

Received 17 January 2019 Accepted 5 February 2019

Edited by S. Parkin, University of Kentucky, USA

‡ Deceased.

Keywords: crystal structure; nickel; macrocycle; cyclam; diasteriomers.

CCDC references: 1895686; 1895685

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal structures of two nickel(II) macrocyclic salts: (5,7,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) monohydrate and (5,7,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate

Peter W. R. Corfield^a* and Virgil L. Goedken^b‡

^aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and ^bDepartment of Chemistry, The Ohio State University, Columbus, OH 43210, USA. *Correspondence e-mail: pcorfield@fordham.edu

The crystal structure of the Ni-14 macrocycle salt, (5,7,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate, $[Ni(C_{16}H_{36}N_4)]_2(ClO_4)_4$ ·H₂O, contains two different diasteriomeric macrocyclic cations in the asymmetric unit, one with two NH protons on each side of the cation (Ia), and the other with all four NH protons on the same side (Ib). The crystal structure of the bromide trihydrate salt of the same Ni-14 macrocyclic cation, namely (5,7,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate, $[Ni(C_{16}H_{36}N_4)]Br_2 \cdot 3H_2O$ (II), contains only the same diastereomer as Ib, with the four N-H bonds on the same side. The geometry around the Ni atom differs slightly between the two diastereomeric cations, as the mean Ni–N distance in Ia is 1.952 (2) Å, while that for Ib and II is 1.928 (2) Å. The hexamethyl substitution in all three macrocyclic cations has the two dimethyl-substituted C atoms cis to one another, different from the trans 5,5,7,12,12,14-hexamethyl Ni-14 cations found in all but one of the many published crystal structures of hexamethyl Ni-14 macrocycles. In each of the two crystal structures, the anions, water molecules, and N-H protons of the macrocyclic cations form extensive hydrogen-bonded zigzag chains propagating along [001] in I and [010] in II.

1. Chemical context

Reports of the formation of cyclic Schiff base-amine complexes of Ni by condensation of acetone with tris(ethylenediamine)nickel(II) salts and their reduction to 14membered macrocyclic tetraamine complexes (Curtis, 1960, 1964) led to extensive research on these and similar complexes in the 1960s and 1970s in the hope of using such metaltemplate reactions in chemical synthesis and of understanding the role of macrocyclic ligands in metalloproteins such as hemoglobin. Their chemical inertness enables chemical reactions of the ligand without losing stereochemistry of the N atoms (Busch, 1978) and allows characterization of numerous possible isomers (Warner & Busch, 1969). Crystal structures of isomers of the macrocyclic nickel complexes continue to appear (e.g. Shi et al., 2010; Curtis et al., 2016). The major product of the condensation referred to above is a 5,5,7,12,12,14-hexamethyl-1,4,8,11,tetraazacyclotetradeca-4,14-dienenickel(II) ion, where the dimethyl-substituted C atoms are trans to each other, and most chemical and structural studies have been concerned with these compounds and

their oxidized or reduced species. The 5,7,7,12,12,14-hexamethyl-1,4,8,11,tetraazacyclotetradecanenickel(II) compounds presented here, abbreviated as cis-[Nime₆cyclam]²⁺, where the dimethyl-substituted C atoms are cis to one another, are derived from the minor product of the condensation, which has received less attention.

2. Structural commentary

Compound I crystallizes as a double salt, containing two independent *cis*-[Nime₆cyclam]²⁺ cations, with structures Ia and Ib in the scheme, four ClO_4^- anions, and one water of hydration in the asymmetric unit. Compound II crystallizes as a trihydrate built from *cis*-[Nime₆cyclam]²⁺ cations, with structure II in the scheme, two Br⁻ anions and three water molecules. The configurations of cations Ib and II are the same. Figs. 1–3 display the cations, anions, and packing diagram for compound I, while Figs. 4–6 give the cation, packing diagram and proposed hydrogen-bonding network for II.

In each cation, the nickel atom is in square-planar coordination to the macrocycle, with the Ni and four N atoms in a close to planar arrangement. All six-membered chelate rings

Figure 1

The $[Nime_6 cyclam]^{2+}$ cations in the asymmetric unit of the double salt **I**. Displacement ellipsoids are drawn at the 50% probability level. The cation centered on Ni1 is structure **Ia** in the text, and the other cation is **Ib**.

Figure 2

The perchlorate anions and water molecule in the asymmetric unit of double salt I, showing their relationship with the cations, and hydrogen bonds formed. The disordered $ClO_4^{-}(2)$ anion does not appear to form any hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3

Projection down the a axis for the double salt, **I**, showing the hydrogenbonded network extending along the c-axis direction. Ions and the water molecule in the asymmetric unit are in bold.

The $[Nime_6cyclam]^{2+}cation in the macrocycle bromide salt II. Displacement ellipsoids are at the 50% probability level.$

research communications

Table 1					
Hydrogen-bond	geometry	(Å,	°)	for I.	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O44	0.98	2.61	3.279 (9)	126
$N4-H4\cdots O14$	0.98	2.02	2.941 (4)	157
$N8-H8\cdots OW$	0.98	1.99	2.965 (5)	175
N11-H11···O43	0.98	2.11	3.028 (10)	155
N11-H11···O46	0.98	2.45	3.36 (3)	155
N21-H21···O13	0.98	2.14	3.093 (4)	165
N24-H24···O33	0.98	2.12	3.033 (5)	154
$N28-H28\cdots O45^{i}$	0.98	2.30	3.146 (16)	144
N31-H31···O12	0.98	2.16	3.083 (4)	156
$OW-HW1\cdots O41^{i}$	0.82(1)	2.38 (2)	3.162 (11)	162 (5)
$OW-HW1\cdots O47^{i}$	0.82(1)	2.37 (3)	3.139 (18)	157 (5)
$OW-HW2\cdots O12$	0.82(1)	2.45 (3)	3.181 (6)	149 (6)

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

are in the chair form, and all singly substituted methyl groups are in the equatorial position. In the reference molecule for **Ia** there are two NH atoms above and two below the N₄ plane, designated as *uudd*, in an *RRSS* configuration, whereas cations **Ib** and **II** are diastereomers of **Ia**, with all four NH atoms lying on the same side of the molecule, *uuuu*, and the N atoms in an *RSRS* configuration. Cation **Ia** is roughly planar in overall shape, whereas the N-H geometry in **Ib** and **II** makes the cations in these structures more bowl shaped. The configurational differences at N appear to affect the Ni-N bond lengths slightly: the mean Ni-N distance in **Ia** is 1.952 (2) Å while that for **Ib** and **II** is 1.928 (2) Å.

The conformations of the five-membered chelate rings in the reference cations shown in the scheme are λ on the left and δ on the right for **Ia**, and λ on the right and δ on the left for Ib and II. (Mirror-related cations are present in both crystals.) The twists of these five-membered rings necessarily differentiate between the top and bottom six-membered chelate rings in Ib and II, whereas this is not the case in Ia. In diastereomers Ib and II, the top plane (N4, C5, C7, N8) is bent at a less steep angle to the NiN₄ coordination plane than the bottom plane (N11, C12, C14, N1) (add 20 to atom numbers for structure **Ib**) and the outer C atoms C6 and C13 are at widely different distances from the NiN4 plane. Thus in Ib and II, the angles between the NiN₄ plane and the N_2C_2 plane of the top chelate ring are 29.6 (1) and 31.7 (3)°, respectively, while corresponding angles for the bottom rings are 52.7 (2) and 57.1 (2)°. The top outer carbon C6 is 0.317 (6) Å from the N_4 plane in **Ib** and 0.407 (10) Å in **II**, while the corresponding distances for the bottom outer atom C13 are respectively 1.176 (5) and 1.314 (11) Å. The Ni coordination geometry reflects this difference between the top and bottom of the molecule, with the top N4-Ni-N8 angle opened out to 94.58 $(12)^{\circ}$ in **Ib** and 94.79 $(19)^{\circ}$ in **II**, compared with bottom angles N1-Ni-N11 of 88.72 (12) and 87.73 (19)°, respectively. The five-membered chelate ring angles at the Ni atom, N1-Ni-N4 and N8-Ni-N11, average 88.48 (16) $^{\circ}$ in these two structures.

Molecule Ia is less-buckled, with angles between the N_4 plane and central planes of the chelate chairs more nearly equal, at 27.6 (2)° for the top chair and 31.9 (2)° for the

Table 2Hydrogen-bond geometry (Å, °) for II.

0.81 (6)	2.66 (6)	3.461 (5)	169 (6)
0.80 (6)	2.80 (7)	3.283 (11)	121 (5)
0.80 (6)	2.25 (6)	3.008 (13)	159 (6)
0.83 (6)	2.63 (6)	3.444 (5)	164 (5)
0.89 (6)	2.63 (6)	3.466 (4)	159 (5)
	0.81 (6) 0.80 (6) 0.80 (6) 0.83 (6) 0.89 (6)	$\begin{array}{ccc} 0.81 \ (6) & 2.66 \ (6) \\ 0.80 \ (6) & 2.80 \ (7) \\ 0.80 \ (6) & 2.25 \ (6) \\ 0.83 \ (6) & 2.63 \ (6) \\ 0.89 \ (6) & 2.63 \ (6) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

bottom, and outer C atom distances from the N_4 plane of 0.250 (6) Å for C6 at the top, and -0.389 (6) for C13 at the bottom. The Ni coordination plane is more nearly symmetrical, with six-membered chelate angles N4–Ni1–N8 of 93.49 (14)° (top) and N1–Ni1–N11 of 92.88 (13)° (bottom), and five-membered chelate angles averaging 86.87 (13)°, somewhat smaller than for **Ib** and **II**.

In both of the **Ib** and **II** cations, hydrogen bonding of an anion or of a solvent molecule brings an O atom close to the axial direction of the Ni atom on the same side of the cation as the four NH bonds, though at distances too long to be regarded as due to Ni-O bonding. In **Ib**, perchlorate atom O31 is at 2.799 (3) Å from atom Ni2, while in **II**, water molecule O1 is at 2.863 (10) Å from the Ni atom.

3. Supramolecular features

Details of hydrogen bonding are given in Tables 1 and 2. The N-H bonds in all three cations form hydrogen bonds; to water or perchlorate O atoms in **I**, and to water O atoms or Br^- ions in **II**.

In the double salt **I**, hydrogen bonding between the cations, the four perchlorate ions $ClO_4^{-}(1)-ClO_4^{-}(4)$ and the water molecule form a one-dimensional network extending along the *c*-axis direction, as shown in Fig. 3. Three of the four O atoms in the relatively ordered $ClO_4^{-}(1)$ anion link the two reference molecules together by $N-H\cdots O$ hydrogen bonds. Neither of the alternative orientations for $ClO_4^{-}(2)$ form any $N-H\cdots O$ or $O-H\cdots O$ H bonds. These disordered ions lie in a hydrophobic cavity in the crystal structure, and may be held in position by $C-H\cdots O$ bonds. The relatively ordered ion $ClO_4^{-}(3)$ is tethered by only one hydrogen bond, while each orientation for disordered $ClO_4^{-}(4)$ is hydrogen bonded to the water molecule and to either one or two N-H groups of the cations. The water molecule is well stabilized in its position by three separate hydrogen bonds.

The cyclam cation in **II** forms hydrogen bonds to the Br⁻ ions *via* N1-H1, N8-H8 and N11-H11, while N4-H4 hydrogen-bonds to water molecule O3. O3 appears to form rather short hydrogen bonds with water molecules O1 and O2, as well as with O3 rotated by the crystallographic twofold axis at $x = y = \frac{1}{4}$, with respective O···O distances of 2.671 (11), 2.635 (10) and 2.638 (12) Å. Exact details of the hydrogenbonding network are not clear, as none of the water H atoms could be located with assurance (see *Refinement* section) However, distances O1···Br2 = 3.341 (9) Å, O2 ··· Br1 = 3.347 (9) Å, and O2 ··· Br2(x, $y - \frac{1}{2}$, $z + \frac{1}{2}$) = 3.332 (8) Å are

Figure 5 Projection down the c axis for the macrocycle bromide salt II. The asymmetric unit is in bold. Bromide ions are green, and water molecules red.

consistent with water-bromide ion hydrogen bonding, which would give rise to the hydrogen-bonding network suggested in Fig. 6. Short ribbons along the $(0, \frac{1}{2}, -\frac{1}{2})$ direction linked to each other *via* presumed O3···O3 hydrogen bonds across the

Figure 6

Details of the proposed hydrogen-bond network for the macrocycle bromide salt **II**. Displacement ellipsoids are at the 50% probability level, with anions and solvent in the asymmetric unit drawn in bold. Bromide ions are green, and water O atoms red. Putative hydrogen bonds involving water molecules for which protons were not found are in cyan while other hydrogen bonds are black. Water O atoms and Br1 at the top of the figure are related to the corresponding atoms at the bottom *via* the translation vector $(0, \frac{1}{2}, -\frac{1}{2})$.

twofold axes lead to the formation of extended zigzag chains along the *b*-axis direction.

The shortest (C)H···(C)H distances are 2.61 Å in **I**, between H27*F* and H32*B*($x, \frac{1}{2} - y, \frac{1}{2} + z$), with just four other contacts less than 2.70, and 2.47 Å in **II**, between H9*B* and H12*E*($\frac{1}{4} - x, -\frac{1}{4} + y, -\frac{1}{4} + z$), with five other contacts less than 2.70 Å.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version of 2017; Groom *et al.*, 2016) for *cis*-[Nime₆cyclam]²⁺ structures produced only one hit (TICCOX; Wang *et al.*, 1996). This structure has a configuration with all NH atoms on the same side of the molecule, or *uuuu*, with a configuration the same as that of the structures **Ib** and **II** in the present work. The sole other *cis*-cyclam structure of any kind has Cu as the chelated metal ion (HMTZCP; Ochiai *et al.*, 1978), with a configuration the same as that of structure **Ia**.

Of 38 3D *trans*-[Nime₆cyclam]²⁺structures found in the CSD, 26 have the NH configuration *uudd* of cation **Ia** in the present work, five have a *udud* configuration, and five have the NH configuration *uuuu* (or equivalently *dddd*), but with $\lambda\lambda$ or $\delta\delta$ conformations for the five-membered chelate rings, different from the conformations of **Ib** and **II** in the present work. In these 36 structures, there need be no difference between the geometries of the six-membered chelate rings, and indeed, minus a few exceptions, both N–Ni–N sixmembered ring chelate angles are identical, with a mean of 93.2 (4)°. The last two *trans* structures [LIFYEG (Ou *et al.*, 2013), NIBTET (Curtis *et al.*, 1973)] have cations with the same conformation as in **Ib** and **II**, and with the same differentiation in six-membered ring N–Ni–N chelate angles as in the present work.

research communications

 Table 3

 Experimental details.

	I	П
Crystal data		
Chemical formula	$[Ni(C_{16}H_{36}N_4)]_2(ClO_4)_4 \cdot H_2O$	$[Ni(C_{16}H_{36}N_4)]Br_2 \cdot 3H_2O$
М.	1102.21	557.06
Crystal system, space group	Monoclinic, $P2_1/c$	Orthorhombic, Fdd2
Temperature (K)	295	295
a, b, c (Å)	8.906 (4), 29.412 (11), 19.505 (9)	60.3649 (18), 19.8364 (9), 7.9773 (3)
α, β, γ (°)	90, 107,030 (19), 90	90, 90, 90
$V(Å^3)$	4885 (4)	9552.2 (6)
Z	4	16
Radiation type	Cu <i>Kα</i>	Μο Κα
$\mu (\rm{mm}^{-1})$	3.60	4.17
Colour	Orange	Yellow
Crystal size (mm)	$0.52 \times 0.25 \times 0.11$	$0.37 \times 0.15 \times 0.10$
Data collection		
Diffractometer	Picker 4-circle	Enraf–Nonius KappaCCD
Radiation source	sealed X-ray tube	fine-focus sealed tube
Absorption correction	Gaussian (Busing & Levy, 1957)	Part of the refinement model (ΔF) (SCALEPACK; Otwinowski & Minor, 1997)
T_{\min}, T_{\max}	0.454, 0.686	0.34, 0.67
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7450, 6870, 4899	41142, 5382, 4897
R _{int}	0.060	0.096
θ_{\max} (°)	58.4	27.5
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.552	0.649
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.109, 1.04	0.035, 0.085, 1.04
No. of reflections	6870	5382
No. of parameters	686	253
No. of restraints	184	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.30, -0.31	0.88, -0.56

Data reduction followed procedures in Corfield *et al.* (1973). Structure solution was by the heavy-atom method with local programs. Computer programs: Corfield & Gainsford (1972), *KappaCCD Server Software* (Nonius, 1997), *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997), *SHELXL2017* (Sheldrick, 2015), *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 2012) and *publCIF* (Westrip, 2010).

A search for structures where Ni^{2+} is coordinated solely by the unsubstituted cyclam ligand gave 20 hits. Of these, one had the *RRRR* configuration, or *udud*, with alternate NH atoms pointing upwards and downwards, while 19 had the *RRSS* configuration, or *uudd*, as in the present **Ia** structure, the more stable isomer according to Bosnich *et al.* (1965). None of these unsubstituted Ni-cyclam structures had the *RSRS* configuration, or *uuuu*, with all NH atoms on the same side of the molecule, as in the present **Ib** and **II** structures. Presumably this particular configuration is stabilized by the methyl substituent groups.

5. Synthesis and crystallization

The double salt I was prepared in Daryle H. Busch's laboratories by methods described in Curtis (1967). The bromide salt II was prepared by a solution of I in methanol/KBr/HBr, precipitation with ether, and recrystallization from hot aqueous HBr.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Data for I were collected at The Ohio State University many years ago. As was the custom then, reflection data were stored as F values, so that those reflections for which F^2 values were negative were stored with values of zero. During the preparation of this manuscript, we found that the original absorption correction had been carried out with an incorrect value for the absorption coefficient, μ . While correcting this problem, we converted the reflection data into the F^2 values used in the final refinements. Thermal parameters for the perchlorate O atoms in I are all large, indicating probable positional disorder, common for these anions. After extensive modeling attempts, ClO_4^{-} ions 1 and 3 were refined with an ordered model, while ClO_4^{-} ions 2 and 4 were refined in two alternative orientations, with 50% occupancy each and a common Cl atom in $ClO_4^{-}(2)$, and occupancies of 65.0 (8)% and 35.0 (8)% and separate sites for the disordered Cl atoms in $ClO_4^{-}(4)$. Initially, tight restraints on the ClO_4 geometry were imposed, but these were relaxed during the final refinements. However, it proved useful to impose restraints on the thermal parameters for the O atoms with the Shelx RIGU command, and a DFIX command was used to prevent the too close approach of two O atoms from different perchlorate groups.

Crystal data for compound II, the bromide salt, were originally obtained with the same Picker four-circle diffractometer as used for compound I. (Three octants merged to give 1916 observations; Gaussian absorption correction applied; R_1 = 0.026 for 1780 observed > 2σ , R_2 = 0.078, NV = 241, GOOF = 0.876, $\Delta \rho = -0.42$ to +0.60 e Å⁻³.) We recollected data on the same crystal much later with the KappaCCD system at Fordham University to expand the data set and because some of the previous processing details had been lost. Refinements with the two sets of data gave very similar results, with no bond length or interior bond angle differing by more than 2.0σ and average difference 0.7σ . Twinning by reflection about the (001) plane, perpendicular to the polar twofold axis in Fdd2, was indicated by the Flack parameter of 0.57 (2) as well as by the low value of 0.030 found for R_{merg} if the observed I(hkl)and $I(hk\bar{l})$ intensities were merged, compared with 0.070 if the calculated intensities for an untwinned crystal were merged.

As noted in the section on Supramolecular features, the water molecules refined to positions rather close to one another. It was necessary to introduce anti-bumping restraints in the SHELXL refinements to avoid unreasonably short O···O contacts. Difference maps at the end of the leastsquares refinements were dominated by features associated with the Br⁻ ions, and were uninformative regarding the positions of H atoms, even when calculated with only lowangle data. Thus, none of the H atoms on the water molecules were located. Potential positions for some water H atoms could be derived from the presumed hydrogen-bonding pattern, but refinements including these atoms were inconclusive. We tried refining the SHELXL BASF factor to see if this improved the difference maps, obtaining BASF = 0.58 (2), with negligible changes in the difference map or R factors. Hence our final refinements assume equal contributions from each twin component. The close proximity of O3 to the crystallographic twofold axis suggests disorder of at least the H atoms on O3, and the large U_{eq} value for O3 suggests probable disorder of the O3 atoms themselves. It was possible to generate two closely positioned sites for O3, but extensive efforts to refine a suitable disordered model for O3 did not improve the R factors, nor give more reasonable U_{eq} values for the disordered O3 atoms, while difference maps from these refinements did not give any useful information either on water H atoms. In light of these factors, we have not reported a model with a disordered O3 atom.

In both compounds, H atoms on the cation were constrained to idealized positions, with C-H distances of 0.97 Å for the methylene groups, 0.98 Å for the methine CH groups, and 0.96 Å for the methyl groups, while the U_{eq} factors for these H atoms were set at 1.2 times the U_{iso} of the bonded atoms for methylene and methine groups, and 1.5 times for the

methyl groups. All NH atoms were refined, with U_{eq} values set at 1.2 times the U_{iso} for their bonded N atom in I and 1.0 times U_{iso} for II.

Acknowledgements

We are extremely grateful for the support and encouragement of Daryle H. Busch and for the assistance of Graeme J. Gainsford at The Ohio State University, where much of the experimental work was carried out. We are also grateful to the Office of the Dean at Fordham University for its generous financial support.

Funding information

Funding for this research was provided by: US National Science Foundation Equipment Grant (grant No. GP8534).

References

- Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). *Inorg. Chem.* 4, 1102–1108.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.
- Busch, D. H. (1978). Acc. Chem. Res. 11, 392-400.
- Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.
- Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). *Inorg. Chem.* **12**, 1734–1740.
- Corfield, P. W. R. & Gainsford, G. J. (1972). Local versions of standard programs, written at Ohio State University.
- Curtis, N. F. (1960). J. Chem. Soc. pp. 4409-4413.
- Curtis, N. F. (1964). J. Chem. Soc. pp. 2644-2650.
- Curtis, N. F. (1967). J. Chem. Soc. C, pp. 1979–1980.
- Curtis, N. F., Coles, M. P. & Wikaira, J. (2016). *Polyhedron*, **110**, 282–290.
- Curtis, N. F., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1963–1974.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Nonius (1997). *KappaCCD Server Software*. Nonius BV, Delft, The Netherlands.
- Ochiai, E., Rettig, S. J. & Trotter, J. (1978). Can. J. Chem. 56, 267-272.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W.
- Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Ou, G.-C., Yuan, X.-Y. & Li, Z.-Z. (2013). *Chin. J. Struct. Chem.* 32, 375–380.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shi, F., Chen, X., Rong, R. & Bao, Q. (2010). Acta Cryst. E66, m665– m666.
- Wang, A., Lee, T.-J., Chen, B.-H., Yuan, Y.-Z. & Chung, C.-S. (1996). Acta Cryst. C52, 3033–3035.
- Warner, L. G. & Busch, D. H. (1969). J. Am. Chem. Soc. 91, 4092–4101.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 332-337 [https://doi.org/10.1107/S2056989019002056]

Crystal structures of two nickel(II) macrocyclic salts: (5,7,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) monohydrate and (5,7,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate

Peter W. R. Corfield and Virgil L. Goedken

Computing details

Data collection: Corfield & Gainsford (1972) for (I); *KappaCCD Server Software* (Nonius, 1997) for (II). Cell refinement: Corfield & Gainsford (1972) for (I); *SCALEPACK* (Otwinowski & Minor, 1997) for (II). Data reduction: Data reduction followed procedures in Corfield *et al.* (1973) with p = 0.05 for (I); *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997) for (II). Program(s) used to solve structure: heavy atom method with local programs for (I); Corfield & Gainsford (1972) for (II). For both structures, program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) bis(perchlorate) hemihydrate (I)

Crystal data	
$[Ni(C_{16}H_{36}N_4)]_2(ClO_4)_4 \cdot H_2O$ $M_r = 1102.21$ Monoclinic, $P2_1/c$ a = 8.906 (4) Å b = 29.412 (11) Å c = 19.505 (9) Å $\beta = 107.030$ (19)° V = 4885 (4) Å ³ Z = 4 F(000) = 2328	$\begin{split} D_{\rm x} &= 1.499 \ {\rm Mg \ m^{-3}} \\ D_{\rm m} &= 1.49 \ {\rm Mg \ m^{-3}} \\ D_{\rm m} \ {\rm measured \ by \ flotation \ in \ chloroform/carbon \ tetrachloride \ mixtures} \\ {\rm Cu \ } K\alpha \ {\rm radiation, \ } \lambda &= 1.5418 \ {\rm \AA} \\ {\rm Cell \ parameters \ from \ } 28 \ {\rm reflections} \\ \theta &= 5.2 - 28.2^{\circ} \\ \mu &= 3.60 \ {\rm mm^{-1}} \\ T &= 295 \ {\rm K} \\ {\rm Needle, \ orange} \\ 0.52 \times 0.25 \times 0.11 \ {\rm mm} \end{split}$
Data collection	
Picker 4-circle diffractometer Radiation source: sealed X-ray tube Oriented graphite 200 reflection monochromator $\theta/2\theta$ scans Absorption correction: gaussian (Busing & Levy, 1957) $T_{min} = 0.454, T_{max} = 0.686$ 7450 measured reflections	6870 independent reflections 4899 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 58.4^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 32$ $l = -21 \rightarrow 21$ 3 standard reflections every 200 reflections intensity decay: +2(5)

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: mixed
$wR(F^2) = 0.109$	H atoms treated by a mixture of independent
S = 1.04	and constrained refinement
6870 reflections	$w = 1/[\sigma^2(F_o^2) + (0.016P)^2 + 2.P]$
686 parameters	where $P = (F_o^2 + 2F_c^2)/3$
184 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: heavy-atom method	$\Delta \rho_{\rm max} = 0.30 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.33013 (7)	0.23109 (2)	-0.03275 (3)	0.04565 (18)	
N1	0.1761 (4)	0.22148 (10)	-0.12620 (15)	0.0485 (8)	
H1	0.197135	0.244899	-0.157932	0.058*	
C2	0.0171 (5)	0.23125 (15)	-0.1204 (2)	0.0625 (11)	
H2A	-0.025056	0.204666	-0.103052	0.075*	
H2B	-0.053194	0.239506	-0.166885	0.075*	
C3	0.0328 (5)	0.26965 (15)	-0.0690 (2)	0.0666 (12)	
H3A	0.058301	0.297432	-0.090027	0.080*	
H3B	-0.065282	0.274219	-0.057861	0.080*	
N4	0.1597 (4)	0.25839 (10)	-0.00289 (15)	0.0486 (8)	
H4	0.117301	0.233348	0.018922	0.058*	
C5	0.1831 (5)	0.29636 (14)	0.0503 (2)	0.0633 (12)	
H5	0.204365	0.324159	0.027016	0.076*	
C6	0.3218 (5)	0.28734 (14)	0.1143 (2)	0.0664 (12)	
H6A	0.304739	0.258561	0.135098	0.080*	
H6B	0.324884	0.310785	0.149625	0.080*	
C7	0.4812 (5)	0.28563 (15)	0.1010 (2)	0.0683 (12)	
N8	0.4865 (4)	0.24318 (11)	0.05883 (16)	0.0550 (8)	
H8	0.474060	0.218272	0.090082	0.066*	
С9	0.6423 (5)	0.23559 (19)	0.0486 (2)	0.0823 (15)	
H9A	0.720540	0.231303	0.094621	0.099*	
H9B	0.672292	0.261661	0.025142	0.099*	
C10	0.6320 (6)	0.19438 (18)	0.0036 (3)	0.0879 (16)	
H10A	0.614938	0.167630	0.029429	0.105*	
H10B	0.728654	0.190295	-0.009098	0.105*	
N11	0.4978 (4)	0.20118 (10)	-0.06199 (16)	0.0533 (8)	
H11	0.534956	0.224885	-0.088376	0.064*	
C12	0.4711 (5)	0.16056 (14)	-0.1118 (2)	0.0636 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.3333 (5)	0.17096 (15)	-0.1773 (2)	0.0690 (12)
H13A	0.356791	0.198604	-0.199267	0.083*
H13B	0.324394	0.146555	-0.211698	0.083*
C14	0.1776 (5)	0.17674 (13)	-0.1638(2)	0.0592 (11)
H14	0.165234	0.152268	-0.131766	0.071*
C5A	0.0356 (6)	0.30423 (17)	0.0732(3)	0.0869 (15)
H5A1	-0.049541	0.312685	0.032148	0.130*
H5A2	0 054457	0 328153	0 108138	0.130*
H5A3	0.008990	0.276807	0.093638	0.130*
C7A	0.5102(7)	0.32751 (16)	0.0600 (3)	0.0999(18)
H7A1	0.618224	0.328121	0.060308	0.150*
H7A2	0.486747	0.354513	0.082492	0.150*
H7A3	0.400747	0.326135	0.002492	0.150*
C7R	0.443883	0.320133 0.2824(2)	0.011349 0.1752(3)	0.130°
	0.0055 (0)	0.2824(2)	0.1752 (5)	0.110(2)
	0.708733	0.283339	0.109304	0.164*
H/B2	0.592127	0.254428	0.198026	0.164*
H/B3	0.592894	0.30/561	0.204499	0.164*
CI2A	0.6159 (6)	0.15410 (19)	-0.1381 (3)	0.0979(17)
HI2A	0.702796	0.144134	-0.098918	0.147*
H12B	0.641932	0.182432	-0.156237	0.147*
H12C	0.593787	0.131693	-0.175486	0.147*
C12B	0.4445 (7)	0.11789 (15)	-0.0729 (3)	0.0946 (17)
H12D	0.543013	0.107441	-0.041676	0.142*
H12E	0.399218	0.094643	-0.107233	0.142*
H12F	0.374442	0.124680	-0.045039	0.142*
C14A	0.0443 (5)	0.17299 (15)	-0.2336 (2)	0.0746 (13)
H14A	-0.054456	0.172069	-0.223149	0.112*
H14B	0.056985	0.145700	-0.258362	0.112*
H14C	0.046527	0.198861	-0.263348	0.112*
Ni2	0.05959 (6)	0.05839 (2)	0.25539 (3)	0.03924 (17)
N21	-0.1278 (3)	0.05912 (10)	0.17423 (15)	0.0458 (7)
H21	-0.104191	0.078124	0.137427	0.055*
C22	-0.2528(5)	0.08287 (15)	0.1966 (2)	0.0635 (11)
H22A	-0.355426	0.073191	0.166936	0.076*
H22B	-0.244200	0.115468	0.191214	0.076*
C23	-0.2330(4)	0.07126 (14)	0.2733 (2)	0.0600 (11)
H23A	-0.302809	0.089655	0.291809	0.072*
H23B	-0.257880	0 039484	0 277655	0.072*
N24	-0.0664(3)	0 08048 (10)	0.31420(15)	0.0470(8)
H24	-0.055655	0 113641	0 314496	0.056*
C25	-0.0287(5)	0.06706 (14)	0.3911(2)	0.050
H25	-0.045248	0.034216	0.393331	0.0575 (10)
C26	0.045240 0.1421(5)	0.034210 0.07703(14)	0.393331 0.42877(10)	0.009
U20	0.1421 (3)	0.07703 (14)	0.42077 (19)	0.0578 (11)
1120A 1120A	0.159090	0.102758	0.420735	0.009
C27	0.101403	0.100750 0.04865(12)	0.420733	0.009
N28	0.2030(3)	0.07003(13)	0.32122(14)	0.0331(10) 0.0441(7)
1120	0.2334(3)	0.00100 (10)	0.33122(14)	0.0441(/)
п <i>2</i> 0	0.203401	0.093988	0.334118	0.033**

C29	0.3799 (4)	0.03908 (15)	0.3064 (2)	0.0588 (11)
H29A	0.481942	0.051537	0.331708	0.071*
H29B	0.381236	0.006718	0.316162	0.071*
C30	0.3462 (4)	0.04692 (14)	0.2288 (2)	0.0557 (10)
H30A	0.409650	0.026684	0.209428	0.067*
H30B	0.372762	0.077978	0.220239	0.067*
N31	0.1765 (3)	0.03858 (9)	0.19211 (14)	0.0421 (7)
H31	0.148791	0.060096	0.151995	0.050*
C32	0.1288 (5)	-0.00772(12)	0.15832 (19)	0.0483 (9)
C33	-0.0400 (4)	-0.00298(13)	0.11006 (19)	0.0515 (10)
H33A	-0.038622	0.018142	0.072057	0.062*
H33B	-0.071470	-0.032286	0.087650	0.062*
C34	-0.1677(4)	0.01252 (13)	0.1419(2)	0.0518(10)
H34	-0.173451	-0.008818	0.179632	0.062*
C25A	-0.1327(6)	0.000010 0.09093(19)	0.4291(2)	0.082
H25A	-0.238226	0.079776	0.410899	0.133*
H25R	-0.131361	0.123076	0.420719	0.133*
H25C	-0.094300	0.085053	0.479626	0.133*
C27A	0.094500	0.06038 (16)	0.479020 0.4582 (2)	0.0758 (13)
U27A	0.4201 (3)	0.00038(10)	0.4382(2) 0.447818	0.0758 (15)
1127A 1127B	0.303880	0.041184	0.447818	0.114*
	0.423999	0.0035002	0.300881	0.114*
П27С С27Р	0.430018 0.2214 (5)	-0.00220 (12)	0.431099	0.114°
C27B	0.2514 (5)	-0.00229 (13)	0.4118(2)	0.0703 (13)
H27D	0.31/339	-0.019414	0.404/01	0.106*
H2/E	0.136392	-0.010190	0.375432	0.106*
H2/F	0.220133	-0.009180	0.458190	0.106*
C32A	0.1411 (5)	-0.04402 (13)	0.2156 (2)	0.0653 (12)
H32A	0.248832	-0.047298	0.243634	0.098*
H32B	0.103155	-0.072465	0.192932	0.098*
H32C	0.079130	-0.035147	0.246139	0.098*
C32B	0.2321 (5)	-0.02093 (15)	0.1112 (2)	0.0683 (12)
H32D	0.238820	0.004179	0.080827	0.102*
H32E	0.186955	-0.046664	0.082207	0.102*
H32F	0.335303	-0.028603	0.141077	0.102*
C34A	-0.3247 (5)	0.01198 (16)	0.0823 (2)	0.0732 (13)
H34A	-0.409332	0.015369	0.103082	0.110*
H34B	-0.335778	-0.016353	0.056878	0.110*
H34C	-0.327140	0.036600	0.049674	0.110*
Cl1	0.04648 (14)	0.12152 (3)	0.02020 (5)	0.0627 (3)
O11	0.0208 (4)	0.11563 (11)	-0.05487 (15)	0.0871 (10)
012	0.1777 (4)	0.09572 (13)	0.05975 (19)	0.1046 (12)
O13	-0.0888 (4)	0.10628 (11)	0.03875 (16)	0.0824 (9)
O14	0.0730 (6)	0.16810 (10)	0.03803 (18)	0.1168 (15)
C12	-0.30063 (16)	-0.05995 (4)	0.32668 (7)	0.0744 (3)
O21	-0.317 (2)	-0.0287 (6)	0.3798 (9)	0.108 (5)
O22	-0.4040 (14)	-0.0460 (6)	0.2612 (7)	0.136 (6)
O23	-0.305 (3)	-0.1036 (4)	0.3459 (11)	0.167 (7)
O24	-0.1491 (10)	-0.0529 (4)	0.3129 (7)	0.125 (3)

0.5 0.5 0.5 0.5

O25	-0.279 (3)	-0.0260 (6)	0.3745 (12)	0.149 (8)	0.5
O26	-0.319 (3)	-0.0460 (6)	0.2625 (9)	0.224 (10)	0.5
O27	-0.204 (3)	-0.0931 (8)	0.3517 (16)	0.261 (11)	0.5
O28	-0.4420 (17)	-0.0831 (5)	0.3231 (8)	0.194 (6)	0.5
C13	0.06049 (14)	0.18122 (3)	0.22458 (6)	0.0676 (3)	
O31	0.1373 (4)	0.14274 (10)	0.20864 (17)	0.0921 (11)	
O32	0.1437 (6)	0.22121 (11)	0.2232 (2)	0.1241 (15)	
O33	0.0440 (6)	0.17559 (12)	0.2931 (2)	0.1381 (18)	
O34	-0.0876 (5)	0.18279 (19)	0.1739 (3)	0.169 (2)	
Cl4A	0.5256 (7)	0.3146 (2)	-0.1429 (3)	0.0736 (9)	0.650 (8)
O41	0.5146 (12)	0.3523 (3)	-0.1872 (5)	0.132 (5)	0.650 (8)
O42	0.6606 (14)	0.3181 (5)	-0.0781 (5)	0.126 (4)	0.650 (8)
O43	0.5089 (18)	0.2745 (4)	-0.1693 (6)	0.192 (5)	0.650 (8)
O44	0.3937 (8)	0.3124 (3)	-0.1183 (3)	0.138 (3)	0.650 (8)
Cl4B	0.5700 (13)	0.3152 (4)	-0.1545 (7)	0.0736 (9)	0.350 (8)
O45	0.489 (2)	0.3555 (6)	-0.1438 (10)	0.142 (9)	0.350 (8)
O46	0.661 (3)	0.2972 (9)	-0.1007 (12)	0.136 (8)	0.350 (8)
O47	0.657 (2)	0.3202 (5)	-0.1969 (8)	0.164 (7)	0.350 (8)
O48	0.4912 (13)	0.2824 (8)	-0.2072 (9)	0.148 (7)	0.350 (8)
OW	0.4397 (5)	0.16490 (14)	0.1461 (2)	0.0980 (11)	
HW1	0.475 (6)	0.165 (2)	0.1897 (7)	0.147*	
HW2	0.354 (4)	0.152 (2)	0.134 (3)	0.147*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0521 (4)	0.0436 (4)	0.0405 (3)	0.0037 (3)	0.0125 (3)	0.0048 (3)
N1	0.059 (2)	0.0434 (18)	0.0428 (17)	-0.0001 (15)	0.0138 (15)	0.0058 (14)
C2	0.060 (3)	0.073 (3)	0.051 (2)	0.010 (2)	0.011 (2)	0.005 (2)
C3	0.067 (3)	0.076 (3)	0.056 (3)	0.020 (2)	0.016 (2)	0.005 (2)
N4	0.056 (2)	0.0442 (18)	0.0462 (18)	0.0025 (15)	0.0161 (16)	0.0039 (14)
C5	0.087 (3)	0.052 (2)	0.056 (3)	0.000 (2)	0.029 (2)	-0.003(2)
C6	0.093 (4)	0.059 (3)	0.052 (3)	-0.006 (2)	0.029 (3)	-0.006 (2)
C7	0.075 (3)	0.070 (3)	0.061 (3)	-0.017 (2)	0.023 (2)	-0.011 (2)
N8	0.061 (2)	0.054 (2)	0.0459 (19)	-0.0004 (17)	0.0093 (16)	0.0042 (15)
C9	0.054 (3)	0.110 (4)	0.068 (3)	0.011 (3)	-0.005 (2)	-0.003 (3)
C10	0.072 (3)	0.104 (4)	0.077 (3)	0.037 (3)	0.006 (3)	-0.005 (3)
N11	0.056 (2)	0.0523 (19)	0.0514 (19)	0.0105 (16)	0.0159 (16)	0.0073 (15)
C12	0.072 (3)	0.052 (3)	0.071 (3)	0.008 (2)	0.028 (2)	-0.004 (2)
C13	0.090 (4)	0.064 (3)	0.057 (3)	-0.012 (3)	0.028 (3)	-0.011 (2)
C14	0.078 (3)	0.047 (2)	0.053 (2)	-0.004 (2)	0.020 (2)	-0.0026 (19)
C5A	0.106 (4)	0.095 (4)	0.072 (3)	0.024 (3)	0.043 (3)	-0.006 (3)
C7A	0.138 (5)	0.068 (3)	0.113 (4)	-0.029 (3)	0.067 (4)	-0.008 (3)
C7B	0.094 (4)	0.152 (6)	0.072 (3)	-0.035 (4)	0.008 (3)	-0.036 (4)
C12A	0.101 (4)	0.101 (4)	0.104 (4)	0.023 (3)	0.051 (3)	-0.015 (3)
C12B	0.120 (5)	0.057 (3)	0.107 (4)	0.014 (3)	0.034 (4)	0.021 (3)
C14A	0.087 (4)	0.070 (3)	0.058 (3)	-0.011 (3)	0.008 (3)	-0.010 (2)
Ni2	0.0378 (3)	0.0382 (3)	0.0413 (3)	0.0012 (3)	0.0109 (3)	0.0022 (3)

N21	0.0398 (17)	0.0485 (18)	0.0473 (17)	0.0015 (15)	0.0096 (14)	0.0041 (14)
C22	0.049 (3)	0.066 (3)	0.070 (3)	0.008 (2)	0.009 (2)	-0.005 (2)
C23	0.041 (2)	0.067 (3)	0.075 (3)	0.004 (2)	0.022 (2)	-0.011(2)
N24	0.0465 (19)	0.0460 (18)	0.0502 (18)	0.0002 (15)	0.0169 (15)	-0.0003 (14)
C25	0.060 (3)	0.065 (3)	0.053 (2)	0.000 (2)	0.027 (2)	0.005 (2)
C26	0.071 (3)	0.062 (3)	0.041 (2)	-0.001(2)	0.016 (2)	0.0021 (19)
C27	0.052 (2)	0.058 (3)	0.045 (2)	0.003 (2)	0.0084 (19)	0.0082 (19)
N28	0.0449 (18)	0.0434 (17)	0.0436 (17)	0.0034 (14)	0.0122 (14)	0.0014 (14)
C29	0.043 (2)	0.071 (3)	0.060 (3)	0.002 (2)	0.011 (2)	-0.005(2)
C30	0.042 (2)	0.065 (3)	0.062 (3)	-0.004(2)	0.018 (2)	-0.008(2)
N31	0.0437 (18)	0.0418 (17)	0.0420 (16)	-0.0031 (14)	0.0145 (14)	-0.0004 (13)
C32	0.059 (3)	0.040 (2)	0.049 (2)	-0.0022 (19)	0.0186 (19)	-0.0043 (17)
C33	0.059 (3)	0.047 (2)	0.047 (2)	-0.008(2)	0.013 (2)	-0.0030 (18)
C34	0.052 (2)	0.050 (2)	0.051 (2)	-0.0119 (19)	0.0110 (19)	0.0015 (18)
C25A	0.084 (4)	0.122 (4)	0.072 (3)	0.006 (3)	0.042 (3)	-0.011(3)
C27A	0.068 (3)	0.097 (4)	0.050 (2)	0.003 (3)	-0.001(2)	0.002 (2)
C27B	0.080 (3)	0.059 (3)	0.069 (3)	0.008 (2)	0.015 (2)	0.021 (2)
C32A	0.079 (3)	0.045 (2)	0.069 (3)	0.002 (2)	0.016 (2)	0.009 (2)
C32B	0.072 (3)	0.066 (3)	0.071 (3)	0.004 (2)	0.027 (2)	-0.020(2)
C34A	0.053 (3)	0.084 (3)	0.072 (3)	-0.013 (2)	0.003 (2)	-0.012(2)
Cl1	0.0884 (8)	0.0480 (6)	0.0518 (6)	-0.0145 (6)	0.0208 (6)	0.0056 (5)
011	0.126 (3)	0.090 (2)	0.0525 (17)	-0.024 (2)	0.0374 (19)	-0.0008 (16)
012	0.091 (2)	0.116 (3)	0.103 (3)	0.017 (2)	0.022 (2)	0.039 (2)
013	0.099 (2)	0.083 (2)	0.075 (2)	-0.0148 (19)	0.0415 (19)	0.0139 (17)
O14	0.209 (4)	0.0520 (19)	0.088 (2)	-0.046 (2)	0.041 (3)	-0.0035 (17)
C12	0.0928 (9)	0.0517 (7)	0.0814 (8)	0.0066 (7)	0.0297 (7)	0.0028 (6)
O21	0.154 (11)	0.102 (8)	0.083 (6)	0.065 (9)	0.056 (7)	0.011 (5)
O22	0.101 (7)	0.162 (12)	0.103 (7)	0.053 (7)	-0.035 (6)	-0.021 (7)
O23	0.27 (2)	0.037 (4)	0.242 (16)	0.018 (9)	0.153 (17)	0.054 (6)
O24	0.068 (5)	0.160 (9)	0.166 (9)	0.007 (5)	0.061 (5)	0.016(7)
O25	0.235 (18)	0.099 (8)	0.138 (10)	-0.069 (9)	0.094 (10)	-0.055 (7)
O26	0.47 (3)	0.128 (12)	0.122 (9)	-0.061 (18)	0.161 (15)	0.026 (8)
O27	0.250 (18)	0.193 (19)	0.33 (2)	0.157 (17)	0.07 (2)	0.041 (16)
O28	0.169 (10)	0.165 (12)	0.228 (14)	-0.083 (9)	0.027 (10)	0.033 (11)
C13	0.0846 (8)	0.0481 (6)	0.0707 (7)	0.0035 (6)	0.0235 (6)	0.0008 (5)
O31	0.133 (3)	0.0535 (18)	0.097 (2)	0.0242 (19)	0.045 (2)	0.0007 (17)
O32	0.192 (4)	0.053 (2)	0.142 (3)	-0.033 (2)	0.072 (3)	0.006 (2)
O33	0.263 (6)	0.084 (3)	0.106 (3)	-0.037 (3)	0.113 (3)	-0.024 (2)
O34	0.092 (3)	0.207 (5)	0.178 (5)	0.035 (3)	-0.005 (3)	0.019 (4)
Cl4A	0.083 (3)	0.0633 (8)	0.074 (2)	-0.008 (2)	0.0223 (15)	0.0158 (12)
O41	0.118 (7)	0.092 (6)	0.149 (8)	-0.043 (5)	-0.015 (6)	0.073 (6)
O42	0.086 (5)	0.210 (13)	0.075 (6)	0.005 (7)	0.010 (4)	0.020 (5)
O43	0.393 (16)	0.079 (5)	0.116 (8)	-0.050 (7)	0.094 (8)	-0.006 (6)
O44	0.093 (5)	0.223 (9)	0.097 (5)	-0.045 (5)	0.024 (4)	0.011 (5)
Cl4B	0.083 (3)	0.0633 (8)	0.074 (2)	-0.008 (2)	0.0223 (15)	0.0158 (12)
O45	0.140 (14)	0.098 (11)	0.158 (17)	0.061 (10)	-0.003 (12)	-0.026 (11)
O46	0.123 (12)	0.18 (2)	0.092 (11)	0.071 (13)	0.016 (9)	0.031 (11)
O47	0.273 (17)	0.138 (12)	0.129 (10)	-0.023 (11)	0.136 (12)	-0.011 (9)
		. /	. /	· · ·	· · ·	× /

O48	0.214 (15)	0.125 (14)	0.105 (12)	0.006 (9)	0.045 (10)	-0.055 (11)
OW	0.098 (3)	0.099 (3)	0.089 (2)	-0.011 (2)	0.015 (2)	0.019 (2)

Geometric parameters (Å, °)

Nil—N1	1.954 (3)	N24—C25	1.491 (5)	
Ni1—N4	1.950 (3)	N24—H24	0.9800	
Nil—N8	1.949 (3)	C25—C26	1.511 (5)	
Nil—N11	1.956 (3)	C25—C25A	1.517 (5)	
N1-C2	1.481 (5)	C25—H25	0.9800	
N1-C14	1.508 (5)	C26—C27	1.520 (5)	
N1—H1	0.9800	C26—H26A	0.9700	
C2—C3	1.489 (5)	C26—H26B	0.9700	
C2—H2A	0.9700	C27—N28	1.514 (4)	
C2—H2B	0.9700	C27—C27B	1.533 (5)	
C3—N4	1.482 (5)	C27—C27A	1.535 (5)	
С3—НЗА	0.9700	N28—C29	1.489 (5)	
С3—Н3В	0.9700	N28—H28	0.9800	
N4—C5	1.496 (5)	C29—C30	1.474 (5)	
N4—H4	0.9800	C29—H29A	0.9700	
C5—C6	1.500 (6)	C29—H29B	0.9700	
C5—C5A	1.524 (6)	C30—N31	1.490 (4)	
С5—Н5	0.9800	C30—H30A	0.9700	
C6—C7	1.517 (6)	C30—H30B	0.9700	
С6—Н6А	0.9700	N31—C32	1.518 (4)	
C6—H6B	0.9700	N31—H31	0.9800	
C7—N8	1.504 (5)	C32—C32A	1.525 (5)	
С7—С7А	1.532 (6)	C32—C32B	1.528 (5)	
С7—С7В	1.547 (6)	C32—C33	1.529 (5)	
N8—C9	1.475 (5)	C33—C34	1.517 (5)	
N8—H8	0.9800	C33—H33A	0.9700	
C9—C10	1.484 (6)	С33—Н33В	0.9700	
С9—Н9А	0.9700	C34—C34A	1.534 (5)	
С9—Н9В	0.9700	C34—H34	0.9800	
C10—N11	1.487 (5)	C25A—H25A	0.9600	
C10—H10A	0.9700	C25A—H25B	0.9600	
C10—H10B	0.9700	C25A—H25C	0.9600	
N11—C12	1.515 (5)	C27A—H27A	0.9600	
N11—H11	0.9800	C27A—H27B	0.9600	
C12—C13	1.521 (6)	C27A—H27C	0.9600	
C12—C12B	1.522 (6)	C27B—H27D	0.9600	
C12-C12A	1.532 (6)	С27В—Н27Е	0.9600	
C13—C14	1.495 (6)	C27B—H27F	0.9600	
C13—H13A	0.9700	C32A—H32A	0.9600	
C13—H13B	0.9700	C32A—H32B	0.9600	
C14—C14A	1.527 (5)	C32A—H32C	0.9600	
C14—H14	0.9800	C32B—H32D	0.9600	
C5A—H5A1	0.9600	C32B—H32E	0.9600	

C5A—H5A2	0.9600	C32B—H32F	0.9600
С5А—Н5А3	0.9600	C34A—H34A	0.9600
C7A—H7A1	0.9600	C34A—H34B	0.9600
С7А—Н7А2	0.9600	C34A—H34C	0.9600
С7А—Н7А3	0.9600	Cl1—O14	1.416 (3)
C7B—H7B1	0.9600	Cl1—O12	1.417 (3)
C7B—H7B2	0.9600	Cl1—O11	1.425 (3)
C7B—H7B3	0.9600	Cl1—O13	1.428 (3)
C12A—H12A	0.9600	Cl2—O26	1.281 (13)
C12A—H12B	0.9600	Cl2—O27	1.299 (17)
C12A—H12C	0.9600	Cl2—O23	1.341 (10)
C12B—H12D	0.9600	Cl2—O25	1.342 (17)
C12B—H12E	0.9600	Cl2—O22	1.399 (11)
C12B—H12F	0.9600	C12—O28	1.414 (11)
C14A—H14A	0.9600	Cl2—O21	1.424 (17)
C14A—H14B	0.9600	Cl2—O24	1.466 (7)
C14A—H14C	0.9600	C13—O32	1.395 (3)
Ni2—N21	1.935 (3)	Cl3—O33	1.397 (4)
Ni2—N24	1.937 (3)	C13—O34	1.398 (4)
Ni2—N28	1.931 (3)	Cl3—O31	1.403 (3)
Ni2—N31	1.924 (3)	Cl4A—O43	1.279 (12)
Ni2-031	2.799 (3)	Cl4A—O41	1.391 (9)
N21—C22	1.484(5)	Cl4A—O44	1.394 (8)
N21—C34	1.507 (4)	C14A - O42	1.471 (11)
N21—H21	0.9800	C14B—O46	1.24 (3)
C22—C23	1,494 (5)	C14B - O47	1.300(15)
C22—H22A	0.9700	C14B	1.434 (19)
C22—H22B	0.9700	Cl4B—045	1.44 (2)
C23—N24	1 489 (4)	047-048	1.82(2)
C23—H23A	0.9700	OW—HW1	0.815(10)
C23—H23B	0.9700	OW—HW2	0.821 (10)
023 11230	0.9700	0.00 1102	0.021 (10)
N8—Ni1—N4	93.49 (14)	N24—C23—C22	107.6 (3)
N8—Ni1—N1	177.45 (13)	N24—C23—H23A	110.2
N4—Ni1—N1	86.74 (13)	C22—C23—H23A	110.2
N8—Ni1—N11	87.00 (14)	N24—C23—H23B	110.2
N4—Ni1—N11	177.59 (13)	C22—C23—H23B	110.2
N1—Ni1—N11	92.88 (13)	H23A—C23—H23B	108.5
C2—N1—C14	110.6 (3)	C23—N24—C25	112.7 (3)
C2—N1—Ni1	109.0 (2)	C23—N24—Ni2	106.3 (2)
C14—N1—Ni1	118.4 (2)	C25—N24—Ni2	120.5 (2)
C2—N1—H1	106.0	C23—N24—H24	105.3
C14—N1—H1	106.0	C25—N24—H24	105.3
Ni1—N1—H1	106.0	Ni2—N24—H24	105.3
N1—C2—C3	107.1 (3)	N24—C25—C26	109.6 (3)
N1—C2—H2A	110.3	N24—C25—C25A	112.2 (3)
C3—C2—H2A	110.3	C26—C25—C25A	110.1 (3)
N1—C2—H2B	110.3	N24—C25—H25	108.2

С3—С2—Н2В	110.3	C26—C25—H25	108.2
H2A—C2—H2B	108.5	C25A—C25—H25	108.2
N4—C3—C2	108.3 (3)	C25—C26—C27	117.1 (3)
N4—C3—H3A	110.0	С25—С26—Н26А	108.0
С2—С3—НЗА	110.0	C27—C26—H26A	108.0
N4—C3—H3B	110.0	C25—C26—H26B	108.0
С2—С3—Н3В	110.0	C27—C26—H26B	108.0
НЗА—СЗ—НЗВ	108.4	H26A—C26—H26B	107.3
C3—N4—C5	110.6 (3)	N28—C27—C26	107.3 (3)
C3—N4—Ni1	107.1 (2)	N28—C27—C27B	110.3 (3)
C5—N4—Ni1	123.5 (3)	C26—C27—C27B	111.1 (3)
C3—N4—H4	104.7	N28—C27—C27A	110.0 (3)
C5—N4—H4	104.7	C26—C27—C27A	108.1 (3)
Ni1—N4—H4	104.7	C27B—C27—C27A	109.8 (3)
N4—C5—C6	111.0 (3)	C29—N28—C27	112.3 (3)
N4—C5—C5A	111.1 (4)	C29—N28—Ni2	108.7(2)
C6-C5-C5A	110.7 (4)	C27—N28—Ni2	120.8(2)
N4—C5—H5	108.0	C_{29} N28 H28	104 5
С6—С5—Н5	108.0	$C_{27} = N_{28} = H_{28}$	104.5
C5A-C5-H5	108.0	Ni2—N28—H28	104.5
$C_{5}-C_{6}-C_{7}$	116 6 (4)	C_{30} C_{29} N_{28}	101.5 108.5(3)
C5—C6—H6A	108.1	C_{30} C_{29} H_{29} H_{29}	110.0
C7-C6-H6A	108.1	N28-C29-H29A	110.0
C5-C6-H6B	108.1	C_{30} C_{29} H_{29R}	110.0
C7—C6—H6B	108.1	N28-C29-H29B	110.0
H6A - C6 - H6B	107.3	$H_{29}A = C_{29} = H_{29}B$	108.4
N8-C7-C6	107.6 (3)	C_{29} C_{30} N31	100.1 109.9(3)
N8 - C7 - C7A	107.0(3) 110.2(4)	$C_{29} = C_{30} = H_{30A}$	109.9 (3)
C6-C7-C7A	111.8 (4)	N31_C30_H30A	109.7
N8-C7-C7B	109 5 (4)	C_{29} C_{30} H_{30B}	109.7
C6-C7-C7B	107.0(4)	N31_C30_H30B	109.7
C7A - C7 - C7B	107.0(4) 110.7(4)	$H_{30}A = C_{30} = H_{30}B$	109.7
C9 - N8 - C7	110.7(4) 112.4(3)	C_{30} N31 C_{32}	100.2 118 1 (3)
C9 - N8 - Ni1	112.4(3) 107.2(2)	C_{30} N31 C_{32}	107.8(2)
C7N8Ni1	107.2(2) 121.6(3)	C_{32} N31 Ni2	107.0(2) 114.5(2)
C9N8H8	104.7	C_{30} N31 H31	105.0
C7N8H8	104.7	C_{32} N31 H31	105.0
Nj1N8H8	104.7	Ni2_N31_H31	105.0
N8 - C9 - C10	107.9 (4)	$N_{2} = N_{31} = 1131$ $N_{31} = C_{32} = C_{32} \Delta$	103.0 111.0(3)
	110.1	N31 C32 C32R	111.0(3)
$\begin{array}{ccc} 10 & 0 & 10 \end{array}$	110.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.4(3)
NR CO HOR	110.1	$V_{32} = C_{32} = C_{32} = C_{32}$	109.0(3) 106.6(3)
$\begin{array}{ccc} \mathbf{N} 0 & \mathbf{C} 0 & \mathbf{H} 0 \mathbf{P} \end{array}$	110.1	$C_{22} = C_{22} = C_{23}$	100.0(3) 111.2(3)
$H_{0A} = C_{0} = H_{0B}$	10.1	$C_{32}A - C_{32} - C_{33}$	111.2(3) 1080(3)
$\begin{array}{cccc} 117 - 11$	100.4	$C_{32} = C_{32} = C_{33}$	100.0(3) 110.7(2)
$C_{2} = C_{10} = M_{10}$	107.1 (4)	$C_{34} = C_{35} = C_{52}$	119.7 (3)
$\mathbf{V}_{\mathbf{F}} = \mathbf{V}_{\mathbf{F}} = \mathbf{V}_{\mathbf{F}} = \mathbf{V}_{\mathbf{F}}$	110.3	$C_{22} C_{22} U_{22} A$	107.4
$ \begin{array}{c} \mathbf{M} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} H$	110.5	C_{24} C_{22} U_{22} U_{22}	107.4
C7-C10-H10B	110.5	U34-U33-H33B	107.4

С32—С33—Н33В 107.4
H33A—C33—H33B 106.9
) N21—C34—C33 109.4 (3)
) N21—C34—C34A 112.2 (3)
C33-C34-C34A 108.2 (3)
N21—C34—H34 109.0
C33—C34—H34 109.0
C34A—C34—H34 109.0
) C25—C25A—H25A 109.5
) C25—C25A—H25B 109.5
H25A—C25A—H25B 109.5
C25—C25A—H25C 109.5
H25A—C25A—H25C 109.5
H25B—C25A—H25C 109.5
) C27—C27A—H27A 109.5
C27—C27A—H27B 109.5
H27A—C27A—H27B 109.5
C27—C27A—H27C 109.5
H27A—C27A—H27C 109.5
H27B—C27A—H27C 109.5
) C27—C27B—H27D 109.5
) C27—C27B—H27E 109.5
) H27D—C27B—H27E 109.5
C27—C27B—H27F 109.5
H27D—C27B—H27F 109.5
H27E—C27B—H27F 109.5
C32—C32A—H32A 109.5
C32—C32A—H32B 109.5
H32A—C32A—H32B 109.5
C32—C32A—H32C 109.5
H32A—C32A—H32C 109.5
H32B—C32A—H32C 109.5
C32—C32B—H32D 109.5
C32—C32B—H32E 109.5
H32D—C32B—H32E 109.5
C32—C32B—H32F 109.5
H32D—C32B—H32F 109.5
H32E—C32B—H32F 109.5
C34—C34A—H34A 109.5
C34—C34A—H34B 109.5
H34A—C34A—H34B 109.5
C34—C34A—H34C 109.5
H34A—C34A—H34C 109.5
H34B—C34A—H34C 109.5
O14—C11—O12 109.4 (3)
O14—C11—O11 109.59 (19)
O12—Cl1—O11 110.7 (2)
3 3 3 3 4 4 4 4 4 4

H12A—C12A—H12C	109.5	O12—C11—O13	108.4 (2)
H12B—C12A—H12C	109.5	011—Cl1—O13	109.2 (2)
C12—C12B—H12D	109.5	O26—C12—O27	119.2 (16)
C12—C12B—H12E	109.5	O26—C12—O25	113.0 (13)
H12D—C12B—H12E	109.5	O27—C12—O25	110.6 (16)
C12—C12B—H12F	109.5	Q23—C12—Q22	118.0 (12)
H12D—C12B—H12F	109.5	026-012-028	104.5 (12)
H12E—C12B—H12F	109.5	O27—C12—O28	98.1 (12)
C14—C14A—H14A	109.5	025-012-028	109.8 (12)
C14—C14A—H14B	109.5	023-C12-021	113.5 (11)
H14A—C14A—H14B	109.5	022-021	107.2 (9)
C14— $C14A$ — $H14C$	109.5	023 - C12 - 024	106.9 (8)
H14A— $C14A$ — $H14C$	109.5	022 - C12 - 024	100.8(7)
H14B— $C14A$ — $H14C$	109.5	021 - C12 - 024	109.7(10)
N31—Ni2—N28	88 24 (12)	032-C13-033	108.9(2)
N31—Ni2—N21	88 72 (12)	032 -032 -034	110.8(3)
N28—Ni2—N21	174 45 (13)	033-C13-034	109.8(3)
N31—Ni2—N24	176 44 (12)	032 - C13 - 031	102.0(3)
N28—Ni2—N24	94 58 (12)	033 - C13 - 031	108.1(2)
N21—Ni2—N24	88 30 (13)	034-C13-031	106.1(2) 106.8(3)
N31—Ni2—O31	80.07 (11)	C_{13} $-O_{31}$ $-N_{12}$	117.4 (2)
N28—Ni2—O31	87.20 (12)	043 - C14A - 041	120.3 (7)
N21—Ni2—O31	87.70 (12)	043—Cl4A—044	94.8 (8)
N_{24} Ni2 031	97.88 (11)	041— $C14A$ — 044	109.8 (7)
$C_{22} = N_{21} = C_{34}$	116.5 (3)	043-014A-042	112.3 (9)
$C_{22} = N_{21} = N_{12}$	107.8 (2)	041— $C14A$ — 042	111.7 (8)
C34—N21—Ni2	111.9 (2)	044— $C14A$ — 042	105.5 (6)
C22—N21—H21	106.7	O46—C14B—O47	102.8 (18)
C34—N21—H21	106.7	O46—C14B—O48	112.5 (17)
Ni2—N21—H21	106.7	O47—C14B—O48	83.1 (11)
N21—C22—C23	107.9 (3)	O46—C14B—O45	117.4 (15)
N21—C22—H22A	110.1	O47—C14B—O45	114.7 (14)
С23—С22—Н22А	110.1	O48—C14B—O45	119.9 (13)
N21—C22—H22B	110.1	C14B—O47—O48	51.6 (9)
C23—C22—H22B	110.1	C14B—O48—O47	45.3 (6)
H22A—C22—H22B	108.4	HW1—OW—HW2	110 (2)
C14—N1—C2—C3	167.3 (3)	C22—C23—N24—Ni2	-41.8(3)
Ni1—N1—C2—C3	35.5 (4)	C23—N24—C25—C26	179.5 (3)
N1—C2—C3—N4	-51.0 (4)	Ni2—N24—C25—C26	52.6 (4)
C2—C3—N4—C5	178.8 (3)	C23—N24—C25—C25A	-57.8 (4)
C2—C3—N4—Ni1	41.8 (4)	Ni2—N24—C25—C25A	175.3 (3)
C3—N4—C5—C6	-174.3(3)	N24—C25—C26—C27	-67.9 (4)
Ni1—N4—C5—C6	-45.6 (4)	C25A—C25—C26—C27	168.2 (4)
C3—N4—C5—C5A	62.1 (4)	C25—C26—C27—N28	68.2 (4)
Ni1—N4—C5—C5A	-169.2 (3)	C25—C26—C27—C27B	-52.5 (5)
N4—C5—C6—C7	64.8 (5)	C25—C26—C27—C27A	-173.2(3)
C5A-C5-C6-C7	-171.4 (4)	$C_{26} - C_{27} - N_{28} - C_{29}$	174.7 (3)
			(0)

C5—C6—C7—N8	-69.8 (5)	C27B—C27—N28—C29	-64.1 (4)
C5—C6—C7—C7A	51.2 (5)	C27A—C27—N28—C29	57.3 (4)
С5—С6—С7—С7В	172.6 (4)	C26—C27—N28—Ni2	-55.0 (4)
C6—C7—N8—C9	-174.5 (4)	C27B—C27—N28—Ni2	66.2 (4)
C7A—C7—N8—C9	63.4 (5)	C27A—C27—N28—Ni2	-172.4 (3)
C7B—C7—N8—C9	-58.7 (5)	C27—N28—C29—C30	169.9 (3)
C6—C7—N8—Ni1	56.4 (4)	Ni2—N28—C29—C30	33.7 (4)
C7A—C7—N8—Ni1	-65.7 (5)	N28—C29—C30—N31	-45.5 (4)
C7B—C7—N8—Ni1	172.3 (3)	C29—C30—N31—C32	-96.4 (4)
C7—N8—C9—C10	-177.3 (4)	C29—C30—N31—Ni2	35.3 (4)
Ni1—N8—C9—C10	-41.0 (4)	C30—N31—C32—C32A	72.3 (4)
N8—C9—C10—N11	53.2 (5)	Ni2—N31—C32—C32A	-56.4 (4)
C9-C10-N11-C12	-178.2 (4)	C30—N31—C32—C32B	-49.4 (4)
C9—C10—N11—Ni1	-39.1 (5)	Ni2—N31—C32—C32B	-178.1 (2)
C10—N11—C12—C13	-179.4 (4)	C30—N31—C32—C33	-166.5 (3)
Ni1—N11—C12—C13	49.1 (4)	Ni2—N31—C32—C33	64.9 (3)
C10—N11—C12—C12B	57.2 (5)	N31—C32—C33—C34	-58.1 (4)
Ni1—N11—C12—C12B	-74.3 (4)	C32A—C32—C33—C34	63.1 (4)
C10—N11—C12—C12A	-63.1 (5)	C32B—C32—C33—C34	-176.6 (3)
Ni1—N11—C12—C12A	165.4 (3)	C22—N21—C34—C33	169.8 (3)
N11—C12—C13—C14	-64.9 (5)	Ni2—N21—C34—C33	-65.5 (3)
C12B—C12—C13—C14	57.3 (5)	C22—N21—C34—C34A	49.7 (4)
C12A—C12—C13—C14	177.7 (4)	Ni2—N21—C34—C34A	174.4 (3)
C12—C13—C14—N1	72.6 (4)	C32—C33—C34—N21	60.2 (4)
C12—C13—C14—C14A	-163.3 (4)	C32—C33—C34—C34A	-177.4 (3)
C2—N1—C14—C13	172.6 (3)	O32—Cl3—O31—Ni2	158.2 (2)
Ni1—N1—C14—C13	-60.6 (4)	O33—Cl3—O31—Ni2	38.0 (3)
C2-N1-C14-C14A	49.5 (4)	O34—Cl3—O31—Ni2	-80.2 (3)
Ni1—N1—C14—C14A	176.2 (3)	O46—Cl4B—O47—O48	111.6 (17)
C34—N21—C22—C23	91.2 (4)	O45—Cl4B—O47—O48	-119.9 (16)
Ni2—N21—C22—C23	-35.6 (4)	O46—Cl4B—O48—O47	-101.1 (19)
N21—C22—C23—N24	51.4 (4)	O45—Cl4B—O48—O47	114.6 (17)
C22—C23—N24—C25	-175.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O44	0.98	2.61	3.279 (9)	126
N4—H4…O14	0.98	2.02	2.941 (4)	157
N8—H8…OW	0.98	1.99	2.965 (5)	175
N11—H11···O43	0.98	2.11	3.028 (10)	155
N11—H11…O46	0.98	2.45	3.36 (3)	155
N21—H21…O13	0.98	2.14	3.093 (4)	165
N24—H24…O33	0.98	2.12	3.033 (5)	154
N28—H28…O45 ⁱ	0.98	2.30	3.146 (16)	144
N31—H31…O12	0.98	2.16	3.083 (4)	156
OW—HW1···O41 ⁱ	0.82 (1)	2.38 (2)	3.162 (11)	162 (5)

OW— $HW1$ ···O47 ⁱ	0.82 (1)	2.37 (3)	3.139 (18)	157 (5)
O <i>W</i> —H <i>W</i> 2···O12	0.82 (1)	2.45 (3)	3.181 (6)	149 (6)

 $D_{\rm x} = 1.549 {\rm Mg m^{-3}}$

 $\theta = 0.4 - 27.5^{\circ}$

 $\mu = 4.17 \text{ mm}^{-1}$

T = 295 KRod, yellow

 $D_{\rm m} = 1.530$ (3) Mg m⁻³

tetrachloride mixtures

 $0.37 \times 0.15 \times 0.10$ mm

Mo $K\alpha$ radiation, $\lambda = 0.7107$ Å Cell parameters from 6096 reflections

D_m measured by Flotation in chloroform/carbon

Symmetry code: (i) x, -y+1/2, z+1/2.

(5,7,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) dibromide trihydrate (II)

Crystal data

 $[Ni(C_{16}H_{36}N_4)]Br_2 \cdot 3H_2O$ $M_r = 557.06$ Orthorhombic, *Fdd2* a = 60.3649 (18) Å b = 19.8364 (9) Å c = 7.9773 (3) Å V = 9552.2 (6) Å³ Z = 16F(000) = 4608

Data collection

Enraf–Nonius KappaCCD	$T_{\rm min} = 0.34, \ T_{\rm max} = 0.67$
diffractometer	41142 measured reflections
Radiation source: fine-focus sealed tube	5382 independent reflections
Graphite monochromator	4897 reflections with $I > 2\sigma(I)$
Detector resolution: 9 pixels mm ⁻¹	$R_{\rm int} = 0.096$
combination of ω and φ scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: part of the refinement	$h = -78 \longrightarrow +78$
model (ΔF)	$k = -25 \rightarrow +25$
(SCALEPACK; Otwinowski & Minor, 1997)	$l = -10 \rightarrow +10$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.035$	and constrained refinement
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.040P)^2 + 35.P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
5382 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
253 parameters	$\Delta \rho_{\rm max} = 0.88 \text{ e } \text{\AA}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: heavy-atom method	Absolute structure: Twinning involves
Secondary atom site location: difference Fourier	inversion, with Flack parameter corresponding
map	to twin-fraction occupancies

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement**. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.15971 (2)	0.23829 (3)	0.64516 (9)	0.0645 (2)

Br2	0.20453 (2)	0.49097 (4)	0.45452 (7)	0.05935 (18)
Ni	0.18885 (2)	0.41205 (3)	0.92870 (8)	0.03245 (13)
N1	0.21367 (7)	0.4693 (2)	0.8794 (6)	0.0407 (10)
H1	0.2135 (10)	0.476 (3)	0.779 (8)	0.041*
C2	0.23414 (8)	0.4296 (3)	0.9187 (10)	0.0532 (14)
H2A	0.237732	0.400071	0.825597	0.064*
H2B	0.246536	0.459778	0.936969	0.064*
C3	0.22999 (9)	0.3892 (3)	1.0713 (9)	0.0547 (15)
H3A	0.228730	0.418374	1.168391	0.066*
H3B	0.242077	0.357842	1.090118	0.066*
N4	0.20894 (8)	0.3519 (2)	1.0439 (7)	0.0457 (11)
H4	0.2107 (10)	0.322 (3)	0.979 (8)	0.046*
C5	0.20145 (9)	0.3155 (3)	1.1970 (9)	0.0554 (14)
H5	0.198881	0.348705	1.285962	0.067*
C6	0.17993 (9)	0.2782 (3)	1.1644 (9)	0.0497 (13)
H6A	0.176834	0.250079	1.261144	0.060*
H6B	0.182237	0.248293	1.069725	0.060*
C7	0.15935 (9)	0.3206 (3)	1.1287 (7)	0.0405 (11)
N8	0.16302 (6)	0.3557 (2)	0.9622 (6)	0.0359 (9)
H8	0.1650 (9)	0.328 (3)	0.884 (8)	0.036*
C9	0.14319 (7)	0.3923 (2)	0.8992 (7)	0.0397 (11)
H9A	0.136777	0.419087	0.988532	0.048*
H9B	0.132137	0.360243	0.861173	0.048*
C10	0.15002 (9)	0.4369 (3)	0.7573 (7)	0.0434 (12)
H10A	0.152516	0.410081	0.657488	0.052*
H10B	0.138332	0.469111	0.733394	0.052*
N11	0.17079 (7)	0.4736 (2)	0.8034 (6)	0.0353 (8)
H11	0.1758 (9)	0.480 (2)	0.700 (8)	0.035*
C12	0.16868 (8)	0.5426 (2)	0.8824 (7)	0.0405 (11)
C13	0.19218 (9)	0.5742 (3)	0.8846 (7)	0.0442 (12)
H13A	0.196503	0.582262	0.769260	0.053*
H13B	0.191057	0.617843	0.938697	0.053*
C14	0.21089 (8)	0.5358 (3)	0.9689(7)	0.0426 (11)
H14	0.206878	0.527186	1.085942	0.051*
C5A	0.21918 (13)	0.2649 (4)	1.2584 (14)	0.098 (4)
H5A1	0.231669	0.289119	1.302265	0.147*
H5A2	0.223883	0.237223	1.166271	0.147*
H5A3	0.213000	0.236900	1.344699	0.147*
C7A	0.13939 (11)	0.2730 (3)	1.1164 (9)	0.0587 (16)
H7A1	0.140979	0.244693	1.019498	0.088*
H7A2	0.126039	0.299016	1.106629	0.088*
H7A3	0.138659	0.245500	1.215218	0.088*
C7B	0.15541 (11)	0.3721 (3)	1.2670 (8)	0.0520 (14)
H7B1	0.141211	0.392963	1.251117	0.078*
H7B2	0.166781	0.405897	1.263101	0.078*
H7B3	0.155744	0.349927	1.373886	0.078*
C12A	0.15366 (12)	0.5887 (3)	0.7761 (10)	0.0657 (19)
H12A	0.158590	0.588079	0.661714	0.098*
-		· · · · · · · · · · · ·		-

H12B	0.154366	0.633877	0.818647	0.098*
H12C	0.138661	0.572708	0.781776	0.098*
C12B	0.15975 (10)	0.5374 (3)	1.0602 (8)	0.0493 (13)
H12D	0.169109	0.508202	1.124882	0.074*
H12E	0.144991	0.519431	1.057561	0.074*
H12F	0.159513	0.581408	1.110415	0.074*
C14A	0.23179 (10)	0.5796 (4)	0.9644 (12)	0.072 (2)
H14A	0.243228	0.558536	1.029552	0.109*
H14B	0.228530	0.623221	1.010142	0.109*
H14C	0.236705	0.584401	0.850538	0.109*
O1	0.20252 (16)	0.3394 (5)	0.6365 (12)	0.148 (3)
O2	0.19992 (17)	0.1516 (4)	0.8373 (16)	0.167 (4)
03	0.22816 (10)	0.2518 (5)	0.801 (2)	0.248 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
Br1	0.0804 (4)	0.0507 (3)	0.0625 (4)	-0.0051 (3)	-0.0021 (3)	-0.0088 (3)
Br2	0.0611 (3)	0.0760 (4)	0.0409 (3)	-0.0070 (3)	0.0056 (3)	0.0004 (3)
Ni	0.0272 (2)	0.0338 (3)	0.0364 (3)	-0.0001 (2)	-0.0010 (2)	-0.0003(2)
N1	0.032 (2)	0.046 (2)	0.044 (3)	-0.0035 (17)	0.0034 (18)	0.001 (2)
C2	0.027 (2)	0.060 (3)	0.072 (4)	0.000 (2)	0.003 (3)	-0.002 (3)
C3	0.030 (2)	0.060 (3)	0.075 (4)	0.007 (2)	-0.010 (3)	0.001 (3)
N4	0.033 (2)	0.044 (3)	0.060 (3)	0.0056 (19)	-0.002(2)	-0.004 (2)
C5	0.050 (3)	0.058 (3)	0.059 (4)	0.009 (2)	-0.008(3)	0.018 (3)
C6	0.049 (3)	0.037 (3)	0.063 (4)	0.005 (2)	-0.002(3)	0.010 (3)
C7	0.040 (3)	0.042 (3)	0.040 (3)	-0.003(2)	-0.002(2)	0.004 (2)
N8	0.0347 (19)	0.033 (2)	0.040 (2)	-0.0016 (15)	-0.0019 (18)	-0.0017 (17)
C9	0.030(2)	0.041 (2)	0.048 (3)	-0.0043 (18)	-0.007 (2)	0.003 (2)
C10	0.044 (3)	0.043 (3)	0.044 (3)	-0.001 (2)	-0.014 (2)	0.002 (2)
N11	0.033 (2)	0.039 (2)	0.035 (2)	-0.0016 (16)	-0.0002 (17)	0.0037 (17)
C12	0.037 (2)	0.033 (2)	0.052 (3)	0.0020 (19)	-0.003 (2)	0.000 (2)
C13	0.046 (3)	0.036 (2)	0.051 (3)	-0.006(2)	0.003 (2)	0.006 (2)
C14	0.039 (2)	0.045 (3)	0.043 (3)	-0.006(2)	0.003 (2)	-0.005 (2)
C5A	0.067 (5)	0.088 (6)	0.140 (10)	0.017 (4)	-0.015 (5)	0.063 (6)
C7A	0.055 (3)	0.057 (4)	0.064 (4)	-0.018 (3)	0.002 (3)	0.012 (3)
C7B	0.059 (4)	0.058 (4)	0.040 (3)	0.006 (3)	0.004 (3)	0.002 (3)
C12A	0.063 (4)	0.045 (3)	0.089 (5)	0.005 (3)	-0.013 (4)	0.014 (3)
C12B	0.046 (3)	0.043 (3)	0.060 (4)	-0.003 (2)	0.016 (3)	-0.010 (3)
C14A	0.050 (3)	0.064 (4)	0.104 (6)	-0.017 (3)	-0.001 (4)	-0.015 (4)
01	0.173 (8)	0.150 (8)	0.121 (8)	-0.029 (6)	0.007 (6)	-0.015 (6)
O2	0.192 (9)	0.094 (5)	0.216 (12)	0.025 (6)	-0.060 (8)	-0.008 (7)
03	0.246 (15)	0.156 (9)	0.34 (2)	-0.014 (10)	0.074 (15)	-0.093 (12)

Geometric parameters (Å, °)

Br1—O2	3.346 (9)	С10—Н10А	0.9700
Br2—O1	3.341 (9)	C10—H10B	0.9700

Ni—N11	1.918 (4)	N11—C12	1.512 (6)
Ni—N1	1.921 (4)	N11—H11	0.89 (6)
Ni—N4	1.934 (5)	C12—C12B	1.521 (8)
Ni—N8	1.937 (4)	C12—C12A	1.541 (8)
Ni—O1	2.863 (10)	C12—C13	1.551 (7)
N1—C2	1.499 (7)	C13—C14	1.519 (7)
N1—C14	1.509 (7)	C13—H13A	0.9700
N1—H1	0.81 (6)	C13—H13B	0.9700
C2—C3	1.479 (10)	C14—C14A	1.531 (7)
C2—H2A	0.9700	C14—H14	0.9800
C2—H2B	0.9700	C5A—H5A1	0.9600
C3—N4	1 486 (7)	C5A—H5A2	0.9600
C3—H3A	0.9700	C5A—H5A3	0.9600
C3—H3B	0.9700	C7A—H7A1	0.9600
N4—C5	1 489 (8)	C7A - H7A2	0.9600
N4—H4	0.80 (6)	C7A - H7A3	0.9600
C5C6	1 518 (8)	C7B_H7B1	0.9600
C_{5}	1.548 (8)	C7B_H7B2	0.9600
C5—H5	0.9800	C7B—H7B3	0.9600
C6_C7	1.528(7)	C_{12A} H_{12A}	0.9600
C6 H6A	0.0700	C12A $H12B$	0.9000
C6 H6B	0.9700	C12A $H12C$	0.9600
C7N8	1.515(7)	C12R-H12C	0.9000
C7 C7B	1.513(7) 1 522 (8)	C12B H12E	0.9000
C7_C7A	1.522(8) 1.525(7)	C12B H12E	0.9000
N8 C9	1.333(7) 1.487(6)	C12D— $H12D$	0.9000
N8 U8	1.407(0)		0.9000
$\begin{array}{c} 100 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	1.496(7)	C14A $H14C$	0.9000
	0.0700	01 03	2.5000
C9 H9B	0.9700	01 - 03	2.071(11) 2.635(10)
C10 N11	1 495 (6)	$03 03^{i}$	2.035(10) 2.637(12)
C10—N11	1.495 (0)	05-05	2.037 (12)
N11—Ni—N1	87.73 (19)	C10—N11—C12	118.1 (4)
N11—Ni—N4	175.6 (2)	C10—N11—Ni	107.2 (3)
N1—Ni—N4	88.5 (2)	C12—N11—Ni	114.0 (3)
N11—Ni—N8	88.93 (18)	C10—N11—H11	97 (3)
N1—Ni—N8	175.8 (2)	C12—N11—H11	107 (3)
N4—Ni—N8	94.79 (19)	Ni—N11—H11	112 (3)
N11—Ni—O1	93.4 (2)	N11—C12—C12B	110.9 (4)
N1—Ni—O1	84.6 (2)	N11—C12—C12A	110.9 (5)
N4—Ni—O1	84.0 (2)	C12B—C12—C12A	110.1 (5)
N8—Ni—O1	93.1 (2)	N11—C12—C13	107.1 (4)
C2—N1—C14	116.9 (5)	C12B—C12—C13	109.9 (4)
C2—N1—Ni	106.8 (3)	C12A—C12—C13	107.7 (4)
C14—N1—Ni	109.5 (3)	C14—C13—C12	118.9 (4)
C2—N1—H1	108 (4)	C14—C13—H13A	107.6
C14—N1—H1	108 (4)	C12—C13—H13A	107.6
Ni—N1—H1	107 (4)	C14—C13—H13B	107.6

C3—C2—N1	108.5 (5)	C12—C13—H13B	107.6
C3—C2—H2A	110.0	H13A—C13—H13B	107.0
N1—C2—H2A	110.0	N1—C14—C13	108.1 (4)
C3—C2—H2B	110.0	N1-C14-C14A	113.1 (5)
N1—C2—H2B	110.0	C13—C14—C14A	108.6 (5)
H2A—C2—H2B	108.4	N1—C14—H14	109.0
C2—C3—N4	107.0 (5)	C13—C14—H14	109.0
С2—С3—НЗА	110.3	C14A—C14—H14	109.0
N4—C3—H3A	110.3	C5—C5A—H5A1	109.5
С2—С3—Н3В	110.3	С5—С5А—Н5А2	109.5
N4—C3—H3B	110.3	H5A1—C5A—H5A2	109.5
НЗА—СЗ—НЗВ	108.6	С5—С5А—Н5А3	109.5
C5—N4—C3	112.3 (5)	H5A1—C5A—H5A3	109.5
C5—N4—Ni	119.9 (3)	H5A2—C5A—H5A3	109.5
C3—N4—Ni	107.4 (4)	C7—C7A—H7A1	109.5
C5—N4—H4	102 (5)	С7—С7А—Н7А2	109.5
C3—N4—H4	111 (4)	H7A1—C7A—H7A2	109.5
Ni—N4—H4	104 (5)	С7—С7А—Н7А3	109.5
N4—C5—C6	110.9 (5)	H7A1—C7A—H7A3	109.5
N4—C5—C5A	111.4 (6)	H7A2—C7A—H7A3	109.5
C6—C5—C5A	109.2 (5)	C7—C7B—H7B1	109.5
N4—C5—H5	108.4	C7—C7B—H7B2	109.5
С6—С5—Н5	108.4	H7B1—C7B—H7B2	109.5
С5А—С5—Н5	108.4	С7—С7В—Н7В3	109.5
C5—C6—C7	117.3 (4)	H7B1—C7B—H7B3	109.5
С5—С6—Н6А	108.0	H7B2—C7B—H7B3	109.5
С7—С6—Н6А	108.0	C12—C12A—H12A	109.5
С5—С6—Н6В	108.0	C12—C12A—H12B	109.5
С7—С6—Н6В	108.0	H12A—C12A—H12B	109.5
H6A—C6—H6B	107.2	C12—C12A—H12C	109.5
N8—C7—C7B	110.5 (4)	H12A—C12A—H12C	109.5
N8—C7—C6	107.3 (4)	H12B—C12A—H12C	109.5
C7B—C7—C6	111.2 (5)	C12—C12B—H12D	109.5
N8—C7—C7A	110.0 (4)	C12—C12B—H12E	109.5
C7B—C7—C7A	109.7 (5)	H12D—C12B—H12E	109.5
C6—C7—C7A	108.1 (4)	C12—C12B—H12F	109.5
C9—N8—C7	113.7 (4)	H12D—C12B—H12F	109.5
C9—N8—Ni	108.7 (3)	H12E—C12B—H12F	109.5
C7—N8—Ni	120.2 (3)	C14—C14A—H14A	109.5
C9—N8—H8	101 (4)	C14—C14A—H14B	109.5
C7—N8—H8	112 (4)	H14A—C14A—H14B	109.5
Ni—N8—H8	99 (4)	C14—C14A—H14C	109.5
N8—C9—C10	108.9 (4)	H14A—C14A—H14C	109.5
N8—C9—H9A	109.9	H14B—C14A—H14C	109.5
С10—С9—Н9А	109.9	O3—O1—Ni	95.4 (4)
N8—C9—H9B	109.9	O3—O1—Br2	141.1 (4)
С10—С9—Н9В	109.9	Ni—O1—Br2	84.9 (2)
Н9А—С9—Н9В	108.3	O3—O2—Br1	91.8 (3)

	100 4 (4)		1212(1)
N11—C10—C9	109.4 (4)	$O3-O2-Br2^n$	134.3 (4)
N11—C10—H10A	109.8	Br1—O2—Br2 ⁱⁱ	132.9 (3)
C9—C10—H10A	109.8	O3 ⁱ —O3—O2	128.8 (6)
N11-C10-H10B	109.8	O3 ⁱ —O3—O1	126.6 (5)
C9—C10—H10B	109.8	02-03-01	99.8 (4)
H10A—C10—H10B	108.2		
C14_N1_C2_C3	84 7 (6)	C7—N8—C9—C10	167 4 (4)
Ni N1 C^2 C^3	-383(6)	$N_i = N_i = C_i = C_i = C_i$	30.6 (5)
NI = C2 = C3	51.2 (()	$N_{1} = N_{0} = C_{1} = C_{1} = C_{1}$	50.0(3)
NI-C2-C3-N4	51.5 (0)	N8-C9-C10-N11	-45.2 (6)
C2—C3—N4—C5	-173.1(5)	C9—C10—N11—C12	-92.8 (5)
C2—C3—N4—Ni	-39.2 (6)	C9—C10—N11—Ni	37.6 (5)
C3—N4—C5—C6	180.0 (5)	C10-N11-C12-C12B	70.9 (6)
Ni—N4—C5—C6	52.4 (6)	Ni—N11—C12—C12B	-56.3 (5)
C3—N4—C5—C5A	-58.2 (8)	C10-N11-C12-C12A	-51.8 (6)
Ni—N4—C5—C5A	174.2 (5)	Ni-N11-C12-C12A	-179.1 (4)
N4—C5—C6—C7	-66.1 (7)	C10-N11-C12-C13	-169.1 (4)
C5A-C5-C6-C7	170.9 (7)	Ni—N11—C12—C13	63.6 (5)
C5—C6—C7—N8	66.7 (7)	N11—C12—C13—C14	-55.5 (6)
С5—С6—С7—С7В	-54.3 (7)	C12B—C12—C13—C14	65.0 (6)
C5—C6—C7—C7A	-174.7 (6)	C12A—C12—C13—C14	-174.9 (5)
C7B—C7—N8—C9	-66.0 (5)	C2—N1—C14—C13	167.8 (4)
C6—C7—N8—C9	172.6 (4)	Ni-N1-C14-C13	-70.6 (5)
C7A—C7—N8—C9	55.2 (6)	C2-N1-C14-C14A	47.6 (8)
C7B—C7—N8—Ni	65.4 (5)	Ni-N1-C14-C14A	169.1 (5)
C6—C7—N8—Ni	-56.1 (5)	C12—C13—C14—N1	60.7 (6)
C7A—C7—N8—Ni	-173.4 (4)	C12-C13-C14-C14A	-176.2 (5)

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, *z*; (ii) *x*, *y*-1/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	<i>D</i> —H··· <i>A</i>
N1—H1···Br2	0.81 (6)	2.66 (6)	3.461 (5)	169 (6)
N4—H4…O1	0.80 (6)	2.80 (7)	3.283 (11)	121 (5)
N4—H4…O3	0.80 (6)	2.25 (6)	3.008 (13)	159 (6)
N8—H8···Br1	0.83 (6)	2.63 (6)	3.444 (5)	164 (5)
N11—H11…Br2	0.89 (6)	2.63 (6)	3.466 (4)	159 (5)