

OPEN ACCESS

An unsymmetrical dinuclear scandium complex comprising salophen ligands [H₂salophen = N,N'-bis(salicylidene)-1,2-phenylenediamine]

Volker Lorenz, Phil Liebing, Liane Hilfert, Sabine Busse and Frank T. Edelmann*

Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany. *Correspondence e-mail: frank.edelmann@ovgu.de

Treatment of scandium nitrate tetrahydrate with the tetradentate ligand H₂salophen [N,N'-bis(salicylidene)-1,2-phenylenediamine] afforded the yellow dinuclear complex Sc(NO₃)₂(μ -salophen)Sc(salophen)(EtOH) or [Sc₂(C₂₀H₁₄N₂O₂)₂- $(NO_3)_2(C_2H_6O)$] (systematic name: (ethanol- κO)bis(nitrato- $\kappa^2 O, O'$){ μ -2,2'-[1,2phenylenebis(nitrilomethanylylidene)]diphenolato- $\kappa^4 N, N', O, O': \kappa^2 O, O' \} \{2, 2'-[1, 2$ phenylenebis(nitrilomethanylylidene)]diphenolato- $\kappa^4 O, N, N', O'$ }discandium). In this compound, one salophen ligand displays a bridging coordination via the two oxygen atoms, while the other salophen ligand is attached to only one Sc center. This arrangement is stabilized by a hydrogen-bonded EtOH co-ligand, and by π - π stacking interactions between the two salophen ligands.

1. Chemical context

In the coordination chemistry of lanthanides, salen-type Schiff-base ligands such as H_2 salen [N,N'-bis(salicylidene)ethylenediamine] and H₂salophen [N,N'-bis(salicylidene)-1,2phenylenediamine] are among the best known multidentate ligands. Lanthanide complexes comprising salen-type ligands are of significant interest due to their variety of molecular structures (Akine & Nabeshima, 2009) and their promising magnetic properties (Costes et al., 1998; Yao et al., 2012; Pajerowski et al., 2014) and luminescence properties (Bi et al., 2009; Li et al., 2013; Mikhalyova et al., 2014; Yang et al., 2014). They also have potential applications in electronic devices (Magadur et al., 2012) and homogeneous catalysis (Wu et al., 2017). The first lanthanide-salen and salophen complexes were reported fifty years ago (Dutt & Nag, 1968). Since then, a variety of interesting structures have been reported for such complexes, including mononuclear complexes (Evans et al., 1999; Yao et al., 2012), sandwich-like di- and trinuclear species (Chen & Archer, 1994; Costes et al., 1998; Camp et al., 2012; Li et al., 2012, 2013; Mikhalyova et al., 2014), clusters (Zhao et al., 2012; Pajerowski et al., 2014) and 3d-4f heterobimetallic complexes (Condorelli et al., 1975; Winpenny, 1998; Sakamoto et al., 2001; Camp et al., 2017).

Scandium complexes comprising salen-type Schiff-base ligands are fairly rare, with the majority of such compounds having been reported by Anwander and co-workers (Meermann et al., 2006, 2009). Access to these complexes was achieved via treatment of the scandium silvlamide precursor Sc[N(SiHMe₂)₃]₃(THF) with substituted H₂salen precursors under anaerobic conditions. We report here the straightforward formation and structural characterization of a dinuclear scandium complex comprising salophen ligands using scan-

> 175 https://doi.org/10.1107/S2056989019000094

CRYSTALLOGRAPHIC COMMUNICATIONS ISSN 2056-9890

Received 2 January 2019 Accepted 3 January 2019

Edited by M. Zeller, Purdue University, USA

Keywords: scandium: salophen ligand: Schiff base; dinuclear scandium complex; crystal structure: $\pi - \pi$ stacking.

CCDC reference: 1880860

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Figure 2

Illustration of intra- and intermolecular π - π stacking interactions. The association of the complex molecules results in a supramolecular chain structure, which extends along the *a*-axis direction.

dium nitrate tetrahydrate as the starting material. Treatment of a diluted solution of Sc(NO₃)₃·4H₂O in ethanol with an ethanolic solution of the protonated ligand H₂salophen (Bonnaire et al., 1981) resulted in the rapid formation of a yellow precipitate which was identified as the title complex $Sc(NO_3)_2(\mu$ -salophen)Sc(salophen)(EtOH). The analytically pure material could be isolated in 70% yield. The title compound was fully characterized through the usual set of elemental analysis and spectroscopic methods (IR, NMR, MS). The NMR spectra in DMSO- d_6 solution showed only one set of salophen ¹H and ¹³C signals, and only one ⁴⁵Sc signal, and consequently the dimeric structure seems to be split into a monomeric species in DMSO. The mass spectrum did not display the molecular ion, but other high-molecular-mass peaks attributable to dimeric species, e.g. $[M - CH_3]^+$ at m/z863, $[M - \text{EtOH}]^+$ at m/z 843, and $[M - \text{EtOH} - \text{NO}_3]^+$ at m/z780.

2. Structural commentary

The asymmetric unit of the title compound recrystallized from ethanol contains two scandium atoms, two nitrate moieties, two salophen ligands, and one EtOH molecule (Fig. 1). Both Sc atoms are situated in the tetradentate coordination pocket

Table 1 Hydrogen-bond	l geometry (Å,	°).		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H

2.01 (2)

2.787 (3)

156 (3)

0.83(2)

O11−H29···O6

of a salophen ligand. Sc1 is coordinatively saturated by two chelating nitrate anions, resulting in a somewhat square-antiprismatic coordination. Sc2 is connected to the two oxygen atoms of the other Sc(salophen) unit, thus connecting the two parts of the molecule. An irregular seven-coordination of Sc2 is completed by an EtOH ligand. This asymmetrical structure is stabilized by an intramolecular $O-H\cdots O$ hydrogen bond between EtOH and a nitrate ligand $[O6\cdots O11\ 2.787\ (3)\ \text{Å}, O6\cdots H$ approx. 2.01 Å; Table 1].

The Sc-O bond lengths within the central Sc_2O_2 ring (including O1, O2) are significantly different, and surprisingly the bonds at the seven-coordinated Sc2 [2.214 (2) and 2.342(2) Å] are longer than those at the octa-coordinated Sc1 [2.062 (2) and 2.110 (2) Å]. The bonds of Sc2 to the terminally coordinated salophene oxygen atoms (O3, O4) are 2.006 (2) and 1.995 (2) Å, respectively. The Sc-N bonds are also slightly longer for Sc2 [2.286 (2) and 2.341 (2) Å] than for Sc1 [2.270 (2) and 2.278 (2) Å]. These values of Sc-N distances are larger than in related scandium-salen complexes (Meermann et al., 2006, 2009), reflecting the higher coordination numbers of scandium in the title compound. However, the terminal Sc-O(salicylidene) bonds are similar or only marginally elongated as compared to the reference compounds. The Sc-O(nitrate) separations are in the range 2.263 (2)–2.323 (2) Å, resembling the values observed for other scandium-nitrate complexes (e.g. Arif et al., 1984, Cotton et al., 2008).

The octa-coordinated Sc1 is displaced from the salophene's N_2O_2 coordination plane by 1.091 (1) Å, while the corresponding value for the seven-coordinated Sc2 is only

Figure 1

Molecular structure of the title compound in the crystalline state, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms attached to C atoms are omitted for clarity.

1.014 (1) Å. Both values are considerably larger than those observed in related complexes (Meermann et al., 2006, 2009). which can again be traced back to the higher coordination numbers of scandium. Both salophen ligands deviate markedly from planarity, as the two salicylidene arms are twisted out of the particular phenylene-diamine plane around the C-N single-bonds. The (phenylene)C = C - N = C(imide) torsion angles (which would be 0° in the case of perfect planarity) are 15.7 (4) and 24.6 (4) $^{\circ}$ for the salophen ligand at Sc1, and 30.0 (4) and 34.7 (4) $^{\circ}$ for the salophen ligand at Sc2. The corresponding angles between the salicylidene C₆ rings are 12.9 (2)° for Sc1 and 53.5 (1)° for Sc2, being in the same range as in the reference compounds (Meermann et al., 2006, 2009). Intramolecular π - π stacking interactions between the two salophen ligands may contribute to the stabilization of the dimeric structure. The two phenylene-diamine moieties are oriented almost parallel to each other with an angle of 11.8 (1)° between the C₆ rings, and the closest interatomic contact between the rings is 3.401 (4) Å ($C2 \cdot \cdot \cdot C23$). The same is true for the two salicylidene moieties, with an angle of 14.4 (1)° and the closest contact being 3.247 (4) Å (C17···C35). The remaining two salicylidene moieties are not in a proper orientation for efficient $\pi - \pi$ stacking [angle between C₆ rings = $37.1 (2)^{\circ}$].

3. Supramolecular features

The molecules seem to be primarily associated by $\pi - \pi$ stacking interactions (Fig. 2). The closest intermolecular contact is 3.369 (4) Å [C17···C34($\frac{1}{2} + x, y, \frac{1}{2} - z$)] between two salicylidene moieties [angle between C₆ rings of 13.0 (1)°].

4. Database survey

For review articles on rare-earth complexes with salen-type Schiff-base ligands, see: Akine & Nabeshima (2009); Yang *et al.* (2014). For review articles on 3d-4f heteronuclear complexes with polydentate Schiff-base ligands, see: Winpenny (1998); Sakamoto *et al.* (2001). For related Sc complexes comprising salen-type Schiff-base ligands, see: Meermann *et al.* (2006, 2009).

5. Synthesis and crystallization

0.50 g (1.58 mmol) of H₂salophen dissolved in *ca* 150 ml of ethanol were added to a solution of 0.63 g (2.08 mmol) $Sc(NO_3)_3$ ·4H₂O in 100 ml ethanol at 323 K. After a few minutes the solution became turbid and $Sc(NO_3)_2(\mu$ -salophen)Sc(salophen)(EtOH) precipitated as a microcrystalline yellow solid. Yield: 0.5 g (70%). Recrystallization from hot ethanol afforded yellow, plate-like single crystals. Decomp. 443 K. Analysis calculated for $C_{42}H_{34}N_6O_{11}Sc_2$ ($M = 888.68 \text{ g mol}^{-1}$): C 56.77, H 3.86, N 9.46; found: C 56.36, H 3.95, N 9.81%.

¹**H** NMR (400.1 MHz, DMSO-*d*₆, 294 K): $\delta = 8.74$ (*s*, 4H, *HC*==N), 7.71–7.68 (*m*, 4H, *m*-C₆*H*₄N), 7.57 (*d*, 4H, *o*-C₆*H*₄C), 7.46–7.43 (*m*, 4H, *o*-C₆*H*₄N), 7.38 (*t*, 4H, *m*-C₆*H*₄C), 6.73 (*d*, 4H, *o*-C₆*H*₄C), 6.73 (*d*, 4H, *m*-C₆*H*₄C), 6.73 (*d*, *m*-C₆*H*₄C), 6.73 (*m*, 4H, *m*-C₆*H*₄C), 6.73 (*d*, *m*-C₆*H*₄C), 6.73 (*d*, *m*-C₆*H*₄C), 6.73 (*m*-C₆*H*₄C), 6.73 (*m*

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$[Sc_2(C_{42}H_{34}N_6O_{11})]$
M _r	888.67
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	153
a, b, c (Å)	13.6092 (3), 21.5880 (7), 26 5297 (7)
$V(Å^3)$	7794 3 (4)
7	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.42
Crystal size (mm)	$0.32 \times 0.13 \times 0.09$
Data collection	
Diffractometer	STOE IPDS 2T
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25118, 6849, 5105
R _{int}	0.064
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.098, 1.04
No. of reflections	6849
No. of parameters	555
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.25, -0.34

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL2018/3 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

4H, o-C₆ H_4 O), 6.71 (t, 4H, m-C₆ H_4 O) ppm; C H_3 C H_2 OH not observed. ¹³C NMR (100.6 MHz, DMSO- d_6 , 294 K): δ = 166.1 (O- C_6 H₄), 161.9 (HC=N), 144.2 (N- C_6 H₄), 135.1 (o- C_6 H₄C, m- C_6 H₄C), 128.0 (o- C_6 H₄N), 122.5 (C- C_6 H₄), 120.3 (o- C_6 H₄O), 118.3 (m- C_6 H₄N), 115.5 (m- C_6 H₄O) ppm; CH₃CH₂OH not observed. ⁴⁵Sc NMR (97.2 MHz, DMSO- d_6 , 294 KC): δ = 49.8 ppm.

IR (ATR): v = 3426w, 3058w, 3026w, 2973w, 1609vs, 1580m, 1540m, 1526s, 1472s, 1443m, 1380m, 1348w, 1300s, 1276s, 1236m, 1193m, 1150m, 1123m, 1032w, 1021w, 984w, 946w, 920m, 864w, 851w, 802m, 747vs, 729s, 699w, 667w, 641w, 606m, 583w, 564m, 531s, 513w, 486m, 470w, 450m, 400m, 378vs, 353m, 306vs, 281vs, 231m, 169w, 157w, 137w, 118w, 107w, 91w, 77w, 68w, 61w, 54w cm⁻¹.

MS (70 eV): m/z = 863 (1%) $[M - CH_3]^+$, 843 (<1%) $[M - EtOH]^+$, 780 (2%) $[M - EtOH - NO_3]^+$, 733 (4%), 705 (1%), 662 (65%) $[M - EtOH - NO_3 - NC_6H_4O]^+$, 647 (70%), 580 (5%), 568 (27%), 555 (8%), 506 (100%), 480 (42%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to C atoms were fixed geometrically and refined using a riding model. All C–H distances within the salophen ligands were constrained to 0.95 Å. For the EtOH ligand, the C–H distances within the CH₂ group were constrained to 0.99 Å, the C–H distances within the CH₃ group were constrained to 0.98 Å, and the CH₃

research communications

group was allowed to rotate freely around the C–C vector. The oxygen-bound EtOH hydrogen atom was located in the difference-Fourier map and refined freely, the corresponding O–H distance was restrained to 0.84 (2) Å. The $U_{iso}(H)$ values were set at $1.2U_{eq}(X)$ (X = C, O). The reflections 020 and 021 disagreed strongly with the structural model and were therefore omitted from the refinement.

Acknowledgements

General financial support by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

References

- Akine, S. & Nabeshima, T. (2009). Dalton Trans. pp. 10395-10408.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Arif, A. M., Hart, F. A., Hursthouse, M. B., Thornton-Pett, M. & Zhu, W. (1984). J. Chem. Soc. Dalton Trans. pp. 2449–2454.
- Bi, W., Wei, T., Lü, X., Hui, Y., Song, J., Zhao, S., Wong, W.-K. & Jones, R. A. (2009). New J. Chem. 33, 2326–2334.
- Bonnaire, R., Manoli, J. M., Potvin, C., Platzer, N. & Goasdoue, N. (1981). *Inorg. Chem.* **20**, 2691–2696.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Camp, C., Guidal, V., Biswas, B., Pécaut, J., Dubois, L. & Mazzanti, M. (2012). *Chem. Sci.* **3**, 2433–2448.
- Camp, C., Toniolo, D., Andrez, J., Pécaut, J. & Mazzanti, M. (2017). Dalton Trans. 46, 11145–11148.
- Chen, H. & Archer, R. D. (1994). Inorg. Chem. 33, 5195-5202.
- Condorelli, G., Fragalà, I., Giuffrida, S. & Cassol, A. (1975). Z. Anorg. *Allg. Chem.* **412**, 251–257.

- Costes, J.-P., Dupuis, A. & Laurent, J.-P. (1998). *Inorg. Chim. Acta*, **268**, 125–130.
- Cotton, S. A., Fisher, V. M. A., Raithby, P. R., Schiffers, S. & Teat, S. J. (2008). *Inorg. Chem. Commun.* **11**, 822–824.
- Dutt, N. K. & Nag, K. (1968). J. Inorg. Nucl. Chem. 30, 2493-2499.
- Evans, W. J., Fujimoto, C. H. & Ziller, J. W. (1999). Chem. Commun. pp. 311–312.
- Li, Q., Chen, S., Yan, P., Chen, P., Hou, G. & Li, G. (2013). J. Coord. Chem. 66, 1084–1093.
- Li, Q., Yan, P., Chen, P., Hou, G. & Li, G. (2012). J. Inorg. Organomet. Polym. Mater. 22, 1174–1181.
- Magadur, G., Bouanis, F., Norman, E., Guillot, R., Lauret, J.-S., Huc, V., Cojocaru, C.-S. & Mallah, T. (2012). *Chem. Commun.* 48, 9071– 9073.
- Meermann, C., Sirsch, P., Törnroos, K. W. & Anwander, R. (2006). Dalton Trans. pp. 1041–1050.
- Meermann, C., Tornroos, K. W. & Anwander, R. (2009). *Inorg. Chem.* **48**, 2561–2570.
- Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Gavrilenko, K. S., Lofland, S. E., Addison, A. W. & Pavlishchuk, V. V. (2014). *Inorg. Chim. Acta*, 414, 97–104.
- Pajerowski, D. M., Li, Q., Hyun, J., Dennis, C. L., Phelan, D., Yan, P., Chen, P. & Li, G. (2014). *Dalton Trans.* 43, 11973–11980.
- Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219-221, 379-414.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Winpenny, R. E. P. (1998). Chem. Soc. Rev. 27, 447-452.
- Wu, T., Wang, T., Sun, L., Deng, K., Deng, W. & Lu, R. (2017). ChemistrySelect 2, 4533–4537.
- Yang, X., Jones, R. A. & Huang, S. (2014). Coord. Chem. Rev. 273– 274, 63–75.
- Yao, M.-X., Zheng, Q., Gao, F., Li, Y.-Z., Song, Y. & Zuo, J.-L. (2012). Dalton Trans. 41, 13682–13690.
- Zhao, L., Xue, S. & Tang, J. (2012). Inorg. Chem. 51, 5994-5996.

Acta Cryst. (2019). E75, 175-178 [https://doi.org/10.1107/S2056989019000094]

An unsymmetrical dinuclear scandium complex comprising salophen ligands $[H_2 \text{salophen} = N, N' \text{-bis}(\text{salicylidene}) - 1, 2 \text{-phenylenediamine}]$

Volker Lorenz, Phil Liebing, Liane Hilfert, Sabine Busse and Frank T. Edelmann

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-AREA* and *X-RED* (Stoe & Cie, 2002); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $(Ethanol-\kappa O)bis(nitrato-\kappa^2 O, O') \{\mu-2, 2'-[1, 2-phenylenebis(nitrilomethanylylidene)] diphenolato-\kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O, O': \kappa^2 O, O'\} \{2, 2'-[1, 2-phenylenebis(nitrilomethanylylidene)] diphenolato-\kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O, O': \kappa^2 O, O'\} \{2, 2'-[1, 2-phenylenebis(nitrilomethanylylidene)] diphenolato-\kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O, O': \kappa^2 O, O'\} \{2, 2'-[1, 2-phenylenebis(nitrilomethanylylidene)] diphenolato-\kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O, O': \kappa^2 O, O'\} \{2, 2'-[1, 2-phenylenebis(nitrilomethanylylidene)] diphenolato-\kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O, O': \kappa^2 O, O'\} \{2, 2'-[1, 2-phenylenebis(nitrilomethanylylidene)] diphenolato-\kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O, O': \kappa^2 O, O'\} \{2, 2'-[1, 2-phenylenebis(nitrilomethanylylidene)] diphenolato-\kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O': \kappa^4 O, N, N', O'\} discandium \\ \kappa^4 N, N', O': \kappa^4 O, N, N', O':$

Crystal data	
$[Sc_{2}(C_{20}H_{14}N_{2}O_{2})_{2}(NO_{3})_{2}(C_{2}H_{6}O)]$ $M_{r} = 888.67$ Orthorhombic, <i>Pbca</i> a = 13.6092 (3) Å b = 21.5880 (7) Å c = 26.5297 (7) Å V = 7794.3 (4) Å ³ Z = 8 F(000) = 3664	$D_{\rm x} = 1.515 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25274 reflections $\theta = 1.9-25.1^{\circ}$ $\mu = 0.42 \text{ mm}^{-1}$ T = 153 K Plate, yellow $0.32 \times 0.13 \times 0.09 \text{ mm}$
Data collection	
STOE IPDS 2T diffractometer Radiation source: fine-focus sealed tube Detector resolution: 6.67 pixels mm ⁻¹ area detector scans 25118 measured reflections 6849 independent reflections	5105 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -16 \rightarrow 13$ $k = -25 \rightarrow 25$ $l = -27 \rightarrow 31$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.098$ S = 1.04 6849 reflections 555 parameters 1 restraint Primary atom site location: heavy-atom method	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 1.8222P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.25$ e Å ⁻³ $\Delta\rho_{min} = -0.34$ e Å ⁻³

Extinction correction: *SHELXL2018/3* (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00110 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.4169 (2)	0.37468 (12)	0.37720 (10)	0.0288 (6)
C2	0.4285 (2)	0.36467 (12)	0.32549 (10)	0.0286 (6)
C3	0.4074 (2)	0.41236 (13)	0.29195 (11)	0.0374 (7)
H1	0.415046	0.405955	0.256739	0.045*
C4	0.3755 (2)	0.46863 (14)	0.30958 (12)	0.0417 (7)
H2	0.359832	0.500726	0.286441	0.050*
C5	0.3661 (3)	0.47893 (13)	0.36070 (12)	0.0440 (8)
H3	0.343986	0.518025	0.372627	0.053*
C6	0.3887 (2)	0.43240 (13)	0.39456 (12)	0.0395 (7)
H4	0.384852	0.440072	0.429763	0.047*
C7	0.3910 (2)	0.31818 (13)	0.45144 (10)	0.0311 (6)
Н5	0.354354	0.353106	0.462447	0.037*
C8	0.3950 (2)	0.26510 (13)	0.48419 (10)	0.0305 (6)
C9	0.4137 (2)	0.20494 (13)	0.46694 (10)	0.0293 (6)
C10	0.4117 (2)	0.15587 (14)	0.50090 (10)	0.0362 (7)
H6	0.426733	0.115071	0.489928	0.043*
C11	0.3876 (3)	0.16692 (16)	0.55097 (11)	0.0462 (8)
H7	0.384366	0.133093	0.573820	0.055*
C12	0.3682 (3)	0.22552 (17)	0.56815 (10)	0.0454 (8)
H8	0.352461	0.232186	0.602605	0.054*
C13	0.3718 (2)	0.27431 (15)	0.53541 (10)	0.0384 (7)
Н9	0.358442	0.314954	0.547320	0.046*
C14	0.4470 (2)	0.28648 (13)	0.26559 (10)	0.0310 (6)
H10	0.418676	0.315312	0.242784	0.037*
C15	0.4732 (2)	0.22675 (12)	0.24603 (10)	0.0291 (6)
C16	0.4917 (2)	0.17455 (12)	0.27593 (9)	0.0254 (6)
C17	0.5164 (2)	0.11931 (13)	0.25251 (10)	0.0305 (6)
H11	0.531690	0.083924	0.272314	0.037*
C18	0.5190 (2)	0.11538 (13)	0.20037 (11)	0.0351 (7)
H12	0.535121	0.077002	0.184917	0.042*
C19	0.4988 (2)	0.16611 (14)	0.17044 (10)	0.0369 (7)
H13	0.500778	0.162894	0.134746	0.044*
C20	0.4758 (2)	0.22097 (13)	0.19312 (10)	0.0348 (7)
H14	0.461175	0.256021	0.172809	0.042*
C21	0.2072 (2)	0.22444 (12)	0.38836 (10)	0.0292 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C22	0.2308 (2)	0.22964 (12)	0.33720 (10)	0.0278 (6)
C23	0.2145 (2)	0.28503 (13)	0.31215 (11)	0.0347 (6)
H15	0.229900	0.288685	0.277355	0.042*
C24	0.1756 (2)	0.33495 (14)	0.33805 (12)	0.0414 (7)
H16	0.165563	0.373207	0.321119	0.050*
C25	0.1513 (2)	0.32942 (15)	0.38855 (12)	0.0439 (8)
H17	0.123577	0.363688	0.405934	0.053*
C26	0.1671 (2)	0.27442 (13)	0.41373 (11)	0.0368 (7)
H18	0.150594	0.270862	0.448400	0.044*
C27	0.1757 (2)	0.14652 (14)	0.44698 (10)	0.0347 (7)
H19	0.123756	0.172725	0.457844	0.042*
C28	0.1883(2)	0.08875 (14)	0.47336 (10)	0.0358(7)
C29	0.2627(2)	0.04610(13)	0 45997 (10)	0.0318 (6)
C30	0.2627(2) 0.2688(2)	-0.00922(13)	0.48758(10)	0.0371(7)
H20	0.318190	-0.038658	0.479358	0.044*
C31	0.2046(3)	-0.02153(15)	0.479350 0.52636 (11)	0.0448 (8)
H21	0.2040 (3)	-0.059403	0.544379	0.054*
C32	0.210072 0.1325(3)	0.039+03	0.544377 0.53044 (12)	0.054
U22	0.1323 (3)	0.02028 (18)	0.55944 (12)	0.0558 (9)
C22	0.000400	0.011333 0.07402(17)	0.500272 0.51221 (12)	0.007°
C33	0.1240(3)	0.07493 (17)	0.51551(12)	0.0303 (9)
H23	0.073432	0.103930	0.322319	0.000^{-1}
C34	0.2507 (2)	0.10197 (15)	0.26938 (10)	0.0302 (6)
H24	0.213/1/	0.1915//	0.250913	0.036*
C35	0.2793 (2)	0.10654 (12)	0.24355 (10)	0.0299 (6)
C36	0.3223 (2)	0.05556 (12)	0.26821 (10)	0.0300 (6)
C37	0.3414 (2)	0.00209 (13)	0.24052 (11)	0.0375 (7)
H25	0.368266	-0.033093	0.257046	0.045*
C38	0.3221 (3)	-0.00068 (15)	0.18940 (11)	0.0453 (8)
H26	0.337343	-0.037128	0.170926	0.054*
C39	0.2804 (3)	0.04985 (16)	0.16510 (11)	0.0466 (8)
H27	0.266941	0.047973	0.129993	0.056*
C40	0.2586 (2)	0.10217 (15)	0.19168 (10)	0.0400 (7)
H28	0.229035	0.136271	0.174894	0.048*
C41	0.5291 (3)	0.00620 (14)	0.39612 (13)	0.0490 (8)
H31	0.474832	-0.011480	0.416354	0.059*
H30	0.590119	0.003390	0.416346	0.059*
C42	0.5411 (3)	-0.03072 (16)	0.34884 (16)	0.0658 (12)
H32	0.552749	-0.074255	0.357452	0.079*
H34	0.597145	-0.014731	0.329630	0.079*
H33	0.481301	-0.027384	0.328455	0.079*
N1	0.43390 (17)	0.32154 (10)	0.40802 (8)	0.0285 (5)
N2	0.45891 (17)	0.30419 (9)	0.31149 (8)	0.0267 (5)
N3	0.22859 (17)	0.16566 (10)	0.41003 (8)	0.0291 (5)
N4	0.27121 (16)	0.17499 (10)	0.31579 (8)	0.0266 (5)
N5	0.64150 (17)	0.19007 (10)	0.44454 (8)	0.0306(5)
N6	0.68564 (18)	0.30939 (11)	0.33592 (8)	0.0318 (5)
01	0 43324 (14)	0 19366 (8)	0 41759 (6)	0.0270(4)
02	0.48202(14)	0 17742 (8)	0 32666 (6)	0.0258(4)
02	0.10202 (17)	0.1772 (0)	0.52000 (0)	U.U250 (T)

0.32397 (15)	0.05685 (8)	0.42285 (7)	0.0329 (4)	
0.34377 (15)	0.05783 (8)	0.31673 (7)	0.0311 (4)	
0.61104 (15)	0.24485 (8)	0.45084 (7)	0.0337 (4)	
0.63584 (15)	0.16986 (9)	0.39927 (6)	0.0326 (4)	
0.67244 (17)	0.15794 (10)	0.47845 (7)	0.0424 (5)	
0.63219 (15)	0.33161 (8)	0.37050 (7)	0.0346 (4)	
0.66019 (15)	0.25579 (9)	0.32055 (7)	0.0348 (5)	
0.75629 (17)	0.33665 (10)	0.31869 (9)	0.0485 (6)	
0.50835 (16)	0.07027 (9)	0.38540 (8)	0.0379 (5)	
0.5584 (18)	0.0918 (14)	0.3877 (13)	0.046*	
0.53071 (4)	0.24711 (2)	0.37359 (2)	0.02440 (13)	
0.36511 (4)	0.11983 (2)	0.37139 (2)	0.02536 (13)	
	$\begin{array}{c} 0.32397 \ (15) \\ 0.34377 \ (15) \\ 0.61104 \ (15) \\ 0.63584 \ (15) \\ 0.67244 \ (17) \\ 0.63219 \ (15) \\ 0.66019 \ (15) \\ 0.75629 \ (17) \\ 0.50835 \ (16) \\ 0.5584 \ (18) \\ 0.53071 \ (4) \\ 0.36511 \ (4) \end{array}$	$\begin{array}{ccccc} 0.32397(15) & 0.05685(8) \\ 0.34377(15) & 0.05783(8) \\ 0.61104(15) & 0.24485(8) \\ 0.63584(15) & 0.16986(9) \\ 0.67244(17) & 0.15794(10) \\ 0.63219(15) & 0.33161(8) \\ 0.66019(15) & 0.25579(9) \\ 0.75629(17) & 0.33665(10) \\ 0.50835(16) & 0.07027(9) \\ 0.5584(18) & 0.0918(14) \\ 0.53071(4) & 0.24711(2) \\ 0.36511(4) & 0.11983(2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0250 (15)	0.0306 (13)	0.0307 (14)	0.0029 (11)	0.0024 (11)	0.0012 (11)
C2	0.0274 (15)	0.0263 (13)	0.0320 (15)	0.0003 (11)	-0.0023 (12)	0.0002 (11)
C3	0.0428 (19)	0.0350 (15)	0.0345 (15)	-0.0001 (13)	-0.0032 (13)	0.0028 (12)
C4	0.045 (2)	0.0323 (15)	0.0482 (18)	0.0057 (14)	-0.0044 (15)	0.0063 (13)
C5	0.048 (2)	0.0310 (15)	0.054 (2)	0.0089 (14)	0.0088 (16)	0.0004 (13)
C6	0.0418 (19)	0.0371 (16)	0.0396 (16)	0.0052 (14)	0.0095 (14)	-0.0028 (13)
C7	0.0298 (16)	0.0362 (15)	0.0272 (14)	-0.0008 (12)	0.0019 (11)	-0.0057 (11)
C8	0.0276 (15)	0.0431 (16)	0.0209 (13)	-0.0002 (12)	0.0021 (11)	-0.0012 (11)
C9	0.0239 (15)	0.0417 (15)	0.0222 (13)	-0.0042 (12)	-0.0010 (11)	0.0007 (11)
C10	0.0417 (18)	0.0431 (16)	0.0238 (14)	-0.0059 (14)	-0.0053 (12)	0.0049 (12)
C11	0.051 (2)	0.060 (2)	0.0274 (15)	-0.0099 (17)	-0.0071 (14)	0.0116 (14)
C12	0.044 (2)	0.074 (2)	0.0184 (14)	-0.0079 (17)	-0.0006 (13)	0.0010 (14)
C13	0.0328 (17)	0.0550 (18)	0.0273 (14)	0.0013 (14)	0.0007 (13)	-0.0050 (13)
C14	0.0321 (17)	0.0355 (15)	0.0254 (14)	-0.0013 (12)	-0.0019 (12)	0.0051 (11)
C15	0.0291 (15)	0.0360 (14)	0.0220 (13)	-0.0022 (12)	-0.0014 (11)	-0.0017 (11)
C16	0.0219 (14)	0.0339 (14)	0.0204 (12)	-0.0026 (11)	0.0012 (10)	-0.0022 (10)
C17	0.0294 (16)	0.0335 (14)	0.0287 (14)	0.0018 (12)	0.0000 (12)	-0.0017 (11)
C18	0.0356 (17)	0.0401 (15)	0.0294 (15)	0.0012 (13)	0.0057 (13)	-0.0074 (12)
C19	0.0436 (19)	0.0505 (17)	0.0165 (13)	-0.0041 (14)	0.0035 (12)	-0.0044 (12)
C20	0.0418 (18)	0.0396 (15)	0.0230 (14)	-0.0052 (14)	-0.0024 (12)	0.0022 (12)
C21	0.0272 (15)	0.0340 (14)	0.0265 (13)	0.0028 (12)	-0.0053 (11)	-0.0017 (11)
C22	0.0225 (14)	0.0316 (14)	0.0292 (14)	-0.0002 (11)	-0.0025 (11)	-0.0013 (11)
C23	0.0320 (16)	0.0375 (15)	0.0345 (15)	-0.0009 (13)	-0.0021 (13)	0.0064 (12)
C24	0.0364 (18)	0.0344 (16)	0.0536 (19)	0.0055 (14)	-0.0031 (15)	0.0023 (14)
C25	0.041 (2)	0.0436 (17)	0.0474 (18)	0.0086 (15)	-0.0021 (15)	-0.0104 (14)
C26	0.0377 (18)	0.0438 (16)	0.0289 (14)	0.0060 (14)	-0.0027 (13)	-0.0073 (12)
C27	0.0330 (17)	0.0464 (16)	0.0247 (14)	0.0037 (13)	0.0002 (12)	-0.0007 (12)
C28	0.0364 (18)	0.0461 (16)	0.0249 (14)	-0.0017 (14)	0.0008 (12)	0.0031 (12)
C29	0.0363 (17)	0.0399 (15)	0.0194 (12)	-0.0061 (13)	-0.0051 (12)	-0.0013 (11)
C30	0.049 (2)	0.0366 (15)	0.0257 (14)	-0.0030 (14)	-0.0060 (13)	0.0014 (12)
C31	0.056 (2)	0.0489 (18)	0.0290 (16)	-0.0093 (17)	-0.0032 (15)	0.0075 (13)
C32	0.056 (2)	0.076 (2)	0.0347 (17)	-0.003 (2)	0.0145 (17)	0.0181 (16)

C33	0.046 (2)	0.071 (2)	0.0337 (17)	0.0087 (18)	0.0116 (15)	0.0118 (16)
C34	0.0252 (15)	0.0388 (15)	0.0264 (14)	-0.0005 (12)	-0.0041 (11)	0.0041 (11)
C35	0.0274 (15)	0.0403 (15)	0.0220 (13)	-0.0012 (12)	-0.0025 (11)	-0.0004 (11)
C36	0.0339 (16)	0.0360 (15)	0.0202 (13)	-0.0057 (12)	-0.0014 (11)	-0.0005 (11)
C37	0.047 (2)	0.0350 (15)	0.0306 (15)	-0.0037 (14)	0.0006 (13)	-0.0029 (12)
C38	0.058 (2)	0.0470 (18)	0.0312 (16)	-0.0045 (16)	0.0019 (15)	-0.0129 (14)
C39	0.053 (2)	0.062 (2)	0.0243 (15)	0.0008 (17)	-0.0046 (14)	-0.0096 (14)
C40	0.0403 (19)	0.0549 (18)	0.0248 (14)	0.0022 (15)	-0.0063 (13)	-0.0018 (13)
C41	0.047 (2)	0.0432 (17)	0.057 (2)	0.0106 (16)	0.0011 (17)	0.0158 (16)
C42	0.085 (3)	0.0386 (19)	0.074 (3)	0.0079 (19)	-0.026 (2)	-0.0036 (18)
N1	0.0287 (13)	0.0332 (12)	0.0237 (11)	0.0005 (10)	0.0010 (9)	-0.0003 (9)
N2	0.0301 (13)	0.0277 (11)	0.0223 (11)	0.0005 (10)	-0.0004 (9)	-0.0009 (9)
N3	0.0296 (13)	0.0379 (12)	0.0197 (11)	-0.0004 (10)	-0.0032 (10)	-0.0008 (9)
N4	0.0245 (12)	0.0326 (11)	0.0227 (11)	0.0000 (10)	-0.0007 (9)	0.0003 (9)
N5	0.0277 (13)	0.0382 (13)	0.0258 (12)	0.0006 (11)	-0.0012 (10)	-0.0020 (10)
N6	0.0302 (14)	0.0364 (13)	0.0288 (12)	0.0012 (11)	0.0008 (10)	0.0029 (10)
01	0.0303 (10)	0.0331 (10)	0.0175 (8)	-0.0032 (8)	0.0000 (7)	-0.0019 (7)
O2	0.0297 (11)	0.0306 (9)	0.0172 (8)	-0.0004 (8)	-0.0009 (7)	0.0004 (7)
03	0.0383 (12)	0.0361 (10)	0.0241 (9)	0.0006 (9)	0.0052 (9)	0.0038 (8)
O4	0.0381 (12)	0.0320 (10)	0.0232 (9)	-0.0017 (8)	-0.0046 (8)	0.0004 (7)
05	0.0335 (11)	0.0336 (10)	0.0342 (10)	0.0013 (9)	-0.0062 (9)	-0.0044 (8)
O6	0.0329 (11)	0.0433 (11)	0.0217 (9)	0.0056 (9)	-0.0023 (8)	-0.0028 (8)
07	0.0509 (14)	0.0479 (12)	0.0283 (10)	0.0061 (10)	-0.0109 (10)	0.0092 (9)
08	0.0333 (11)	0.0379 (10)	0.0327 (10)	-0.0032 (9)	0.0057 (9)	-0.0067 (9)
09	0.0372 (12)	0.0314 (10)	0.0358 (11)	0.0003 (9)	0.0089 (9)	-0.0044 (8)
O10	0.0415 (14)	0.0516 (13)	0.0524 (13)	-0.0117 (11)	0.0150 (11)	0.0058 (10)
011	0.0334 (12)	0.0318 (10)	0.0486 (12)	0.0013 (9)	-0.0052 (10)	0.0062 (9)
Sc1	0.0253 (3)	0.0282 (2)	0.0197 (2)	0.0010 (2)	-0.0002 (2)	-0.0008 (2)
Sc2	0.0274 (3)	0.0291 (2)	0.0197 (2)	0.0004 (2)	-0.0019 (2)	0.0002 (2)

Geometric parameters (Å, °)

C1—C6	1.383 (4)	C28—C29	1.414 (4)
C1—C2	1.398 (4)	C29—O3	1.311 (3)
C1—N1	1.428 (3)	C29—C30	1.404 (4)
C2—C3	1.391 (4)	C30—C31	1.376 (4)
C2—N2	1.419 (3)	C30—H20	0.9500
C3—C4	1.372 (4)	C31—C32	1.378 (5)
C3—H1	0.9500	C31—H21	0.9500
C4—C5	1.380 (4)	C32—C33	1.372 (5)
C4—H2	0.9500	C32—H22	0.9500
C5—C6	1.382 (4)	C33—H23	0.9500
С5—Н3	0.9500	C34—N4	1.293 (3)
C6—H4	0.9500	C34—C35	1.433 (4)
C7—N1	1.293 (3)	C34—H24	0.9500
С7—С8	1.439 (4)	C35—C40	1.408 (4)
С7—Н5	0.9500	C35—C36	1.408 (4)
С8—С9	1.400 (4)	C36—O4	1.321 (3)

C8—C13	1.409 (4)	C36—C37	1.393 (4)
C9—O1	1.358 (3)	C37—C38	1.383 (4)
C9—C10	1.391 (4)	С37—Н25	0.9500
C10—C11	1.389 (4)	C38—C39	1.389 (5)
С10—Н6	0.9500	С38—Н26	0.9500
C11—C12	1.370 (5)	C39—C40	1.364 (4)
С11—Н7	0.9500	C39—H27	0.9500
C12—C13	1,366 (4)	C40—H28	0.9500
С12—Н8	0.9500	C41—O11	1.440 (3)
С13—Н9	0.9500	C41—C42	1.495 (5)
C14—N2	1 287 (3)	C41 - H31	0.9900
C14—C15	1 435 (4)	C41 - H30	0.9900
C14—H10	0.9500	C42 - H32	0.9800
C15—C16	1 401 (4)	C42 - H32	0.9800
C_{15} C_{10} C	1.101(1) 1.410(4)	C42 H33	0.9800
$C_{10} = C_{20}$	1.410(4) 1.354(3)	N1_Sc1	2,270(2)
$C_{10} = 02$	1.334(3) 1.386(4)	N2 Sc1	2.278(2)
$C_{10} = C_{17}$	1.386(4)	$N_2 = S_{c1}$	2.278(2)
C17 - C18	0.0500	$N_{4} = S_{2}$	2.341(2)
C1/-H11	1.280 (4)	N4—302	2.280(2)
C_{10} C_{19} C_{10} C	1.360 (4)	N5_05	1.212(3)
C10—H12	1.265(4)	N5-06	1.204(3)
C19 - C20	1.505 (4)	NJ-O0	1.280(3)
C19—H13	0.9500	N5—SCI	2.708 (2)
C20—H14	0.9500	N6	1.216 (3)
C21—C26	1.384 (4)	N6	1.265 (3)
C21—C22	1.399 (4)	N6—09	1.275 (3)
C21—N3	1.423 (3)	N6—Scl	2.693 (2)
C22—C23	1.386 (4)	Ol—Scl	2.1103 (18)
C22—N4	1.420 (3)	O1—Sc2	2.2139 (18)
C23—C24	1.383 (4)	O2—Sc1	2.0622 (18)
С23—Н15	0.9500	O2—Sc2	2.3420 (18)
C24—C25	1.385 (5)	O3—Sc2	2.0065 (18)
C24—H16	0.9500	O4—Sc2	1.9949 (18)
C25—C26	1.379 (4)	O5—Sc1	2.3233 (19)
С25—Н17	0.9500	O6—Sc1	2.300 (2)
C26—H18	0.9500	O8—Sc1	2.289 (2)
C27—N3	1.285 (4)	O9—Sc1	2.263 (2)
C27—C28	1.440 (4)	O11—Sc2	2.255 (2)
С27—Н19	0.9500	O11—H29	0.827 (18)
C28—C33	1.400 (4)	Sc1—Sc2	3.5541 (7)
C6—C1—C2	119.8 (3)	C41—C42—H34	109.5
C6—C1—N1	125.3 (2)	H32—C42—H34	109.5
C2—C1—N1	114.8 (2)	C41—C42—H33	109.5
C3—C2—C1	119.3 (2)	H32—C42—H33	109.5
C3—C2—N2	125.0 (2)	H34—C42—H33	109.5
C1—C2—N2	115.6 (2)	C7—N1—C1	118.8 (2)
C4—C3—C2	120.2 (3)	C7—N1—Sc1	125.50 (19)

C4—C3—H1	119.9	C1—N1—Sc1	115.62 (16)
С2—С3—Н1	119.9	C14—N2—C2	119.0 (2)
C3—C4—C5	120.5 (3)	C14—N2—Sc1	125.29 (18)
C3—C4—H2	119.8	C2—N2—Sc1	115.69 (16)
C5—C4—H2	119.8	C27—N3—C21	118.7 (2)
C4—C5—C6	120.0 (3)	C_{27} N ₃ Sc ₂	130.0 (2)
C4—C5—H3	120.0	$C_2 = N_3 = S_2$	11125(17)
С6—С5—Н3	120.0	C_{34} N4 C_{22}	118.6 (2)
C_{5} C_{6} C_{1}	120.0(3)	C_{34} N4 S_{c}^{2}	128.43(19)
C5-C6-H4	120.0 (3)	C^{22} NA S^{22}	120.19(15) 113.00(15)
$C_1 = C_6 = H_4$	120.0	07 N5 05	113.00(15) 123.5(2)
C1 - C0 - 114	120.0 124.4(3)	07 N5 06	123.5(2) 121.5(2)
N1 = C7 = U5	124.4 (3)	07-N5-06	121.3(2)
NI = C / = HS	117.0	05 - 105 - 00	115.0(2)
C_{0} C_{0} C_{12}	117.8	$0/-N_{3}$	103.9(2)
$C_{9} - C_{8} - C_{13}$	119.1 (3)	05-N5-Sci	58.94 (12)
C9—C8—C7	123.2 (2)	06—N5—Sc1	57.95 (12)
C13—C8—C7	117.5 (3)	010—N6—08	122.9 (2)
O1—C9—C10	119.5 (2)	O10—N6—O9	122.2 (2)
01—C9—C8	121.1 (2)	08—N6—O9	114.8 (2)
C10—C9—C8	119.4 (2)	O10—N6—Sc1	179.0 (2)
C11—C10—C9	119.6 (3)	08—N6—Sc1	58.00 (13)
С11—С10—Н6	120.2	O9—N6—Sc1	56.83 (12)
С9—С10—Н6	120.2	C9—O1—Sc1	123.94 (16)
C12—C11—C10	121.5 (3)	C9—O1—Sc2	125.50 (16)
С12—С11—Н7	119.3	Sc1—O1—Sc2	110.53 (7)
С10—С11—Н7	119.3	C16—O2—Sc1	127.04 (16)
C13—C12—C11	119.6 (3)	C16—O2—Sc2	123.06 (15)
С13—С12—Н8	120.2	Sc1—O2—Sc2	107.44 (7)
С11—С12—Н8	120.2	C29—O3—Sc2	143.93 (18)
C12—C13—C8	120.8 (3)	C36—O4—Sc2	139.96 (17)
С12—С13—Н9	119.6	N5—O5—Sc1	93.28 (14)
С8—С13—Н9	119.6	N5—O6—Sc1	93.91 (14)
N2-C14-C15	125.3 (3)	N6 - O8 - Sc1	94.06 (15)
N_{2} C14—H10	117.3	N6-09-Sc1	95.04 (14)
C_{15} C_{14} H_{10}	117.3	$C_{41} = 0_{11} = S_{c2}$	131.2(2)
C_{16} C_{15} C_{20}	119.2 (2)	$C_{41} = 011 = H_{29}$	111(2)
$C_{16} - C_{15} - C_{14}$	119.2(2) 124.2(2)	Sc2-011-H29	117(2)
$C_{10} C_{15} C_{14}$	124.2(2) 1165(2)	0^{2} Sc1 01	74.52(7)
02 - 015 - 017	110.5(2) 120.6(2)	02 - 5c1 - 01	74.32 (7) 86 29 (7)
02 - 016 - 015	120.0(2)	02 - 3c1 - 09	151 40 (7)
02 - 010 - 015	120.0(2)	$O_1 = S_{c1} = O_7$	131.49(7)
C1/-C10-C13	110.0(2)	$O_2 = S_{C1} = N_1$	124.95 (8)
C16 - C17 - C18	120.4 (3)	OI = ScI = NI	/8.44 (8)
C10-C17-H11	119.8	09—Sc1—N1	130.06 (8)
U13 - U1 / - H11	119.8	02 - 5c1 - N2	/9.64 (/)
C19—C18—C17	121.4 (3)	O1—Sc1—N2	115.23 (8)
C19—C18—H12	119.3	09—Sc1—N2	80.76 (8)
C17—C18—H12	119.3	N1—Sc1—N2	70.06 (8)
C20-C19-C18	118.7 (3)	O2—Sc1—O8	138.89 (7)

C20—C19—H13	120.6	O1—Sc1—O8	146.58 (7)
C18—C19—H13	120.6	O9—Sc1—O8	56.08 (7)
C19—C20—C15	121.4 (3)	N1—Sc1—O8	78.49 (8)
C19—C20—H14	119.3	N2—Sc1—O8	78.57 (8)
C15—C20—H14	119.3	O2—Sc1—O6	81.36 (7)
C26—C21—C22	120.0 (3)	O1—Sc1—O6	80.26 (7)
C26—C21—N3	125.4 (2)	O9—Sc1—O6	76.10(7)
C22—C21—N3	114.6 (2)	N1—Sc1—O6	139.03 (7)
C23—C22—C21	119.8 (3)	N2—Sc1—O6	150.84 (7)
C23—C22—N4	125.9 (2)	O8—Sc1—O6	102.30 (7)
C21—C22—N4	114.2 (2)	O2—Sc1—O5	131.95 (7)
C24—C23—C22	119.7 (3)	O1—Sc1—O5	78.25 (7)
C24—C23—H15	120.1	O9—Sc1—O5	100.59 (8)
C22—C23—H15	120.1	N1—Sc1—O5	86.16 (7)
C23—C24—C25	120.3 (3)	N2—Sc1—O5	148.35 (7)
C23—C24—H16	119.9	08-Sc1-05	76.38 (7)
C25—C24—H16	119.9	06-8c1-05	55.31 (6)
$C_{26} = C_{25} = C_{24}$	1204(3)	Ω^2 —Sc1—N6	113.07(7)
$C_{26} = C_{25} = H_{17}$	119.8	$\Omega_1 = Sc_1 = N6$	166.03(7)
C_{24} C_{25} H_{17}	119.8	09—Sc1—N6	28 14 (7)
$C_{24} = C_{25} = C_{14}$	119.8 (3)	N1—Sc1—N6	$104\ 50\ (8)$
C25 C26 C21	120.1	$N2$ _Sc1_N6	78 31 (8)
C21_C26_H18	120.1	Ω_{8} Sc1 N_{6}	78.31 (8) 27.94 (7)
N3 C27 C28	125.6 (3)	O6 Sc1 N6	27.94 (7) 89.13 (7)
$N_{3} = C_{27} = C_{28}$	125.0 (5)	$O_5 S_{c1} N_6$	89.15 (7)
$N_{3} = C_{27} = H_{10}$	117.2	$O_2 = S_{c1} = N_5$	00.23(7)
$C_{20} = C_{27} = H_{19}$	11/.2	02 - 3c1 - N5	103.47(7)
$C_{23} = C_{28} = C_{29}$	119.0(3)	$O_1 = S_{C1} = N_5$	73.33(7)
$C_{33} = C_{20} = C_{27}$	110.0(3)	09—501—IN5	92.08 (7)
$C_{29} = C_{28} = C_{27}$	121.8(3)	N1 - Sc1 - N5	111.43 (7)
03 - 029 - 030	120.3 (3)	$N_2 = Sc_1 = N_5$	1/1.01 (8)
03-029-028	121.9 (2)	08—Sc1—N5	92.95 (7)
$C_{30} - C_{29} - C_{28}$	117.8 (3)	06—Sc1—N5	28.14 (6)
$C_{31} = C_{30} = C_{29}$	121.1 (3)	05 - sci - ns	27.78(6)
C31—C30—H20	119.4	N6— $Sc1$ — $N5$	92.81 (7)
C29—C30—H20	119.4	02—Sc1—Sc2	38.95 (5)
C30—C31—C32	121.0 (3)	Ol—Scl—Sc2	35.69 (5)
С30—С31—Н21	119.5	09—Sc1—Sc2	123.21 (5)
C32—C31—H21	119.5	N1—Sc1—Sc2	100.71 (6)
C33—C32—C31	119.3 (3)	N2—Sc1—Sc2	97.72 (6)
С33—С32—Н22	120.3	O8—Sc1—Sc2	176.27 (6)
C31—C32—H22	120.3	O6—Sc1—Sc2	80.73 (5)
C32—C33—C28	121.3 (3)	O5—Sc1—Sc2	107.26 (5)
C32—C33—H23	119.4	N6—Sc1—Sc2	151.21 (5)
C28—C33—H23	119.4	N5—Sc1—Sc2	90.74 (5)
N4—C34—C35	125.3 (3)	O4—Sc2—O3	89.96 (8)
N4—C34—H24	117.3	O4—Sc2—O1	161.16 (8)
C35—C34—H24	117.3	O3—Sc2—O1	103.19 (7)
C40—C35—C36	119.0 (3)	O4—Sc2—O11	85.82 (8)

C40—C35—C34	118.0 (3)	O3—Sc2—O11	78.90 (8)
C36—C35—C34	122.9 (2)	O1—Sc2—O11	83.59 (7)
O4—C36—C37	120.2 (3)	O4—Sc2—N4	78.40 (8)
O4—C36—C35	121.1 (2)	O3—Sc2—N4	129.49 (8)
C37—C36—C35	118.7 (2)	O1—Sc2—N4	102.50 (7)
C38—C37—C36	121.2 (3)	O11—Sc2—N4	146.80 (8)
C38—C37—H25	119.4	O4—Sc2—N3	119.10 (8)
С36—С37—Н25	119.4	O3—Sc2—N3	76.53 (8)
C37—C38—C39	120.0 (3)	O1—Sc2—N3	77.63 (7)
C37—C38—H26	120.0	O11—Sc2—N3	144.55 (8)
C39—C38—H26	120.0	N4—Sc2—N3	67.60 (8)
C40—C39—C38	119.9 (3)	O4—Sc2—O2	94.97 (7)
С40—С39—Н27	120.0	03 - Sc2 - 02	153.38 (8)
C38—C39—H27	120.0	$01 - Sc^2 - 02$	67.28 (6)
C39—C40—C35	121.2 (3)	$011 - 8c^2 - 02$	75.40 (7)
C39—C40—H28	119.4	N4—Sc2—O2	77.07 (7)
C35—C40—H28	119.4	N3—Sc2—O2	122.46 (7)
011 - C41 - C42	111.6 (3)	04—Sc2—Sc1	128.53 (6)
011—C41—H31	109.3	O3— $Sc2$ — $Sc1$	133.60 (6)
C42—C41—H31	109.3	01—Sc2—Sc1	33.78 (5)
011—C41—H30	109.3	011 - Sc2 - Sc1	79.39 (5)
C42—C41—H30	109.3	N4— $Sc2$ — $Sc1$	87.84 (6)
H31—C41—H30	108.0	N3— $Sc2$ — $Sc1$	99.75 (6)
C41—C42—H32	109.5	O2— $Sc2$ — $Sc1$	33.61 (4)
C6—C1—C2—C3	-2.7 (4)	C27—C28—C33—C32	179.2 (3)
N1—C1—C2—C3	175.8 (3)	N4—C34—C35—C40	-174.3 (3)
C6-C1-C2-N2	179.2 (3)	N4—C34—C35—C36	8.9 (5)
N1—C1—C2—N2	-2.3 (4)	C40—C35—C36—O4	179.4 (3)
C1—C2—C3—C4	0.0 (5)	C34—C35—C36—O4	-3.9 (4)
N2—C2—C3—C4	177.9 (3)	C40—C35—C36—C37	-1.0 (4)
C2—C3—C4—C5	1.4 (5)	C34—C35—C36—C37	175.7 (3)
C3—C4—C5—C6	0.0 (5)	O4—C36—C37—C38	-178.2 (3)
C4—C5—C6—C1	-2.7 (5)	C35—C36—C37—C38	2.2 (5)
C2-C1-C6-C5	4.1 (5)	C36—C37—C38—C39	-1.8 (5)
N1-C1-C6-C5	-174.3 (3)	C37—C38—C39—C40	0.1 (5)
N1—C7—C8—C9	-23.9 (5)	C38—C39—C40—C35	1.1 (5)
N1-C7-C8-C13	160.8 (3)	C36—C35—C40—C39	-0.6 (5)
C13—C8—C9—O1	177.9 (3)	C34—C35—C40—C39	-177.5 (3)
C7—C8—C9—O1	2.7 (4)	C8—C7—N1—C1	174.4 (3)
C13—C8—C9—C10	-1.8 (4)	C8—C7—N1—Sc1	-2.5 (4)
C7—C8—C9—C10	-177.0 (3)	C6-C1-N1-C7	24.5 (4)
O1-C9-C10-C11	-177.2 (3)	C2-C1-N1-C7	-153.9 (3)
C8—C9—C10—C11	2.4 (4)	C6-C1-N1-Sc1	-158.2 (2)
C9—C10—C11—C12	-1.9 (5)	C2-C1-N1-Sc1	23.3 (3)
C10-C11-C12-C13	0.6 (5)	C15—C14—N2—C2	-179.4 (3)
C11—C12—C13—C8	0.1 (5)	C15—C14—N2—Sc1	2.8 (4)
C9—C8—C13—C12	0.6 (5)	C3—C2—N2—C14	-15.7 (4)

C7—C8—C13—C12	176.0 (3)	C1—C2—N2—C14	162.3 (3)
N2-C14-C15-C16	17.0 (5)	C3—C2—N2—Sc1	162.3 (2)
N2-C14-C15-C20	-165.8 (3)	C1—C2—N2—Sc1	-19.7 (3)
C20—C15—C16—O2	-174.7 (3)	C28—C27—N3—C21	-179.3 (3)
C14—C15—C16—O2	2.5 (4)	C28—C27—N3—Sc2	-1.6 (4)
C20—C15—C16—C17	2.9 (4)	C26—C21—N3—C27	30.0 (4)
C14—C15—C16—C17	-179.9 (3)	C22—C21—N3—C27	-150.6 (3)
O2—C16—C17—C18	175.1 (3)	C26—C21—N3—Sc2	-148.1 (2)
C15—C16—C17—C18	-2.4 (4)	C22—C21—N3—Sc2	31.3 (3)
C16—C17—C18—C19	1.0 (5)	C35—C34—N4—C22	-175.0 (3)
C17—C18—C19—C20	0.0 (5)	C35—C34—N4—Sc2	3.9 (4)
C18—C19—C20—C15	0.5 (5)	C23—C22—N4—C34	-34.8 (4)
C16—C15—C20—C19	-2.0 (5)	C21—C22—N4—C34	145.5 (3)
C14—C15—C20—C19	-179.4 (3)	C23—C22—N4—Sc2	146.2 (2)
C26—C21—C22—C23	0.3 (4)	C21—C22—N4—Sc2	-33.6 (3)
N3—C21—C22—C23	-179.2 (3)	C10-C9-O1-Sc1	-135.2 (2)
C26-C21-C22-N4	-179.9 (3)	C8-C9-O1-Sc1	45.2 (3)
N3—C21—C22—N4	0.6 (3)	C10-C9-O1-Sc2	47.0 (3)
C21—C22—C23—C24	0.5 (4)	C8—C9—O1—Sc2	-132.7 (2)
N4—C22—C23—C24	-179.2 (3)	C17-C16-O2-Sc1	138.4 (2)
C22—C23—C24—C25	-1.2 (5)	C15-C16-O2-Sc1	-44.1 (3)
C23—C24—C25—C26	1.1 (5)	C17—C16—O2—Sc2	-61.7 (3)
C24—C25—C26—C21	-0.2 (5)	C15—C16—O2—Sc2	115.8 (2)
C22—C21—C26—C25	-0.5 (4)	C30—C29—O3—Sc2	-176.3 (2)
N3—C21—C26—C25	178.9 (3)	C28—C29—O3—Sc2	4.2 (5)
N3—C27—C28—C33	179.4 (3)	C37—C36—O4—Sc2	161.4 (2)
N3—C27—C28—C29	-0.6 (5)	C35—C36—O4—Sc2	-19.0 (5)
C33—C28—C29—O3	180.0 (3)	O7—N5—O5—Sc1	-163.6 (2)
C27—C28—C29—O3	-0.1 (4)	O6—N5—O5—Sc1	15.2 (2)
C33—C28—C29—C30	0.5 (4)	O7—N5—O6—Sc1	163.5 (2)
C27—C28—C29—C30	-179.5 (3)	O5—N5—O6—Sc1	-15.4 (2)
O3—C29—C30—C31	-179.4 (3)	O10-N6-O8-Sc1	-179.5 (2)
C28—C29—C30—C31	0.0 (4)	O9—N6—O8—Sc1	0.1 (2)
C29—C30—C31—C32	-0.3 (5)	O10-N6-O9-Sc1	179.5 (2)
C30—C31—C32—C33	0.0 (5)	O8—N6—O9—Sc1	-0.1 (2)
C31—C32—C33—C28	0.6 (6)	C42—C41—O11—Sc2	87.3 (4)
C29—C28—C33—C32	-0.9 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O11—H29…O6	0.83 (2)	2.01 (2)	2.787 (3)	156 (3)