C2C1C6	121.6 (4)
С6—С5—Н5	119.7	C2—C1—H1	119.2
C9—C10—C11	120.0 (4)	C6—C1—H1	119.2
C9—C10—Cl1	120.7 (3)	C14—C13—C12	120.9 (5)
C11—C10—C11	119.3 (3)	C14—C13—H13	119.6
C4—C3—C2	120.7 (4)	С12—С13—Н13	119.6
C4—C3—Br1	120.1 (3)	C1—C2—C3	118.9 (4)
C2—C3—Br1	119.1 (3)	C1—C2—H2	120.5
C3—C4—C5	120.3 (4)	C3—C2—H2	120.5
C7—N1—N2—C8	-166.9 (4)	C14—C9—C8—N2	19.2 (6)
N2—N1—C7—O1	1.1 (6)	C10-C9-C8-N2	-162.0 (4)
N2—N1—C7—C6	-178.0 (4)	C9-C10-C11-C12	-0.6 (7)
C5-C6-C7-O1	160.5 (4)	Cl1—C10—C11—C12	179.5 (4)
C1C6C7O1	-19.2 (6)	C9-C10-C11-Cl2	179.5 (3)
C5-C6-C7-N1	-20.4 (6)	Cl1—C10—C11—Cl2	-0.4 (5)
C1—C6—C7—N1	160.0 (4)	C10-C11-C12-C13	-0.7 (7)
C1—C6—C5—C4	-1.8 (6)	Cl2—C11—C12—C13	179.2 (4)
C7—C6—C5—C4	178.5 (4)	C10-C9-C14-C13	-1.4 (7)
C14—C9—C10—C11	1.6 (6)	C8—C9—C14—C13	177.5 (4)
C8—C9—C10—C11	-177.3 (4)	C5-C6-C1-C2	2.4 (7)
C14—C9—C10—Cl1	-178.5 (3)	C7—C6—C1—C2	-177.9 (4)
C8—C9—C10—C11	2.6 (6)	C9-C14-C13-C12	0.1 (7)
C2—C3—C4—C5	0.9 (7)	C11—C12—C13—C14	0.9 (8)
Br1—C3—C4—C5	-177.0 (3)	C6—C1—C2—C3	-1.4 (8)
C6—C5—C4—C3	0.3 (7)	C4—C3—C2—C1	-0.3 (7)
N1—N2—C8—C9	-177.5 (3)	Br1—C3—C2—C1	177.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1N1····O1 ⁱ	0.86	2.20	3.003 (4)	155
C8—H8···O1 ⁱ	0.93	2.42	3.234 (5)	146

Symmetry code: (i) x, -y+1/2, z+1/2.