CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 18 January 2019
Accepted 28 January 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; nickel(II) thiocyanate; discrete complex; solvate; hydrogen bonding.

CCDC reference: 1894170

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure of bis(4-benzoylpyridine- κN)bis-(methanol-кO)bis(thiocyanato- κ N) nickel(II) methanol monosolvate

Carsten Wellm* and Christian Näther

Institut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 241128 Kiel. *Correspondence e-mail: cwellm@ac.uni-kiel.de

The asymmetric unit of the title compound, $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$-$\mathrm{CH}_{3} \mathrm{OH}$, comprises one $\mathrm{Ni}^{\mathrm{II}}$ cation, two thiocyanate anions, two 4-benzoylpyridine coligands, two coordinating, as well as one non-coordinating methanol molecule. The $\mathrm{Ni}^{\mathrm{II}}$ cation is coordinated by two terminally N -bonded thiocyanate anions, the N atoms of two 4-benzoylpyridine coligands and the O atoms of two methanol ligands within a slightly distorted octahedron. Individual complexes are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding into chains parallel to [010] that are further connected into layers parallel to (10 $\overline{1}$) by $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds. Additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions lead to the formation of a three-dimensional network that limits channels extending parallel to [010] in which the non-coordinating methanol molecules are located. They are hydrogen-bonded to the coordinating methanol molecules. X-ray powder diffraction revealed that the compound could not be prepared as a pure phase.

1. Chemical context

Thiocyanate anions are versatile ligands that can coordinate to metal cations in different manners, leading to a variety of structural set-ups. The most common coordination modes are the N -terminal and the μ-1,3-bridging coordination, but, as an example, there are also reports of a $\mu-1,1$-coordination (Prananto et al., 2017; Buckingham, 1994; Palion-Gazda et al., 2017; Mautner et al., 2016, 2017; Mahmoudi et al., 2017; Hamdani et al., 2018; Wöhlert et al., 2014a,b). With respect to paramagnetic transition metal cations, the μ-1,3-bridging mode is of special importance because it can mediate the magnetic exchange (Gonzalez et al., 2012; Wöhlert et al., 2013a,b; Palion-Gazda et al., 2015; Guillet et al., 2016; Mekuimemba et al., 2018). In this context, an increasing number of compounds with different magnetic properties are being reported (Wöhlert et al., 2014a,b; Werner et al., 2015; Suckert et al., 2017a; Mautner et al., 2018). In the majority of cases, the metal cations are linked by thiocyanate anions into chains, but there are also examples where layer formation is observed (Suckert et al., 2016; Wellm et al., 2018; Neumann et al., 2018a).

Unfortunately, for most paramagnetic transition metal cations, the bridging modes are energetically less favored and thus, compounds with a terminal coordination are usually obtained. Nevertheless, we have found an alternative approach to overcome this problem by transformation of the latter compounds through thermal annealing into the desired compounds that have bridging anions. For the alternative
synthesis of such coordination polymers with bridging anionic ligands, a precursor consisting of a discrete complex can be used in which the metal cations are coordinated by two terminal N -bonded thiocyanate anions and four co-ligands that, in our cases, consist of pyridine derivatives. Upon controlled heating, two of the four co-ligands can be removed. Frequently, this treatment yields the desired compounds with bridging coordination as intermediates, which can easily be investigated by thermogravimetry. In some cases, no discrete decomposition steps are observed because all co-ligands are removed in one step. Under these circumstances, alternatives are required that are based on precursor complexes comprising only two of the pyridine derivatives as ligands and two coordinating and volatile molecules such as water or methanol. The ligand molecules are emitted in a discrete step (also observable in a thermogravimetrical measurement), which directly produces the desired compounds in quantitative yield. It is also noted that this approach often leads to the formation of polymorphs or isomers that are different from the compounds obtained from solution (Werner et al., 2015; Jochim et al., 2018).

In this context we have reported two isotypic compounds with chain-structures that have the general composition $M(\mathrm{NCS})_{2}$ (4-benzoylpyridine) $)_{2}$ where $M=\mathrm{Co}, \mathrm{Ni}$ (Rams et al., 2017; Jochim et al., 2018). Here the metal cations are linked into linear chains with a cis-cis-trans coordination, in contrast to most other compounds with similar linear chains where all ligands are in trans positions. This is somewhat surprising because $\mathrm{Cd}(\mathrm{NCS})_{2}$ (4-benzoylpyridine) $)_{2}$ also forms linear chains with an all-trans coordination of the cations (Neumann et al., 2018a). Therefore, our intention was to test if a different isomer with, for example, Ni can be prepared by thermal annealing. A complex with composition $\mathrm{Ni}(\mathrm{NCS})_{2}(4-$ benzoylpyridine $)_{4}$ has already been reported in the literature. It decomposes in several steps, but only the intermediate after complete removal of 4-benzoylpyridine was examined (Soliman et al., 2014). We have synthesized this compound again and investigated its thermal properties. The residue formed after removal of half of the 4-benzoylpyiridine ligands is of poor crystallinity and does not correspond to a pure phase. Therefore, we searched for a more promising precursor;
during these investigations, crystals of the title compound were obtained and characterized by single crystal X-ray diffraction. X-ray powder diffraction revealed that the compound directly isolated from the reaction mixture is a nearly pure phase but always contaminated with a very small amount of $\mathrm{Ni}(\mathrm{NCS})_{2}$ (4-benzoylpyridine) $)_{4}$ (see Fig. S1 in the supporting information). More importantly, if the title compound is filtered off, it decomposes very quickly into an unknown crystalline phase that does not correspond to that of $\mathrm{Ni}(\mathrm{NCS})_{2}$ (4-benzoylpyridine) ${ }_{4}$ already reported in the literature. However, this sample is still contaminated with $\mathrm{Ni}(\mathrm{NCS})_{2}$ (4-benzoylpyridine) $)_{4}$, and any attempt to completely index its powder pattern failed (Fig. S2 in the supporting information).

2. Structural commentary

The crystal structure of the title compound consists of discrete complexes in which the $\mathrm{Ni}^{\mathrm{II}}$ cations are sixfold coordinated by two crystallographically independent thiocyanate anions, two methanol molecules and two 4-benzoylpyridine ligands (Fig. 1). The $\mathrm{Ni}-\mathrm{N}$ bond lengths to the anionic ligands of 2.009 (3) and 2.034 (3) \AA are shorter than those to the 4-benzoylpyridine ligands [2.092 (2) and 2.104 (2) \AA; the NiO distances to the methanol ligands are longer again at 2.108 (2) and 2.154 (2) \AA. The coordination sphere around $\mathrm{Ni}^{\mathrm{II}}$ can be described as a slightly distorted octahedron. This is also obvious from the angle variance and the quadratic elon-

Figure 1
The asymmetric unit of the solvated title complex with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C32-H32 . S $2^{\text {i }}$	0.95	3.01	3.865 (3)	151
C34-H34...O11 ${ }^{\text {ii }}$	0.95	2.50	3.406 (4)	160
C35-H35 . N 1	0.95	2.65	3.113 (4)	111
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.84	1.83	2.643 (3)	163
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\text {iii }}$	0.84	2.44	3.246 (2)	160
O3-H3 . O11 ${ }^{\text {iii }}$	0.84	1.98	2.808 (3)	166

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x-1, y, z$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
gation, which were calculated to be 4.7 and 1.022 (Robinson et al., 1971). The 4-benzoylpyridine ligand is not planar. The dihedral angle between the pyridine ring (N11, C11-C15) and the carbonyl plane ($\mathrm{C} 13, \mathrm{C} 16, \mathrm{C} 17, \mathrm{O} 11$) amounts to $56.86(16)^{\circ}$ and that between the phenyl ring (C17-C22) and the carbonyl group (C13, C16, C17, O11) to $12.49(17)^{\circ}$. The second ligand has corresponding values of $48.61(17)^{\circ}$ between the pyridine ring (N31, C31-C35) and the carbonyl group (C33, C36, C37, O31) and 16.69 (18) ${ }^{\circ}$ between the phenyl ring (C37-C42) and the carbonyl group (C33, C36, C37, O31). There is a short intramolecular contact between one of the aromatic hydrogen atoms (H35) and one of the thiocyanate N

Figure 2
Crystal structure of the title compound in a view along (top) and perpendicular (bottom) to the hydrogen-bonded chains. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding is shown as dashed lines.
atoms (N 1); however, the corresponding $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ angle deviates strongly from linearity, indicating only a weak interaction (Table 1).

3. Supramolecular features

The crystal structure of the title compound is dominated by extensive intermolecular classical and non-classical hydrogenbonding interactions of medium-to-weak strengths (Table 1). Discrete complexes are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into chains extending parallel to [010] (Fig. 2, top). Within such a chain, the complexes are related by the $2_{1^{-}}$ screw axis, resulting in a helical arrangement (Fig. 2, bottom). These chains are further linked by pairs of centrosymmetric $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds into layers extending parallel to (101) (Fig. 3). Adjacent layers are linked into a three-dimensional network by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between a hydrogen atom (H34) of one of the phenyl rings and the carbonyl O atom (O11) of a neighboring 4-benzoylpyridine ligand (Fig. 4). Within this network channels are formed in which the non-coordinating methanol molecules are embedded (Fig. 4). The solvent molecules are linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and act both as a donor (O3) to a neighbouring carbonyl O atom (O 11) and as an acceptor for a hydroxyl group (O1) of a methanol ligand (Fig. 4).

4. Database survey

In the Cambridge Structure Database (Version 5.39, last update Aug 2018; Groom et al., 2016) several structures of

Figure 3
Crystal structure of the title compound in a view approximately [110] showing the layers formed by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding (shown as dashed lines).

Figure 4
Crystal structure of the title compound in a view along [010] showing the channels that are filled with the non-coordinating methanol molecules. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}, \quad \mathrm{C}-\mathrm{H} \cdots \mathrm{S}, \quad \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is shown as dashed lines; the oval channels are marked with thick lines.
transition-metal thiocyanate coordination compounds with 4-benzoylpyridine as ligand have been deposited. They include three compounds with the composition $\left[M(\mathrm{NCS})_{2}(4-\right.$ benzoylpyridine $\left.)_{2}\right]_{n}(M=\mathrm{Cd}, \mathrm{Co}, \mathrm{Ni})$, in which the metal cations are octahedrally coordinated and linked into chains by pairs of $\mu-1,3$ bridging thiocyanate anions (Neumann et al., 2018a; Rams et al., 2017; Jochim et al., 2018). Discrete complexes with general composition $M(\mathrm{NCS})_{2}$ (4-benzoylpyridine $)_{4}(M=\mathrm{Co}, \mathrm{Ni}, \mathrm{Mn}, \mathrm{Cd}$ and Zn$)$ are also reported in which the metal cations are octahedrally coordinated by two terminal N -bonded thiocyanate anions and four 4-benzoylpyridine co-ligands (Drew et al., 1985; Soliman et al., 2014; Wellm \& Näther, 2018; Neumann et al., 2018b). There are also compounds where the metal cations are fourfold coordinated by the two N -bonded terminal thiocyanate anions and two 4-benzoylpyridine co-ligands, forming either a tetrahedral ($\mathrm{Zn}^{\mathrm{II}}$ complex) or a square-planar ($\mathrm{Cu}^{\mathrm{II}}$ complex) coordination sphere (Neumann et al., 2018a; Bai et al., 2011). The last group consists of octahedrally coordinated $\mathrm{Co}^{\mathrm{II}}$ cations that either contain two acetonitrile (Suckert et al., 2017b) or two methanol molecules (Suckert et al., 2017c) as coordinating solvent molecules.

5. Synthesis and crystallization

$\mathrm{Ba}(\mathrm{SCN})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and 4-benzoylpyridine were purchased from Alfa Aesar. $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was purchased from Merck. All solvents and reactants were used without further purification. $\mathrm{Ni}(\mathrm{NCS})_{2}$ was prepared by the reaction of equimolar amounts of $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ba}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in water. The resulting white precipitate of BaSO_{4} was filtered off, and the solvent was evaporated from the filtrate. The product was dried at

Table 2
Experimental details.
Crystal data

Chemical formula	$\begin{aligned} & {\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]} \\ & \quad \mathrm{CH}_{4} \mathrm{O} \end{aligned}$
$M_{\text {r }}$	637.40
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	200
$a, b, c(\AA)$	$\begin{aligned} & 12.0588(6), 7.5515(3), \\ & 33.0408(16) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	94.021 (4)
$V\left(\AA^{3}\right)$	3001.4 (2)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.83
Crystal size (mm)	$0.25 \times 0.15 \times 0.08$
Data collection	
Diffractometer	Stoe IPDS2
Absorption correction	Numerical (X-SHAPE and X-RED32; Stoe, 2008)
$T_{\text {min }}, T_{\text {max }}$	0.638, 0.875
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	17675, 4726, 4004
$R_{\text {int }}$	0.036
$\theta_{\text {max }}\left({ }^{\circ}\right)$	24.1
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.574
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.041, 0.105, 1.10
No. of reflections	4726
No. of parameters	371
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.46,-0.26$

Computer programs: X-AREA (Stoe, 2008), XP in SHELXTL and SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).
room temperature. Crystals of the title compound suitable for single-crystal X-ray diffraction were obtained within a few days by the reaction of $52.5 \mathrm{mg} \mathrm{Ni}(\mathrm{NCS})_{2}(0.30 \mathrm{mmol})$ with 27.5 mg 4-benzoylpyridine $(0.15 \mathrm{mmol})$ in methanol $(1.5 \mathrm{ml})$ at 354 K using culture tubes.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were positioned with idealized geometry ($\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$; methyl H atoms in part were allowed to rotate but not to tip) and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ (1.5 for methyl H atoms) using a riding model. The OH hydrogen atoms were located in a difference-Fourier map; their bond lengths were set to ideal values and finally they were refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ using a riding model.

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/6-1) and the State of Schleswig-Holstein.

References

Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. \& Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338-1344.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.
Drew, M. G. B., Gray, N. I., Cabral, M. F. \& Cabral, J. O. (1985). Acta Cryst. C41, 1434-1437.
EL Hamdani, H., EL Amane, M. \& Duhayon, C. (2018). J. Mol. Struct. 1157, 1-7.
González, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. \& Faus, J. C. (2012). Inorg. Chem. 51, 5737-5747.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Guillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. \& Doerrer, L. H. (2016). Inorg. Chem. 55, 8099-8109.
Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. \& Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.
Mahmoudi, G., Zangrando, E., Kaminsky, W., Garczarek, P. \& Frontera, A. (2017). Inorg. Chim. Acta, 455, 204-212.
Mautner, F. A., Berger, C., Fischer, R. \& Massoud, S. (2016). Inorg. Chim. Acta, 448, 34-41.
Mautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. \& Massoud, S. (2017). Polyhedron, 124, 237-242.
Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. \& Massoud, S. S. (2018). Polyhedron, 154, 436-442.

Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. \& Triki, S. (2018). Inorg. Chem. 57, 2184-2192.

Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. \& Näther, C. (2018a). Inorg. Chem. 57, 3305-3314.
Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. \& Näther, C. (2018b). Inorg. Chim. Acta, 478, 15-24.

Palion-Gazda, J., Gryca, I., Maroń, A., Machura, B. \& Kruszynski, R. (2017). Polyhedron, 135, 109-120.

Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Prananto, Y. B., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. \& Batten, S. R. (2017). Aust. J. Chem. 70, 516528.

Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 32323243.

Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567570.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. \& Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. \& Näther, C. (2016). Dalton Trans. 45, 1819018201.

Suckert, S., Rams, M., Rams, M. R. \& Näther, C. (2017a). Inorg. Chem. 56, 8007-8017.
Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017b). Acta Cryst. E73, 365-368.
Suckert, S., Werner, J., Jess, I. \& Näther, C. (2017c). Acta Cryst. E73, 616-619.
Wellm, C. \& Näther, C. (2018). Acta Cryst. E74, 1899-1902.
Wellm, C., Rams, M., Neumann, T., Ceglarska, M. \& Näther, C. (2018). Cryst. Growth Des. 18, 3117-3123.

supporting information

Crystal structure of bis(4-benzoylpyridine- $\kappa \mathrm{N}$)bis(methanol- κ O)bis(thiocyanatoκN)nickel(II) methanol monosolvate

Carsten Wellm and Christian Näther

Computing details

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-benzoylpyridine- $\kappa \mathrm{N}$) bis(methanol- $\kappa \mathrm{O}$) bis(thiocyanato- $\kappa \mathrm{N}$) nickel(II) methanol monosolvate

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=637.40$
Monoclinic, $P 2_{1} / n$
$a=12.0588$ (6) \AA
$b=7.5515$ (3) \AA
$c=33.0408(16) \AA$
$\beta=94.021$ (4) ${ }^{\circ}$
$V=3001.4$ (2) \AA^{3}
$Z=4$

Data collection

Stoe IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
$T_{\text {min }}=0.638, T_{\text {max }}=0.875$
17675 measured reflections
$F(000)=1328$
$D_{\mathrm{x}}=1.411 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 17675 reflections
$\theta=1.2-24.1^{\circ}$
$\mu=0.83 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, green
$0.25 \times 0.15 \times 0.08 \mathrm{~mm}$

4726 independent reflections
4004 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=24.1^{\circ}, \theta_{\text {min }}=1.2^{\circ}$
$h=-13 \rightarrow 13$
$k=-8 \rightarrow 8$
$l=-37 \rightarrow 37$

Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0571 P)^{2}+0.7722 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.46 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.26$ e \AA^{-3}

371 parameters
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Nil	0.58556 (3)	0.48583 (5)	0.16271 (2)	0.04735 (13)
N1	0.5502 (2)	0.3421 (3)	0.21226 (7)	0.0550 (6)
C1	0.5445 (2)	0.2585 (4)	0.24141 (9)	0.0488 (7)
S1	0.53684 (8)	0.13868 (12)	0.28229 (2)	0.0659 (2)
N2	0.6201 (2)	0.6432 (3)	0.11620 (8)	0.0584 (6)
C2	0.6290 (2)	0.7419 (4)	0.08932 (8)	0.0488 (6)
S2	0.64295 (7)	0.87918 (12)	0.05253 (2)	0.0638 (2)
N11	0.7197 (2)	0.3188 (3)	0.15150 (7)	0.0487 (5)
C11	0.7138 (3)	0.1421 (4)	0.15605 (9)	0.0528 (7)
H11	0.6443	0.0913	0.1614	0.063*
C12	0.8037 (3)	0.0310 (4)	0.15339 (9)	0.0545 (7)
H12	0.7950	-0.0936	0.1556	0.065*
C13	0.9062 (2)	0.1032 (4)	0.14754 (8)	0.0516 (7)
C14	0.9127 (3)	0.2864 (4)	0.14232 (9)	0.0534 (7)
H14	0.9819	0.3406	0.1378	0.064*
C15	0.8191 (3)	0.3869 (4)	0.14378 (8)	0.0524 (7)
H15	0.8244	0.5107	0.1391	0.063*
C16	1.0109 (3)	-0.0051 (4)	0.14785 (9)	0.0543 (7)
C17	1.0192 (3)	-0.1532 (4)	0.11893 (9)	0.0538 (7)
C18	1.1107 (3)	-0.2650 (5)	0.12354 (11)	0.0645 (8)
H18	1.1639	-0.2506	0.1459	0.077*
C19	1.1240 (3)	-0.3976 (5)	0.09531 (12)	0.0723 (10)
H19	1.1861	-0.4751	0.0985	0.087*
C20	1.0476 (3)	-0.4176 (4)	0.06269 (11)	0.0689 (9)
H20	1.0577	-0.5080	0.0433	0.083*
C21	0.9566 (3)	-0.3071 (4)	0.05800 (10)	0.0638 (8)
H21	0.9038	-0.3216	0.0355	0.077*
C22	0.9424 (3)	-0.1748 (4)	0.08619 (9)	0.0555 (7)
H22	0.8797	-0.0986	0.0830	0.067*
O11	1.08903 (18)	0.0371 (3)	0.17175 (7)	0.0681 (6)
N31	0.4723 (2)	0.3367 (3)	0.12595 (7)	0.0496 (6)
C31	0.4886 (3)	0.2922 (4)	0.08771 (9)	0.0536 (7)
H31	0.5575	0.3230	0.0773	0.064*
C32	0.4118 (3)	0.2047 (4)	0.06254 (9)	0.0553 (7)
H32	0.4283	0.1743	0.0357	0.066*
C33	0.3094 (2)	0.1610 (4)	0.07678 (9)	0.0510 (7)
C34	0.2925 (3)	0.2062 (4)	0.11660 (9)	0.0541 (7)
H34	0.2241	0.1780	0.1277	0.065*
C35	0.3740 (3)	0.2911 (4)	0.13971 (9)	0.0534 (7)

H35	0.3608	0.3194	0.1670	0.064*
C36	0.2167 (3)	0.0776 (4)	0.05069 (9)	0.0556 (7)
C37	0.2378 (3)	-0.0814 (4)	0.02630 (9)	0.0529 (7)
C38	0.1594 (3)	-0.1303 (5)	-0.00466 (9)	0.0626 (8)
H38	0.0944	-0.0608	-0.0100	0.075*
C39	0.1759 (4)	-0.2788 (5)	-0.02748 (11)	0.0747 (10)
H39	0.1228	-0.3105	-0.0488	0.090*
C40	0.2696 (4)	-0.3824 (5)	-0.01951 (12)	0.0828 (12)
H40	0.2800	-0.4858	-0.0352	0.099*
C41	0.3480 (3)	-0.3361 (5)	0.01117 (12)	0.0758 (10)
H41	0.4120	-0.4077	0.0167	0.091*
C42	0.3325 (3)	-0.1839 (4)	0.03387 (10)	0.0596 (8)
H42	0.3869	-0.1501	0.0546	0.071*
O31	0.1247 (2)	0.1446 (3)	0.05102 (8)	0.0762 (7)
O1	0.45471 (18)	0.6547 (3)	0.17699 (6)	0.0590 (5)
H1	0.4265	0.6291	0.1988	0.089*
C3	0.4305 (3)	0.8282 (5)	0.16255 (13)	0.0801 (11)
H3A	0.3642	0.8727	0.1747	0.120*
H3B	0.4937	0.9062	0.1700	0.120*
H3C	0.4171	0.8256	0.1330	0.120*
O2	0.69448 (18)	0.6461 (3)	0.20203 (6)	0.0604 (5)
H2	0.7622	0.6195	0.2026	0.091*
C4	0.6653 (3)	0.7267 (6)	0.23878 (12)	0.0854 (12)
H4A	0.7293	0.7924	0.2510	0.128*
H4B	0.6030	0.8082	0.2330	0.128*
H4C	0.6437	0.6349	0.2577	0.128*
O3	0.3644 (2)	0.6458 (4)	0.24757 (8)	0.0844 (8)
H3	0.3838	0.5988	0.2700	0.127*
C5	0.2807 (4)	0.7704 (7)	0.25548 (14)	0.1051 (15)
H5A	0.2179	0.7090	0.2666	0.158*
H5B	0.2553	0.8303	0.2302	0.158*
H5C	0.3109	0.8580	0.2752	0.158*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0524(2)$	$0.0467(2)$	$0.0431(2)$	$-0.00002(16)$	$0.00477(15)$	$0.00073(15)$
N1	$0.0544(15)$	$0.0607(15)$	$0.0499(13)$	$0.0041(12)$	$0.0036(11)$	$0.0030(12)$
C1	$0.0465(16)$	$0.0523(16)$	$0.0477(15)$	$0.0025(13)$	$0.0045(12)$	$-0.0028(13)$
S1	$0.0660(5)$	$0.0740(5)$	$0.0582(4)$	$0.0013(4)$	$0.0086(4)$	$0.0192(4)$
N2	$0.0653(17)$	$0.0552(15)$	$0.0551(14)$	$-0.0033(12)$	$0.0074(12)$	$-0.0009(12)$
C2	$0.0482(16)$	$0.0511(16)$	$0.0471(15)$	$-0.0007(13)$	$0.0036(13)$	$-0.0006(13)$
S2	$0.0660(5)$	$0.0682(5)$	$0.0574(4)$	$-0.0027(4)$	$0.0056(4)$	$0.0168(4)$
N11	$0.0527(14)$	$0.0484(13)$	$0.0454(12)$	$-0.0049(11)$	$0.0066(11)$	$-0.0028(10)$
C11	$0.0473(16)$	$0.0508(17)$	$0.0609(17)$	$-0.0061(13)$	$0.0089(14)$	$-0.0011(13)$
C12	$0.0552(18)$	$0.0482(16)$	$0.0607(17)$	$-0.0008(14)$	$0.0076(14)$	$-0.0016(13)$
C13	$0.0521(17)$	$0.0562(17)$	$0.0468(14)$	$-0.0021(14)$	$0.0064(13)$	$-0.0059(13)$
C14	$0.0509(17)$	$0.0540(17)$	$0.0566(16)$	$-0.0069(14)$	$0.0129(14)$	$-0.0041(13)$

C15	$0.0595(18)$	$0.0475(15)$	$0.0508(15)$	$-0.0096(14)$	$0.0091(14)$	$-0.0030(12)$
C16	$0.0503(17)$	$0.0591(18)$	$0.0542(16)$	$-0.0020(14)$	$0.0084(14)$	$0.0003(14)$
C17	$0.0517(17)$	$0.0541(17)$	$0.0568(17)$	$-0.0014(14)$	$0.0114(14)$	$0.0025(13)$
C18	$0.0559(19)$	$0.065(2)$	$0.074(2)$	$0.0064(16)$	$0.0109(16)$	$0.0085(16)$
C19	$0.074(2)$	$0.0584(19)$	$0.087(2)$	$0.0152(17)$	$0.029(2)$	$0.0090(18)$
C20	$0.082(2)$	$0.0527(18)$	$0.075(2)$	$0.0000(17)$	$0.028(2)$	$-0.0030(16)$
C21	$0.072(2)$	$0.0563(18)$	$0.0642(19)$	$-0.0028(17)$	$0.0143(16)$	$-0.0047(15)$
C22	$0.0573(18)$	$0.0527(17)$	$0.0571(16)$	$0.0004(14)$	$0.0092(14)$	$-0.0001(13)$
O11	$0.0538(13)$	$0.0825(16)$	$0.0674(13)$	$-0.0034(11)$	$0.0007(12)$	$-0.0082(12)$
N31	$0.0513(14)$	$0.0516(13)$	$0.0464(12)$	$0.0024(11)$	$0.0056(11)$	$0.0013(10)$
C31	$0.0535(17)$	$0.0590(17)$	$0.0492(15)$	$-0.0048(14)$	$0.0096(13)$	$-0.0017(13)$
C32	$0.0594(19)$	$0.0586(17)$	$0.0481(15)$	$-0.0037(15)$	$0.0053(14)$	$-0.0052(13)$
C33	$0.0511(17)$	$0.0450(15)$	$0.0566(16)$	$0.0026(13)$	$0.0021(14)$	$0.0010(13)$
C34	$0.0506(17)$	$0.0531(17)$	$0.0591(17)$	$0.0005(14)$	$0.0084(14)$	$0.0016(14)$
C35	$0.0545(18)$	$0.0576(17)$	$0.0486(15)$	$0.0014(14)$	$0.0070(14)$	$0.0013(13)$
C36	$0.0528(19)$	$0.0538(17)$	$0.0594(17)$	$-0.0007(14)$	$-0.0019(14)$	$0.0020(14)$
C37	$0.0575(18)$	$0.0497(16)$	$0.0520(16)$	$-0.0070(14)$	$0.0083(14)$	$0.0016(13)$
C38	$0.067(2)$	$0.068(2)$	$0.0534(17)$	$-0.0148(17)$	$0.0042(15)$	$0.0026(15)$
C39	$0.085(3)$	$0.080(2)$	$0.0602(19)$	$-0.029(2)$	$0.0132(18)$	$-0.0120(18)$
C40	$0.096(3)$	$0.073(2)$	$0.084(3)$	$-0.027(2)$	$0.037(2)$	$-0.025(2)$
C41	$0.076(2)$	$0.062(2)$	$0.092(3)$	$-0.0005(18)$	$0.025(2)$	$-0.0069(19)$
C42	$0.0594(19)$	$0.0527(17)$	$0.0674(19)$	$-0.0043(15)$	$0.0101(15)$	$-0.0008(15)$
O31	$0.0551(14)$	$0.0694(15)$	$0.1020(18)$	$0.0078(12)$	$-0.0103(13)$	$-0.0142(13)$
O1	$0.0676(14)$	$0.0550(12)$	$0.0551(11)$	$0.0074(10)$	$0.0087(10)$	$0.0036(9)$
C3	$0.080(3)$	$0.063(2)$	$0.099(3)$	$0.0178(19)$	$0.021(2)$	$0.023(2)$
O2	$0.0602(13)$	$0.0646(13)$	$0.0567(11)$	$-0.0027(10)$	$0.0057(10)$	$-0.0121(10)$
C4	$0.069(2)$	$0.111(3)$	$0.076(2)$	$0.004(2)$	$0.0030(19)$	$-0.042(2)$
O3	$0.0767(17)$	$0.108(2)$	$0.0711(15)$	$0.0280(15)$	$0.0213(13)$	$0.0161(14)$
C5	$0.095(3)$	$0.129(4)$	$0.092(3)$	$0.033(3)$	$0.018(3)$	$-0.002(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ni} 1-\mathrm{N} 2$	$2.009(3)$	$\mathrm{C} 31-\mathrm{H} 31$	0.9500
$\mathrm{~N} 11-\mathrm{N} 1$	$2.034(3)$	$\mathrm{C} 32-\mathrm{C} 33$	$1.392(4)$
$\mathrm{N} 11-\mathrm{N} 31$	$2.092(2)$	$\mathrm{C} 32-\mathrm{H} 32$	0.9500
$\mathrm{~N} 11-\mathrm{N} 11$	$2.104(2)$	$\mathrm{C} 33-\mathrm{C} 34$	$1.388(4)$
$\mathrm{N} 11-\mathrm{O} 1$	$2.108(2)$	$\mathrm{C} 33-\mathrm{C} 36$	$1.501(4)$
$\mathrm{Ni} 1-\mathrm{O} 2$	$2.154(2)$	$\mathrm{C} 34-\mathrm{C} 35$	$1.362(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.158(4)$	$\mathrm{C} 34-\mathrm{H} 34$	0.9500
$\mathrm{C} 1 — \mathrm{~S} 1$	$1.634(3)$	$\mathrm{C} 35-\mathrm{H} 35$	0.9500
$\mathrm{~N} 2-\mathrm{C} 2$	$1.170(4)$	$\mathrm{C} 36-\mathrm{O} 31$	$1.220(4)$
$\mathrm{C} 2 — \mathrm{~S} 2$	$1.615(3)$	$\mathrm{C} 36-\mathrm{C} 37$	$1.478(4)$
$\mathrm{N} 11-\mathrm{C} 11$	$1.345(4)$	$\mathrm{C} 37-\mathrm{C} 42$	$1.387(5)$
$\mathrm{N} 11-\mathrm{C} 15$	$1.345(4)$	$\mathrm{C} 37-\mathrm{C} 38$	$1.394(4)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.378(4)$	$\mathrm{C} 38-\mathrm{C} 39$	$1.373(5)$
$\mathrm{C} 11-\mathrm{H} 11$	0.9500	$\mathrm{C} 38-\mathrm{H} 38$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.378(4)$	$\mathrm{C} 39-\mathrm{C} 40$	$1.384(6)$
$\mathrm{C} 12-\mathrm{H} 12$	0.9500	$\mathrm{C} 39-\mathrm{H} 39$	0.9500

C13-C14	1.397 (4)	C40-C41	1.382 (6)
C13-C16	1.503 (4)	C40-H40	0.9500
C14-C15	1.364 (4)	C41-C42	1.393 (5)
C14-H14	0.9500	C41-H41	0.9500
C15-H15	0.9500	C42-H42	0.9500
C16-O11	1.228 (4)	O1-C3	1.417 (4)
C16-C17	1.479 (4)	$\mathrm{O} 1-\mathrm{H} 1$	0.8401
C17-C22	1.383 (4)	C3-H3A	0.9800
C17-C18	1.389 (5)	С3-H3B	0.9800
C18-C19	1.386 (5)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
C18-H18	0.9500	$\mathrm{O} 2-\mathrm{C} 4$	1.424 (4)
C19-C20	1.376 (5)	$\mathrm{O} 2-\mathrm{H} 2$	0.8400
C19-H19	0.9500	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
C20-C21	1.380 (5)	C4-H4B	0.9800
C20-H20	0.9500	C4-H4C	0.9800
C21-C22	1.384 (4)	O3-C5	1.418 (5)
$\mathrm{C} 21-\mathrm{H} 21$	0.9500	O3-H3	0.8402
C22-H22	0.9500	C5-H5A	0.9800
N31-C31	1.335 (4)	C5-H5B	0.9800
N31-C35	1.343 (4)	C5-H5C	0.9800
C31-C32	1.369 (4)		
N2-Ni1-N1	175.96 (10)	N31-C31-C32	123.9 (3)
N2-Ni1-N31	92.09 (10)	N31-C31-H31	118.0
N1-Ni1-N31	90.85 (10)	C32-C31-H31	118.0
N2-Ni1-N11	90.95 (10)	C31-C32-C33	119.1 (3)
N1-Ni1-N11	91.66 (9)	C31-C32-H32	120.4
N31-Ni1-N11	93.10 (9)	C33-C32-H32	120.4
N2-Ni1-O1	90.70 (10)	C34-C33-C32	117.1 (3)
N1-Nil-O1	86.56 (9)	C34-C33-C36	119.6 (3)
N31-Ni1-O1	89.25 (9)	C32-C33-C36	123.2 (3)
N11-Ni1-O1	177.08 (8)	C35-C34-C33	119.9 (3)
N2-Ni1-O2	88.77 (10)	C35-C34-H34	120.0
N1-Nil-O2	88.15 (9)	C33-C34-H34	120.0
N31-Ni1-O2	176.81 (9)	N31-C35-C34	123.4 (3)
N11-Ni1-O2	89.96 (9)	N31-C35-H35	118.3
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	87.67 (8)	C34-C35-H35	118.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	171.3 (2)	O31-C36-C37	122.2 (3)
N1-C1-S1	179.4 (3)	O31-C36-C33	117.5 (3)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Ni} 1$	172.8 (3)	C37-C36-C33	120.2 (3)
N2-C2-S2	179.2 (3)	C42-C37-C38	119.5 (3)
C11-N11-C15	117.0 (3)	C42-C37-C36	121.7 (3)
C11-N11-Nil	121.87 (19)	C38-C37-C36	118.8 (3)
C15-N11-Ni1	120.7 (2)	C39-C38-C37	120.2 (4)
N11-C11-C12	123.3 (3)	C39-C38-H38	119.9
N11-C11-H11	118.3	C37-C38-H38	119.9
C12-C11-H11	118.3	C38-C39-C40	120.3 (4)
C13-C12-C11	119.1 (3)	C38-C39-H39	119.8

C13-C12-H12	120.5
C11-C12-H12	120.5
C12-C13-C14	117.9 (3)
C12-C13-C16	123.0 (3)
C14-C13-C16	119.0 (3)
C15-C14-C13	119.5 (3)
C15-C14-H14	120.2
C13-C14-H14	120.2
N11-C15-C14	123.0 (3)
N11-C15-H15	118.5
C14-C15-H15	118.5
O11-C16-C17	121.9 (3)
O11-C16-C13	118.0 (3)
C17-C16-C13	120.1 (3)
C22-C17-C18	119.8 (3)
C22-C17-C16	121.5 (3)
C18-C17-C16	118.6 (3)
C19-C18-C17	119.6 (3)
C19-C18-H18	120.2
C17-C18-H18	120.2
C20-C19-C18	120.3 (3)
C20-C19-H19	119.9
C18-C19-H19	119.9
C19-C20-C21	120.3 (3)
C19-C20-H20	119.8
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20$	119.8
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	119.7 (3)
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$	120.1
C22-C21-H21	120.1
C17-C22-C21	120.2 (3)
C17-C22-H22	119.9
C21-C22-H22	119.9
C31-N31-C35	116.6 (3)
C31-N31-Ni1	123.5 (2)
C35-N31-Ni1	119.82 (19)

C40-C39-H39	119.8
C41-C40-C39	120.3 (4)
C41-C40-H40	119.9
C39-C40-H40	119.9
C40-C41-C42	119.5 (4)
C40-C41-H41	120.2
C42-C41-H41	120.2
C37-C42-C41	120.2 (3)
C37-C42-H42	119.9
C41-C42-H42	119.9
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{Ni} 1$	128.6 (2)
C3-O1-H1	114.5
Ni1-O1-H1	114.0
O1-C3-H3A	109.5
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
H3A-C3-H3B	109.5
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{Ni1}$	125.3 (2)
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{H} 2$	112.4
$\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{H} 2$	115.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
H4B-C4-H4C	109.5
C5-O3-H3	106.0
O3-C5-H5A	109.5
O3-C5-H5B	109.5
H5A-C5-H5B	109.5
O3-C5- H 5 C	109.5
H5A-C5- H 5 C	109.5
H5B-C5-H5C	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{~S} 2^{\mathrm{i}}$	0.95	3.01	$3.865(3)$	151
$\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.95	2.50	$3.406(4)$	160
$\mathrm{C} 35-\mathrm{H} 35 \cdots \mathrm{~N} 1$	0.95	2.65	$3.113(4)$	111
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.84	1.83	$2.643(3)$	163
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\text {iii }}$	0.84	2.44	$3.246(2)$	160
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 11^{\text {iii }}$	0.84	1.98	$2.808(3)$	166

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x-1, y, z$; (iii) $-x+3 / 2, y+1 / 2,-z+1 / 2$.

