Crystal structure of a host-guest complex of the tris-urea receptor, 3-(4-nitrophenyl)-1,1-bis{2-[3-(4-nitrophenyl)ureido]ethyl}urea, that encapsulates hydrogen-bonded chains of dihydrogen phosphate anions with separate tetra-*n*-butylammonium counter-ions

Ruyu Wang, Xi Shu, Yu Fan, Shoujian Li, Yongdong Jin, Chuanqin Xia and Chao Huang*

College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China. *Correspondence e-mail: chuang@scu.edu.cn

The title compound, $C_{25}H_{25}N_9O_9 \cdot C_{16}H_{36}N^+ \cdot H_2PO_4^-$ (I) or $(C_{25}H_{25}N_9O_9) \cdot (n-1)$ Bu_4N^+)·(H₂PO₄⁻) (systematic name: 3-(4-nitrophenyl)-1,1-bis{2-[3-(4-nitrophenyl)ureido]ethyl}urea tetrabutylammonium dihydrogen phosphate), comprises a tris-urea receptor (R), a dihydrogen phosphate anion and a tetran-butylammonium cation. It crystallizes with two independent formula units in the asymmetric unit. The conformations of the two tris-urea receptors are stabilized by $N-H\cdots O$ and $C-H\cdots O$ intramolecular hydrogen bonds. Each dihydrogen phosphate anion has two $O-H\cdots O$ intermolecular hydrogenbonding interactions with the other dihydrogen phosphate anion. Inversionrelated di-anion units are linked by further $O-H \cdots O$ hydrogen bonds, forming a chain propagating along the *a*-axis direction. Each dihydrogen phosphate anion makes a total of four $N-H \cdots O(H_2PO_4)$ hydrogen bonds with two ureido subunits from two different tris-urea receptors, hence each tris-urea receptor provides the two ureido subunits for the encapsulation of the H₂PO₄⁻ hydrogen-bonded chain. There are numerous intermolecular C-H···O hydrogen bonds present involving both receptor molecules and the tetra-*n*butylammonium cations, so forming a supramolecular three-dimensional structure. One of the butyl groups and one of the nitro groups are disordered over two positions of equal occupancy.

1. Chemical context

Anions play an important role in many chemical, catalysis, environmental and biological systems (Sessler et al., 2006; Vickers & Beer, 2007; Beer & Gale, 2001). The use of ureabased receptors as hydrogen-bond donors in anion recognition has attracted much attention (Xu et al., 2017; Amendola et al., 2006; Hoque & Das, 2017; Bregović et al., 2015; Li et al., 2010). In particular, considerable research efforts have been devoted to the designation of receptors containing a ureido subunit (which selectively recognizes fluoride ions), such as 1,3-bis(4nitrophenyl) urea (Boiocchi et al., 2004), or a urea subunit equipped with two naphthalenimide moieties (Esteban-Gómez et al., 2005), and thiourea or urea-based indole conjugated ligands (Bose & Ghosh, 2010). Recently, tris(2aminoethyl)amine (tren)-based tripodal urea or thiourea receptors for the recognition and separation of anions have been investigated (Arunachalam & Ghosh, 2011; Custelcean, 2013; Dey et al., 2016; Hay et al., 2005). However, tris-urea

open 👌 access

Received 14 March 2018 Accepted 24 January 2019

Edited by V. Khrustalev, Russian Academy of Sciences, Russia

Keywords: crystal structure; tris-urea; tetra-nbutylammonium; dihydrogen phosphate; anionic polymer; hydrogen bonding; supramolecular three-dimensional structure.

CCDC reference: 1893140

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

receptors have been rarely studied to date. In our ongoing research on nitrogen-rich organic ligands (Wang *et al.*, 2015) and the design and synthesis of ureido receptors (Huang *et al.*, 2017), we report herein the synthesis of the title trisurea receptor, 3-(4-nitrophenyl)-1,1-bis{2-[3-(4-nitrophenyl)ureido]ethyl}urea (**R**), based on *p*-nitrophenyl substituents, and the crystal structure of its complex with tetra-*n*-butylammonium dihydrogen phosphate. Interestingly, a onedimensional hydrogen-bonded polymeric structure is formed *via* hydrogen bonds between dihydrogen phosphate anions, and this anionic polymer is surrounded by and linked to the tris-urea receptors through ureido $N-H\cdots O$ hydrogen bonds.

two tris-urea receptors (R1 and R2) and the dihydrogen phosphate anions (P1 and P2) are illustrated in Fig. 1. In each receptor an intramolecular N-H···O hydrogen bond is present (N8-H8N···O7 in R1 and N17-H17N···O16 in R2), each forming an S(9) ring motif, Four intramolecular C-H...O hydrogen bonds are also present in receptor R1 and three in R2 (Fig. 1 and Table 1). Both receptors display a cis orientation of the urea subunits (N2/N3 and N5/N6 in R1, and N11/N12 and N14/N15 in R2). The urea subunits N5/N6 in R1 and N11/N12 in R2 are orientated towards the dihydrogen phosphate ions (P1 and P2) forming a 2:2 adduct via N-H···O hydrogen bonds with anion P1 and enclosing $R_2^2(8)$ ring motifs (Table 1 and Fig. 1). Both NH functions of each urea subunit are *trans* to the C=O group across the respective C-N bond. Anions P1 and P2 interact with each other via two O-H···O hydrogen bonds (O20-H20O···O24 and O23-H23O···O22), enclosing an $R_2^2(8)$ ring motif (Fig. 1 and Table 1). The dihedral angle between the urea plane [N-C(=O)-N and the benzene ring to which it is attached vary from 6.66 (14) to $18.96 (14)^{\circ}$ in R1 and from 6.87 (14) to $13.82 (14)^{\circ}$ in R2. The dihedral angle between the nitro group and the benzene ring to which it is attached also vary, from 7.1 (3) to 13.4 (4)° in R1 and from 8.3 (4) to 16.7 (7)° in R2.

3. Supramolecular features

2. Structural commentary

The title compound crystallizes with two independent formula units in the asymmetric unit. The molecular structure of the In the crystal, the two $H_2PO_4^-$ anions (*P*1 and *P*2), that are linked by $O-H\cdots O$ hydrogen bonds $O20-H20O\cdots O24$ and $O23-H23O\cdots O22$, are further linked to inversion-related anions *via* hydrogen bonds $O21-H21O\cdots O19^i$ and O25-

Figure 1

The molecular structure of the title complex, with atom labellling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, the tetra-n-butylammonium cations, the disordered NO₂ O atoms and the C-bound hydrogen atoms have been omitted.

research communications

Table 1	
Hydrogen-bond	geometry (Å, $^{\circ}$).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N8-H8N···O7	0.90 (3)	2.07 (3)	2.955 (3)	168 (3)
N17−H17 <i>N</i> ···O16	0.90(2)	2.21 (2)	3.100 (3)	170 (2)
N5−H5N···O21	0.90(2)	2.04 (2)	2.915 (3)	164 (3)
N6−H6 <i>N</i> ···O22	0.90(2)	2.10(2)	2.986 (3)	168 (2)
N11−H11 <i>N</i> ···O19	0.90(2)	1.96 (2)	2.854 (3)	175 (2)
N12−H12 <i>N</i> ···O22	0.90(2)	2.21 (2)	3.058 (3)	157 (3)
O20−H20O···O24	0.93 (2)	1.66 (2)	2.583 (2)	178 (3)
O23−H23O···O22	0.93 (2)	1.64 (2)	2.568 (2)	176 (2)
$O21 - H21O \cdots O19^{i}$	0.93 (2)	1.61 (2)	2.528 (2)	173 (3)
$O25-H25O\cdots O26^{ii}$	0.93 (2)	1.59 (2)	2.501 (2)	166 (3)
$N2-H2N\cdots O26^{i}$	0.90(2)	2.08 (2)	2.977 (3)	174 (2)
$N3-H3N\cdots O24^{i}$	0.90(2)	2.09 (2)	2.931 (3)	155 (3)
$N14-H14N\cdots O25^{ii}$	0.90(2)	2.03 (2)	2.930 (3)	175 (2)
$N15-H15N\cdots O24^{ii}$	0.90(2)	2.10(2)	2.986 (3)	168 (2)
$C3-H3 \cdot \cdot \cdot O4$	0.95	2.17	2.789 (4)	121
$C5-H5\cdots O7$	0.95	2.53	3.279 (4)	136
C12-H12···O3	0.95	2.23	2.844 (3)	122
C21-H21···O7	0.95	2.31	2.872 (4)	118
C30-H30···O16	0.95	2.32	2.903 (4)	119
C43-H43···O12	0.95	2.32	2.910 (4)	120
C46-H46···O13	0.95	2.19	2.810 (3)	122
$C18-H18A\cdots O1^{iii}$	0.99	2.42	3.345 (4)	156
$C30-H30\cdots O6^{iv}$	0.95	2.58	3.265 (4)	129
$C33-H33B\cdots O11A^{iii}$	0.99	2.58	3.235 (12)	123
$C39-H39\cdots O21^{i}$	0.95	2.52	3.446 (3)	164
$C54-H54A\cdots O15^{v}$	0.99	2.46	3.447 (4)	173
C63-H63A···O3	0.99	2.42	3.379 (4)	164
C63-H63 <i>B</i> ···O4	0.99	2.26	3.003 (4)	131
$C64 - H64B \cdots O15^{v}$	0.99	2.46	3.348 (4)	149
$C70-H70B\cdots O10A^{iii}$	0.98	2.47	3.289 (6)	141
C75−H75A···O13	0.99	2.31	3.158 (4)	143
$C75-H75B\cdotsO1^{vi}$	0.99	2.58	3.514 (4)	157

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 2, -y + 2, -z + 1; (iii) x + 1, y, z; (iv) -x + 2, -y + 1, -z + 1; (v) x - 1, y, z - 1; (vi) x + 1, y, z + 1.

H25 $O \cdots O26^{ii}$ (Table 1). This results in the formation of a polymer chain propagating along the *a*-axis direction (Fig. 2). The receptor molecules are linked to this chain *via* hydrogen bonds N5–H5 $N \cdots O21$, N6–H6 $N \cdots O22$, N11–H11 $N \cdots O19$, and N12–H12 $N \cdots O22$ (Fig. 1), and by hydrogen bonds N2–H2 $N \cdots O26^{i}$, N3–H3 $N \cdots O24^{i}$, N14–H14 $N \cdots O25^{ii}$ and N15–H15 $N \cdots O24^{ii}$ (Table 1). Finally, there are numerous intermolecular C–H \cdots O hydrogen bonds present involving both receptor molecules and the tetra-*n*-butylammonium cations, so forming a supramolecular three-dimensional structure (Fig. 3 and Table 1).

Figure 2

A partial view along the *b* axis of the crystal packing of the title complex. The receptors R1 and R2 are drawn in space-filling mode. The H atoms not involved in the O-H···O hydrogen bonds have been omitted.

Figure 3

Crystal packing of the title complex, viewed along the *a* axis. The tetra-*n*-butylammonium cations are shown in blue (involving atom N19) and green (involving atom N20). The H atoms not involved in the $O-H\cdots O$ hydrogen bonds have been omitted.

4. Database survey

The crystal structure of the receptor \mathbf{R} , with or without *para*substitution of a nitro group, has not previously been reported. A search of the Cambridge Structural Database (Version 5.40, November 2018; Groom et al., 2016) for tetra-n-butylammonium dihydrogen phosphate yielded four hits, essentially concerning the tris-urea receptor based on tris(2aminoethyl)amine (tren). One of these compounds, tetra-nbutylammonium tris(2-(N-perfluorophenylureaylato)ethyl)amine dihydrogen phosphate dimethylformamide monosolvate, encapsulates a dimer of H₂PO₄⁻ anions forming a pseudo-dimeric cage via sixteen hydrogen bonds and two weak anion $\cdots \pi$ interactions (CSD refcode CITYOU; Lakshminarayanan et al., 2007). Another example is, N,N',N''-[nitrilotris(ethane-2,1-divl)]tris(N'-phenylurea) tetra-n-butylammonium dihydrogen phosphate (YICHUQ; Manna & Das, 2018). Here too, a dimer of $H_2PO_4^-$ anions is encapsulated by the receptor.

Chiral anion receptors with two enantiomeric forms R,R and S,S based on a 1,2-cyclohexane moiety appended by two p-nitrophenylurea subunits have been reported. One such compound is bis(tetra-n-butylammonium) bis(dihydrogen phosphate) (R,R)-1-(4-nitrophenyl)-3-{2-[3-(4-nitrophenyl)ureido]cyclohexyl}urea acetonitrile monosolvate (DASNUH; Amendola *et al.*, 2005). The nature of the R,R-enantiomer \cdots H₂PO₄⁻ interactions is characterized by infinite dihydrogen phosphate chains along the a-axis direction, as observed in the crystal structure of the title complex. Specifically, each dihydrogen phosphate ion interacts with two adjacent H₂PO₄⁻ ions and with only one R,R-enantiomer via

research communications

two hydrogen bonds. The hydrogen bonds in this enantiomeric complex are similar to those in the title complex, with the H…acceptor distance between the urea N-H group and the dihydrogen phosphate oxygen atom varying between *ca* 1.98 and 2.19 Å in DASNUH compared to a range of 1.96 (2)–2.21 (2) Å in the title compound. The O-H…O hydrogen bonds involving the H₂PO₄⁻ anions are also very similar: 1.62 (3) and 1.63 (4) Å in DASNUH, while they vary from 1.59 (2) to 1.66 (2) Å in the title complex.

5. Synthesis and crystallization

Synthesis of 3-(4-nitrophenyl)-1,1-bis{2-[3-(4-nitrophenyl)ureido]ethyl]urea (R): In a 250 ml round-bottom flask, diethylenetriamine (0.32 ml, 2.97 mmol) dissolved in 100 ml of dry CH₂Cl₂ was added dropwise under vigorous stirring to a solution of 20 ml of dry CH₂Cl₂ containing p-nitrobenzene isocyanate (1.64 g, 9.98 mmol). Subsequently, the reaction mixture was allowed to reflux for 24 h. A yellowish solid was collected by filtration and washed using sequentially CH₂Cl₂ $(3 \times 70 \text{ ml})$, a solvent mixture (CH₂Cl₂/THF = 4:1, 3 × 70 ml) and diethyl ether (3 \times 70 ml). The solid was then dried in *vacuo* overnight to afford the receptor \mathbf{R} as a light-brown powder (yield: 1.52 g; 85.6%; m.p. 512.3-513.8 K). FT-IR (KBr, cm⁻¹): 3339, 1679, 1606, 1559, 1501, 1330. ¹H NMR (400 MHz, DMSO- d_6) in ppm: $\delta = 9.42$ (s, 2H), 9.23 (s, 1H), 8.10 (t, J = 9.9 Hz, 6H), 7.76 (d, J = 8.9 Hz, 2H), 7.59 (d, J =8.9 Hz, 4H), 6.60 (t, J = 5.8 Hz, 2H), 3.51 (t, J = 6.5 Hz, 4H). ¹³C NMR (100 MHz, DMSO- d_6) in ppm: $\delta = 154.99, 154.67, 147.34$, 146.94, 140.72, 140.48, 125.09, 124.70, 118.13, 116.95, 46.63, 40.15-38.89, 38.19. HRMS (ESI^{+}) : calculated $C_{25}H_{25}N_9O_9Na [M + Na]^+$ 618.1673 found 618.1678.

Synthesis of the title complex (I): Tetra-*n*-butylammonium dihydrogen phosphate (1.68 mmol) was added to 5 ml of a DMF solution of **R** (0.168 mmol) and the mixture was stirred for 2 h. After filtration the solution was left to evaporate slowly and yielded colourless prismatic crystals of the title complex within three weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to O and N were located in a difference-Fourier map and refined with distance restraints: O-H = 0.93 and N-H = 0.90 Å, with $U_{iso}(H) =$ $1.5U_{eq}(O)$ and $1.2U_{eq}(N)$. The C-bound H atoms were positioned geometrically and refined using a riding model: C-H =0.95-0.99 Å, with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms.

One of the butyl moieties (C79-C80-C81-C82) is disordered over two positions with equal occupancies. The C-C distances were refined with the restraint of 1.515 (4) Å. The displacement parameters of the C79A/C79B, C80A/C80B, C81A/C81B, and C82A/C82B atoms of the disordered fragment were restrained to be similar (Sheldrick, 2015b). Also, one of the nitro groups (O11-N10-O10) was disordered over two positions with equal occupancies. The N-O

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{25}H_{25}N_9O_9 \cdot C_{16}H_{36}N^+ \cdot H_2PO_4^-$
$M_{ m r}$	934.98
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	179
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.2043 (3), 17.4555 (5), 18.1232 (4)
α, β, γ (°)	83.797 (2), 79.818 (2), 89.191 (2)
$V(Å^3)$	4706.3 (2)
Z	4
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	1.13
Crystal size (mm)	$0.40 \times 0.40 \times 0.10$
Data collection	
Diffractometer	Agilent New Gemini, Dual, Cu at zero, EosS2
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.660, 0.880
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	50539, 18359, 15323
R _{int}	0.040
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.619
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.160, 1.01
No. of reflections	18359
No. of parameters	1237
No. of restraints	26
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.96, -0.85

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

distances were refined with the restraint of 1.230 (4) Å. The displacement parameters of the O10*A*/O11*A* and O10*B*/O11*B* atoms of the disordered fragment were restrained to be similar (Sheldrick, 2015*b*).

Acknowledgements

T 1 1

We are grateful to the Comprehensive Training Platform of Specialized Laboratory, College of Chemistry, Sichuan University, for the IR, NMR, HRMS and XRD analyses. We appreciate the help of Dr Yue Qi and Dr Meng Yang with the X-ray single-crystal measurements.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21501123).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies. Yarnton, England.
- Amendola, V., Boiocchi, M., Esteban-Gómez, D., Fabbrizzi, L. & Monzani, E. (2005). Org. Biomol. Chem. 3, 2632–2639.
- Amendola, V., Esteban-Gómez, D., Fabbrizzi, L. & Licchelli, M. (2006). Acc. Chem. Res. **39**, 343–353.
- Arunachalam, M. & Ghosh, P. (2011). Chem. Commun. 47, 8477–8492.

- Beer, P. D. & Gale, P. A. (2001). Angew. Chem. Int. Ed. 40, 486-516.
- Boiocchi, M., Del Boca, L., Gómez, D. E., Fabbrizzi, L., Licchelli, M. & Monzani, E. (2004). J. Am. Chem. Soc. **126**, 16507–16514.
- Bose, P. & Ghosh, P. (2010). Chem. Commun. 46, 2962-2964.
- Bregović, V. B., Basarić, N. & Mlinarić-Majerski, K. (2015). Coord. Chem. Rev. 295, 80–124.
- Custelcean, R. (2013). Chem. Commun. 49, 2173-2182.
- Dey, S. K., Basu, A., Chutia, R. & Das, G. (2016). *RSC Adv.* 6, 26568–26589.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Esteban-Gómez, D., Fabbrizzi, L. & Licchelli, M. (2005). J. Org. Chem. 70, 5717–5720.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hay, B. P., Firman, T. K. & Moyer, B. A. (2005). J. Am. Chem. Soc. 127, 1810–1819.
- Hoque, M. N. & Das, G. (2017). CrystEngComm, 19, 1343-1360.
- Huang, C., Wang, R., Shu, X., Fan, Y., Qi, Y., Li, S. & Xia, C. (2017). *Acta Cryst.* E73, 1316–1319.

- Lakshminarayanan, P. S., Ravikumar, I., Suresh, E. & Ghosh, P. (2007). Chem. Commun. 48, 5214–5216.
- Li, A. F., Wang, J. H., Wang, F. & Jiang, Y. B. (2010). Chem. Soc. Rev. **39**, 3729–3745.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Manna, U. & Das, G. (2018). CrystEngComm, 20, 3741-3754.
- Sessler, J. L., Cho, D.-G. & Lynch, V. (2006). J. Am. Chem. Soc. 128, 16518–16519.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vickers, M. S. & Beer, P. D. (2007). Chem. Soc. Rev. 36, 211-225.
- Wang, J., Su, D., Wang, D., Ding, S., Huang, C., Huang, H., Hu, X., Wang, Z. & Li, S. (2015). *Inorg. Chem.* 54, 10648–10655.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, Z., Ge, H., Han, X., Liu, S. H., Meng, X. G. & Yin, J. (2017). *Tetrahedron*, **73**, 6386–6391.

Acta Cryst. (2019). E75, 319-323 [https://doi.org/10.1107/S2056989019001336]

Crystal structure of a host-guest complex of the tris-urea receptor, 3-(4-nitrophenyl)-1,1-bis{2-[3-(4-nitrophenyl)ureido]ethyl}urea, that encapsulates hydrogen-bonded chains of dihydrogen phosphate anions with separate tetra-*n*butylammonium counter-ions

Ruyu Wang, Xi Shu, Yu Fan, Shoujian Li, Yongdong Jin, Chuanqin Xia and Chao Huang

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL* (Sheldrick, 2015b), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

3-(4-Nitrophenyl)-1,1-bis{2-[3-(4-nitrophenyl)ureido]ethyl}urea tetrabutylammonium dihydrogen phosphate

Crystal data

$C_{25}H_{25}N_9O_9 \cdot C_{16}H_{36}N^+ \cdot H_2PO_4^-$	Z = 4
$M_r = 934.98$	F(000) = 1992
Triclinic, P1	$D_{\rm x} = 1.320 {\rm ~Mg} {\rm ~m}^{-3}$
a = 15.2043 (3) Å	Cu K α radiation, $\lambda = 1.54184$ Å
b = 17.4555 (5) Å	Cell parameters from 22142 reflections
c = 18.1232 (4) Å	$\theta = 4.2 - 72.6^{\circ}$
$\alpha = 83.797 (2)^{\circ}$	$\mu = 1.13 \text{ mm}^{-1}$
$\beta = 79.818 \ (2)^{\circ}$	T = 179 K
$\gamma = 89.191 \ (2)^{\circ}$	Prism, colourless
V = 4706.3 (2) Å ³	$0.40\times0.40\times0.10\ mm$
Data collection	

Agilent New Gemini, Dual, Cu at zero, EosS2 diffractometer Radiation source: Enhance (Cu) X-ray Source Detector resolution: 15.9595 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlisPro*; Agilent, 2014) $T_{min} = 0.660, T_{max} = 0.880$ 50539 measured reflections 18359 independent reflections 15323 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 72.7^{\circ}, \ \theta_{min} = 4.5^{\circ}$ $h = -12 \rightarrow 18$ $k = -21 \rightarrow 21$ $l = -21 \rightarrow 22$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed
$wR(F^2) = 0.160$	H atoms treated by a mixture of independent
S = 1.01	and constrained refinement
18359 reflections	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 6P]$
1237 parameters	where $P = (F_o^2 + 2F_c^2)/3$
26 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.96 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.85 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	-0.30049 (14)	0.81991 (14)	0.21069 (13)	0.0558 (5)	
O2	-0.24548 (15)	0.71532 (13)	0.16732 (13)	0.0563 (5)	
O3	0.14525 (13)	0.70324 (12)	0.30808 (13)	0.0499 (5)	
O4	0.41981 (13)	0.66636 (13)	0.25280 (13)	0.0541 (6)	
O5	0.73924 (19)	0.44154 (18)	0.07252 (17)	0.0814 (8)	
O6	0.81027 (19)	0.41318 (15)	0.16481 (15)	0.0741 (8)	
07	0.67230 (13)	0.71270 (11)	0.39515 (11)	0.0431 (4)	
O8	1.11079 (14)	0.66722 (14)	0.52832 (14)	0.0590 (6)	
09	1.07222 (16)	0.57359 (15)	0.47126 (13)	0.0639 (6)	
N1	-0.24296 (16)	0.76864 (15)	0.20575 (14)	0.0456 (6)	
N2	0.05445 (14)	0.80478 (12)	0.34212 (12)	0.0349 (5)	
H2N	0.053 (2)	0.8466 (10)	0.3671 (15)	0.042*	
N3	0.18575 (14)	0.78414 (13)	0.38582 (13)	0.0380 (5)	
H3N	0.173 (2)	0.8242 (12)	0.4129 (15)	0.046*	
N4	0.43055 (15)	0.74282 (14)	0.34333 (14)	0.0433 (5)	
N5	0.61267 (16)	0.82824 (14)	0.42129 (14)	0.0437 (5)	
H5N	0.623 (2)	0.8733 (10)	0.4382 (18)	0.052*	
N6	0.73250 (14)	0.78432 (13)	0.47369 (13)	0.0365 (5)	
H6N	0.722 (2)	0.8271 (10)	0.4972 (15)	0.044*	
N7	1.05762 (17)	0.63522 (16)	0.49814 (14)	0.0479 (6)	
N8	0.54553 (15)	0.65876 (14)	0.30550 (14)	0.0413 (5)	
H8N	0.5769 (18)	0.6786 (17)	0.3366 (14)	0.050*	
N9	0.75357 (19)	0.44901 (16)	0.13596 (17)	0.0575 (7)	
C1	0.69928 (19)	0.50461 (16)	0.17902 (17)	0.0454 (7)	
C2	0.6241 (2)	0.5329 (2)	0.1551 (2)	0.0576 (8)	
H2	0.6087	0.5183	0.1100	0.069*	
C3	0.5703 (2)	0.5832 (2)	0.19681 (19)	0.0545 (8)	
H3	0.5170	0.6023	0.1810	0.065*	

C4	0.59415 (18)	0.60564 (15)	0.26166 (16)	0.0399 (6)	
C5	0.67121 (19)	0.57639 (17)	0.28422 (17)	0.0449 (6)	
Н5	0.6879	0.5916	0.3286	0.054*	
C6	0.7244 (2)	0.52534 (17)	0.24328 (18)	0.0476 (7)	
H6	0.7771	0.5051	0.2592	0.057*	
C7	0.46280 (17)	0.68813 (16)	0.29743 (16)	0.0411 (6)	
C8	0.34579 (17)	0.77955 (16)	0.33457 (16)	0.0398 (6)	
H8A	0.3335	0.7736	0.2836	0.048*	
H8B	0.3503	0.8353	0.3389	0.048*	
C9	0.26874 (17)	0.74518 (16)	0.39328 (16)	0.0392 (6)	
H9A	0.2624	0.6899	0.3876	0.047*	
H9B	0.2819	0.7492	0.4443	0.047*	
C10	0.13050 (17)	0.75938 (15)	0.34299 (15)	0.0359 (5)	
C11	-0.01842 (16)	0.79138 (15)	0.30923 (14)	0.0342 (5)	
C12	-0.02853(18)	0.72636 (16)	0.27224 (16)	0.0400 (6)	
H12	0.0161	0.6877	0.2694	0.048*	
C13	-0.10298(18)	0.71844 (16)	0.24008 (16)	0.0419(6)	
H13	-0.1096	0.6745	0.2149	0.050*	
C14	-0.16814(17)	0.77457 (16)	0.24457 (15)	0.0382 (6)	
C15	-0.16132(18)	0.83798 (16)	0.28272(16)	0.0412(6)	
H15	-0.2074	0.8754	0.2868	0.049*	
C16	-0.08709(18)	0.84628 (16)	0.31461 (15)	0.0394 (6)	
H16	-0.0820	0.8899	0.3408	0.047*	
C17	0.47607 (18)	0.76651 (17)	0.40141 (16)	0.0424 (6)	
H17A	0 5019	0.7206	0.4266	0.051*	
H17B	0.4321	0.7894	0.4399	0.051*	
C18	0.55022(18)	0.82489(17)	0.36954 (16)	0.0421 (6)	
H18A	0.5826	0.8104	0.3207	0.051*	
H18B	0.5238	0.8764	0.3603	0.051*	
C19	0.67255 (17)	0.77080(15)	0.42772(15)	0.0376 (6)	
C20	0.81048(17)	0 74344 (15)	0.48085(14)	0.0342(5)	
C21	0.82524(19)	0.66802(16)	0.46242 (16)	0.0424(6)	
H21	0.7800	0.6409	0.4458	0.051*	
C22	0.9062(2)	0.63326 (16)	0.46862 (16)	0.031	
H22	0.9170	0.5824	0.4553	0.053*	
C23	0.97117 (18)	0.67192 (16)	0.49395 (14)	0.0392 (6)	
C24	0.95747 (18)	0.74567(16)	0.51434 (14)	0.0386(6)	
H24	1 0023	0 7714	0.5328	0.046*	
C25	0.87735 (17)	0.78116(15)	0 50729 (14)	0.0358(5)	
H25	0.8674	0.8321	0.5206	0.043*	
010A	0.0479(3)	0.8828(3)	0.8867 (3)	0.0689(14)	0.5
011A	0.0502(7)	0.9794(7)	0.8022 (6)	0.0689(14)	0.5
O10B	0.0502(7) 0.0574(3)	0.9139(3)	0.90363(18)	0.0515(10)	0.5
010B	0.0563 (6)	0.9790 (6)	0.7960 (4)	0.0515(10) 0.0515(10)	0.5
012	0 49661 (14)	0.78528(13)	0.82348(11)	0.0516(5)	0.5
013	0.75401(17)	0.75789(11)	0.88681 (10)	0.0390(3)	
014	0.94784(12)	0 54938 (14)	1 15633 (12)	0.0550(4)	
015	1.07221(14)	0.57318(17)	1.13033(12) 1.08658(12)	0.003 + (7) 0.0483 (5)	
015	1.0/221(14)	0.52510(12)	1.00030(12)	0.0403 (3)	

O16	1.08082 (12)	0.76689 (11)	0.73581 (10)	0.0381 (4)
017	1.50576 (19)	0.61542 (18)	0.70411 (17)	0.0847 (9)
O18	1.56917 (14)	0.68624 (14)	0.60480 (15)	0.0620 (6)
N10	0.08998 (16)	0.93022 (17)	0.83676 (13)	0.0572 (7)
N11	0.44803 (14)	0.86420 (13)	0.72873 (12)	0.0362 (5)
H11N	0.4688 (19)	0.8905 (15)	0.6837 (8)	0.043*
N12	0.58895 (15)	0.81643 (13)	0.71123 (13)	0.0392 (5)
H12N	0.599 (2)	0.8456 (15)	0.6666 (9)	0.047*
N13	0.81504(13)	0.79785(12)	0.76640(11)	0.0336(4)
N14	1,03777(14)	0.86411(13)	0.65735 (12)	0.0361(5)
H14N	1.05777(11) 1.0554(19)	0.9028(12)	0.6211(12)	0.043*
N15	1 17809 (14)	0.9020(12) 0.81480(12)	0.62862(12)	0.0341(4)
H15N	1 181 (2)	0.8486(13)	0.5873(10)	0.041*
N16	1.101(2) 1 50353(18)	0.66548 (16)	0.5575(10)	0.0543 (6)
N17	0.90190(13)	0.00340(10) 0.73247(13)	0.84589(12)	0.0349(0)
H17N	0.90190(13)	0.73247(13)	0.8097(12)	0.0337(4)
N18	0.9490(12) 0.00025(17)	0.7440(17) 0.55484(13)	1.00594(12)	0.041
C26	1,41701,(18)	0.33464(13) 0.70288(16)	1.09394(13)	0.0407(3)
C20	1.41/91(10) 1.41575(17)	0.70288(10) 0.76621(16)	0.04363(17) 0.50422(15)	0.0429(0)
U27	1.41373 (17)	0.70031 (10)	0.59425 (15)	0.0383 (0)
П27 С28	1.4089	0.7832	0.3020	0.040°
C28	1.33498 (17)	0.80205 (15)	0.59014 (14)	0.0338 (3)
H28	1.3329	0.8403	0.5550	0.043°
C29	1.25603 (17)	0.77435 (15)	0.63674 (14)	0.0340 (5)
C30	1.2600 (2)	0./1000(1/)	0.68850 (19)	0.0514 (/)
H30	1.2071	0.6901	0.7204	0.062*
C31	1.3412 (2)	0.67522 (19)	0.6933 (2)	0.0570 (8)
H31	1.3444	0.6320	0.7294	0.068*
C32	1.09771 (16)	0.81194 (14)	0.67801 (14)	0.0324 (5)
C33	0.95254 (16)	0.87103 (15)	0.70682 (15)	0.0354 (5)
H33A	0.9242	0.9204	0.6919	0.042*
H33B	0.9625	0.8716	0.7593	0.042*
C34	0.89019 (16)	0.80453 (15)	0.70328 (14)	0.0339 (5)
H34A	0.8669	0.8123	0.6553	0.041*
H34B	0.9244	0.7558	0.7037	0.041*
C35	0.73043 (16)	0.83373 (15)	0.75436 (14)	0.0341 (5)
H35A	0.7427	0.8774	0.7142	0.041*
H35B	0.7013	0.8546	0.8012	0.041*
C36	0.66706 (18)	0.77744 (16)	0.73211 (16)	0.0403 (6)
H36A	0.6985	0.7515	0.6891	0.048*
H36B	0.6482	0.7375	0.7749	0.048*
C37	0.51073 (17)	0.81871 (15)	0.76007 (15)	0.0368 (5)
C38	0.35982 (17)	0.87685 (15)	0.75916 (14)	0.0357 (5)
C39	0.31353 (17)	0.93099 (15)	0.71747 (14)	0.0361 (5)
H39	0.3438	0.9566	0.6712	0.043*
C40	0.22548 (18)	0.94750 (16)	0.74230 (15)	0.0393 (6)
H40	0.1946	0.9835	0.7131	0.047*
C41	0.18252 (18)	0.91135 (18)	0.80989 (16)	0.0444 (6)
C42	0.2256 (2)	0.8569 (2)	0.85174 (17)	0.0523 (8)

H42	0.1943	0.8314	0.8977	0.063*
C43	0.31411 (19)	0.83923 (18)	0.82708 (16)	0.0457 (7)
H43	0.3437	0.8019	0.8559	0.055*
C44	0.81967 (16)	0.76260 (14)	0.83621 (14)	0.0320 (5)
C45	0.92141 (16)	0.68865 (14)	0.91061 (14)	0.0323 (5)
C46	0.85796 (18)	0.66579 (15)	0.97486 (15)	0.0379 (6)
H46	0.7971	0.6798	0.9766	0.045*
C47	0.88410 (18)	0.62279 (15)	1.03564 (15)	0.0389 (6)
H47	0.8416	0.6082	1.0799	0.047*
C48	0.97190 (18)	0.60118 (14)	1.03184 (14)	0.0348 (5)
C49	1.03608 (17)	0.62206 (15)	0.96873 (14)	0.0358(5)
H49	1 0964	0.6061	0.9669	0.043*
C50	1.01033(17)	0.66647(15)	0.90874(14)	0.0353(5)
H50	1.0537	0.6823	0.8654	0.042*
N19	0.25010(15)	0.0023 0.49825 (13)	0.0001 0.23222(13)	0.012
C51	-0.0401(2)	0.47538(19)	0.23222(13) 0.33601(18)	0.0553(8)
H51A	-0.1042	0.4634	0.3455	0.083*
H51R	-0.0290	0.5239	0.3433	0.083*
H51C	-0.0205	0.4804	0.3839	0.083*
C52	0.0205	0.4004	0.3037 0.20828 (17)	0.005
U52	-0.0015	0.4130 (17)	0.29628 (17)	0.0400(7)
1152A 1152B	-0.0115	0.4151	0.2403	0.056*
C53	0.0113 0.1128 (2)	0.3010 0.41542(17)	0.3238	0.030°
	0.1128(2) 0.1264	0.41342(17)	0.29455 (18)	0.0490 (7)
ПЈЗА Ц52Д	0.1204	0.4087	0.3403	0.039*
ПЭЭБ С54	0.1417 0.14072 (10)	0.3730 0.40102 (16)	0.2072	0.039°
C34	0.14972 (19)	0.49192 (10)	0.23483 (10)	0.0419(0)
H34A	0.1251	0.5054	0.2089	0.050*
H34B	0.1294	0.5524	0.2882	0.030*
	0.2823 (2)	0.44540 (16)	0.17047(17)	0.0441 (6)
HODA	0.2651	0.3918	0.1909	0.053*
Нээв	0.2502	0.4596	0.1280	0.053*
C56	0.3813 (2)	0.44747 (18)	0.14002 (18)	0.0501 (7)
H56A	0.4141	0.4263	0.1802	0.060*
H56B	0.4009	0.5015	0.1242	0.060*
C57	0.4029 (2)	0.4010 (2)	0.0735 (2)	0.0617 (9)
H57A	0.3746	0.4255	0.0318	0.074*
H57B	0.3773	0.3486	0.0881	0.074*
C58	0.5029 (3)	0.3949 (2)	0.0461 (2)	0.0718 (11)
H58A	0.5136	0.3670	0.0012	0.108*
H58B	0.5306	0.3669	0.0859	0.108*
H58C	0.5290	0.4466	0.0335	0.108*
C59	0.2973 (2)	0.47440 (17)	0.29835 (17)	0.0437 (6)
H59A	0.2862	0.4187	0.3137	0.052*
H59B	0.3624	0.4814	0.2807	0.052*
C60	0.2710 (2)	0.51657 (19)	0.36676 (18)	0.0514 (7)
H60A	0.2084	0.5036	0.3901	0.062*
H60B	0.2747	0.5728	0.3515	0.062*
C61	0.3314 (3)	0.4954 (2)	0.4237 (2)	0.0631 (9)

H61A	0.3282	0.4389	0.4372	0.076*
H61B	0.3936	0.5084	0.3993	0.076*
C62	0.3110 (4)	0.5334 (3)	0.4944 (2)	0.0875 (14)
H62A	0.3552	0.5178	0.5264	0.131*
H62B	0.2512	0.5178	0.5214	0.131*
H62C	0.3131	0.5894	0.4820	0.131*
C63	0.27396 (19)	0.58148 (15)	0.20295 (16)	0.0415 (6)
H63A	0 2445	0.6146	0.2410	0.050*
H63B	0 3393	0.5879	0 1989	0.050*
C64	0.2492(2)	0.5079 0.61080 (17)	0.12773(18)	0.050 0.0501(7)
H64A	0.2855	0.5840	0.0875	0.0501 (7)
H64B	0.2855	0.5040	0.1285	0.000
C65	0.1655 0.2646(3)	0.5771	0.1203 0.1108 (2)	0.000
H65A	0.2040 (5)	0.09012 (10)	0.1100 (2)	0.0393 (8)
1105A 1165D	0.3234	0.7080	0.1109	0.071*
П03Б С66	0.2213 0.2552(2)	0.7220	0.1472 0.0222 (2)	$0.0/1^{\circ}$
	0.2333 (3)	0.7282 (2)	0.0323 (2)	0.0082 (10)
H66A	0.2/10	0.7831	0.0246	0.102*
H66B	0.1935	0.7219	0.0254	0.102*
H66C	0.2954	0.7007	-0.0043	0.102*
N20	0.72892 (17)	0.93841 (15)	1.01240 (14)	0.0479 (6)
C67	0.8071 (2)	0.93305 (19)	1.05475 (17)	0.0503 (7)
H67A	0.8379	0.9837	1.0458	0.060*
H67B	0.7829	0.9238	1.1094	0.060*
C68	0.8757 (2)	0.8720 (2)	1.03507 (18)	0.0536 (8)
H68A	0.8963	0.8771	0.9798	0.064*
H68B	0.8478	0.8205	1.0502	0.064*
C69	0.9551 (2)	0.8784 (2)	1.07384 (18)	0.0549 (8)
H69A	0.9879	0.9267	1.0529	0.066*
H69B	0.9334	0.8816	1.1282	0.066*
C70	1.0183 (2)	0.8117 (2)	1.0650 (2)	0.0621 (9)
H70A	1.0689	0.8195	1.0903	0.093*
H70B	1.0404	0.8082	1.0113	0.093*
H70C	0.9870	0.7638	1.0876	0.093*
C71	0.6633 (2)	0.99719 (18)	1.04517 (18)	0.0527 (7)
H71A	0.6200	1.0093	1.0107	0.063*
H71B	0.6964	1.0452	1.0470	0.063*
C72	0.6114 (2)	0.97207 (18)	1.12398 (16)	0.0494 (7)
H72A	0.6021	0.9156	1.1297	0.059*
H72B	0.6472	0.9842	1.1619	0.059*
C73	0.5216(2)	1.0113 (2)	1.13913 (19)	0.0559 (8)
H73A	0.4876	1.0027	1.0989	0.067*
H73B	0.5310	1.0675	1.1376	0.067*
C74	0.4670(2)	0.9813 (2)	1.2154 (2)	0.0633 (9)
H74A	0.4089	1.0071	1.2223	0.095*
H74B	0 4991	0.9920	1 2556	0.095*
H74C	0.4580	0.9256	1.2173	0.095*
C75	0.6859(2)	0.86013 (17)	1.01881(17)	0.025
U75∆	0.7288	0.8256	0 9011	0.056*
11/0/1	0.7200	0.0200	0.7711	0.050

H75B	0.6750	0.8389	1.0726	0.056*	
C76	0.5992 (2)	0.85802 (19)	0.98967 (18)	0.0509 (7)	
H76A	0.6114	0.8659	0.9339	0.061*	
H76B	0.5603	0.9004	1.0081	0.061*	
C77	0.5512 (2)	0.7811 (2)	1.0158 (2)	0.0593 (8)	
H77A	0.5044	0.7754	0.9851	0.071*	
H77B	0.5946	0.7387	1.0071	0.071*	
C78	0.5094 (3)	0.7741 (3)	1.0970 (3)	0.0975 (16)	
H78A	0.4813	0.7232	1.1113	0.146*	
H78B	0.4640	0.8141	1.1055	0.146*	
H78C	0.5554	0.7803	1.1276	0.146*	
C79	0.7611 (2)	0.96494 (19)	0.92815 (18)	0.0598 (9)	
H79A	0.7876	0.9200	0.9036	0.072*	0.5
H79B	0.7080	0.9806	0.9055	0.072*	0.5
H79C	0.8093	0.9301	0.9082	0.072*	0.5
H79D	0.7109	0.9592	0.9010	0.072*	0.5
C80A	0.8284 (6)	1.0305 (5)	0.9088 (4)	0.067 (3)	0.5
H80A	0.8051	1.0748	0.9359	0.080*	0.5
H80B	0.8849	1.0138	0.9256	0.080*	0.5
C81A	0.8466 (4)	1.0550 (4)	0.8248 (3)	0.0606 (12)	0.5
H81A	0.8875	1.1000	0.8159	0.073*	0.5
H81B	0.8796	1.0127	0.8000	0.073*	0.5
C82A	0.7693 (6)	1.0761 (7)	0.7843 (6)	0.090 (3)	0.5
H82A	0.7894	1.0765	0.7298	0.136*	0.5
H82B	0.7473	1.1274	0.7956	0.136*	0.5
H82C	0.7211	1.0382	0.8013	0.136*	0.5
C80B	0.7954 (6)	1.0474 (3)	0.9106 (4)	0.067 (3)	0.5
H80C	0.7636	1.0778	0.9500	0.080*	0.5
H80D	0.8594	1.0472	0.9148	0.080*	0.5
C81B	0.7864 (5)	1.0888 (4)	0.8344 (3)	0.0606 (12)	0.5
H81C	0.7231	1.1037	0.8355	0.073*	0.5
H81D	0.8224	1.1367	0.8259	0.073*	0.5
C82B	0.8152 (8)	1.0424 (6)	0.7690 (5)	0.090 (3)	0.5
H82D	0.8166	1.0756	0.7216	0.136*	0.5
H82E	0.7729	1.0000	0.7716	0.136*	0.5
H82F	0.8750	1.0215	0.7711	0.136*	0.5
P1	0.60995 (4)	0.97408 (3)	0.55144 (3)	0.02832 (13)	
019	0.51551 (11)	0.95514 (10)	0.59024 (10)	0.0354 (4)	
O20	0.63474 (11)	1.05356 (10)	0.57479 (10)	0.0344 (4)	
H20O	0.6934 (8)	1.0670 (18)	0.5542 (17)	0.052*	
O21	0.61479 (11)	0.98453 (10)	0.46370 (10)	0.0333 (4)	
H21O	0.5645 (13)	1.0068 (17)	0.4480 (17)	0.050*	
022	0.67758 (11)	0.91334 (9)	0.56726 (10)	0.0327 (4)	
P2	0.87010 (4)	1.03192 (3)	0.53218 (3)	0.02841 (13)	
023	0.82990 (11)	0.96052 (10)	0.58748 (10)	0.0338 (4)	
H23O	0.7761 (11)	0.9427 (18)	0.5783 (18)	0.051*	
024	0.79916 (11)	1.09098 (9)	0.52118 (10)	0.0335 (4)	
025	0.90787 (11)	1.00351 (10)	0.45455 (10)	0.0332 (4)	

H25O	0.9644 (9)	0.9823 (17)	0.4529 (18)	0.050*
O26	0.94470 (11)	1.06344 (10)	0.56654 (10)	0.0363 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0425 (11)	0.0716 (15)	0.0544 (13)	0.0122 (11)	-0.0132 (9)	-0.0063 (11)
O2	0.0513 (13)	0.0562 (13)	0.0662 (14)	-0.0077 (10)	-0.0194 (11)	-0.0112 (11)
03	0.0413 (11)	0.0482 (12)	0.0658 (13)	0.0115 (9)	-0.0135 (9)	-0.0266 (10)
O4	0.0356 (10)	0.0673 (14)	0.0682 (14)	0.0052 (9)	-0.0164 (10)	-0.0359 (11)
05	0.0706 (17)	0.097 (2)	0.0833 (19)	0.0183 (15)	-0.0055 (14)	-0.0533 (17)
06	0.0820 (18)	0.0580 (15)	0.0704 (16)	0.0327 (13)	0.0133 (14)	-0.0017 (12)
O7	0.0398 (10)	0.0426 (10)	0.0526 (11)	0.0068 (8)	-0.0151 (8)	-0.0203 (9)
08	0.0359 (11)	0.0642 (14)	0.0735 (15)	0.0015 (10)	-0.0116 (10)	0.0110 (12)
09	0.0655 (15)	0.0680 (15)	0.0571 (14)	0.0338 (12)	-0.0088 (11)	-0.0101 (12)
N1	0.0373 (12)	0.0530 (15)	0.0434 (13)	-0.0048 (11)	-0.0037 (10)	0.0035 (11)
N2	0.0308 (11)	0.0336 (11)	0.0405 (11)	0.0023 (9)	-0.0043 (9)	-0.0076 (9)
N3	0.0324 (11)	0.0358 (11)	0.0468 (13)	0.0048 (9)	-0.0065 (9)	-0.0107 (10)
N4	0.0320 (11)	0.0535 (14)	0.0479 (13)	0.0067 (10)	-0.0087 (10)	-0.0200 (11)
N5	0.0424 (13)	0.0403 (13)	0.0554 (14)	0.0086 (10)	-0.0197 (11)	-0.0189 (11)
N6	0.0356 (11)	0.0352 (11)	0.0418 (12)	0.0043 (9)	-0.0092 (9)	-0.0141 (9)
N7	0.0406 (13)	0.0557 (15)	0.0413 (13)	0.0100 (11)	0.0003 (10)	0.0085 (11)
N8	0.0321 (11)	0.0448 (13)	0.0506 (13)	0.0014 (9)	-0.0085 (10)	-0.0194 (11)
N9	0.0563 (16)	0.0452 (15)	0.0639 (18)	0.0001 (13)	0.0136 (14)	-0.0143 (13)
C1	0.0410 (15)	0.0352 (14)	0.0548 (17)	0.0003 (11)	0.0081 (12)	-0.0088 (12)
C2	0.0508 (18)	0.065 (2)	0.061 (2)	0.0011 (15)	-0.0077 (15)	-0.0305 (17)
C3	0.0390 (16)	0.065 (2)	0.066 (2)	0.0095 (14)	-0.0127 (14)	-0.0300 (16)
C4	0.0345 (13)	0.0362 (14)	0.0482 (15)	-0.0044 (11)	-0.0007 (11)	-0.0106 (11)
C5	0.0441 (15)	0.0435 (15)	0.0474 (16)	0.0040 (12)	-0.0064 (12)	-0.0092 (12)
C6	0.0453 (16)	0.0409 (15)	0.0534 (17)	0.0081 (12)	-0.0018 (13)	-0.0028 (13)
C7	0.0296 (13)	0.0452 (15)	0.0498 (15)	-0.0024 (11)	-0.0041 (11)	-0.0156 (12)
C8	0.0336 (13)	0.0435 (15)	0.0445 (15)	0.0042 (11)	-0.0086 (11)	-0.0127 (12)
C9	0.0337 (13)	0.0360 (13)	0.0496 (15)	0.0034 (11)	-0.0102 (11)	-0.0078 (11)
C10	0.0298 (12)	0.0346 (13)	0.0410 (14)	0.0020 (10)	-0.0006 (10)	-0.0036 (11)
C11	0.0313 (12)	0.0351 (13)	0.0333 (12)	-0.0007 (10)	-0.0004 (10)	0.0005 (10)
C12	0.0361 (14)	0.0365 (14)	0.0465 (15)	0.0034 (11)	-0.0038 (11)	-0.0064 (11)
C13	0.0390 (14)	0.0397 (14)	0.0459 (15)	-0.0029 (11)	-0.0044 (11)	-0.0051 (12)
C14	0.0312 (13)	0.0439 (15)	0.0372 (13)	-0.0040 (11)	-0.0030 (10)	0.0017 (11)
C15	0.0369 (14)	0.0413 (15)	0.0434 (14)	0.0059 (11)	-0.0036 (11)	-0.0017 (12)
C16	0.0396 (14)	0.0371 (14)	0.0411 (14)	0.0034 (11)	-0.0052 (11)	-0.0057 (11)
C17	0.0359 (14)	0.0525 (16)	0.0409 (14)	0.0088 (12)	-0.0067 (11)	-0.0161 (12)
C18	0.0399 (14)	0.0448 (15)	0.0456 (15)	0.0082 (12)	-0.0134 (12)	-0.0140 (12)
C19	0.0330 (13)	0.0390 (14)	0.0424 (14)	0.0020 (10)	-0.0070 (11)	-0.0103 (11)
C20	0.0367 (13)	0.0355 (13)	0.0298 (12)	0.0032 (10)	-0.0041 (10)	-0.0045 (10)
C21	0.0446 (15)	0.0377 (14)	0.0477 (15)	0.0017 (12)	-0.0129 (12)	-0.0098 (12)
C22	0.0515 (16)	0.0366 (14)	0.0453 (15)	0.0098 (12)	-0.0086 (12)	-0.0086 (12)
C23	0.0377 (14)	0.0450 (15)	0.0316 (12)	0.0087 (11)	-0.0015 (10)	0.0019 (11)
C24	0.0364 (13)	0.0458 (15)	0.0337 (13)	-0.0031 (11)	-0.0081 (10)	-0.0012 (11)

C25	0.0393 (14)	0.0356 (13)	0.0335 (12)	0.0027 (10)	-0.0070 (10)	-0.0068 (10)
O10A	0.043 (2)	0.098 (3)	0.065 (3)	-0.001 (2)	-0.002 (2)	-0.017 (3)
011A	0.043 (2)	0.098 (3)	0.065 (3)	-0.001(2)	-0.002(2)	-0.017 (3)
O10B	0.038 (2)	0.058 (2)	0.056 (2)	0.0010 (16)	0.0051 (16)	-0.0169 (18)
O11B	0.038 (2)	0.058 (2)	0.056 (2)	0.0010 (16)	0.0051 (16)	-0.0169 (18)
012	0.0471 (11)	0.0621 (13)	0.0424 (11)	0.0037 (10)	-0.0108 (9)	0.0127 (10)
013	0.0315 (9)	0.0488 (11)	0.0337 (9)	0.0046 (8)	-0.0006 (7)	0.0005 (8)
O14	0.0855 (17)	0.0689 (15)	0.0343 (11)	0.0219 (13)	-0.0013 (11)	0.0100 (10)
015	0.0469 (12)	0.0517 (12)	0.0498 (11)	0.0020 (9)	-0.0223 (9)	0.0021 (9)
016	0.0326 (9)	0.0421 (10)	0.0364 (9)	0.0011 (7)	-0.0039 (7)	0.0060 (8)
017	0.0686 (17)	0.089 (2)	0.087 (2)	0.0363 (15)	-0.0099 (14)	0.0231 (16)
018	0.0383 (12)	0.0599 (14)	0.0859 (17)	0.0104 (10)	-0.0055 (11)	-0.0102 (12)
N10	0.0393 (14)	0.084 (2)	0.0456 (15)	-0.0057 (14)	0.0019 (11)	-0.0091 (14)
N11	0.0310 (11)	0.0421 (12)	0.0339 (11)	-0.0014 (9)	-0.0063 (8)	0.0042 (9)
N12	0.0318 (11)	0.0423 (12)	0.0429 (12)	0.0022 (9)	-0.0107 (9)	0.0048 (10)
N13	0.0271 (10)	0.0404 (11)	0.0319 (10)	0.0013 (8)	-0.0045 (8)	0.0007 (9)
N14	0.0322 (11)	0.0359 (11)	0.0366 (11)	0.0002 (9)	-0.0017 (9)	0.0057 (9)
N15	0.0309 (10)	0.0356 (11)	0.0338 (11)	-0.0003 (9)	-0.0045 (8)	0.0029 (9)
N16	0.0477 (15)	0.0517 (15)	0.0648 (17)	0.0146 (12)	-0.0133 (13)	-0.0084 (13)
N17	0.0272 (10)	0.0413 (12)	0.0312 (10)	0.0012 (9)	-0.0034 (8)	0.0014 (9)
N18	0.0530 (14)	0.0345 (11)	0.0365 (12)	-0.0021 (10)	-0.0141 (10)	-0.0017 (9)
C26	0.0362 (14)	0.0415 (15)	0.0515 (16)	0.0082 (11)	-0.0081 (12)	-0.0073 (12)
C27	0.0315 (13)	0.0465 (15)	0.0378 (13)	-0.0002 (11)	-0.0053 (10)	-0.0070 (11)
C28	0.0354 (13)	0.0394 (14)	0.0328 (12)	-0.0008 (11)	-0.0088 (10)	-0.0001 (10)
C29	0.0331 (13)	0.0338 (13)	0.0358 (13)	0.0010 (10)	-0.0069 (10)	-0.0055 (10)
C30	0.0400 (15)	0.0429 (16)	0.0634 (19)	0.0043 (12)	0.0020 (13)	0.0111 (14)
C31	0.0521 (18)	0.0437 (17)	0.068 (2)	0.0091 (14)	-0.0049 (15)	0.0162 (15)
C32	0.0301 (12)	0.0344 (12)	0.0332 (12)	-0.0031 (10)	-0.0075 (10)	-0.0022 (10)
C33	0.0323 (13)	0.0349 (13)	0.0371 (13)	0.0036 (10)	-0.0037 (10)	-0.0002 (10)
C34	0.0320 (12)	0.0395 (13)	0.0297 (12)	0.0044 (10)	-0.0064 (9)	-0.0005 (10)
C35	0.0316 (12)	0.0351 (13)	0.0348 (12)	0.0045 (10)	-0.0059 (10)	-0.0012 (10)
C36	0.0364 (14)	0.0374 (14)	0.0491 (15)	0.0041 (11)	-0.0147 (12)	-0.0017 (12)
C37	0.0339 (13)	0.0375 (13)	0.0398 (14)	-0.0028 (10)	-0.0111 (10)	-0.0004 (11)
C38	0.0323 (13)	0.0411 (14)	0.0347 (13)	-0.0048 (10)	-0.0081 (10)	-0.0045 (10)
C39	0.0339 (13)	0.0400 (14)	0.0332 (12)	-0.0028 (10)	-0.0036 (10)	-0.0018 (10)
C40	0.0348 (13)	0.0419 (14)	0.0430 (14)	-0.0008 (11)	-0.0099 (11)	-0.0074 (11)
C41	0.0328 (14)	0.0601 (18)	0.0411 (14)	-0.0050 (12)	-0.0055 (11)	-0.0100 (13)
C42	0.0404 (16)	0.076 (2)	0.0365 (14)	-0.0116 (15)	-0.0004 (12)	0.0055 (14)
C43	0.0394 (15)	0.0570 (18)	0.0391 (14)	-0.0046 (13)	-0.0094 (11)	0.0066 (13)
C44	0.0304 (12)	0.0325 (12)	0.0338 (12)	-0.0019 (10)	-0.0065 (10)	-0.0050 (10)
C45	0.0329 (12)	0.0317 (12)	0.0331 (12)	-0.0006 (10)	-0.0081 (10)	-0.0035 (10)
C46	0.0336 (13)	0.0390 (14)	0.0393 (14)	0.0003 (11)	-0.0043 (10)	0.0002 (11)
C47	0.0417 (14)	0.0373 (14)	0.0354 (13)	-0.0029 (11)	-0.0027 (11)	0.0006 (11)
C48	0.0437 (14)	0.0298 (12)	0.0331 (12)	-0.0016 (10)	-0.0128 (10)	-0.0031 (10)
C49	0.0328 (13)	0.0392 (13)	0.0373 (13)	0.0016 (10)	-0.0108 (10)	-0.0059 (11)
C50	0.0343 (13)	0.0400 (14)	0.0310 (12)	-0.0011 (10)	-0.0048 (10)	-0.0028 (10)
N19	0.0423 (12)	0.0335 (11)	0.0428 (12)	-0.0016 (9)	-0.0144 (10)	-0.0027 (9)
C51	0.062 (2)	0.0517 (18)	0.0486 (17)	0.0078 (15)	-0.0042 (14)	0.0006 (14)

C52	0.0503 (17)	0.0413 (15)	0.0474 (16)	-0.0070 (13)	-0.0065 (13)	-0.0032 (12)
C53	0.0538 (17)	0.0398 (15)	0.0518 (17)	0.0016 (13)	-0.0064 (14)	-0.0022 (13)
C54	0.0422 (15)	0.0417 (15)	0.0439 (15)	0.0008 (12)	-0.0125 (12)	-0.0057 (12)
C55	0.0520 (17)	0.0333 (14)	0.0476 (16)	-0.0013 (12)	-0.0117 (13)	-0.0025 (12)
C56	0.0531 (18)	0.0451 (16)	0.0514 (17)	-0.0021 (13)	-0.0068 (14)	-0.0063 (13)
C57	0.072 (2)	0.0525 (19)	0.0550 (19)	-0.0169 (17)	0.0095 (16)	-0.0122 (15)
C58	0.078 (3)	0.055 (2)	0.074 (2)	-0.0113 (18)	0.017 (2)	-0.0163 (18)
C59	0.0438 (15)	0.0395 (14)	0.0500 (16)	0.0046 (12)	-0.0144 (12)	-0.0051 (12)
C60	0.0599 (19)	0.0481 (17)	0.0492 (17)	0.0090 (14)	-0.0157 (14)	-0.0102 (13)
C61	0.074 (2)	0.068 (2)	0.0519 (19)	0.0132 (18)	-0.0228 (17)	-0.0063 (16)
C62	0.121 (4)	0.084 (3)	0.069 (3)	0.029 (3)	-0.046 (3)	-0.015 (2)
C63	0.0415 (14)	0.0342 (13)	0.0506 (16)	-0.0023 (11)	-0.0120 (12)	-0.0066 (12)
C64	0.0552 (18)	0.0417 (16)	0.0541 (17)	-0.0067 (13)	-0.0153 (14)	0.0022 (13)
C65	0.074 (2)	0.0414 (17)	0.065 (2)	-0.0048 (15)	-0.0199 (17)	0.0006 (15)
C66	0.091 (3)	0.0472 (19)	0.063 (2)	0.0067 (18)	-0.0140 (19)	0.0076 (16)
N20	0.0531 (15)	0.0519 (14)	0.0406 (13)	-0.0053 (11)	-0.0087 (11)	-0.0129 (11)
C67	0.0523 (17)	0.0582 (18)	0.0408 (15)	-0.0126 (14)	-0.0053 (13)	-0.0096 (13)
C68	0.0475 (17)	0.063 (2)	0.0480 (17)	-0.0132 (15)	0.0014 (13)	-0.0117 (15)
C69	0.0541 (18)	0.061 (2)	0.0472 (17)	-0.0120 (15)	-0.0005 (14)	-0.0053 (14)
C70	0.057 (2)	0.067 (2)	0.060 (2)	-0.0052 (17)	-0.0065 (16)	-0.0035 (17)
C71	0.067 (2)	0.0455 (16)	0.0501 (17)	-0.0005 (14)	-0.0205 (15)	-0.0084 (13)
C72	0.0644 (19)	0.0467 (16)	0.0410 (15)	0.0068 (14)	-0.0159 (14)	-0.0120 (13)
C73	0.0595 (19)	0.0573 (19)	0.0587 (19)	0.0093 (15)	-0.0258 (16)	-0.0168 (15)
C74	0.060 (2)	0.063 (2)	0.069 (2)	0.0039 (16)	-0.0069 (17)	-0.0198 (18)
C75	0.0505 (17)	0.0475 (16)	0.0407 (15)	-0.0061 (13)	-0.0014 (12)	-0.0088 (12)
C76	0.0552 (18)	0.0539 (18)	0.0446 (16)	-0.0024 (14)	-0.0098 (13)	-0.0079 (13)
C77	0.0534 (19)	0.0545 (19)	0.071 (2)	-0.0091 (15)	-0.0126 (16)	-0.0060 (16)
C78	0.082 (3)	0.115 (4)	0.088 (3)	-0.044 (3)	-0.011 (2)	0.017 (3)
C79	0.070 (2)	0.068 (2)	0.0420 (16)	-0.0177 (18)	-0.0090 (15)	-0.0090 (15)
C80A	0.053 (6)	0.093 (4)	0.052 (2)	-0.034 (4)	-0.006 (3)	-0.003 (3)
C81A	0.058 (3)	0.063 (3)	0.056 (3)	-0.008 (2)	0.006 (2)	-0.006 (2)
C82A	0.093 (7)	0.100 (8)	0.070 (4)	-0.024 (5)	-0.010 (5)	0.025 (4)
C80B	0.053 (6)	0.093 (4)	0.052 (2)	-0.034 (4)	-0.006 (3)	-0.003 (3)
C81B	0.058 (3)	0.063 (3)	0.056 (3)	-0.008 (2)	0.006 (2)	-0.006 (2)
C82B	0.093 (7)	0.100 (8)	0.070 (4)	-0.024 (5)	-0.010 (5)	0.025 (4)
P1	0.0237 (3)	0.0299 (3)	0.0312 (3)	-0.0007 (2)	-0.0050(2)	-0.0017 (2)
019	0.0295 (9)	0.0420 (10)	0.0336 (9)	-0.0027 (7)	-0.0072 (7)	0.0043 (7)
O20	0.0240 (8)	0.0358 (9)	0.0435 (10)	0.0032 (7)	-0.0043 (7)	-0.0080 (7)
O21	0.0270 (8)	0.0365 (9)	0.0352 (9)	0.0010 (7)	-0.0034 (7)	-0.0015 (7)
O22	0.0303 (8)	0.0308 (9)	0.0375 (9)	-0.0013 (7)	-0.0079 (7)	-0.0027 (7)
P2	0.0229 (3)	0.0267 (3)	0.0354 (3)	0.0013 (2)	-0.0054 (2)	-0.0021 (2)
O23	0.0261 (8)	0.0337 (9)	0.0417 (9)	0.0002 (7)	-0.0101 (7)	0.0030 (7)
O24	0.0271 (8)	0.0296 (8)	0.0425 (9)	0.0008 (7)	-0.0043 (7)	-0.0006 (7)
O25	0.0258 (8)	0.0340 (9)	0.0405 (9)	0.0022 (7)	-0.0082 (7)	-0.0032 (7)
O26	0.0292 (9)	0.0341 (9)	0.0475 (10)	0.0042 (7)	-0.0074 (7)	-0.0117 (8)

Geometric parameters (Å, °)

01—N1	1.242 (3)	C46—H46	0.9500	
02—N1	1.226 (3)	C47—C48	1.374 (4)	
O3—C10	1.220 (3)	C47—H47	0.9500	
O4—C7	1.219 (3)	C48—C49	1.385 (4)	
O5—N9	1.228 (4)	C49—C50	1.377 (4)	
O6—N9	1.217 (4)	C49—H49	0.9500	
O7—C19	1.228 (3)	C50—H50	0.9500	
O8—N7	1.225 (3)	N19—C54	1.511 (4)	
O9—N7	1.230 (3)	N19—C63	1.518 (3)	
N1-C14	1.450 (4)	N19—C59	1.521 (3)	
N2-C11	1.382 (3)	N19—C55	1.536 (4)	
N2-C10	1.394 (3)	C51—C52	1.504 (4)	
N2—H2N	0.898 (5)	C51—H51A	0.9800	
N3—C10	1.345 (3)	C51—H51B	0.9800	
N3—C9	1.445 (3)	C51—H51C	0.9800	
N3—H3N	0.897 (5)	C52—C53	1.541 (4)	
N4—C7	1.363 (3)	C52—H52A	0.9900	
N4—C17	1.455 (3)	C52—H52B	0.9900	
N4—C8	1.457 (3)	C53—C54	1.512 (4)	
N5-C19	1.354 (3)	С53—Н53А	0.9900	
N5-C18	1.454 (3)	С53—Н53В	0.9900	
N5—H5N	0.899 (5)	C54—H54A	0.9900	
N6-C19	1.378 (3)	C54—H54B	0.9900	
N6-C20	1.394 (3)	C55—C56	1.509 (4)	
N6—H6N	0.897 (5)	С55—Н55А	0.9900	
N7—C23	1.464 (3)	С55—Н55В	0.9900	
N8—C7	1.377 (4)	C56—C57	1.510 (4)	
N8—C4	1.403 (3)	С56—Н56А	0.9900	
N8—H8N	0.898 (5)	C56—H56B	0.9900	
N9—C1	1.465 (4)	C57—C58	1.520 (5)	
C1—C2	1.361 (5)	С57—Н57А	0.9900	
C1—C6	1.373 (4)	С57—Н57В	0.9900	
C2—C3	1.385 (4)	C58—H58A	0.9800	
C2—H2	0.9500	C58—H58B	0.9800	
C3—C4	1.386 (4)	C58—H58C	0.9800	
С3—Н3	0.9500	C59—C60	1.501 (4)	
C4—C5	1.381 (4)	С59—Н59А	0.9900	
C5—C6	1.382 (4)	C59—H59B	0.9900	
С5—Н5	0.9500	C60—C61	1.512 (4)	
С6—Н6	0.9500	C60—H60A	0.9900	
C8—C9	1.518 (4)	C60—H60B	0.9900	
C8—H8A	0.9900	C61—C62	1.488 (5)	
C8—H8B	0.9900	C61—H61A	0.9900	
С9—Н9А	0.9900	C61—H61B	0.9900	
С9—Н9В	0.9900	C62—H62A	0.9800	
C11—C12	1.402 (4)	C62—H62B	0.9800	

C11—C16	1.405 (4)	С62—Н62С	0.9800
C12—C13	1.377 (4)	C63—C64	1.512 (4)
C12—H12	0.9500	С63—Н63А	0.9900
C13—C14	1.382 (4)	С63—Н63В	0.9900
C13—H13	0.9500	C64—C65	1.501 (4)
C14—C15	1.381 (4)	C64—H64A	0.9900
C15—C16	1.372 (4)	C64—H64B	0.9900
С15—Н15	0.9500	C65—C66	1.501 (5)
C16—H16	0.9500	С65—Н65А	0.9900
C17—C18	1.523 (4)	С65—Н65В	0.9900
С17—Н17А	0.9900	С66—Н66А	0.9800
С17—Н17В	0.9900	С66—Н66В	0.9800
C18—H18A	0.9900	С66—Н66С	0.9800
C18—H18B	0.9900	N20—C75	1.507 (4)
C20—C21	1.398 (4)	N20-C71	1.515 (4)
C20—C25	1.399 (4)	N20—C67	1.522 (4)
$C_{21} - C_{22}$	1 382 (4)	N20-C79	1 541 (4)
C21—H21	0.9500	C67—C68	1.5 11 (1) 1 507 (5)
C^{22} C^{23}	1 374 (4)	C67—H67A	0.9900
С22—Н22	0.9500	C67—H67B	0.9900
C_{23} C_{24}	1 380 (4)	C68—C69	1 511 (5)
C_{24} C_{25}	1 379 (4)	C68—H68A	0.9900
C24—H24	0.9500	C68—H68B	0.9900
C25—H25	0.9500	C69-C70	1 504 (5)
010A - N10	1 250 (3)	C69—H69A	0.9900
011A—N10	1.224 (4)	C69—H69B	0.9900
010B—N10	1.220(3)	C70—H70A	0.9800
011B—N10	1.232 (3)	C70—H70B	0.9800
012-037	1.216 (3)	C70—H70C	0.9800
013-C44	1.227 (3)	C71—C72	1.527 (4)
014—N18	1.223 (3)	C71—H71A	0.9900
015—N18	1.225 (3)	C71—H71B	0.9900
016-032	1.231 (3)	C72—C73	1.513 (4)
017—N16	1.224 (4)	C72—H72A	0.9900
018—N16	1.222 (4)	C72—H72B	0.9900
N10-C41	1.451 (4)	C73—C74	1.524 (5)
N11—C38	1.381 (3)	C73—H73A	0.9900
N11—C37	1.391 (3)	C73—H73B	0.9900
N11—H11N	0.899(5)	C74—H74A	0.9800
N12—C37	1.354 (3)	C74—H74B	0.9800
N12—C36	1.448 (3)	C74—H74C	0.9800
N12—H12N	0.897(5)	C75—C76	1.506 (4)
N13—C44	1 359 (3)	C75—H75A	0.9900
N13—C34	1.463 (3)	C75—H75B	0.9900
N13—C35	1.463 (3)	C76—C77	1.526 (4)
N14—C32	1.350 (3)	С76—Н76А	0.9900
N14—C33	1.451 (3)	С76—Н76В	0.9900
N14—H14N	0.898 (5)	C77—C78	1.489 (6)
	· · · · · ·		(~)

N15—C32	1.379 (3)	С77—Н77А	0.9900
N15—C29	1.393 (3)	С77—Н77В	0.9900
N15—H15N	0.897 (5)	C78—H78A	0.9800
N16—C26	1.463 (4)	C78—H78B	0.9800
N17—C44	1.382 (3)	C78—H78C	0.9800
N17—C45	1.404 (3)	C79—C80A	1.516 (4)
N17—H17N	0.898 (5)	C79—C80B	1.519 (4)
N18—C48	1.461 (3)	С79—Н79А	0.9900
C26—C27	1.374 (4)	C79—H79B	0.9900
$C_{26} = C_{31}$	1 379 (4)	C79 - H79C	0.9900
C_{27} C_{28}	1.379(4)	C79—H79D	0.9900
C27_H27	0.9500	C80A - C81A	1514(4)
C_{28} C_{29}	1.300(4)		0.0000
$C_{20} = C_{20}$	0.0500		0.9900
C20—1128	1.201(4)	C_{00A} C_{00A}	0.9900
$C_{29} = C_{30}$	1.391(4)	$C_{01A} = C_{02A}$	1.313(4)
	1.381 (4)	Cold Hold	0.9900
C30—H30	0.9500	C8IA—H8IB	0.9900
C31—H31	0.9500	C82A—H82A	0.9800
C33—C34	1.523 (4)	C82A—H82B	0.9800
С33—Н33А	0.9900	C82A—H82C	0.9800
С33—Н33В	0.9900	C80B—C81B	1.515 (4)
C34—H34A	0.9900	C80B—H80C	0.9900
C34—H34B	0.9900	C80B—H80D	0.9900
C35—C36	1.519 (4)	C81B—C82B	1.506 (4)
С35—Н35А	0.9900	C81B—H81C	0.9900
С35—Н35В	0.9900	C81B—H81D	0.9900
C36—H36A	0.9900	C82B—H82D	0.9800
С36—Н36В	0.9900	C82B—H82E	0.9800
C38—C43	1.402 (4)	C82B—H82F	0.9800
C38—C39	1.405 (4)	P1—O22	1.5071 (17)
C39—C40	1.372 (4)	P1—O19	1.5072 (17)
С39—Н39	0.9500	P1—O20	1.5632 (18)
C40—C41	1.374 (4)	P1	1.5695 (18)
C40—H40	0.9500	O20—H20O	0.928 (5)
C41—C42	1.383 (4)	021—H210	0.928(5)
C_{42} C_{43}	1.382(4)	P2024	15054(17)
$C_{42} = H_{42}$	0.9500	P226	1.503 (17)
C42 H42	0.9500	$P_2 \cap 25$	1.5220(10) 1.5531(18)
$C_{45} = C_{50}$	1.307(A)	P2 023	1.5551(18)
C45_C46	1.397(4)	12-025	1.3703(10)
C45 - C40	1.400(4)	025 11250	0.927(3)
C40—C47	1.379 (4)	025—H250	0.928 (5)
02—N1—O1	122.6 (3)	С52—С51—Н51В	109.5
O2—N1—C14	119.2 (2)	H51A—C51—H51B	109.5
O1—N1—C14	118.1 (3)	C52—C51—H51C	109.5
C11—N2—C10	127.4 (2)	H51A—C51—H51C	109.5
C11—N2—H2N	118 (2)	H51B—C51—H51C	109.5
C10—N2—H2N	115 (2)	C51—C52—C53	114.4 (3)

C_{10} N2 C_{0}	121 4 (2)	C51 C52 1152A	100 7
C10 = N3 = C9	121.4(2) 123(2)	$C_{51} - C_{52} - H_{52A}$	108.7
$C_{10} = N_{3} = H_{3}N_{1}$	123(2) 116(2)	$C_{55} - C_{52} - H_{52R}$	108.7
C7 N4 C17	110(2) 123 5 (2)	C53 C52 H52B	108.7
C7 N4 C8	123.3(2) 118.8(2)	U52A C52 U52D	100.7
$C_{1} = N_{1} = C_{0}$	110.0(2)	$n_{32A} - c_{32} - n_{32B}$	107.0
C17 - N4 - C8	117.8(2)	C54 - C52 - C52	110.6 (2)
C19 - N5 - C18	119.0 (2)	C54—C53—H53A	109.5
C19—N5—H5N	118 (2)	С52—С53—Н53А	109.5
CI8—N5—H5N	120 (2)	С54—С53—Н53В	109.5
C19—N6—C20	126.8 (2)	С52—С53—Н53В	109.5
C19—N6—H6N	115 (2)	Н53А—С53—Н53В	108.1
C20—N6—H6N	118 (2)	N19—C54—C53	116.7 (2)
O8—N7—O9	123.9 (3)	N19—C54—H54A	108.1
08—N7—C23	118.4 (3)	С53—С54—Н54А	108.1
O9—N7—C23	117.7 (3)	N19—C54—H54B	108.1
C7—N8—C4	126.1 (2)	C53—C54—H54B	108.1
C7—N8—H8N	120 (2)	H54A—C54—H54B	107.3
C4—N8—H8N	113 (2)	C56—C55—N19	115.7 (2)
O6—N9—O5	123.8 (3)	С56—С55—Н55А	108.3
O6—N9—C1	118.4 (3)	N19—C55—H55A	108.3
O5—N9—C1	117.8 (3)	С56—С55—Н55В	108.3
C2—C1—C6	121.9 (3)	N19—C55—H55B	108.3
C2-C1-N9	118.9 (3)	Н55А—С55—Н55В	107.4
C6—C1—N9	119.2 (3)	C55—C56—C57	110.7 (3)
C1—C2—C3	119.6 (3)	С55—С56—Н56А	109.5
C1—C2—H2	120.2	С57—С56—Н56А	109.5
С3—С2—Н2	120.2	С55—С56—Н56В	109.5
C2—C3—C4	120.0 (3)	С57—С56—Н56В	109.5
С2—С3—Н3	120.0	H56A—C56—H56B	108.1
С4—С3—Н3	120.0	C56—C57—C58	112.4 (3)
C5—C4—C3	119.1 (3)	С56—С57—Н57А	109.1
C5-C4-N8	117.2 (3)	С58—С57—Н57А	109.1
C3—C4—N8	123.7 (3)	С56—С57—Н57В	109.1
C4-C5-C6	121.1 (3)	C58—C57—H57B	109.1
C4—C5—H5	119 5	H57A—C57—H57B	107.9
C6-C5-H5	119.5	C57—C58—H58A	109.5
$C_1 - C_2 - C_2$	118.4 (3)	C57—C58—H58B	109.5
C1-C6-H6	120.8	H58A_C58_H58B	109.5
C5-C6-H6	120.8	C57_C58_H58C	109.5
O4-C7-N4	120.0	$H_{58} = C_{58} = H_{58} C_{58}$	109.5
$O_4 = C_7 = N_7$	121.4(3) 122.6(2)	H58A C58 H58C	109.5
N4 C7 N8	122.0(2)	C60 C50 N10	109.3 116.4(2)
$N4 = C^2 = C^2$	110.0(2)	C60 - C59 - N19	108.2
N4 = C6 = U8A	112.0 (2)	Соо—Сэ9—пэ9А N10—С50—Ц50А	108.2
104 - 0 - 10A	109.2	$\mathbf{M} = \mathbf{M} = $	108.2
U_{2} U_{3} U_{3	109.2	U00 - U39 - H39B	108.2
	109.2	NI9-C39-H39B	108.2
С9—С8—Н8В	109.2	нэуд—Сэу—Нэ9В	107.3
H8A—C8—H8B	107.9	C59—C60—C61	111.0 (3)

N3	111.5 (2)	C59—C60—H60A	109.4
N3—C9—H9A	109 3	C61 - C60 - H60A	109.4
C8—C9—H9A	109.3	C59—C60—H60B	109.4
N3—C9—H9B	109.3	C61 - C60 - H60B	109.1
C8 - C9 - H9B	109.3	H60A - C60 - H60B	102.1
$H_{0}A = C_{0} = H_{0}B$	108.0	C62 - C61 - C60	115.8(3)
Ω_{3} C_{10} N_{3}	123.7(2)	C62 - C61 - H61A	108.3
03 - C10 - N2	123.7(2) 123.2(2)	C60 - C61 - H61A	108.3
N3-C10-N2	123.2(2) 113.1(2)	C62 - C61 - H61B	108.3
$N_2 = C_{11} = C_{12}$	113.1(2) 124.3(2)	C60 C61 H61B	108.3
$N_2 = C_{11} = C_{12}$	124.3(2) 117.3(2)	H61A C61 H61B	107.4
$C_{12} = C_{11} = C_{16}$	117.3(2) 118.4(2)	C61 C62 H62A	107.4
$C_{12} = C_{11} = C_{10}$	110.4(2) 120.2(2)	C61 - C62 - H62P	109.5
$C_{13} = C_{12} = C_{11}$	120.2 (3)	C01 - C02 - H02B	109.5
$C_{13} - C_{12} - H_{12}$	119.9	C_{61} C_{62} H_{62C}	109.5
C12 - C12 - C12	119.9	$C_{01} = C_{02} = H_{02}C$	109.5
C12 - C13 - C14	119.9 (3)	H02A - C02 - H02C	109.5
С12—С13—П13	120.1	H02B - C02 - H02C	109.5
C14—C13—H13	120.1	C64 - C63 - N19	110.0 (2)
C15 - C14 - C13	121.1(3)	C04 - C03 - H03A	108.1
C13—C14—N1	119.3 (2)	N19—C63—H63A	108.1
C13—C14—N1	119.5 (3)	С64—С63—Н63В	108.1
C16-C15-C14	119.2 (3)	N19—C63—H63B	108.1
С16—С15—Н15	120.4	Н63А—С63—Н63В	107.3
С14—С15—Н15	120.4	C65—C64—C63	111.0 (3)
C15—C16—C11	121.1 (3)	С65—С64—Н64А	109.4
C15—C16—H16	119.4	С63—С64—Н64А	109.4
C11—C16—H16	119.4	C65—C64—H64B	109.4
N4—C17—C18	112.3 (2)	C63—C64—H64B	109.4
N4—C17—H17A	109.2	H64A—C64—H64B	108.0
C18—C17—H17A	109.2	C64—C65—C66	114.6 (3)
N4—C17—H17B	109.2	C64—C65—H65A	108.6
C18—C17—H17B	109.2	С66—С65—Н65А	108.6
H17A—C17—H17B	107.9	C64—C65—H65B	108.6
N5—C18—C17	111.0 (2)	C66—C65—H65B	108.6
N5—C18—H18A	109.4	H65A—C65—H65B	107.6
C17—C18—H18A	109.4	C65—C66—H66A	109.5
N5—C18—H18B	109.4	C65—C66—H66B	109.5
C17—C18—H18B	109.4	H66A—C66—H66B	109.5
H18A—C18—H18B	108.0	C65—C66—H66C	109.5
O7—C19—N5	122.3 (2)	H66A—C66—H66C	109.5
O7—C19—N6	124.2 (2)	H66B—C66—H66C	109.5
N5—C19—N6	113.6 (2)	C75—N20—C71	111.4 (2)
N6-C20-C21	123.7 (2)	C75—N20—C67	109.4 (2)
N6-C20-C25	117.3 (2)	C71—N20—C67	108.7 (2)
C21—C20—C25	119.0 (2)	C75—N20—C79	108.2 (2)
C22—C21—C20	119.5 (3)	C71—N20—C79	108.4 (3)
C22—C21—H21	120.3	C67—N20—C79	110.7 (2)
C20—C21—H21	120.3	C68—C67—N20	116.6 (3)

C23—C22—C21	120.3 (3)	С68—С67—Н67А	108.1
С23—С22—Н22	119.8	N20—C67—H67A	108.1
C21—C22—H22	119.8	С68—С67—Н67В	108.1
C22—C23—C24	121.4 (3)	N20—C67—H67B	108.1
C22—C23—N7	119.7 (3)	Н67А—С67—Н67В	107.3
C24—C23—N7	118.9 (3)	C67—C68—C69	111.7 (3)
C25—C24—C23	118.6 (2)	С67—С68—Н68А	109.3
C25—C24—H24	120.7	С69—С68—Н68А	109.3
C23—C24—H24	120.7	С67—С68—Н68В	109.3
C24—C25—C20	121.2 (2)	С69—С68—Н68В	109.3
C24—C25—H25	119.4	H68A—C68—H68B	107.9
C20—C25—H25	119.4	C70—C69—C68	113.2 (3)
010B - N10 - 011B	1218(4)	C70—C69—H69A	108.9
011A - N10 - 010A	120.6 (5)	C68—C69—H69A	108.9
011A - N10 - C41	121.8 (5)	C70—C69—H69B	108.9
010B 10 $-C41$	1196(3)	C68—C69—H69B	108.9
011B = N10 = C41	115.9 (4)	H69A_C69_H69B	107.8
0104 $N10$ $C41$	115.8 (3)	C69-C70-H70A	107.0
C_{38} N11 C_{37}	128.6 (2)	C69 - C70 - H70R	109.5
$C_{38} = N_{11} = C_{37}$	126.0(2)	$H_{70A} = C_{70} = H_{70B}$	109.5
C_{30} N11 H11N	110(2) 115(2)	11/0A - C/0 - 11/0B	109.5
C_{27} N12 C_{26}	113(2) 1224(2)	H_{20}^{-0} H_{20}^{-0} H_{20}^{-0}	109.5
$C_{37} = N_{12} = C_{30}$	122.4(2)	H70P C70 H70C	109.5
C_{24} N12 H12N	122(2) 115(2)	H/0B - C/0 - H/0C	109.3
C30—N12—H12N	115(2)	$N_{20} = C_{71} = U_{71}$	115.0 (5)
C44 = N13 = C34	124.1(2)	$N_{20} - C_{1} - H_{1A}$	108.5
C44 - N13 - C35	117.9 (2)	C/2 - C/1 - H/1A	108.5
C_{34} N13 $-C_{35}$	117.95 (19)	N20-C/I-H/IB	108.5
C_{32} —N14—C33	119.4 (2)	С/2—С/1—Н/1В	108.5
C32—N14—H14N	120 (2)	H71A—C/1—H71B	107.5
C33—N14—H14N	118 (2)	C73—C72—C71	112.4 (3)
C32—N15—C29	128.0 (2)	С73—С72—Н72А	109.1
C32—N15—H15N	115 (2)	С71—С72—Н72А	109.1
C29—N15—H15N	117 (2)	С73—С72—Н72В	109.1
O18—N16—O17	123.3 (3)	С71—С72—Н72В	109.1
O18—N16—C26	118.7 (3)	H72A—C72—H72B	107.9
O17—N16—C26	118.0 (3)	C72—C73—C74	112.1 (3)
C44—N17—C45	126.4 (2)	С72—С73—Н73А	109.2
C44—N17—H17N	118.8 (19)	С74—С73—Н73А	109.2
C45—N17—H17N	114.6 (19)	С72—С73—Н73В	109.2
O14—N18—O15	123.2 (2)	С74—С73—Н73В	109.2
O14—N18—C48	118.2 (2)	H73A—C73—H73B	107.9
O15—N18—C48	118.6 (2)	С73—С74—Н74А	109.5
C27—C26—C31	121.1 (3)	С73—С74—Н74В	109.5
C27—C26—N16	119.2 (3)	H74A—C74—H74B	109.5
C31—C26—N16	119.7 (3)	С73—С74—Н74С	109.5
C26—C27—C28	118.8 (2)	H74A—C74—H74C	109.5
С26—С27—Н27	120.6	H74B—C74—H74C	109.5
С28—С27—Н27	120.6	C76—C75—N20	115.8 (3)

C27—C28—C29	121.3 (2)	С76—С75—Н75А	108.3
С27—С28—Н28	119.4	N20—C75—H75A	108.3
C29—C28—H28	119.4	C76—C75—H75B	108.3
C30—C29—N15	124.3 (2)	N20—C75—H75B	108.3
C30—C29—C28	118.9 (2)	H75A—C75—H75B	107.4
N15—C29—C28	116.8 (2)	C75—C76—C77	110.9 (3)
C31—C30—C29	119.7 (3)	С75—С76—Н76А	109.5
C31—C30—H30	120.2	С77—С76—Н76А	109.5
С29—С30—Н30	120.2	C75—C76—H76B	109.5
C26—C31—C30	120.3 (3)	С77—С76—Н76В	109.5
C26—C31—H31	119.8	H76A—C76—H76B	108.1
C30—C31—H31	119.8	C78—C77—C76	112.7 (3)
O16—C32—N14	122.2 (2)	C78—C77—H77A	109.1
O16—C32—N15	124.3 (2)	С76—С77—Н77А	109.1
N14—C32—N15	113.6 (2)	С78—С77—Н77В	109.1
N14—C33—C34	111.3 (2)	С76—С77—Н77В	109.1
N14—C33—H33A	109.4	H77A—C77—H77B	107.8
С34—С33—Н33А	109.4	C77—C78—H78A	109.5
N14—C33—H33B	109.4	C77—C78—H78B	109.5
C34—C33—H33B	109.4	H78A—C78—H78B	109.5
H33A—C33—H33B	108.0	C77—C78—H78C	109.5
N13—C34—C33	112.3 (2)	H78A—C78—H78C	109.5
N13—C34—H34A	109.2	H78B—C78—H78C	109.5
С33—С34—Н34А	109.2	C80A—C79—N20	117.2 (3)
N13—C34—H34B	109.2	C80B—C79—N20	115.3 (4)
C33—C34—H34B	109.2	C80A—C79—H79A	108.0
H34A—C34—H34B	107.9	N20—C79—H79A	108.0
N13—C35—C36	112.4 (2)	C80A—C79—H79B	108.0
N13—C35—H35A	109.1	N20—C79—H79B	108.0
С36—С35—Н35А	109.1	H79A—C79—H79B	107.2
N13—C35—H35B	109.1	C80B—C79—H79C	108.5
C36—C35—H35B	109.1	N20—C79—H79C	108.5
H35A—C35—H35B	107.9	C80B—C79—H79D	108.5
N12—C36—C35	111.2 (2)	N20—C79—H79D	108.5
N12—C36—H36A	109.4	H79C—C79—H79D	107.5
С35—С36—Н36А	109.4	C81A—C80A—C79	111.0 (5)
N12—C36—H36B	109.4	C81A—C80A—H80A	109.4
С35—С36—Н36В	109.4	C79—C80A—H80A	109.4
H36A—C36—H36B	108.0	C81A—C80A—H80B	109.4
012—C37—N12	124.5 (2)	C79—C80A—H80B	109.4
012—C37—N11	123.9 (2)	H80A—C80A—H80B	108.0
N12—C37—N11	111.6 (2)	C82A—C81A—C80A	119.5 (7)
N11-C38-C43	124.9 (2)	C82A—C81A—H81A	107.4
N11—C38—C39	116.5 (2)	C80A—C81A—H81A	107.4
C43—C38—C39	118.7 (2)	C82A—C81A—H81B	107.4
C40—C39—C38	121.2 (2)	C80A—C81A—H81B	107.4
С40—С39—Н39	119.4	H81A—C81A—H81B	107.0
С38—С39—Н39	119.4	C81A—C82A—H82A	109.5

C39—C40—C41	119.2 (3)	C81A—C82A—H82B	109.5
C39—C40—H40	120.4	H82A—C82A—H82B	109.5
C41—C40—H40	120.4	C81A—C82A—H82C	109.5
C40—C41—C42	121.1 (3)	H82A—C82A—H82C	109.5
C40-C41-N10	119.0 (3)	H82B—C82A—H82C	109.5
C42—C41—N10	119.9 (3)	C81B—C80B—C79	117.2 (5)
C43—C42—C41	120.3 (3)	C81B—C80B—H80C	108.0
C43—C42—H42	119.9	C79—C80B—H80C	108.0
C41—C42—H42	119.9	C81B—C80B—H80D	108.0
C42—C43—C38	119.5 (3)	C79—C80B—H80D	108.0
C42—C43—H43	120.3	H80C-C80B-H80D	107.2
C38—C43—H43	120.3	C82B—C81B—C80B	114.5 (7)
013-C44-N13	121.2 (2)	C82B—C81B—H81C	108.6
013—C44—N17	122.9 (2)	C80B—C81B—H81C	108.6
N13-C44-N17	115.9(2)	C82B—C81B—H81D	108.6
C_{50} C_{45} C_{46}	119.2(2)	C80B—C81B—H81D	108.6
C_{50} C_{45} N_{17}	119.2(2) 116.4(2)	H81C - C81B - H81D	107.6
$C_{46} - C_{45} - N_{17}$	124.3(2)	C81B - C82B - H82D	109.5
C47 - C46 - C45	124.3(2) 119.8(2)	C81B - C82B - H82E	109.5
C47 - C46 - H46	120.1	H82D - C82B - H82F	109.5
C_{45} C_{46} H_{46}	120.1	C81B—C82B—H82F	109.5
$C_{48} - C_{47} - C_{46}$	119.6 (2)	H82D - C82B - H82F	109.5
$C_{48} - C_{47} - H_{47}$	120.2	H82E—C82B—H82E	109.5
C46-C47-H47	120.2	022 - P1 - 019	114 54 (10)
C47 - C48 - C49	120.2 122.0(2)	022 - P1 - 020	111.33 (9)
C47 - C48 - N18	122.0(2) 119.6(2)	019 - P1 - 020	107.35(0)
C49-C48-N18	119.0(2) 118.5(2)	022 - P1 - 021	106 44 (10)
C_{50} C_{49} C_{48}	110.3(2) 118 3 (2)	019 - P1 - 021	109.89 (9)
C50-C49-H49	120.8	020-P1-021	107.06 (10)
C48 - C49 - H49	120.8	P1	111 (2)
C49-C50-C45	121.0(2)	P1	115(2)
C49—C50—H50	119 5	024-P2-026	112(2) 112.39(10)
C45 - C50 - H50	119.5	021 - 12 - 025 024 - P2 - 025	108 25 (10)
C54-N19-C63	108.4(2)	$026 - P^2 - 025$	110,73 (10)
C54-N19-C59	111.8(2)	020 P2 022	110.98 (9)
C63-N19-C59	108.9(2)	$026 - P^2 - 023$	106 28 (10)
C54-N19-C55	109.5(2)	$025 - P^2 - 023$	108.14 (10)
C63 - N19 - C55	109.3(2) 110.2(2)	P2	114 (2)
C_{59} N19 C_{55}	108.1(2)	P2	113(2)
C_{52} C_{51} H_{51A}	109.5	12 023 11230	115 (2)
	109.5		
06 - N9 - C1 - C2	-166.3(3)	C37—N12—C36—C35	-973(3)
05-N9-C1-C2	14.0 (4)	N13 - C35 - C36 - N12	-172.7(2)
06—N9—C1—C6	12.2 (4)	C_{36} N12 $-C_{37}$ $-O_{12}$	-4.5(4)
05—N9—C1—C6	-167.5(3)	C_{36} N12 C_{37} N11	175.5 (2)
C6-C1-C2-C3	-1.0(5)	C38—N11—C37—O12	-4.1(5)
N9—C1—C2—C3	177.5 (3)	C_{38} N11 $-C_{37}$ N12	175.9 (2)
C1—C2—C3—C4	1.4 (5)	C37—N11—C38—C43	-6.0 (4)
-	× /		

C2—C3—C4—C5	-0.9 (5)	C37—N11—C38—C39	174.8 (3)
C2-C3-C4-N8	177.3 (3)	N11-C38-C39-C40	179.6 (2)
C7—N8—C4—C5	-172.6 (3)	C43—C38—C39—C40	0.3 (4)
C7—N8—C4—C3	9.2 (5)	C38—C39—C40—C41	1.2 (4)
C3—C4—C5—C6	-0.1 (4)	C39—C40—C41—C42	-2.3(4)
N8—C4—C5—C6	-178.3 (3)	C39—C40—C41—N10	178.7 (3)
C2-C1-C6-C5	0.0 (5)	O11A—N10—C41—C40	-2.6(11)
N9—C1—C6—C5	-178.4(3)	O10B—N10—C41—C40	-162.2(4)
C4—C5—C6—C1	0.5 (4)	O11B—N10—C41—C40	-0.6(9)
C17—N4—C7—O4	175.2 (3)	O10A—N10—C41—C40	161.9 (4)
C8—N4—C7—O4	-45(4)	011A - N10 - C41 - C42	178 3 (10)
C17 - N4 - C7 - N8	-40(4)	010B - N10 - C41 - C42	188(5)
C8 - N4 - C7 - N8	1764(2)	011B - N10 - C41 - C42	-179.6(8)
C4 - N8 - C7 - O4	49(5)	0104 - N10 - C41 - C42	-172(5)
C4 N8 $C7$ N4	-176.0(3)	C_{10} C_{11} C_{12} C_{12} C_{12}	17.2(3)
$C_{1} = N_{0} = C_{1} = N_{1}$	1/0.0(3)	$V_{40} = C_{41} = C_{42} = C_{43}$	1.0(3)
$C_{17} N_{4} C_{8} C_{9}$	100.0(3)	N10-C41-C42-C43	-1/9.2(3)
C17 - N4 - C8 - C9	=/9.0(3)	C41 - C42 - C43 - C38	-0.2(3)
C10 - N3 - C9 - C8	91.6 (3)	N11 - C38 - C43 - C42	180.0(3)
N4—C8—C9—N3	177.7 (2)	C39 - C38 - C43 - C42	-0.8(4)
C9—N3—C10—O3	0.3 (4)	C34—N13—C44—O13	-179.1 (2)
C9—N3—C10—N2	-179.3 (2)	C35—N13—C44—O13	3.2 (4)
C11—N2—C10—O3	6.3 (4)	C34—N13—C44—N17	0.5 (4)
C11—N2—C10—N3	-174.0 (2)	C35—N13—C44—N17	-177.3 (2)
C10—N2—C11—C12	2.1 (4)	C45—N17—C44—O13	4.7 (4)
C10—N2—C11—C16	-179.0 (2)	C45—N17—C44—N13	-174.8 (2)
N2—C11—C12—C13	-179.0 (2)	C44—N17—C45—C50	-177.8 (2)
C16—C11—C12—C13	2.1 (4)	C44—N17—C45—C46	3.1 (4)
C11—C12—C13—C14	-0.3 (4)	C50-C45-C46-C47	0.9 (4)
C12—C13—C14—C15	-1.8 (4)	N17—C45—C46—C47	-179.9 (2)
C12—C13—C14—N1	175.4 (2)	C45—C46—C47—C48	-1.6 (4)
O2—N1—C14—C15	174.6 (3)	C46—C47—C48—C49	0.8 (4)
O1—N1—C14—C15	-2.7 (4)	C46—C47—C48—N18	-179.3 (2)
O2—N1—C14—C13	-2.6 (4)	O14—N18—C48—C47	-14.2(4)
O1—N1—C14—C13	-179.9(2)	O15—N18—C48—C47	165.5 (2)
C13—C14—C15—C16	2.0 (4)	O14—N18—C48—C49	165.7 (3)
N1-C14-C15-C16	-175.2 (2)	O15—N18—C48—C49	-14.6(3)
C14—C15—C16—C11	-0.2(4)	C47—C48—C49—C50	0.7 (4)
N_{2} C11 - C16 - C15	179.2 (2)	N18-C48-C49-C50	-1793(2)
C_{12} C_{11} C_{16} C_{15}	-1.8(4)	C_{48} C_{49} C_{50} C_{45}	-13(4)
C7-N4-C17-C18	81 5 (3)	C46-C45-C50-C49	0.6(4)
C_{8} N4 C_{17} C_{18}	-98.9(3)	N17-C45-C50-C49	-1787(2)
C19 - N5 - C18 - C17	75 3 (3)	$C_{51} - C_{52} - C_{53} - C_{54}$	-56.8(4)
N4 C17 C18 N5	-161.0(2)	$C_{51} C_{52} C_{53} C_{54} C_{53}$	-1727(2)
C18 N5 C19 07	-5.2(4)	C_{59} N19 C_{54} C_{53}	-527(3)
C18 N5 C19 N6	יד) 2.2 174 8 (2)	$C_{5} = 119 - C_{5} - C_{5}$	52.7(3)
$C_{10} = 10 = 0.07$	174.0(2)	C_{33} C_{113} C_{34} C_{33} C_{53} C_{54} N_{10}	-167.5(2)
$C_{20} = N_{0} = C_{10} = 0/$	12.1(4) 1678(2)	$C_{54} = C_{55} = C_{54} = C_{54}$	107.3(2)
C_{20} NO C_{19} NO	-10/.8(3)	C_{24} N19 C_{25} C_{26}	$1/\delta.0(2)$
C19-N6-C20-C21	-22.5 (4)	C03-N19-C33-C36	38.9 (<i>3</i>)

C10 N6 C20 C25	157.0(3)	C59 N19 C55 C56	-500(3)
N6-C20-C21-C22	177.5 (3)	N19-C55-C56-C57	-173.0(3)
C25—C20—C21—C22	-1.8 (4)	C55—C56—C57—C58	-174.2(3)
C20—C21—C22—C23	1.2 (4)	C54—N19—C59—C60	-56.1 (3)
C21—C22—C23—C24	0.5 (4)	C63—N19—C59—C60	63.6 (3)
C21—C22—C23—N7	-178.2 (2)	C55—N19—C59—C60	-176.7(3)
O8—N7—C23—C22	-172.3 (3)	N19—C59—C60—C61	-172.1(3)
O9—N7—C23—C22	7.3 (4)	C59—C60—C61—C62	-179.5 (4)
O8—N7—C23—C24	8.9 (4)	C54—N19—C63—C64	-70.4 (3)
O9—N7—C23—C24	-171.4 (2)	C59—N19—C63—C64	167.8 (3)
C22—C23—C24—C25	-1.4 (4)	C55—N19—C63—C64	49.4 (3)
N7—C23—C24—C25	177.3 (2)	N19—C63—C64—C65	172.0 (3)
C23—C24—C25—C20	0.7 (4)	C63—C64—C65—C66	171.0 (3)
N6-C20-C25-C24	-178.4 (2)	C75—N20—C67—C68	52.6 (3)
C21—C20—C25—C24	0.9 (4)	C71—N20—C67—C68	174.5 (3)
O18—N16—C26—C27	-8.2 (4)	C79—N20—C67—C68	-66.5 (3)
O17—N16—C26—C27	171.0 (3)	N20-C67-C68-C69	173.3 (3)
O18—N16—C26—C31	173.4 (3)	C67—C68—C69—C70	171.4 (3)
O17—N16—C26—C31	-7.5 (5)	C75—N20—C71—C72	49.7 (3)
C31—C26—C27—C28	-0.4 (4)	C67—N20—C71—C72	-71.0 (3)
N16-C26-C27-C28	-178.8 (3)	C79—N20—C71—C72	168.6 (3)
C26—C27—C28—C29	-0.7 (4)	N20-C71-C72-C73	-153.1 (3)
C32—N15—C29—C30	16.0 (4)	C71—C72—C73—C74	175.4 (3)
C32—N15—C29—C28	-162.8 (2)	C71—N20—C75—C76	51.1 (3)
C27—C28—C29—C30	0.6 (4)	C67—N20—C75—C76	171.3 (2)
C27—C28—C29—N15	179.6 (2)	C79—N20—C75—C76	-68.1 (3)
N15-C29-C30-C31	-178.3 (3)	N20-C75-C76-C77	-166.4 (3)
C28—C29—C30—C31	0.5 (5)	C75—C76—C77—C78	74.3 (4)
C27—C26—C31—C30	1.5 (5)	C75—N20—C79—C80A	-163.3 (6)
N16-C26-C31-C30	179.9 (3)	C71—N20—C79—C80A	75.7 (6)
C29—C30—C31—C26	-1.5 (5)	C67—N20—C79—C80A	-43.4 (6)
C33—N14—C32—O16	3.9 (4)	C75—N20—C79—C80B	172.4 (5)
C33—N14—C32—N15	-175.8 (2)	C71—N20—C79—C80B	51.4 (5)
C29—N15—C32—O16	-6.2 (4)	C67—N20—C79—C80B	-67.8 (5)
C29—N15—C32—N14	173.5 (2)	C80B—C79—C80A—C81A	-84.0 (13)
C32—N14—C33—C34	-75.5 (3)	N20-C79-C80A-C81A	-174.5 (5)
C44—N13—C34—C33	-81.5 (3)	C79—C80A—C81A—C82A	53.5 (12)
C35—N13—C34—C33	96.2 (3)	C80A—C79—C80B—C81B	108.0 (17)
N14—C33—C34—N13	164.1 (2)	N20-C79-C80B-C81B	-151.7 (6)
C44—N13—C35—C36	-87.5 (3)	C79—C80B—C81B—C82B	-46.3 (11)
C34—N13—C35—C36	94.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
N8—H8 <i>N</i> ···O7	0.90 (3)	2.07 (3)	2.955 (3)	168 (3)	
N17—H17 <i>N</i> ···O16	0.90 (2)	2.21 (2)	3.100 (3)	170 (2)	
N5—H5 <i>N</i> ···O21	0.90 (2)	2.04 (2)	2.915 (3)	164 (3)	

N6—H6 <i>N</i> ···O22	0.90(2)	2.10(2)	2.986 (3)	168 (2)
N11—H11 <i>N</i> ···O19	0.90(2)	1.96 (2)	2.854 (3)	175 (2)
N12—H12 <i>N</i> ···O22	0.90 (2)	2.21 (2)	3.058 (3)	157 (3)
O20—H20 <i>O</i> ···O24	0.93 (2)	1.66 (2)	2.583 (2)	178 (3)
O23—H23 <i>O</i> ···O22	0.93 (2)	1.64 (2)	2.568 (2)	176 (2)
O21—H21 <i>O</i> ···O19 ⁱ	0.93 (2)	1.61 (2)	2.528 (2)	173 (3)
O25—H25 <i>O</i> ···O26 ⁱⁱ	0.93 (2)	1.59 (2)	2.501 (2)	166 (3)
N2—H2 <i>N</i> ···O26 ⁱ	0.90(2)	2.08 (2)	2.977 (3)	174 (2)
N3—H3 <i>N</i> ···O24 ⁱ	0.90 (2)	2.09 (2)	2.931 (3)	155 (3)
N14—H14 <i>N</i> ···O25 ⁱⁱ	0.90 (2)	2.03 (2)	2.930 (3)	175 (2)
N15—H15 <i>N</i> ···O24 ⁱⁱ	0.90(2)	2.10(2)	2.986 (3)	168 (2)
С3—Н3…О4	0.95	2.17	2.789 (4)	121
С5—Н5…О7	0.95	2.53	3.279 (4)	136
С12—Н12…О3	0.95	2.23	2.844 (3)	122
С21—Н21…О7	0.95	2.31	2.872 (4)	118
С30—Н30…О16	0.95	2.32	2.903 (4)	119
C43—H43…O12	0.95	2.32	2.910 (4)	120
C46—H46…O13	0.95	2.19	2.810 (3)	122
C18—H18A····O1 ⁱⁱⁱ	0.99	2.42	3.345 (4)	156
C30—H30…O6 ^{iv}	0.95	2.58	3.265 (4)	129
C33—H33 <i>B</i> ···O11 <i>A</i> ⁱⁱⁱ	0.99	2.58	3.235 (12)	123
C39—H39…O21 ⁱ	0.95	2.52	3.446 (3)	164
C54—H54 <i>A</i> ···O15 ^v	0.99	2.46	3.447 (4)	173
С63—Н63А…О3	0.99	2.42	3.379 (4)	164
C63—H63 <i>B</i> ···O4	0.99	2.26	3.003 (4)	131
C64—H64 <i>B</i> ···O15 ^v	0.99	2.46	3.348 (4)	149
C70—H70 <i>B</i> ···O10 <i>A</i> ⁱⁱⁱ	0.98	2.47	3.289 (6)	141
C75—H75A···O13	0.99	2.31	3.158 (4)	143
C75—H75 <i>B</i> ····O1 ^{vi}	0.99	2.58	3.514 (4)	157

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1; (v) x-1, y, z-1; (vi) x+1, y, z+1.