

Received 3 December 2018 Accepted 30 January 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; ruthenium catalyst; Hoveyda–Grubbs catalyst; N—Ru coordination bond; metathesis of olefins; SQUEEZE.

CCDC reference: 1894660

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of [1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido{2-[1-(dimethylamino)ethyl]benzylidene}ruthenium including an unknown solvate

Kirill B. Polyanskii,^a Kseniia A. Alekseeva,^a Pavel A. Kumandin,^a Zeliha Atioğlu,^b Mehmet Akkurt^c and Flavien A. A. Toze^d*

^aOrganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, ^bilke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon. *Correspondence e-mail: toflavien@yahoo.fr

The title compound, $[\operatorname{RuCl}_2(\operatorname{C}_{21}\operatorname{H}_{26}\operatorname{N}_2)(\operatorname{C}_{11}\operatorname{H}_{15}\operatorname{N})]$, is an example of a new generation of *N*,*N*-dialkyl metallocomplex ruthenium catalysts with an N \rightarrow Ru coordination bond as part of a six-membered chelate ring. The Ru atom has an Addison τ parameter of 0.234, which indicates a geometry intermediate between square-based pyramidal and trigonal-bipyramidal. The complex shows the usual *trans* arrangement of the two chloride ligands, with Ru–Cl bond lengths of 2.3397 (8) and 2.3476 (8) Å, and a Cl–Ru– Cl angle of 157.47 (3)°. The crystal structure features C–H···Cl, C–H··· π and π - π stacking interactions. The solvent molecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure in *PLATON* [Spek (2015). *Acta Cryst.* C**71**, 9–18], which indicated a solvent cavity of volume 1096 Å³ containing approximately 419 electrons. These solvent molecules are not considered in the given chemical formula and other crystal data.

1. Chemical context

Since the 1980s metathesis has become an important industrial process, but applications of the first-generation catalysts to targets bearing various functional groups were often precluded by the dramatic increase of their catalytic activity (Delaude & Noels, 2005; Astruc, 2005). Hence, in recent years a large number of new catalysts have been proposed, developed and implemented in organic chemistry processes. These new catalysts may be used in the presence of various functional groups, moisture traces, in a wide range of solvents under different temperatures and for many metathesis reactions including CM (cross metathesis), ROM (ring-opening metathesis), RCM (ring-closing metathesis), ROMP (ringopening metathesis polymerization), ADMET (acyclic diene metathesis polymerization) and others (Dragutan et al., 2005; Grubbs et al., 2015; Hoveyda & Zhugralin, 2007). Currently, the most widely used catalysts are ruthenium-based heterocyclic carbene-coordinated metallocomplexes, containing, as rule, a five-membered ruthenium-containing ring with an $O \rightarrow Ru$ coordination bond (the Hoveyda–Grubbs catalysts of the second generation) (Ogba et al., 2018; Samojłowicz & Grela, 2009; Vougioukalakis & Grubbs, 2010).

Currently, there is only scarce information about the synthesis and application in the metathesis reactions of the nitrogen-containing Grubbs catalysts, where the oxygen atom is substituted by an N atom in a five-membered ring. The known compounds of that type have promising catalytic properties and are already used in the industry. For example, there is patent information that describes applications of such a type of catalysts in ring-opening metathesis polymerization reactions (Zheng-Yun, 2017; Xia, 2017; Zheng-Yun, 2011; Polyanskii *et al.*, 2015; Ivin & Mol, 1997).

The purpose of this study is to elaborate the synthesis of new generation of N,N-dialkyl metallocomplex ruthenium catalysts, resulting in establishment of connection between the nature of the functional groups born by the nitrogen atom and the catalytic activity and stability of these catalysts in various metathesis reactions as well as in the determination of the effect of substituents on the structures of the obtained products.

2. Structural commentary

The Ru atom in the title compound is pentacoordinated to two C, one N and two Cl atoms (Table 1). The Addison τ parameter is used to describe the distortion of the coordination geometry and is defined as $\tau =$ (difference between two largest angles/60) for five-coordinated metal centers, allowing the

Figure 1

The molecular structure of the title complex with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Table 1			
Selected	geometric parameters	(Å.	°).

8							
Ru1-C9	1.822 (3)	Ru1-Cl1	2.3397 (8)				
Ru1-C12	2.036 (3)	Ru1-Cl2	2.3476 (8)				
Ru1–N1	2.265 (3)						
C9-Ru1-C12	99.91 (12)	N1-Ru1-Cl1	88.15 (7)				
C9-Ru1-N1	87.49 (12)	C9-Ru1-Cl2	101.93 (10)				
C12-Ru1-N1	171.53 (10)	C12-Ru1-Cl2	85.25 (8)				
C9-Ru1-Cl1	100.30 (10)	N1-Ru1-Cl2	89.21 (7)				
C12-Ru1-Cl1	94.51 (8)	Cl1-Ru1-Cl2	157.47 (3)				

distinction between trigonal-bipyramidal (ideally $\tau = 1$) and square-pyramidal (ideally $\tau = 0$) geometries. For the title complex, $\tau = 0.234$, in between these two geometries (Figs. 1 and 2). The dihedral angle between the planes of the trimethylphenyl rings is 31.95 (19)°. The complex shows the usual *trans* arrangement of the two chloride ligands, with Ru-Cl bond lengths of 2.3397 (8) and 2.3476 (8) Å, and a Cl-Ru- Cl angle of 157.47 (3)°. The bond lengths and angles about the Ru atom are in good agreement with those in the dichloromethane solvate [(SPY-5-34)-dichloro(2-formylbenzylidene- κ^2 -C,O)[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene]ruthenium] (Slugovc *et al.*, 2004) and *cis*-dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2-formylbenzylidene- κ^2 C,O)ruthenium diethyl ether solvate (Slugovc *et al.*, 2010).

3. Supramolecular features

The crystal structure features C-H···Cl, C-H··· π interactions (Table 2) and π - π stacking interactions between the benzylidene rings [centroid–centroid distance = 3.684 (3) Å, inter-planar distance = 3.5312 (16) Å and slippage = 1.048 Å], forming a three-dimensional network. The hydrogen-bonding interactions in the title complex are shown in Fig. 3.

A view of the coordination geometry about the Ru atom, which lies between square-based pyramidal and trigonal-bipyramidal.

research communications

Table 2		
Hydrogen-bond	geometry (Å,	°).

-				
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
ala trian qui			a 7 70 (a)	105
$C13 - H13B \cdots Cl1^4$	0.97	2.82	3.578 (3)	135
$C14-H14A\cdots Cl1^{i}$	0.97	2.82	3.576 (4)	135
$C9-H9\cdots Cg4$	0.93	2.61	3.481 (4)	157

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

4. Database survey

cis-dichlorido(1,3-dimesitylimidazolidin-2-ylidene)(2-Both formylbenzylidene- $\kappa^2 C, O$)ruthenium diethyl ether solvate (Slugovc et al., 2010) and the dichloromethane solvate [(SPY-5-34)-dichloro(2-formylbenzylidene- $\kappa^2 C$, O)[1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene]ruthenium] (Slugovc et al., 2004), show similar metal-atom geometries to the title compound. In contrast to the dichloromethane solvate, where the Ru complexes do not show any intermolecular π - π -stacking but are linked by C-H··· π and C-H···Cl interactions (Jlassi et al., 2014; Ma et al., 2017a,b; Shixaliyev et al., 2013, 2014, 2018), intermolecular π - π stacking is an important factor in the crystal structures of the title complex and cis-dichlorido(1,3-dimesitylimidazolidin-2ylidene)(2-formylbenzylidene- $\kappa^2 C, O$)ruthenium diethyl ether solvate where these interactions form a framework-like structure containing channels that extend along the b and caxes, respectively. The crystal structures of some rutheniumbased heterocyclic carbene-coordinated metallo-complexes, containing a five-membered ruthenium-containing cycle with an $O \rightarrow Ru$ coordination bond have been reported by Samojłowicz et al. (2009).

5. Synthesis and crystallization

The synthesis of the title complex (5) was performed by the interaction of the indenylidene derivative (1) with 1,3-dimesityl-2-(trichloromethyl)imidazolidine (2). The intermediate (3), which is unstable in air, was not isolated and was directed to the following reaction step with styrene (4) as described earlier (Dorta *et al.*, 2004; Fürstner *et al.*, 2001; Jimenez *et al.*, 2001;

Figure 3

A partial packing diagram of the title compound, showing the C-H···Cl, C-H·· π and π - π stacking interactions as dashed lines [symmetry code: (a) 1 - x, -y, 1 - z].

Figure 4 Reaction scheme.

2012; Pump *et al.*, 2015) (Fig. 4). The catalyst (5) was obtained in moderate yield and turned out to be a green powder, stable in air at room temperature for at least four years.

Synthesis of the Hoveyda–Grubbs catalyst (5):

Absolute toluene (50 ml), dichloro(3-phenyl-1H-inden-1ylidene)bis(tricyclohexylphosphane)ruthenate (1) (3.52 g, 3.81 mmol) and 1,3-bis(2,4,6-trimethylphenyl)-2-trichloromethylimidazolidine (2) (1.94 g, 4.56 mmol) were placed into a 100 ml Schlenk flask purged with argon. The mixture was heated under argon at 358 K for 5 h, then the mixture was cooled at room temperature and 1-(2-ethenylphenyl)-N,Ndimethylethanamine (4) (1.00 g, 5.71 mmol) was added under an argon atmosphere. The mixture was heated under argon at 368 K for 5 h. Toluene was evaporated under reduced pressure and the residue was suspended in hexane (30 ml). The resulting mixture was kept at 253 K for 10 h. The obtained precipitate was filtered off, washed with hexane $(3 \times 10 \text{ ml})$ and methanol (2 \times 10ml), and dried under vacuum at room temperature to give 1.90 g (2.96 mmol, yield 79%) of 5 as a light-green powder, pure by TLC, m.p 455-458 K (decomp.). Green prisms were grown by slow crystallization from a heptane-CH₂Cl₂ solvent mixture.

¹H NMR (500.1 MHz, CD₂Cl₂, 571 K) δ, ppm: 18.74 (s, 1H, CH=Ru), 7.58 (dt, J = 1.3 and J = 7.7 Hz, 1H, H-3-C₆H₄), 7.24 $(br d, J = 7.7 \text{ Hz}, 1\text{H}, \text{H}-4-\text{C}_{6}\text{H}_{4}), 7.22 (t, J = 7.7 \text{ Hz}, 1\text{H}, \text{H}-$ 5-C₆H₄), 7.11 (br s, 2H, H-Mes), 7.04 (br s, 2H, H-Mes), 6.76 (d, J = 7.7 Hz, 1H, H-2-C₆H₄), 5.74 (q, J = 6.7 Hz 1H, N-CH-Me), 4.11 (very br s, 4H, N-CH₂-CH₂-N), 2.56 (very br s, 12H, Me-Mes), 2.43 (s, 6H, Me-Mes), 2.05 (s, 3H, NMe), 1.53 (s, 3H, NMe), 1.39 (d, J = 6.7 Hz, 3H, CHMe). ¹³C NMR (125.7 MHz, CD₂Cl₂, 571 K) δ, ppm: 312.3 (C=Ru), 213.0 (N-C-N), 148.7 (C-6-C₆H₄), 138.4 (8C, br s, C-Mes), 137.2 (C-1-C₆H₄), 129.3 (very br s, 4C, CH-Mes), 129.0 (C-5 $-C_6H_4$), 128.4 (C-4 $-C_6H_4$), 128.3 (C-3 $-C_6H_4$), 127.0 (C-2 $-C_6H_4$), 59.0 (NCH-Me), 51.5 and 50.1 (NCH₂CH₂N), 43.2 (NMe), 38.5 (NMe), 20.8 (6C, Me-Mes), 9.6 (NCH–Me). IR ν_{max} /cm⁻¹ (KBr): 2953, 2915, 1605, 1481, 1443, 1377, 1256, 1183, 1117, 1041, 848, 806, 779, 578. HR-MALDI-ToF MS: 604.20 $[M - Cl]^+$. Analysis calculated for C₃₂H₄₁Cl₂N₃Ru: C 60.09, H 6.46, N 6.57%. Found: C 59.83, H 6.24, N 6.92%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were included in the refinement using the riding-model approximation with C-

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[RuCl_2(C_{21}H_{26}N_2)(C_{11}H_{15}N)]$
$M_{\rm r}$	639.65
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	35.8175 (17), 10.5633 (5),
	24.0946 (11)
β (°)	131.781 (2)
$V(Å^3)$	6797.9 (6)
Ζ	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.64
Crystal size (mm)	$0.34 \times 0.28 \times 0.21$
Data collection	
Diffractometer	Bruker APEXII CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21100, 7485, 5440
$R_{\rm e}$	0.041
$(\sin \theta / \lambda)$ $(Å^{-1})$	0.642
(Shi of M)max (Tr)	0.012
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.110, 1.04
No. of reflections	7485
No. of parameters	352
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.46, -0.44

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

H distances of 0.93–0.97 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The measurements of the $\overline{2}02$, 002), $\overline{1}11$, $\overline{4}02$, 110, $\overline{3}12$), $\overline{2}21$, 200 and $\overline{1}\overline{1}35$ reflections were affected by shielding by the beam stop and were therefore excluded from the refinement. A region of electron density, most probably disordered solvent molecules, occupying voids of *ca* 1096 Å³ for an electron count of 419, was removed with the SQUEEZE procedure in *PLATON* (Spek, 2015) following unsuccessful attempts to model it as a plausible solvent molecule. The stated formula mass, density, *etc.* do not include the disordered solvent.

Funding information

Funding for this research was provided by the Russian Science Foundation (RSF) (project No. 18–13-00456).

References

- Astruc, D. (2005). New J. Chem. 29, 42-56.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Delaude, L. & Noels, A. F. (2005). Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. Dorta, R., Kelly, R. A. III & Nolan, S. P. (2004). Adv. Synth. Catal. 346. 917-920. Dragutan, I., Dragutan, V. & Filip, P. (2005). Arkivoc, pp. 105-129. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854. Fürstner, A., Guth, O., Düffels, A., Seidel, G., Liebl, M., Gabor, B. & Mynott, R. (2001). Chem. Eur. J. 7, 4811-4820. Grubbs, R. H., Wenzel, A. G., O'Leary, D. J. & Khosravi, E. (2015). Handbook of Metathesis. Weinheim: Wiley-VCH. Hoveyda, A. H. & Zhugralin, A. R. (2007). Nature, 450, 243-251. Ivin, K. J. & Mol, J. C. (1997). Olefin Metathesis and Metathesis Polymerization, p. 204. London: Academic Press. Jimenez, L. R., Tolentino, D. R., Gallon, B. J. & Schrodi, Y. (2012). Molecules, 17, 5675-5689. Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17-23. Ogba, O. M., Warner, N. C., O'Leary, D. J. & Grubbs, R. H. (2018). Chem. Soc. Rev. 47, 4510-4544. Polvanskii, K. B., Afanas'ev, V. V. & Bespalova, N. B. (2015). Patent, WO 2015115937 A1 20150806. Pump, E., Slugovc, C., Cavallo, L. & Poater, A. (2015). Organometallics, 34, 3107-3111. Samojłowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708-3742. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8. Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381. Shixaliyev, N. O., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38. 4807-4815. Shixaliyev, N. O., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.
- Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2004). Organometallics, 23, 3622-3626.
- Slugovc, C., Perner, B., Stelzer, F. & Mereiter, K. (2010). *Acta Cryst.* E66, m154–m155.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Vougioukalakis, G. C. & Grubbs, R. H. (2010). Chem. Rev. 110, 1746– 1787.
- Xia, L. (2017). WO Patent 185324.
- Zheng-Yun, J. (2011). WO Patent 79439.
- Zheng-Yun, Z. (2017). CN Patent 104262403.

Acta Cryst. (2019). E75, 342-345 [https://doi.org/10.1107/S2056989019001725]

Crystal structure of [1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene]dichlorido{2-[1-(dimethylamino)ethyl]benzylidene}ruthenium including an unknown solvate

Kirill B. Polyanskii, Kseniia A. Alekseeva, Pavel A. Kumandin, Zeliha Atioğlu, Mehmet Akkurt and Flavien A. A. Toze

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009).

[1,3-Bis(2,4,6-trimethylphenyl)imidazolidin-2ylidene]dichlorido{2-[1-(dimethylamino)ethyl]benzylidene}ruthenium

Crystal data

[RuCl₂(C₂₁H₂₆N₂)(C₁₁H₁₅N)] $M_r = 639.65$ Monoclinic, C2/c a = 35.8175 (17) Å b = 10.5633 (5) Å c = 24.0946 (11) Å $\beta = 131.781 (2)^{\circ}$ $V = 6797.9 (6) \text{ Å}^3$ Z = 8

Data collection

Bruker APEXII CCD diffractometer φ and ω scans 21100 measured reflections 7485 independent reflections 5440 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.110$ S = 1.047485 reflections 352 parameters F(000) = 2656 $D_x = 1.250 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4879 reflections $\theta = 2.6-24.9^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 296 KBlock, green $0.34 \times 0.28 \times 0.21 \text{ mm}$

 $R_{int} = 0.041$ $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -45 \rightarrow 45$ $k = -13 \rightarrow 12$ $l = -29 \rightarrow 30$

0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0547P)^2 + 3.4409P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\text{max}} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru1	0.36323 (2)	0.25559 (2)	0.30233 (2)	0.01497 (8)
C11	0.27925 (3)	0.19526 (8)	0.21120 (5)	0.02716 (19)
Cl2	0.43877 (3)	0.35398 (7)	0.35226 (5)	0.02444 (18)
N1	0.38319 (10)	0.0907 (2)	0.26624 (14)	0.0209 (6)
N2	0.35668 (10)	0.4598 (2)	0.38862 (14)	0.0174 (5)
N3	0.33199 (10)	0.5233 (2)	0.28339 (14)	0.0198 (6)
C1	0.43550 (12)	0.0483 (3)	0.33159 (18)	0.0259 (8)
H1	0.455358	0.125580	0.355837	0.031*
C2	0.46125 (14)	-0.0283 (4)	0.3115 (2)	0.0355 (9)
H2A	0.495658	-0.042027	0.355392	0.053*
H2B	0.459579	0.017417	0.275447	0.053*
H2C	0.444691	-0.108425	0.290984	0.053*
C3	0.43498 (12)	-0.0165 (3)	0.38758 (18)	0.0234 (7)
C4	0.46076 (13)	-0.1295 (3)	0.4219 (2)	0.0298 (8)
H4	0.476461	-0.168616	0.407563	0.036*
C5	0.46369 (14)	-0.1853 (4)	0.4767 (2)	0.0351 (9)
Н5	0.481190	-0.260705	0.498552	0.042*
C6	0.44114 (13)	-0.1303 (3)	0.49874 (19)	0.0297 (8)
H6	0.443424	-0.167247	0.535946	0.036*
C7	0.41467 (12)	-0.0186 (3)	0.46528 (18)	0.0246 (7)
H7	0.399250	0.018681	0.480504	0.029*
C8	0.41055 (11)	0.0395 (3)	0.40913 (17)	0.0195 (7)
C9	0.38247 (11)	0.1576 (3)	0.37985 (17)	0.0192 (7)
H9	0.372759	0.188017	0.404817	0.023*
C10	0.34805 (13)	-0.0197 (3)	0.23194 (19)	0.0290 (8)
H10A	0.345193	-0.051843	0.266234	0.044*
H10B	0.360709	-0.084894	0.220549	0.044*
H10C	0.315705	0.006978	0.187030	0.044*
C11	0.38039 (15)	0.1501 (3)	0.20776 (19)	0.0315 (8)
H11A	0.406681	0.211464	0.230071	0.047*
H11B	0.348547	0.191039	0.171901	0.047*
H11C	0.384139	0.086122	0.183470	0.047*
C12	0.34786 (11)	0.4203 (3)	0.32755 (16)	0.0161 (6)
C13	0.34674 (13)	0.5960 (3)	0.38801 (18)	0.0227 (7)
H13A	0.376768	0.640104	0.429556	0.027*
H13B	0.320685	0.608402	0.389721	0.027*

C14	0.32972 (14)	0.6408 (3)	0.31387 (19)	0.0267 (8)
H14A	0.295961	0.674526	0.281612	0.032*
H14B	0.352141	0.704645	0.321270	0.032*
C15	0.36943 (12)	0.3844 (3)	0.44852 (16)	0.0179 (7)
C16	0.41955 (13)	0.3761 (3)	0.51418 (18)	0.0235 (7)
C17	0.43046 (14)	0.3025 (3)	0.57136 (19)	0.0298 (8)
H17	0.463580	0.295647	0.615705	0.036*
C18	0.39371 (16)	0.2390 (3)	0.5645 (2)	0.0335 (9)
C19	0.34442 (15)	0.2522 (3)	0.4989 (2)	0.0304 (8)
H19	0.319462	0.211225	0.494219	0.036*
C20	0.33091 (12)	0.3250 (3)	0.43947 (18)	0.0212 (7)
C21	0.45973 (13)	0.4446 (3)	0.52318 (19)	0.0316 (8)
H21A	0.491880	0.414900	0.567151	0.047*
H21B	0.457045	0.533797	0.527643	0.047*
H21C	0.456104	0.429297	0.480524	0.047*
C22	0.40732 (18)	0.1573 (4)	0.6276 (2)	0.0503 (12)
H22A	0.440341	0.178879	0.672911	0.075*
H22B	0.406526	0.069698	0.616245	0.075*
H22C	0.383708	0.171613	0.633607	0.075*
C23	0.27768 (13)	0.3329 (3)	0.3681 (2)	0.0299 (8)
H23A	0.256838	0.285893	0.372514	0.045*
H23B	0.274738	0.298087	0.328510	0.045*
H23C	0.267244	0.419876	0.357329	0.045*
C24	0.31131 (13)	0.5223 (3)	0.20761 (17)	0.0220 (7)
C25	0.26105 (13)	0.4902 (3)	0.15098 (19)	0.0271 (8)
C26	0.24212 (15)	0.4841 (4)	0.0789 (2)	0.0412 (10)
H26	0.209202	0.458177	0.040854	0.049*
C27	0.27115 (18)	0.5156 (4)	0.0622 (2)	0.0500 (12)
C28	0.31984 (17)	0.5575 (4)	0.1182 (2)	0.0446 (11)
H28	0.338852	0.582460	0.106630	0.054*
C29	0.34055 (14)	0.5626 (3)	0.19176 (19)	0.0294 (8)
C30	0.22693 (13)	0.4698 (3)	0.1655 (2)	0.0342 (9)
H30A	0.245338	0.432243	0.213694	0.051*
H30B	0.200096	0.414548	0.128166	0.051*
H30C	0.213420	0.549657	0.163869	0.051*
C31	0.2495 (2)	0.5069 (6)	-0.0179 (3)	0.087 (2)
H31A	0.275683	0.486405	-0.017664	0.131*
H31B	0.234799	0.586665	-0.042432	0.131*
H31C	0.224272	0.442093	-0.043926	0.131*
C32	0.39242 (14)	0.6178 (3)	0.2506 (2)	0.0337 (9)
H32A	0.405493	0.592815	0.299048	0.051*
H32B	0.390623	0.708490	0.247040	0.051*
H32C	0.414020	0.587167	0.243167	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Ru1	0.01431 (13)	0.01479 (14)	0.01431 (13)	-0.00060 (10)	0.00891 (10)	0.00059 (10)

Cl1	0.0164 (4)	0.0262 (4)	0.0285 (4)	-0.0033 (3)	0.0106 (4)	-0.0033 (4)
Cl2	0.0179 (4)	0.0208 (4)	0.0299 (4)	-0.0027 (3)	0.0139 (4)	0.0001 (3)
N1	0.0227 (14)	0.0206 (14)	0.0195 (14)	0.0009 (11)	0.0141 (12)	0.0008 (11)
N2	0.0215 (14)	0.0123 (13)	0.0168 (13)	0.0009 (10)	0.0121 (12)	0.0008 (10)
N3	0.0217 (14)	0.0170 (14)	0.0181 (14)	0.0037 (11)	0.0122 (12)	0.0029 (11)
C1	0.0222 (17)	0.0245 (18)	0.0259 (18)	0.0056 (14)	0.0139 (16)	-0.0023 (14)
C2	0.035 (2)	0.035 (2)	0.042 (2)	0.0024 (17)	0.028 (2)	-0.0011 (17)
C3	0.0200 (17)	0.0206 (18)	0.0221 (17)	-0.0009 (13)	0.0110 (15)	0.0007 (14)
C4	0.0249 (18)	0.0256 (19)	0.030 (2)	0.0017 (15)	0.0149 (16)	0.0021 (16)
C5	0.031 (2)	0.023 (2)	0.035 (2)	0.0027 (16)	0.0157 (18)	0.0066 (17)
C6	0.0279 (19)	0.028 (2)	0.0216 (18)	-0.0021 (15)	0.0115 (16)	0.0076 (15)
C7	0.0250 (18)	0.0217 (18)	0.0238 (18)	-0.0033 (14)	0.0149 (16)	-0.0001 (14)
C8	0.0179 (15)	0.0174 (16)	0.0160 (15)	-0.0042 (12)	0.0083 (14)	-0.0005 (12)
C9	0.0217 (16)	0.0181 (17)	0.0194 (16)	-0.0013 (13)	0.0143 (14)	-0.0031 (13)
C10	0.032 (2)	0.0216 (18)	0.030 (2)	-0.0042 (15)	0.0187 (17)	-0.0067 (15)
C11	0.044 (2)	0.031 (2)	0.030 (2)	0.0041 (17)	0.0288 (19)	0.0025 (16)
C12	0.0116 (14)	0.0185 (16)	0.0162 (15)	-0.0025 (12)	0.0085 (13)	0.0007 (12)
C13	0.0257 (17)	0.0174 (17)	0.0241 (17)	0.0042 (14)	0.0161 (15)	0.0014 (13)
C14	0.035 (2)	0.0172 (18)	0.0313 (19)	0.0064 (15)	0.0233 (17)	0.0026 (14)
C15	0.0233 (16)	0.0145 (16)	0.0142 (15)	0.0014 (13)	0.0117 (14)	-0.0017 (12)
C16	0.0268 (18)	0.0194 (17)	0.0214 (17)	0.0012 (14)	0.0149 (15)	-0.0016 (14)
C17	0.033 (2)	0.0285 (19)	0.0187 (17)	0.0068 (16)	0.0134 (16)	0.0001 (15)
C18	0.053 (2)	0.027 (2)	0.034 (2)	0.0070 (18)	0.034 (2)	0.0039 (16)
C19	0.044 (2)	0.0282 (19)	0.035 (2)	-0.0015 (17)	0.0331 (19)	0.0006 (16)
C20	0.0277 (17)	0.0165 (17)	0.0260 (18)	-0.0011 (14)	0.0206 (16)	-0.0031 (14)
C21	0.0197 (17)	0.032 (2)	0.0253 (19)	-0.0008 (15)	0.0076 (15)	0.0024 (16)
C22	0.073 (3)	0.049 (3)	0.044 (3)	0.015 (2)	0.045 (3)	0.018 (2)
C23	0.0277 (19)	0.030 (2)	0.034 (2)	-0.0045 (15)	0.0220 (17)	-0.0061 (16)
C24	0.0284 (18)	0.0182 (17)	0.0186 (16)	0.0048 (14)	0.0153 (15)	0.0042 (13)
C25	0.0275 (19)	0.0203 (18)	0.0241 (18)	0.0041 (14)	0.0133 (16)	0.0047 (14)
C26	0.038 (2)	0.044 (2)	0.0205 (19)	0.0013 (19)	0.0107 (18)	0.0057 (17)
C27	0.064 (3)	0.057 (3)	0.024 (2)	-0.001 (2)	0.027 (2)	0.002 (2)
C28	0.057 (3)	0.053 (3)	0.035 (2)	-0.001 (2)	0.035 (2)	0.008 (2)
C29	0.034 (2)	0.0265 (19)	0.0279 (19)	0.0015 (16)	0.0206 (17)	0.0053 (15)
C30	0.0260 (19)	0.029 (2)	0.038 (2)	0.0041 (16)	0.0172 (18)	0.0030 (17)
C31	0.099 (5)	0.120 (5)	0.037 (3)	-0.024 (4)	0.043 (3)	-0.010 (3)
C32	0.036 (2)	0.029 (2)	0.039 (2)	0.0002 (16)	0.0264 (19)	0.0064 (17)

Geometric parameters (Å, °)

Ru1—C9	1.822 (3)	C14—H14B	0.9700
Ru1—C12	2.036 (3)	C15—C20	1.394 (4)
Ru1—N1	2.265 (3)	C15—C16	1.396 (4)
Ru1—Cl1	2.3397 (8)	C16—C17	1.392 (5)
Ru1—Cl2	2.3476 (8)	C16—C21	1.492 (5)
N1-C11	1.483 (4)	C17—C18	1.386 (5)
N1-C10	1.497 (4)	C17—H17	0.9300
N1-C1	1.503 (4)	C18—C19	1.384 (5)

N2—C12	1.349 (4)	C18—C22	1.519 (5)
N2—C15	1.431 (4)	C19—C20	1.397 (5)
N2—C13	1.480 (4)	C19—H19	0.9300
N3—C12	1.354 (4)	C20—C23	1.494 (5)
N3—C24	1.442 (4)	C21—H21A	0.9600
N3—C14	1.471 (4)	C21—H21B	0.9600
C1—C3	1.524 (4)	C21—H21C	0.9600
C1—C2	1.528 (4)	C22—H22A	0.9600
C1—H1	0.9800	C22—H22B	0.9600
C2—H2A	0.9600	C22—H22C	0.9600
C2—H2B	0.9600	C23—H23A	0.9600
C2—H2C	0.9600	C23—H23B	0.9600
C3—C4	1.394 (5)	C23—H23C	0.9600
C3—C8	1.411 (4)	C24—C25	1.394 (5)
C4—C5	1.385 (5)	C24—C29	1.399 (5)
C4—H4	0.9300	C25—C26	1.383 (5)
C5—C6	1.357 (5)	C25—C30	1.493 (5)
С5—Н5	0.9300	C26—C27	1.383 (6)
С6—С7	1.386 (5)	C26—H26	0.9300
С6—Н6	0.9300	C27—C28	1.387 (6)
С7—С8	1.401 (4)	C27—C31	1.529 (6)
С7—Н7	0.9300	C28—C29	1.393 (5)
С8—С9	1.456 (4)	C28—H28	0.9300
С9—Н9	0.9300	C29—C32	1.514 (5)
C10—H10A	0.9600	C30—H30A	0.9600
C10—H10B	0.9600	C30—H30B	0.9600
C10—H10C	0.9600	C30—H30C	0.9600
C11—H11A	0.9600	C31—H31A	0.9600
C11—H11B	0.9600	C31—H31B	0.9600
C11—H11C	0.9600	C31—H31C	0.9600
C13—C14	1.528 (4)	C32—H32A	0.9600
C13—H13A	0.9700	C32—H32B	0.9600
C13—H13B	0.9700	C32—H32C	0.9600
C14—H14A	0.9700		0.9000
C9—Ru1—C12	99.91 (12)	N3—C14—H14A	111.3
C9—Ru1—N1	87.49 (12)	C13—C14—H14A	111.3
C12— $Ru1$ — $N1$	171.53 (10)	N3—C14—H14B	111.3
C9—Ru1—Cl1	100.30 (10)	C13—C14—H14B	111.3
C12—Ru1—C11	94.51 (8)	H14A—C14—H14B	109.2
N1— $Ru1$ — $C11$	88.15 (7)	C20—C15—C16	122.7 (3)
C9—Ru1—Cl2	101.93 (10)	C20—C15—N2	118.4 (3)
C12— $Ru1$ — $C12$	85.25 (8)	C16-C15-N2	118.9 (3)
N1— $Ru1$ — $Cl2$	89.21 (7)	C17—C16—C15	117.2 (3)
C11— $Ru1$ — $C12$	157.47 (3)	C17-C16-C21	121.3(3)
C11—N1—C10	107.8 (3)	C15-C16-C21	121.5(3) 121.5(3)
C11-N1-C1	111.7 (3)	C18-C17-C16	122.3(3)
C10—N1—C1	110.4 (3)	C18—C17—H17	118.9

C11—N1—Ru1	101.59 (19)	C16—C17—H17	118.9
C10—N1—Ru1	116.52 (19)	C19—C18—C17	118.4 (3)
C1—N1—Ru1	108.62 (19)	C19—C18—C22	121.0 (4)
C12—N2—C15	127.8 (3)	C17—C18—C22	120.7 (4)
C12—N2—C13	114.2 (2)	C18—C19—C20	122.2 (3)
C15—N2—C13	117.7 (2)	C18—C19—H19	118.9
C12—N3—C24	125.5 (3)	C20—C19—H19	118.9
C12 - N3 - C14	1148(2)	$C_{15} - C_{20} - C_{19}$	117.2(3)
C_{24} N3-C14	1191(2)	$C_{15} - C_{20} - C_{23}$	121.7(3)
N1-C1-C3	108.6(3)	C19 - C20 - C23	121.7(3) 121.1(3)
N1 - C1 - C2	114.8(3)	$C_{16} - C_{21} - H_{21A}$	109.5
$C_{3}-C_{1}-C_{2}$	114.0(3)	C16-C21-H21B	109.5
N1_C1_H1	106.2	H21A_C21_H21B	109.5
$C_3 - C_1 - H_1$	106.2	C16-C21-H21C	109.5
$C_2 C_1 H_1$	106.2	$\frac{10}{1210} = \frac{1210}{1210}$	109.5
$C_2 = C_1 = \Pi_1$	100.2	$\begin{array}{c} H21R \\ H21R \\ C21 \\ H21C \\ H21C \\ \end{array}$	109.5
C1 - C2 - H2P	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_1 - C_2 - H_2 B$	109.5	C10 - C22 - H22A	109.5
$H_2A = C_2 = H_2B$	109.5	C18 - C22 - H22B	109.5
CI = C2 = H2C	109.5	H22A—C22—H22B	109.5
$H_2A = C_2 = H_2C$	109.5	C18 - C22 - H22C	109.5
$H_2B - C_2 - H_2C$	109.5	H22A—C22—H22C	109.5
C4 - C3 - C8	118.0 (3)	H22B—C22—H22C	109.5
C4—C3—C1	121.0 (3)	C20—C23—H23A	109.5
C8—C3—C1	120.9 (3)	C20—C23—H23B	109.5
C5—C4—C3	121.9 (3)	H23A—C23—H23B	109.5
C5—C4—H4	119.0	C20—C23—H23C	109.5
C3—C4—H4	119.0	H23A—C23—H23C	109.5
C6—C5—C4	120.3 (3)	H23B—C23—H23C	109.5
C6—C5—H5	119.9	C25—C24—C29	121.3 (3)
C4—C5—H5	119.9	C25—C24—N3	118.7 (3)
C5—C6—C7	119.4 (3)	C29—C24—N3	119.8 (3)
С5—С6—Н6	120.3	C26—C25—C24	118.2 (3)
С7—С6—Н6	120.3	C26—C25—C30	119.6 (3)
C6—C7—C8	121.7 (3)	C24—C25—C30	122.0 (3)
С6—С7—Н7	119.1	C27—C26—C25	121.3 (4)
С8—С7—Н7	119.1	C27—C26—H26	119.3
C7—C8—C3	118.7 (3)	C25—C26—H26	119.3
C7—C8—C9	116.0 (3)	C26—C27—C28	119.7 (4)
C3—C8—C9	125.3 (3)	C26—C27—C31	120.3 (4)
C8—C9—Ru1	130.6 (2)	C28—C27—C31	120.0 (4)
С8—С9—Н9	114.7	C27—C28—C29	120.6 (4)
Ru1—C9—H9	114.7	C27—C28—H28	119.7
N1-C10-H10A	109.5	C29—C28—H28	119.7
N1-C10-H10B	109.5	C28—C29—C24	118.3 (3)
H10A—C10—H10B	109.5	C28—C29—C32	119.2 (3)
N1—C10—H10C	109.5	C24—C29—C32	122.4 (3)
H10A—C10—H10C	109.5	C25—C30—H30A	109.5
H10B—C10—H10C	109.5	C25—C30—H30B	109.5

N1—C11—H11A	109.5	H30A-C30-H30B	109.5
N1—C11—H11B	109.5	С25—С30—Н30С	109.5
H11A—C11—H11B	109.5	H30A-C30-H30C	109.5
N1—C11—H11C	109.5	H30B-C30-H30C	109.5
H11A—C11—H11C	109.5	С27—С31—Н31А	109.5
H11B-C11-H11C	109.5	C27—C31—H31B	109.5
N2-C12-N3	106.2 (3)	$H_{31}A - C_{31} - H_{31}B$	109.5
N_2 —C12—Ru1	132.6 (2)	C_{27} C_{31} H_{31C}	109.5
N_3 — C_{12} — R_{u1}	1205(2)	$H_{31}A - C_{31} - H_{31}C$	109.5
N_{2} C13 C14	102.6(2)	H_{31B} C_{31} H_{31C}	109.5
N2 $C13$ $H13A$	111.2	C29_C32_H32A	109.5
C14— $C13$ — $H13A$	111.2	$C_{29} = C_{32} = H_{32R}$	109.5
N2 - C13 - H13B	111.2	$H_{32} = C_{32} = H_{32} = H_{32}$	109.5
C14 $C13$ $H13B$	111.2	C_{29} C_{32} H_{32C}	109.5
$H_{12A} = C_{12} = H_{12B}$	100.2	H_{22}^{22} H_{22}^{22} H_{22}^{22}	109.5
$\frac{1113}{113} = \frac{113}{113} =$	109.2 102.2(2)	$H_{22}^{$	109.5
N3-C14-C13	102.2 (2)	H32B-C32-H32C	109.5
C11 N1 C1 C3	-1776(3)	C_{12} N2 C_{15} C_{20}	-826(4)
C10 N1 C1 C3	-577(3)	C12 - N2 - C15 - C20	02.0(4)
C_{10} N_1 C_1 C_2	71.2(3)	C12 N2 C15 C16	90.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-12(3)	$C_{12} = N_2 = C_{15} = C_{16}$	-97.2(4)
CII - NI - CI - C2	-46.4(4)	C13 - N2 - C13 - C10	-8/.0(3)
C10 $N1$ $C1$ $C2$	/1.4 (3)	$C_{20} = C_{15} = C_{16} = C_{17}$	1.5(5)
RuI = NI = CI = C2	-159.7(2)	$N_2 - C_{15} - C_{16} - C_{17}$	1/9.6 (3)
NI = CI = C3 = C4	135.9 (3)	$C_{20} = C_{15} = C_{16} = C_{21}$	-1//./(3)
$C_2 - C_1 - C_3 - C_4$	6.3 (5)	N2—C15—C16—C21	0.4 (5)
NI-CI-C3-C8	-47.5 (4)	C15—C16—C17—C18	0.1 (5)
C2—C1—C3—C8	-177.0 (3)	C21—C16—C17—C18	179.4 (3)
C8—C3—C4—C5	-1.4 (5)	C16—C17—C18—C19	-1.4 (5)
C1—C3—C4—C5	175.4 (3)	C16—C17—C18—C22	178.6 (3)
C3—C4—C5—C6	0.0 (6)	C17—C18—C19—C20	1.2 (5)
C4—C5—C6—C7	0.7 (5)	C22—C18—C19—C20	-178.9 (3)
C5—C6—C7—C8	-0.1 (5)	C16—C15—C20—C19	-1.7 (5)
C6—C7—C8—C3	-1.3 (5)	N2—C15—C20—C19	-179.8 (3)
C6—C7—C8—C9	-178.9 (3)	C16—C15—C20—C23	-178.7 (3)
C4—C3—C8—C7	2.0 (5)	N2—C15—C20—C23	3.2 (4)
C1—C3—C8—C7	-174.8 (3)	C18—C19—C20—C15	0.3 (5)
C4—C3—C8—C9	179.3 (3)	C18—C19—C20—C23	177.3 (3)
C1—C3—C8—C9	2.5 (5)	C12—N3—C24—C25	80.9 (4)
C7—C8—C9—Ru1	-173.7 (2)	C14—N3—C24—C25	-89.7 (4)
C3—C8—C9—Ru1	8.9 (5)	C12—N3—C24—C29	-104.1 (4)
C12—Ru1—C9—C8	-162.3 (3)	C14—N3—C24—C29	85.4 (4)
N1—Ru1—C9—C8	13.6 (3)	C29—C24—C25—C26	7.8 (5)
Cl1—Ru1—C9—C8	101.3 (3)	N3—C24—C25—C26	-177.2 (3)
Cl2—Ru1—C9—C8	-75.1 (3)	C29—C24—C25—C30	-168.6 (3)
C15—N2—C12—N3	173.5 (3)	N3-C24-C25-C30	6.3 (5)
C13—N2—C12—N3	0.0 (3)	C24—C25—C26—C27	-3.6 (6)
C15—N2—C12—Ru1	-16.5 (5)	C30—C25—C26—C27	173.0 (4)
C13—N2—C12—Ru1	170.1 (2)	C25—C26—C27—C28	-1.7 (7)

C24—N3—C12—N2	-170.4 (3)	C25—C26—C27—C31	179.4 (4)
C14—N3—C12—N2	0.5 (4)	C26—C27—C28—C29	3.0 (7)
C24—N3—C12—Ru1	18.1 (4)	C31—C27—C28—C29	-178.2 (4)
C14—N3—C12—Ru1	-171.0 (2)	C27—C28—C29—C24	1.1 (6)
C12—N2—C13—C14	-0.4 (3)	C27—C28—C29—C32	-175.5 (4)
C15—N2—C13—C14	-174.6 (3)	C25—C24—C29—C28	-6.6 (5)
C12—N3—C14—C13	-0.8 (4)	N3—C24—C29—C28	178.5 (3)
C24—N3—C14—C13	170.8 (3)	C25—C24—C29—C32	169.9 (3)
N2-C13-C14-N3	0.7 (3)	N3—C24—C29—C32	-5.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
C1—H1…Cl2	0.98	2.47	3.258 (3)	137
C10—H10C···Cl1	0.96	2.65	3.136 (4)	112
C11—H11A···Cl2	0.96	2.78	3.381 (4)	121
C13—H13B…Cl1 ⁱ	0.97	2.82	3.578 (3)	135
$C14$ — $H14A$ ··· $Cl1^{i}$	0.97	2.82	3.576 (4)	135
С9—Н9…Сg4	0.93	2.61	3.481 (4)	157

Symmetry code: (i) -x+1/2, y+1/2, -z+1/2.