

Received 4 December 2018 Accepted 14 December 2018

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; pyrazole; hydrogen bonding; N—H··· π interactions; C—H··· π (ring) interactions; Hirshfeld surface analysis.

CCDC reference: 1885214

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal structure and Hirshfeld surface analysis of *N*-{2-[(*E*)-(4-methylbenzylidene)amino]phenyl}-2-(5-methyl-1-*H*-pyrazol-3-yl)acetamide hemihydrate

Karim Chkirate,^a* Sevgi Kansiz,^b Khalid Karrouchi,^c Joel T. Mague,^d Necmi Dege^b and El Mokhtar Essassi^a

^aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence Pharmacochemistry, Ave. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, ^bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, ^cPhysicochemical Service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco, and ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: chkirate.karim1@gmail.com

The asymmetric unit of the title compound, $C_{20}H_{20}N_4O \cdot 0.5H_2O$, contains two independent organic molecules (1 and 2) and a water molecule of crystallization. The two molecules differ primarily in the dihedral angles between the aromatic rings, which are 7.79 (7) and 29.89 (7)° in molecules 1 and 2, respectively. In each molecule there is intramolecular $C-H \cdots O$ hydrogen bond forming an S(6) ring motif. In molecule 1 there is an intramolecular $N-H \cdots \pi(\text{pyrazole})$ interaction and an intramolecular $C-H \cdots \pi(\text{pyrazole})$ interaction present. Molecule 1 is linked to molecule 2 by a $C-H \cdots \pi(\text{benzene ring})$ interaction. An intramolecular $N-H \cdots N$ hydrogen bond and an intramolecular $C-H \cdots N$ hydrogen bond are also present in molecule 2. In the crystal, the three components are linked by $O_{water}-H \cdots N$, $N-H \cdots O_{water}$ and $N-H \cdots N$ hydrogen bonds, forming chains along the [100] direction. The chains are linked by $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds, forming layers parallel to the *ab* plane. Finally, the layers are linked by $C-H \cdots \pi$ interactions, forming a three-dimensional structure.

1. Chemical context

Pyrazole derivatives are biologically active heterocyclic compounds (Karrouchi et al., 2018). This compound class has been the topic of numerous pharmaceutical studies with members being used for their medicinal properties such as anti-inflammatory (Abdellatif et al., 2018), antidiabetic (Pillai et al., 2019), antiviral (El-Sabbagh et al., 2009), analgesic (Karrouchi et al., 2016), antitumoral (Guillén et al., 2017), catecholase (Karrouchi et al., 2018), and even as insecticides (Shi et al., 2017). In particular, pyrazolylacetamide derivatives are widely studied with increasing interest because of their antioxidant (Chkirate et al., 2019), antagonist (Chambers et al., 2010; Beswick et al., 2010) and anti-inflammatory (Sunder et al., 2013), as well as their antimicrobial potential and anticancer (Dev et al., 2017) activities. The present study is a continuation of the synthesis of the methyl-pyrazolyl-acétamide derivatives performed by our team (Chkirate et al., 2001, 2017*a*,*b*). In this work, we prepared the title compound, by reacting N-2-aminophenyl-5-methyl-pyrazol-3-ylacetamide with 4-methylbenzaldehyde in acetone. We report herein on its crystal and molecular structures along with the Hirshfeld surface analysis.

2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit contains two independent organic molecules (1 and 2) and a water molecule. The organic molecules differ primarily in the dihedral angles between the aromatic rings. In the molecule 1, the C7–C12 benzene ring is inclined to the C14–C19 benzene ring by 7.79 (7)°, while the corresponding angle in molecule 2 is 29.89 (7)°. The molecule 0, illustrates the difference in the conformations of the two molecules, with an r.m.s. deviation of 0.58 Å for the 25 non-hydrogen atoms.

Figure 1

The asymmetric unit of the title compound, with the labelling scheme and 50% probability ellipsoids. The C-H···O and C-H···N hydrogen bonds are shown as black dashed lines and the C-H··· π (ring) interactions by green dashed lines (see Table 1 for details).

 Table 1

 Hydrogen-bond geometry (Å, °).

*Cg*1, *Cg*3 and *Cg*6 are the centroids of the N1/N2/C2–C4, C14–C19 and C34–C39 rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O2^{i}$	0.92 (2)	1.88 (2)	2.7863 (18)	169 (2)
$O3-H3B\cdots N2$	0.92(2)	1.91 (2)	2.8047 (19)	165 (2)
$O3-H3C\cdots N6^{ii}$	0.87(2)	2.09 (2)	2.9530 (18)	174 (2)
N5-H5···O3 ⁱⁱⁱ	0.93(2)	1.878 (19)	2.8014 (18)	173 (2)
$N7 - H7 \cdot \cdot \cdot N6$	0.91(2)	2.447 (17)	3.1314 (19)	132.6 (13)
$C1-H1A\cdots O1^{iv}$	0.99 (2)	2.56 (2)	3.436 (2)	146.9 (15)
C8−H8···O1	0.98(2)	2.228 (15)	2.858 (2)	120.8 (12)
C28-H28···O2	1.01 (2)	2.265 (18)	2.890 (2)	118.5 (13)
$C35-H35\cdots N4^{v}$	0.99(2)	2.532 (18)	3.451 (2)	155.2 (13)
$N3-H3A\cdots Cg1$	0.91 (2)	2.999 (15)	3.6216 (17)	127.4 (12)
$C5-H5B\cdots Cg6^{ii}$	1.00(2)	2.820 (16)	3.7171 (18)	149.0 (12)
$C11 - H11 \cdots Cg6$	0.98(2)	2.837 (19)	3.713 (2)	149.8 (14)
$C15 - H15 \cdots Cg1$	0.99(2)	2.913 (15)	3.7979 (19)	149.8 (12)
$C20-H20B\cdots Cg3^{i}$	1.00 (2)	2.88 (2)	3.772 (3)	148.9 (16)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x, -y + 1, -z + 1; (iv) -x, -y, -z; (v) -x, -y, -z + 1.

The pyrazole ring (N1/N2/C2–C4) in molecule 1 is inclined to the benzene rings (C7–C12 and C14–C19) by 70.83 (8) and 76.79 (8)°, respectively. The corresponding dihedral angles in molecule 2, involving the N5/N6/C22–C24 pyrazole ring and the C27–C32 and C34–C39 benzene rings, are 68.47 (8) and 81.91 (8)°, respectively. In both molecules there is an intramolecular C–H···O hydrogen bond forming an *S*(6) ring motif (Fig. 1, Table 1). In the pyrazole rings, the N1–N2 and N5–N6 bond lengths are essentially equivalent, *viz*. 1.3595 (16) and 1.3596 (16) Å, respectively.

In molecule 1, an intramolecular $N-H\cdots\pi(pyrazole)$ interaction and an intramolecular $C-H\cdots\pi(pyrazole)$ interaction are present (Fig. 1, Table 1). Molecule 1 is linked to molecule 2 by a $C-H\cdots\pi(benzene ring)$ interaction, and in molecule 2 an $N-H\cdots N$ and a $C-H\cdots N$ hydrogen bond are present (Fig. 1, Table 1).

Figure 2 A molecular overlap view of inverted molecule 2 (red) on molecule 1 (blue).

research communications

Figure 3

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1; colour code: molecule 1 is blue, molecule 2 is red).

3. Supramolecular features

In the crystal, the three components are linked by O_{water} - $H \cdots N$ and $N-H \cdots O_{water}$ hydrogen bonds, and by $N-H \cdots N$ hydrogen bonds, forming chains propagating along the *a*-axis direction; see Fig. 3. Full details of the various intra- and intermolecular interactions are given in Table 1. The chains are linked by $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds, forming layers parallel to the *ab* plane (Fig. 3). Finally the

Figure 4

A view along the *a* axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and the $C-H\cdots\pi$ interactions as orange arrows (see Table 1).

layers are linked by $C-H\cdots\pi$ interactions, forming a threedimensional structure (Fig. 4).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update May 2018; Groom et al., 2016), for N-[2-(methyleneamino)phenyllacetamides gave many hits. A search for the substructure [2-(benzylideneamino)phenyl]acetamide gave 19 hits, some of which are metal complexes. The structures most similar to the title compound include: N-(2-{[(2-hydroxyphenyl)methylidene]amino}phenyl)-2,2-dimethylpropanamide (POSPET; Kämpfe et al., 2009), o-benzamido-N-(o-nitrobenzilidine)aniline (RIHHPF; Aldoshin et al., 1995), o-(p-nitrobenzamido)-N-(o-nitrobenzilidene)aniline (RIHHUL; Aldoshin et al., 1995), and o-(adamantanecarbamido)-N-(m-nitrobenzilidene)aniline (RIHJAT; Aldoshin et al., 1995). There is an extremely large difference in the dihedral angles between the two aryl rings in these compounds, viz. 44.36 (5)° for POSPET, 16.2 (2)° for RIHHOF, 41.81 $(14)^{\circ}$ for RIHHUL and 11.2 $(4)^{\circ}$ in RIHJAT. The dihedral angles between the aromatic rings in the title compound are 7.79 (7) and 29.89 (7) $^{\circ}$ in molecules 1 and 2, respectively.

A search for $\{2-[(1-\text{phenylethylidene}) \text{amino}]\text{phenyl}\}$ acetamides gave an interesting hit, namely that for *N*- $(2-\{[(1E)-1-(2-\text{hydroxyphenyl})\text{ethylidene}]\text{amino}\}$ phenyl)-2-methoxyacetamide (TIGQIK; Yildirim *et al.*, 2007). Here the two aryl rings are almost coplanar with a dihedral angle of $1.2 (4)^{\circ}$. This small angle can be explained by the presence of an intramolecular N-H···N hydrogen bond, rather than a weak C-H···O hydrogen bond as is present in the two molecules of the title compound.

5. Hirshfeld surface analysis

The Hirshfeld surface analyse was carried out using *Crystal*-*Explorer17.5* (Turner *et al.*, 2017). The Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular interactions in the title compound. A 2D fingerprint graph gives a summary of the intermolecular contacts in the crystal. The Hirshfeld surfaces mapped over d_{norm} , d_e and d_i are illustrated in Fig. 5. The molecular Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional d_{norm}

Figure 5 The Hirshfeld surface of the title compound mapped over d_{norm} , d_{i} and d_{c} .

research communications

Figure 6

Hirshfeld surfaces mapped over d_{norm} to visualize the intermolecular O-H···N and N-H···O hydrogen bonds and C-H··· π interactions in the title compound.

surfaces mapped over a fixed colour scale of -0.635 (red) to 1.583 (blue) Å. Fig. 6 illustrates the intermolecular $O-H\cdots N$, $N-H\cdots O$ and $C-H\cdots \pi$ interactions (Table 1) of the title compound with d_{norm} mapped on the Hirshfeld surface.

Figure 7

Two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface.

Two-dimensional fingerprint plots for the (a) $H \cdots H$ (54%), (b) $C \cdots H/H \cdots C$ (24%), (c) $O \cdots H/H \cdots O$ (11.5%) and (d) $N \cdots H/H \cdots N$ (6.5%) contacts in the title compound.

Fig. 7 shows the two-dimensional fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. Fig. 8a (H···H) illustrates the twodimensional fingerprint of the (d_i, d_e) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to $d_i = d_e = 1.08$ Å, which indicates the presence of the H···H contacts in this study (54%). Fig. 8b (C···H/H···C) shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa (24%). The O···H/H···O (11.5%) plot shows two symmetrical wings on the left and right sides (Fig. 8c). The N···H/H···N interactions (6.5%) are visualized in Fig. 8d.

6. Synthesis and crystallization

The title compound was prepared by stirring *N*-2-aminophenyl-5-methylpyrazol-3-ylacetamide (0.5 g, 2.2 mmol) with 4-methylbenzaldehyde (1.05 g, 8.8 mmol) in acetone (50 ml) for 3 h. The solvent was evaporated under vacuum, and then water was added. The precipitate formed was filtered under vacuum and purified through silica gel column chromatography using hexane/ethyl acetate (6/4, ν/ν), yielding colourless rod-like crystals of the title compound (yield 63%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located in difference-Fourier maps and freely refined.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{20}H_{20}N_4O \cdot 0.5H_2O$
$M_{\rm r}$	341.41
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	11.546 (3), 12.564 (3), 13.172 (3)
α, β, γ (°)	101.991 (3), 97.535 (3), 99.847 (3)
$V(Å^3)$	1813.8 (7)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.21 \times 0.13 \times 0.12$
•	
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Krause et
	al., 2015)
T_{\min}, T_{\max}	0.88, 0.99
No. of measured, independent and	17171, 8663, 5888
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.033
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.664
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.122, 1.04
No. of reflections	8663
No. of parameters	628
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.28, -0.19

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018/1* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012), *Mercury* (Macrae *et al.*, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

- Abdellatif, K. R. A., Fadaly, W. A. A., Elshaier, Y. A. M., Ali, W. A. M. & Kamel, G. M. (2018). *Bioorg. Chem.* 77, 568–578.
- Aldoshin, S. M., Chuev, I. I. & Kozina, O. A. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 264, 215–226.
- Beswick, P. J., Billinton, A., Chambers, L. J., Dean, D. K., Fonfria, E., Gleave, R. J., Medhurst, S. J., Michel, A. D., Moses, A. P., Patel, S., Roman, S. A., Roomans, S., Senger, S., Stevens, A. J. & Walter, D. S. (2010). *Bioorg. Med. Chem. Lett.* **20**, 4653–4656.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.

Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc.,
Madison, Wisconsin, USA.
Chambers, L. J., Stevens, A. J., Moses, A. P., Michel, A. D., Walter, D. S., Davies, D. J., Livermore, D. G., Fonfria, E., Demont, E. H., Vimal, M., Theobald, P. J., Beswick, P. J., Gleave, R. J., Roman, S. A. & Senger, S. (2010). <i>Bioorg. Med. Chem. Lett.</i> 20 , 3161–3164.
Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28.
Chkirate, K., Mague, J. T., Sebbar, N. K., Ouzidan, Y. & Essassi, E. M. (2017b). <i>IUCrData</i> , 2, x170251.
Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636.
Chkirate, K., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017 <i>a</i>). <i>IUCrData</i> , 2 , x170285.
Dev G, J., Poornachandra, Y., Ratnakar Reddy, K., Naresh Kumar, R., Ravikumar, N., Krishna Swaroop, D., Ranjithreddy, P., Shravan Kumar, G., Nanubolu, J. B., Ganesh Kumar, C. & Narsaiah, B. (2017). <i>Eur. J. Med. Chem.</i> 130 , 223–239.
El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C.,
Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Guillén, E., González, A., Basu, P. K., Ghosh, A., Font-Bardia, M., Calvet, T., Calvis, C., Messeguer, R. & López, C. (2017). J. Organomet. Chem. 828, 122–132.
Kämpfe, A., Kroke, E. & Wagler, J. (2009). Eur. J. Inorg. Chem. pp. 1027–1035.
Karrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., Faouzi,
M. E. A. & Ansar, M. (2016). <i>Ann. Pharm. Fr.</i> 74 , 431–438. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-
aizari, F. A. & Ansar, M. (2018). <i>Molecules</i> , 23 , 134–136.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
Pillai, R. R., Karrouchi, K., Fettach, S., Armaković, S., Armaković,
S. J., Brik, Y., Taoufik, J., Radi, S., El Abbes Faouzi, M. & Ansar, M. H. (2019). J. Mol. Struct. 1177, 47–54.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015 <i>b</i>). <i>Acta Cryst.</i> C71, 3–8.
Shi, JJ., Ren, GH., Wu, NJ., Weng, JQ., Xu, IM., Liu, XH. & Tan, CX. (2017). <i>Chin. Chem. Lett.</i> 28 , 1727–1730.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Sunder, K. S. & Maleraju, J. I. (2013). Drug Invent. Today, 5, 288–295. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Javatilaka, D. & Spackman, M. A. (2017).
CrystalExplore17.5. University of Western Australia, Perth.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yildirim, S. O., Akkurt, M., Jarrahpour, A. A., Rezaei, S. & Heinemann, F. W. (2007). <i>Acta Cryst.</i> E 63 , 03478–03479.

Acta Cryst. (2019). E75, 154-158 [https://doi.org/10.1107/S2056989018017747]

Crystal structure and Hirshfeld surface analysis of *N*-{2-[(*E*)-(4-methylbenzyl-idene)amino]phenyl}-2-(5-methyl-1-*H*-pyrazol-3-yl)acetamide hemihydrate

Karim Chkirate, Sevgi Kansiz, Khalid Karrouchi, Joel T. Mague, Necmi Dege and El Mokhtar Essassi

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018/1* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2018/1* (Sheldrick, 2015*b*), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

N-{2-[(E)-(4-Methylbenzylidene)amino]phenyl}-2-(5-methyl-1-H-pyrazol-3-yl)acetamide hemihydrate

Crystal data $C_{20}H_{20}N_4O \cdot 0.5H_2O$ $M_r = 341.41$ Triclinic, $P\overline{1}$ a = 11.546 (3) Å b = 12.564 (3) Å c = 13.172 (3) Å a = 101.991 (3)° $\beta = 97.535$ (3)° $\gamma = 99.847$ (3)° V = 1813.8 (7) Å³

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.88, T_{\max} = 0.99$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.122$ S = 1.03 Z = 4 F(000) = 724 $D_x = 1.250 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5130 reflections $\theta = 2.2-28.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KRod, colourless $0.21 \times 0.13 \times 0.12 \text{ mm}$

17171 measured reflections 8663 independent reflections 5888 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.2^\circ, \ \theta_{min} = 1.6^\circ$ $h = -15 \rightarrow 15$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 17$

8663 reflections628 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$
All H-atom parameters refined	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
-	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at $\varphi = 0$, 120 and 240°. A scan time of 60 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.24038 (9)	0.13666 (9)	0.04235 (8)	0.0313 (3)	
N1	0.27104 (11)	0.26740 (10)	0.11862 (10)	0.0240 (3)	
H1	0.3426 (15)	0.3173 (14)	0.1367 (13)	0.040 (5)*	
N2	0.16821 (10)	0.29967 (10)	0.08749 (9)	0.0238 (3)	
N3	-0.09799 (11)	0.19107 (10)	0.19035 (9)	0.0213 (3)	
H3A	-0.0190 (13)	0.2168 (12)	0.2155 (12)	0.023 (4)*	
N4	0.02622 (10)	0.22466 (10)	0.38113 (9)	0.0233 (3)	
C1	0.35478 (14)	0.10461 (14)	0.14763 (14)	0.0284 (3)	
H1A	0.3326 (16)	0.0229 (16)	0.1186 (15)	0.051 (5)*	
H1B	0.3722 (16)	0.1144 (15)	0.2238 (16)	0.051 (5)*	
H1C	0.4241 (17)	0.1349 (15)	0.1255 (15)	0.052 (6)*	
C2	0.25432 (12)	0.15807 (11)	0.11593 (11)	0.0222 (3)	
C3	0.13432 (13)	0.11639 (12)	0.08140 (11)	0.0236 (3)	
H3	0.0949 (14)	0.0375 (13)	0.0687 (13)	0.036 (5)*	
C4	0.08456 (12)	0.20676 (11)	0.06429 (11)	0.0205 (3)	
C5	-0.04210 (13)	0.20825 (13)	0.02199 (11)	0.0229 (3)	
H5A	-0.0458 (12)	0.2852 (13)	0.0168 (12)	0.026 (4)*	
H5B	-0.0678 (13)	0.1591 (12)	-0.0510 (13)	0.027 (4)*	
C6	-0.13684 (12)	0.17440 (11)	0.08508 (11)	0.0213 (3)	
C7	-0.16340 (12)	0.16660 (11)	0.26803 (11)	0.0204 (3)	
C8	-0.28614 (13)	0.12593 (12)	0.24842 (13)	0.0257 (3)	
H8	-0.3322 (13)	0.1159 (12)	0.1777 (12)	0.026 (4)*	
C9	-0.34209 (15)	0.09808 (15)	0.32871 (14)	0.0366 (4)	
H9	-0.4304 (15)	0.0704 (13)	0.3126 (13)	0.038 (5)*	
C10	-0.27788 (15)	0.11076 (17)	0.42750 (15)	0.0452 (5)	
H10	-0.3172 (17)	0.0920 (15)	0.4852 (16)	0.055 (6)*	
C11	-0.15655 (15)	0.15421 (15)	0.44915 (14)	0.0375 (4)	
H11	-0.1124 (15)	0.1630 (14)	0.5198 (15)	0.047 (5)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	-0.09769 (12)	0.18343 (11)	0.37043 (11)	0.0226 (3)
C13	0.09606 (13)	0.24843 (13)	0.46912 (12)	0.0265 (3)
H13	0.0668 (15)	0.2413 (14)	0.5348 (14)	0.047 (5)*
C14	0.22509 (13)	0.28361 (12)	0.47815 (11)	0.0246 (3)
C15	0.27780(13)	0.29677(12)	0.39088 (12)	0.0262(3)
H15	0.2243(13)	0.2821(12)	0.3225(12)	0.027(4)*
C16	0.2219(13) 0.39990(14)	0.2021(12) 0.32762(14)	0.3223(12) 0.40179(13)	0.027(1) 0.0312(4)
H16	0.333300(11)	0.32702(11) 0.3411(13)	0.10179(13) 0.3410(13)	0.0312(1)
C17	0.4525(14) 0.47409(13)	0.34649(13)	0.3410(13) 0.49918(12)	0.035(3)
C18	0.47407(15)	0.34047(15)	0.49910(12) 0.58584(13)	0.0257(4)
U18	0.42097(13) 0.4721(15)	0.33447(13) 0.2482(12)	0.58584(13)	0.0334(4)
П10 С10	0.4721(13) 0.20828(14)	0.3463(13) 0.20274(15)	0.0334(14) 0.57504(12)	$0.040(3)^{\circ}$
C19	0.29838(14)	0.30574(13)	0.37394(13)	0.0330(4)
HI9	0.2595 (15)	0.2958 (14)	0.6390 (14)	0.048 (5)*
C20	0.60729 (15)	0.3/9/0(19)	0.509/2 (17)	0.0432 (5)
H20A	0.642 (2)	0.319 (2)	0.469 (2)	0.101 (9)*
H20B	0.6300 (18)	0.4481 (18)	0.4833 (17)	0.072 (7)*
H20C	0.647 (2)	0.3942 (19)	0.583 (2)	0.087 (8)*
O2	0.52850 (9)	0.56026 (9)	0.82428 (9)	0.0319 (3)
N5	0.03382 (10)	0.52348 (10)	0.81415 (10)	0.0228 (3)
H5	-0.0253 (16)	0.5056 (14)	0.8528 (14)	0.045 (5)*
N6	0.15011 (10)	0.55805 (9)	0.86144 (9)	0.0210 (3)
N7	0.36667 (11)	0.43953 (10)	0.84380 (9)	0.0218 (3)
H7	0.2865 (15)	0.4290 (13)	0.8401 (13)	0.037 (5)*
N8	0.21561 (10)	0.25089 (10)	0.83158 (9)	0.0234 (3)
C21	-0.10166 (15)	0.48113 (16)	0.64252 (16)	0.0361 (4)
H21A	-0.163 (2)	0.4882 (19)	0.6879 (19)	0.086 (8)*
H21B	-0.1168 (17)	0.4019 (18)	0.6063 (16)	0.065 (6)*
H21C	-0.1135 (15)	0.5315 (15)	0.5943 (15)	0.052 (5)*
C22	0.01855 (13)	0.51647 (11)	0.70978 (12)	0.0245 (3)
C23	0.13064 (13)	0.54799 (12)	0.68677 (12)	0.0255(3)
H23	0 1522 (13)	0.5523(12)	0.6183(13)	$0.030(4)^{*}$
C24	0.20896(12)	0.57328(11)	0.78264(11)	0.0209(3)
C25	0.34089(13)	0.57520(11) 0.61544(12)	0.70201(11) 0.80340(13)	0.0236(3)
H25A	0.3667 (13)	0.61311(12)	0.8659(12)	0.0230(3)
H25R	0.3656 (13)	0.6011(12) 0.6432(12)	0.0039(12) 0.7431(13)	0.027(4)
C26	0.3050(13) 0.42068(12)	0.5452(12) 0.53575(12)	0.7451(15) 0.82503(11)	0.031(4)
C20	0.42000(12) 0.41856(12)	0.3575(12) 0.35211(11)	0.82303(11)	0.0228(3)
C27	0.41850(12) 0.54056(12)	0.33211(11) 0.26027(12)	0.80889(11)	0.0213(3)
C28	0.34030(13)	0.30037(13)	0.09700(12)	0.0270(3)
П20 С20	0.3982(13)	0.4314(13) 0.270(5(12))	0.0900(13)	$0.044(3)^{\circ}$
C29	0.581/0(14)	0.27005(13)	0.92452(12)	0.0295(4)
H29	0.6701 (15)	0.2783(13)	0.9482 (13)	0.040 (5)*
C30	0.50266 (14)	0.1/42/(14)	0.92401 (12)	0.0301 (4)
H30	0.5291 (14)	0.1144 (13)	0.9446 (13)	0.032 (4)*
C31	0.38173 (14)	0.16498 (13)	0.89364 (12)	0.0272 (3)
H31	0.3233 (13)	0.0982 (12)	0.8945 (11)	0.022 (4)*
C32	0.33787 (12)	0.25261 (12)	0.86328 (11)	0.0229 (3)
C33	0.14467 (13)	0.15882 (12)	0.78537 (12)	0.0245 (3)
H33	0.1751 (14)	0.0909 (13)	0.7694 (12)	0.033 (4)*

C34	0.01636 (13)	0.14971 (12)	0.75516 (11)	0.0234 (3)
C35	-0.05642 (14)	0.04580 (13)	0.70870 (13)	0.0303 (4)
H35	-0.0215 (14)	-0.0207 (14)	0.6920 (13)	0.037 (5)*
C36	-0.17876 (14)	0.03414 (13)	0.68350 (13)	0.0324 (4)
H36	-0.2277 (15)	-0.0379 (14)	0.6534 (13)	0.040 (5)*
C37	-0.23271 (13)	0.12516 (12)	0.70395 (12)	0.0269 (3)
C38	-0.15965 (14)	0.22914 (13)	0.74951 (12)	0.0263 (3)
H38	-0.1943 (13)	0.2927 (12)	0.7645 (12)	0.026 (4)*
C39	-0.03736 (13)	0.24180 (12)	0.77441 (12)	0.0246 (3)
H39	0.0132 (12)	0.3148 (12)	0.8089 (11)	0.020 (4)*
C40	-0.36608 (15)	0.11183 (16)	0.67982 (15)	0.0358 (4)
H40A	-0.4014 (16)	0.1124 (14)	0.7448 (15)	0.049 (5)*
H40B	-0.3951 (17)	0.1743 (17)	0.6509 (15)	0.060 (6)*
H40C	-0.4044 (15)	0.0410 (15)	0.6284 (14)	0.045 (5)*
O3	0.15336 (9)	0.51707 (9)	0.07448 (9)	0.0266 (2)
H3B	0.1689 (17)	0.4475 (17)	0.0720 (16)	0.060 (6)*
H3C	0.1580 (19)	0.5294 (18)	0.0125 (19)	0.075 (7)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0194 (6)	0.0403 (6)	0.0291 (6)	0.0035 (5)	-0.0040 (4)	0.0042 (5)
N1	0.0183 (6)	0.0269 (7)	0.0278 (7)	0.0042 (5)	0.0049 (5)	0.0087 (5)
N2	0.0210 (6)	0.0262 (7)	0.0258 (7)	0.0054 (5)	0.0061 (5)	0.0083 (5)
N3	0.0147 (6)	0.0251 (6)	0.0221 (6)	0.0014 (5)	0.0006 (5)	0.0051 (5)
N4	0.0198 (6)	0.0263 (6)	0.0218 (6)	0.0023 (5)	0.0017 (5)	0.0046 (5)
C1	0.0214 (8)	0.0325 (9)	0.0330 (9)	0.0088 (7)	0.0041 (7)	0.0089 (7)
C2	0.0226 (8)	0.0239 (7)	0.0215 (7)	0.0060 (6)	0.0061 (6)	0.0059 (6)
C3	0.0229 (8)	0.0215 (8)	0.0261 (8)	0.0042 (6)	0.0028 (6)	0.0060 (6)
C4	0.0216 (7)	0.0229 (7)	0.0173 (7)	0.0041 (6)	0.0047 (6)	0.0047 (6)
C5	0.0245 (8)	0.0233 (8)	0.0202 (8)	0.0061 (6)	0.0011 (6)	0.0045 (6)
C6	0.0195 (7)	0.0200 (7)	0.0239 (7)	0.0073 (6)	0.0010 (6)	0.0035 (6)
C7	0.0191 (7)	0.0173 (7)	0.0249 (7)	0.0027 (5)	0.0047 (6)	0.0052 (6)
C8	0.0202 (8)	0.0253 (8)	0.0304 (9)	0.0028 (6)	0.0017 (6)	0.0068 (6)
C9	0.0198 (8)	0.0471 (10)	0.0421 (10)	-0.0010 (7)	0.0073 (7)	0.0142 (8)
C10	0.0302 (10)	0.0678 (13)	0.0387 (11)	-0.0023 (9)	0.0134 (8)	0.0201 (9)
C11	0.0300 (9)	0.0530 (11)	0.0283 (9)	0.0009 (8)	0.0054 (7)	0.0127 (8)
C12	0.0185 (7)	0.0235 (7)	0.0252 (8)	0.0030 (6)	0.0046 (6)	0.0049 (6)
C13	0.0256 (8)	0.0314 (8)	0.0210 (8)	0.0019 (6)	0.0036 (6)	0.0062 (6)
C14	0.0236 (8)	0.0261 (8)	0.0214 (7)	0.0027 (6)	0.0013 (6)	0.0032 (6)
C15	0.0219 (8)	0.0316 (8)	0.0209 (8)	0.0015 (6)	0.0003 (6)	0.0026 (6)
C16	0.0265 (9)	0.0382 (9)	0.0261 (8)	0.0015 (7)	0.0061 (7)	0.0045 (7)
C17	0.0211 (8)	0.0305 (8)	0.0325 (9)	0.0031 (6)	0.0000 (6)	0.0009(7)
C18	0.0273 (9)	0.0488 (10)	0.0250 (9)	0.0033 (8)	-0.0044 (7)	0.0069 (7)
C19	0.0281 (9)	0.0509 (11)	0.0227 (8)	0.0005 (8)	0.0020 (7)	0.0086 (7)
C20	0.0216 (9)	0.0559 (13)	0.0444 (12)	0.0013 (8)	-0.0009 (8)	0.0038 (10)
O2	0.0173 (5)	0.0331 (6)	0.0444 (7)	0.0004 (4)	0.0059 (5)	0.0104 (5)
N5	0.0167 (6)	0.0225 (6)	0.0303 (7)	0.0045 (5)	0.0051 (5)	0.0081 (5)

N6	0.0179 (6)	0.0208 (6)	0.0243 (6)	0.0033 (5)	0.0036 (5)	0.0058 (5)
N7	0.0159 (6)	0.0232 (6)	0.0264 (7)	0.0031 (5)	0.0035 (5)	0.0067 (5)
N8	0.0232 (6)	0.0250 (6)	0.0223 (6)	0.0029 (5)	0.0049 (5)	0.0070 (5)
C21	0.0273 (9)	0.0372 (10)	0.0410 (10)	0.0015 (8)	-0.0063 (8)	0.0148 (8)
C22	0.0232 (8)	0.0210 (7)	0.0274 (8)	0.0022 (6)	-0.0007 (6)	0.0067 (6)
C23	0.0265 (8)	0.0258 (8)	0.0238 (8)	0.0033 (6)	0.0041 (6)	0.0069 (6)
C24	0.0220 (7)	0.0171 (7)	0.0251 (8)	0.0047 (6)	0.0058 (6)	0.0067 (6)
C25	0.0199 (8)	0.0230 (8)	0.0271 (8)	0.0002 (6)	0.0055 (6)	0.0067 (6)
C26	0.0190 (7)	0.0250 (7)	0.0210 (7)	0.0006 (6)	0.0025 (6)	0.0018 (6)
C27	0.0218 (7)	0.0254 (7)	0.0169 (7)	0.0061 (6)	0.0032 (6)	0.0044 (6)
C28	0.0230 (8)	0.0341 (9)	0.0231 (8)	0.0066 (7)	0.0031 (6)	0.0049 (6)
C29	0.0256 (8)	0.0413 (9)	0.0231 (8)	0.0133 (7)	0.0035 (7)	0.0061 (7)
C30	0.0357 (9)	0.0352 (9)	0.0244 (8)	0.0190 (8)	0.0059 (7)	0.0081 (7)
C31	0.0335 (9)	0.0268 (8)	0.0225 (8)	0.0081 (7)	0.0066 (7)	0.0056 (6)
C32	0.0234 (8)	0.0265 (8)	0.0194 (7)	0.0078 (6)	0.0052 (6)	0.0035 (6)
C33	0.0271 (8)	0.0221 (8)	0.0262 (8)	0.0056 (6)	0.0081 (6)	0.0071 (6)
C34	0.0264 (8)	0.0217 (7)	0.0228 (8)	0.0023 (6)	0.0074 (6)	0.0071 (6)
C35	0.0287 (9)	0.0219 (8)	0.0394 (9)	0.0023 (7)	0.0104 (7)	0.0049 (7)
C36	0.0302 (9)	0.0244 (8)	0.0378 (10)	-0.0046 (7)	0.0090 (7)	0.0033 (7)
C37	0.0246 (8)	0.0305 (8)	0.0257 (8)	-0.0014 (6)	0.0084 (6)	0.0101 (6)
C38	0.0286 (8)	0.0245 (8)	0.0275 (8)	0.0054 (7)	0.0061 (6)	0.0094 (6)
C39	0.0274 (8)	0.0211 (7)	0.0242 (8)	0.0011 (6)	0.0033 (6)	0.0068 (6)
C40	0.0256 (9)	0.0435 (11)	0.0355 (10)	0.0003 (8)	0.0096 (7)	0.0061 (8)
O3	0.0263 (6)	0.0266 (6)	0.0310 (6)	0.0078 (5)	0.0085 (5)	0.0116 (5)

Geometric parameters (Å, °)

01—C6	1.2205 (16)	N5—C22	1.3453 (19)
N1-C2	1.3464 (18)	N5—N6	1.3596 (16)
N1—N2	1.3595 (16)	N5—H5	0.928 (18)
N1—H1	0.918 (17)	N6-C24	1.3410 (17)
N2-C4	1.3333 (17)	N7—C26	1.3484 (18)
N3—C6	1.3608 (18)	N7—C27	1.4137 (18)
N3—C7	1.4021 (18)	N7—H7	0.906 (17)
N3—H3A	0.907 (15)	N8—C33	1.2775 (18)
N4—C13	1.2695 (19)	N8—C32	1.4137 (18)
N4—C12	1.4136 (18)	C21—C22	1.487 (2)
C1—C2	1.492 (2)	C21—H21A	0.99 (3)
C1—H1A	0.993 (19)	C21—H21B	0.99 (2)
C1—H1B	0.974 (19)	C21—H21C	1.00 (2)
C1—H1C	0.935 (19)	C22—C23	1.379 (2)
C2—C3	1.374 (2)	C23—C24	1.396 (2)
C3—C4	1.4019 (19)	C23—H23	0.976 (16)
С3—Н3	0.987 (16)	C24—C25	1.493 (2)
C4—C5	1.4999 (19)	C25—C26	1.516 (2)
C5—C6	1.515 (2)	C25—H25A	1.008 (16)
С5—Н5А	0.991 (15)	C25—H25B	0.987 (16)
С5—Н5В	1.004 (16)	C27—C28	1.390 (2)

C7 $C9$	1 2020 (10)	C27 C22	1 408 (2)
$C_{7} = C_{8}$	1.3920(19) 1.4134(19)	$C_{2}^{2} = C_{32}^{2}$	1.408(2) 1 388(2)
C_{1}^{0}	1.4134(1)) 1.383(2)	C28-C27	1.014(18)
C8—H8	0.982(15)	$C_{20} = C_{20}$	1.014(10) 1.385(2)
$C_0 = C_{10}$	1.374(2)	$C_{29} = C_{30}$	1.385(2)
C_{0} H0	1.374(2)	C_{2}^{2}	1.009(17)
C_{9}	0.990(10) 1 282(2)	C_{20} H_{20}	1.379(2)
C10_U10	1.382(2)	C31 C22	0.935(10)
C10—H10	0.98(2)	$C_{21} = U_{21}$	1.390(2)
C11_U11	1.369(2)	C31—H31	0.960(14)
	0.970(18)	$C_{22} = U_{22}$	1.401(2)
C13—C14	1.401(2)	C33—H33	0.971(10)
С13—Н13	0.984 (18)	C34—C35	1.394 (2)
C14—C19	1.395 (2)	C34—C39	1.397 (2)
C14—C15	1.395 (2)	C35—C36	1.383 (2)
C15—C16	1.377 (2)	С35—Н35	0.985 (16)
C15—H15	0.986 (15)	C36—C37	1.388 (2)
C16—C17	1.397 (2)	С36—Н36	0.955 (17)
C16—H16	0.960 (17)	C37—C38	1.394 (2)
C17—C18	1.388 (2)	C37—C40	1.504 (2)
C17—C20	1.503 (2)	C38—C39	1.381 (2)
C18—C19	1.383 (2)	C38—H38	0.949 (15)
C18—H18	0.987 (17)	С39—Н39	0.981 (14)
C19—H19	1.009 (18)	C40—H40A	0.994 (19)
C20—H20A	1.02 (3)	C40—H40B	1.03 (2)
С20—Н20В	1.00 (2)	C40—H40C	0.992 (18)
С20—Н20С	0.98 (3)	O3—H3B	0.92 (2)
O2—C26	1.2322 (17)	O3—H3C	0.87 (2)
C2—N1—N2	112.77 (12)	C22—N5—H5	126.5 (11)
C2—N1—H1	126.3 (10)	N6—N5—H5	120.8 (11)
N2—N1—H1	120.9 (10)	C24—N6—N5	104.31 (11)
C4—N2—N1	104.56 (11)	C26—N7—C27	128.61 (12)
C6—N3—C7	128.49 (12)	C26—N7—H7	116.3 (10)
C6—N3—H3A	118.4 (9)	C27—N7—H7	115.1 (10)
C7—N3—H3A	113.0 (9)	C33—N8—C32	119.62 (13)
C13—N4—C12	122.39 (13)	C22—C21—H21A	109.1 (13)
C2—C1—H1A	110.3 (10)	C22—C21—H21B	110.9 (11)
C2—C1—H1B	111.5 (11)	H21A—C21—H21B	105.8 (18)
H1A—C1—H1B	105.2 (15)	C22—C21—H21C	111.2 (10)
C2-C1-H1C	110.8 (11)	H21A—C21—H21C	105.3 (16)
HIA-CI-HIC	110.7 (15)	H_{21B} C_{21} H_{21C}	114.0 (16)
H1B-C1-H1C	108.1 (15)	N5-C22-C23	106.25(13)
N1 - C2 - C3	105 96 (12)	N5-C22-C21	121 78 (14)
N1 - C2 - C1	121 99 (13)	C^{23} C^{22} C^{21}	131 97 (15)
C_{3} C_{2} C_{1}	132.05 (14)	$C_{22} = C_{23} = C_{24}$	105 66 (13)
$C_{2} = C_{2} = C_{1}$	105.05 (17)	$C_{22} = C_{23} = C_{24}$	128 0 (0)
$C_2 = C_3 = C_1$	105.94 (15)	$C_{22} - C_{23} - H_{23}$	126.0 (9)
$C_2 = C_3 = 113$	123.1(7) 128.0(0)	123 - 123	120.3 (9)
С4—С3—П3	120.9 (9)	NU-U24-U23	111.07 (13)

N2—C4—C3	110.77 (12)	N6—C24—C25	120.87 (13)
N2—C4—C5	120.30 (12)	C23—C24—C25	128.03 (13)
C3—C4—C5	128.88 (13)	C24—C25—C26	118.03 (12)
C4—C5—C6	117.61 (12)	С24—С25—Н25А	111.9 (8)
C4—C5—H5A	107.9 (8)	С26—С25—Н25А	104.5 (8)
С6—С5—Н5А	106.3 (8)	С24—С25—Н25В	109.9 (9)
C4—C5—H5B	110.6 (8)	C26—C25—H25B	106.3 (9)
С6—С5—Н5В	106.5 (8)	H25A—C25—H25B	105.3 (12)
H5A—C5—H5B	107.4 (12)	O2—C26—N7	123.63 (14)
O1—C6—N3	123.85 (13)	O2—C26—C25	120.04 (13)
O1—C6—C5	120.84 (13)	N7—C26—C25	116.33 (12)
N3—C6—C5	115.30 (12)	C28—C27—C32	120.48 (13)
C8—C7—N3	123.57 (13)	C28—C27—N7	123.96 (13)
C8—C7—C12	119.98 (13)	C32—C27—N7	115.56 (12)
N3—C7—C12	116.44 (12)	C29—C28—C27	119.24 (15)
C9—C8—C7	119.49 (15)	С29—С28—Н28	120.9 (10)
С9—С8—Н8	120.4 (9)	С27—С28—Н28	119.9 (10)
C7—C8—H8	120.1 (9)	C_{30} C_{29} C_{28}	120.68 (15)
C10—C9—C8	120.69 (15)	C30—C29—H29	120.4 (9)
C10—C9—H9	121.6 (10)	C28—C29—H29	118.8 (9)
С8—С9—Н9	117.7 (10)	C31—C30—C29	120.25 (15)
C9-C10-C11	120.54 (16)	C31—C30—H30	118.3 (10)
C9—C10—H10	121.1 (11)	С29—С30—Н30	121.5 (10)
С11—С10—Н10	118.3 (11)	C30—C31—C32	120.37 (15)
C10-C11-C12	120.21 (16)	C30—C31—H31	121.9 (8)
C10—C11—H11	119.5 (10)	C32—C31—H31	117.7 (8)
C12—C11—H11	120.3 (11)	C31—C32—C27	118.86 (13)
C11—C12—C7	119.00 (13)	C31—C32—N8	124.36 (13)
C11—C12—N4	125.82 (14)	C27—C32—N8	116.71 (12)
C7—C12—N4	115.11 (12)	N8—C33—C34	122.69 (14)
N4—C13—C14	121.94 (14)	N8—C33—H33	120.2 (9)
N4—C13—H13	121.9 (10)	С34—С33—Н33	117.1 (9)
С14—С13—Н13	116.1 (10)	C35—C34—C39	118.27 (14)
C19—C14—C15	118.66 (14)	C35—C34—C33	119.59 (13)
C19—C14—C13	119.64 (14)	C39—C34—C33	122.11 (13)
C15—C14—C13	121.70 (13)	C36—C35—C34	120.77 (15)
C16—C15—C14	120.17 (14)	С36—С35—Н35	118.7 (9)
С16—С15—Н15	122.5 (9)	C34—C35—H35	120.5 (9)
C14—C15—H15	117.3 (9)	C35—C36—C37	121.15(15)
C_{15} C_{16} C_{17}	121.55 (15)	C35—C36—H36	119.8 (10)
C15 - C16 - H16	117.6 (10)	C37—C36—H36	119.0 (10)
C17—C16—H16	120.7 (10)	$C_{36} - C_{37} - C_{38}$	117.97 (14)
C18 - C17 - C16	117 97 (14)	$C_{36} - C_{37} - C_{40}$	12110(14)
C18—C17—C20	121.12 (15)	C38—C37—C40	120.91 (15)
C16—C17—C20	120.91 (15)	C39—C38—C37	121.34 (15)
C19—C18—C17	121.03 (15)	C39—C38—H38	119.0 (9)
C19—C18—H18	120.0 (10)	C37—C38—H38	119.7 (9)
C17—C18—H18	119.0 (10)	C_{38} C_{39} C_{34}	120 47 (14)

C18—C19—C14	120.62 (15)	С38—С39—Н39	120.9 (8)
C18—C19—H19	121.2 (10)	С34—С39—Н39	118.6 (8)
С14—С19—Н19	118.2 (10)	C37—C40—H40A	110.8 (10)
C17—C20—H20A	112.0 (14)	C37—C40—H40B	114.9 (11)
C17—C20—H20B	111.1 (12)	H40A—C40—H40B	104.2(15)
$H_{20A} - C_{20} - H_{20B}$	108.0(19)	C_{37} C_{40} $H_{40}C$	1121(10)
C17 - C20 - H20C	1115(14)	H40A - C40 - H40C	1074(14)
$H_{20A} - C_{20} - H_{20C}$	105.7(19)	H40B-C40-H40C	106.9(15)
$H_{20B} = C_{20} = H_{20C}$	108.4(18)	H3B-O3-H3C	106.3(19)
$C_{22} N_{5} N_{6}$	11271(12)		100.5 (17)
	112./1 (12)		
C2—N1—N2—C4	-0.19(15)	C22—N5—N6—C24	0.17 (15)
$N_2 - N_1 - C_2 - C_3$	-0.09(16)	N6—N5—C22—C23	0.04(16)
$N_2 - N_1 - C_2 - C_1$	-17953(13)	N6-N5-C22-C21	-17952(13)
N1-C2-C3-C4	0.31 (16)	$N_{5} - C_{22} - C_{23} - C_{24}$	-0.23(16)
C1 - C2 - C3 - C4	179 67 (15)	C_{21} C_{22} C_{23} C_{24}	179 27 (16)
N1 - N2 - C4 - C3	0.39(15)	N5_N6_C24_C23	-0.32(15)
N1 - N2 - C4 - C5	-17740(12)	$N_{5} = N_{6} = C_{24} = C_{25}$	177.99(12)
$C_2 - C_3 - C_4 - N_2$	-0.45(17)	$C_{22} = C_{23} = C_{24} = N_6$	0.35(16)
$C_2 - C_3 - C_4 - C_5$	$177\ 10\ (13)$	$C_{22} = C_{23} = C_{24} = C_{25}$	$-177\ 80\ (14)$
$N_2 - C_4 - C_5 - C_6$	-120.07(14)	N6-C24-C25-C26	75 24 (18)
$C_3 - C_4 - C_5 - C_6$	62.6 (2)	C_{23} C_{24} C_{25} C_{26}	-10677(17)
C7-N3-C6-O1	23(2)	$C_{27} N_{7} C_{26} Q_{2}$	2 3 (2)
C7-N3-C6-C5	-17885(12)	$C_{27} N_{7} C_{26} C_{25}$	-178.09(13)
C4-C5-C6-O1	-15435(13)	C_{24} C_{25} C_{26} C	167 33 (13)
C4-C5-C6-N3	26.74 (18)	C_{24} C_{25} C_{26} N_{7}	-12.3(2)
C6-N3-C7-C8	-45(2)	$C_{26} N_{7} C_{27} C_{28}$	12.5(2)
C6-N3-C7-C12	174.38 (13)	$C_{26} = N7 = C_{27} = C_{26}$	-167.60(13)
N3-C7-C8-C9	176.28 (14)	C_{32} C_{27} C_{28} C_{29}	-2.3(2)
C12—C7—C8—C9	-2.6(2)	N7—C27—C28—C29	177.62 (13)
C7—C8—C9—C10	0.4 (3)	C27—C28—C29—C30	-0.8(2)
C8-C9-C10-C11	1.6 (3)	C_{28} C_{29} C_{30} C_{31}	2.0 (2)
C9—C10—C11—C12	-1.3 (3)	C29—C30—C31—C32	-0.1(2)
C10—C11—C12—C7	-0.9(3)	C30—C31—C32—C27	-2.9(2)
C10-C11-C12-N4	-177.53 (16)	C30—C31—C32—N8	-179.62 (13)
C8—C7—C12—C11	2.8 (2)	C28—C27—C32—C31	4.1 (2)
N3—C7—C12—C11	-176.12 (13)	N7—C27—C32—C31	-175.82 (12)
C8—C7—C12—N4	179.83 (12)	C28—C27—C32—N8	-178.92 (12)
N3—C7—C12—N4	0.90 (18)	N7—C27—C32—N8	1.15 (18)
C13—N4—C12—C11	-6.3 (2)	C33—N8—C32—C31	-30.9(2)
C13—N4—C12—C7	176.92 (13)	C33—N8—C32—C27	152.35 (13)
C12—N4—C13—C14	175.65 (13)	C32—N8—C33—C34	176.83 (12)
N4—C13—C14—C19	-177.01 (15)	N8—C33—C34—C35	-177.46 (14)
N4—C13—C14—C15	2.4 (2)	N8—C33—C34—C39	0.4 (2)
C19—C14—C15—C16	0.8 (2)	C39—C34—C35—C36	-0.7 (2)
C13—C14—C15—C16	-178.54 (14)	C33—C34—C35—C36	177.20 (14)
C14—C15—C16—C17	0.0 (2)	C34—C35—C36—C37	-0.2 (2)
C15—C16—C17—C18	-0.7 (2)	C35—C36—C37—C38	0.8 (2)

C15—C16—C17—C20	179.76 (16)	C35—C36—C37—C40	-177.95 (15)
C16-C17-C18-C19	0.6 (3)	C36—C37—C38—C39	-0.4 (2)
C20-C17-C18-C19	-179.91 (17)	C40—C37—C38—C39	178.34 (14)
C17—C18—C19—C14	0.3 (3)	C37—C38—C39—C34	-0.6 (2)
C15—C14—C19—C18	-1.0 (2)	C35—C34—C39—C38	1.1 (2)
C13—C14—C19—C18	178.41 (15)	C33—C34—C39—C38	-176.75 (13)

Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg6 are the centroids of the N1/N2/C2-C4, C14-C19 and C34-C39 rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1···O2 ⁱ	0.92 (2)	1.88 (2)	2.7863 (18)	169 (2)
O3—H3 <i>B</i> ···N2	0.92 (2)	1.91 (2)	2.8047 (19)	165 (2)
O3—H3 <i>C</i> ···N6 ⁱⁱ	0.87 (2)	2.09 (2)	2.9530 (18)	174 (2)
N5—H5…O3 ⁱⁱⁱ	0.93 (2)	1.878 (19)	2.8014 (18)	173 (2)
N7—H7…N6	0.91 (2)	2.447 (17)	3.1314 (19)	132.6 (13)
C1—H1A····O1 ^{iv}	0.99 (2)	2.56 (2)	3.436 (2)	146.9 (15)
C8—H8…O1	0.98 (2)	2.228 (15)	2.858 (2)	120.8 (12)
C28—H28…O2	1.01 (2)	2.265 (18)	2.890 (2)	118.5 (13)
C35—H35…N4 ^v	0.99 (2)	2.532 (18)	3.451 (2)	155.2 (13)
N3—H3 <i>A</i> ··· <i>Cg</i> 1	0.91 (2)	2.999 (15)	3.6216 (17)	127.4 (12)
C5—H5 <i>B</i> ··· <i>Cg</i> 6 ⁱⁱ	1.00 (2)	2.820 (16)	3.7171 (18)	149.0 (12)
C11—H11…Cg6	0.98 (2)	2.837 (19)	3.713 (2)	149.8 (14)
C15—H15…Cg1	0.99 (2)	2.913 (15)	3.7979 (19)	149.8 (12)
C20—H20 B ···Cg3 ⁱ	1.00 (2)	2.88 (2)	3.772 (3)	148.9 (16)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z; (v) -x, -y, -z+1.