

Received 11 December 2018 Accepted 10 January 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cobaltocenium; azo dye; amino acid; metallocene; metallocenium; azo coupling.

CCDC references: 1884166; 1884167

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of 1'-aminocobaltocenium-1carboxylic acid chloride monohydrate and of its azo dye 1'-[2-(1-amino-2,6-dimethylphenyl)diazen-1yl]cobaltocenium-1-carboxylic acid hexafluoridophosphate monohydrate

Markus Jochriem,* Klaus Wurst, Holger Kopacka and Benno Bildstein

University of Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria. *Correspondence e-mail: markus.jochriem@uibk.ac.at

1'-Aminocobaltocenium-1-carboxylic acid chloride, [Co(C5H6N)(C6H5O2)]Cl--H₂O, (3), and its azo derivative 1'-[2-(1-amino-2,6-dimethylphenyl)diazen-1yl]cobaltocenium-1-carboxylic acid hexafluoridophosphate, [Co(C₁₃H₁₄N₃)- $(C_6H_5O_2)$]PF₆·H₂O (5) were obtained from cobaltocenium-1,1'-dicarboxylic acid hexafluoridophosphate by converting one carboxyl group to its chlorocarboxyl derivative followed by chloride/azide exchange, Curtius rearrangement, diazotiation and azo coupling with 2,6-dimethylaniline. Both title compounds crystallize as their monohydrates. In the crystal structure of 3, both functional groups lie in the same direction, with the Cp rings being nearly eclipsed, and participate in an extended hydrogen-bonded supramolecular network including the counter-ion and the water molecule of crystallization. Although the functional groups in 5 are somewhat further apart, bearing a greater torsion angle with the Cp rings now staggered, a similar supramolecular network is observed with not only the carboxylic acid and azo groups, but also with the more remote amino group participating in a hydrogen-bonded network, again including the counter-ion and the water molecule. The hexafluoridophosphate ion shows positional disorder. Compound 3 was refined as an inversion twin. In 5, each of the six F atoms is disordered over two sets of sites in a 1:1 ratio.

1. Chemical context

One of the title compounds, 1'-aminocobaltocenium-1-carboxylic acid chloride, **3**, is a new artificial organometallic amino acid. In comparison to its known iron analogue, 1'-amino-ferrocene-1-carboxylic acid (Butler & Quayle, 1998; Barišić *et*

OPEN 🗟 ACCESS

al., 2002; Erb et al., 2018) and its frequently studied bioorganometallic chemistry (Heinze & Schlenker, 2004: Heinze & Beckmann, 2005, 2007; Barišić et al. 2004, 2006a,b, 2011, 2012; Mahmoud & Kraatz, 2007; Kovač et al., 2009; Semenčić et al., 2009; Semenčić et al., 2010; Siebler et al., 2010; Förster et al., 2012; Kovačević et al., 2014), 1'-aminocobaltocenium-1-carboxylic acid chloride is an intrinsically cationic amino acid of similar potential in bioorganometallic peptide chemistry. Synthetically (Fig. 1), compound 3 was obtained from cobaltocenium-1,1'-dicarboxylic acid hexafluoridophosphate, 1 (Sheats & Rausch, 1970) in varying yields via Curtius rearrangement of its cobaltocenium-1'-carboxylic acid azide-1-carboxylic acid chloride, 2, in analogy to our recent work on aminocobaltocenium hexafluoridophosphate (Vanicek et al., 2016). The amino group of 3 was diazotized in situ with nitrous acid to yield 1'-diazonio-cobaltocenium-1-carboxylic acid dichloride, 4, and reacted with 2,6-dimethylaniline to afford the new diazo dye 1'-[(diazene-1-yl)-2-(2,6-dimethyl-1-aminophen-4-yl)]-cobaltocenium-1-carboxylic acid hexafluoridophosphate, 5.

The molecular and crystal structures of compounds **3** and **5** are reported in this communication.

2. Structural commentary

Compounds 3 and 5 both crystallize as their monohydrates. Compound 3 forms crystals with one formula unit per asymmetric unit (Fig. 2). The cobalt atom is coordinated in a nearly eclipsed manner by the planar cyclopentadienide rings with a torsion angle of 15° between the substituents, but the bond lengths between Co and C are not equal. In the carboxylsubstituted ring, the shortest distance [2.028 (3) Å] is found between Co1 and C10, the atom bearing the carboxyl group, as is to be expected from the electron-poorest carbon atom. Bond lengths involving the other four carbon atoms in this ring are considerably longer [Co $-C_{averaged} = 2.052$ Å]. On the other hand, in the amino-substituted ring, the N-bonded carbon atom C1 shows a significantly longer bond length [2.153 (3) Å] to Co1 than the other four carbon atoms in this ring [Co $-C_{averaged}$ = 2.031]. In addition, the formal C-Nsingle bond [C1-N1 = 1.343 (4) Å] of the amino substituent is considerably shortened, as has also been observed in aminocobaltocenium tetraphenylborate [C-N = 1.340 (3) Å;Vanicek et al., 2016] and aminopentamethylcobaltocenium hexafluoridophosphate [C-N = 1.351 (5) Å; Wolter-Stein-

The molecular entities in the structure of 3 with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

grube *et al.*, 2014]. This is caused by the contribution of a mesomeric structure featuring an η^4 -bound cyclopentadiene with an iminium group, a general effect observed in donor-substituted cobaltocenium salts (Sheats, 1979). The bond lengths and angles of the carboxyl substituent are unexceptional and in line with expectations.

In the cobaltocenium cation of **5**, the cyclopentadienide rings are almost staggered with the substituents oriented in roughly the same direction and a torsion angle of $29_(s.u.?)^{\circ}$ (Fig. 3). The Co $-C_{\text{ring}}$ distances show no great variation, with the exception being the bond to C6, *i.e.* the carbon atom connected to the azo group [2.064 (2) Å]. This bond is slightly elongated but not as much as the corresponding bond to the amino group in the structure of **3**. The azo group features a *trans*-configuration with distances typical for asymmetric azo compounds.

3. Supramolecular features

The water molecule of crystallization, carboxyl group, amino group and chloride anion of 3 are part of an extended hydrogen-bonding network in the crystal (Fig. 4, Table 1).

Figure 3

The molecular entities in the structure of $\mathbf{5}$ with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity.

research communications

Hydrogen-bonding interactions between the amino group, the carboxyl group, the water molecule of crystallization and the counter-anion in the crystal structure of **3**. Displacement ellipsoids as in Fig. 2. [Symmetry codes: (i) $-x + \frac{1}{2}$, y, $z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $-x + \frac{1}{2}$, y, $z - \frac{1}{2}$.]

Zigzag chains are aligned parallel to the *c* axis (Fig. 5), in which every other molecule shows the same orientation. These chains are formed by an infinite hydrogen-bonding network, comprised of water molecules connecting the carboxyl groups of two neighboring cations and also forming a bond to the chloride anion. The chloride anions are also hydrogen-bonded to the NH₂ groups of two more cations, therefore forming a ladder-type network in which the ladders are connected to each other by the cobaltocenium moieties (Fig. 6). Overall, this arrangement results in an undulating layer structure extending parallel to (100) (Fig. 7).

Figure 5

A view along the b axis of the crystal structure of **3** showing the formation of zigzag chains parallel to the c axis. Displacement ellipsoids as in Fig. 2.

Figure 7

Formation of undulating layers parallel to (100) in the crystal structure of **3**. Displacement ellipsoids as in Fig. 2.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for 3.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02-H2O\cdots O3$ $N1-H1N\cdots C11^{i}$ $N1-H2N\cdots C11$ $O3-H3A\cdots C11^{ii}$	0.82 (2) 0.89 (2) 0.89 (2) 0.82 (2)	1.78 (3) 2.36 (3) 2.37 (3) 2.30 (2)	2.577 (3) 3.239 (3) 3.253 (3) 3.106 (3)	163 (4) 166 (4) 172 (3) 172 (4)
$O3-H3B\cdots O1^{iii}$	0.81 (2)	2.02 (3)	2.822 (4)	171 (3)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y, z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $-x + \frac{1}{2}$, $y, z - \frac{1}{2}$.

Table 2Hydrogen-bond geometry (Å, °) for 5.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H2N\cdotsO1^{i}$	0.88(2)	2.18 (2)	3.015 (3)	159 (3)
$N3-H1N\cdots F5$	0.88(2)	2.29 (3)	2.994 (10)	137 (3)
N3-H1 N ···F5 A	0.88(2)	2.24 (3)	2.896 (8)	131 (3)
O2−H2O···O3	0.84(2)	1.80(2)	2.625 (3)	170 (4)
O3−H3A···N1 ⁱⁱ	0.86(2)	2.06(2)	2.907 (3)	171 (4)
$O3-H3B\cdots F5^{iii}$	0.84(2)	2.22 (3)	2.988 (8)	153 (4)
$O3-H3B\cdots F2A^{iii}$	0.84 (2)	2.34 (3)	3.112 (8)	154 (4)

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x + 1, y, z; (iii) -x + 2, -y + 2, -z + 1.

In the crystal structure of 5, the azo, carboxyl, amino groups and the water molecule of crystallization are part of a hydrogen-bonded network (Table 2). Dimers result from hydrogen bonds between the amino function (N3-H) of one molecule and the carboxylic acid group (O1) of a neighbouring molecule. Additionally, these dimers are connected to one another by water molecules (O3), forming hydrogen bonds involving the carboxylic acid group (O1) and the azo group (N1). In addition, the disordered hexafluoridophosphate ions interact with the otherwise unbound second hydrogen atom of the water molecule and the second hydrogen atom of the amino functionality (Fig. 8), thereby forming layers parallel the *bc* plane that separate layers of cations (Fig. 9).

Figure 8

Formation of hydrogen-bonded dimers in the crystal structure of **5**. Displacement ellipsoids as in Fig. 3; hydrogen atoms were omitted for clarity.

Figure 9

Molecular packing of the crystal structure of **5** in a view along the c axis, showing the alternating anionic and cationic layers parallel to the bc plane. Displacement ellipsoids as in Fig. 3.

4. Synthesis and crystallization

Compound 3: 1'-Aminocobaltocenium-1-carboxylic acid chloride hydrate, 3, was obtained in varying yields starting from cobaltocenium-1,1'-bis carboxylic acid hexafluoridophosphate by converting it first to its mono carboxylic azide followed by Curtius rearrangement, in a variant analogous to monosubstituted cobaltocenium carboxylic acid hexafluoridophosphate (Vanicek et al., 2016). Column chromatography on alumina using methanol/water as eluent, separated it from 1,1'-diaminocobaltocenium, which was eluted before with acetonitrile. After addition of hydrochloric acid to hydrolyze the methoxyaluminum species, the volatiles were evaporated, the residue extracted with ethanol, filtered and dried first on a rotary evaporator and then in vacuo. Single crystals were obtained via slow concentration of a solution in methanol. ¹H NMR (CD₃OD), ppm: $\delta = 5.16$ (pseudo-t, J =2.1 Hz), 5.48 (pseudo-t, J = 2.1 Hz), 5.51 (pseudo-t, J = 2.1 Hz), 5.97 (pseudo-t, J = 2.1 Hz). ESI-MS showed a signal at 248.0139 m/z in accordance to the molecular cation.

Compound 5: 1'-Aminocobaltocenium-1-carboxylic acid chloride hydrate (3) (100.9 mg, 0.3345 mmol, 1 equivalent) was dissolved in 5 ml of concentrated HCl and the mixture was cooled to 273 K. Then NaNO₂ (26.6 mg, 0.3850 mmol, 1.15 equivalent) was added and the yellow solution was stirred for 15 min. After addition of 2,6-dimethylaniline (63.5μ l, 0.5134 mmol, 1.5 equivalents), the solution immediately turned red and was stirred for a further 30 min. When neutralized with saturated Na₂CO₃ solution, the reaction mixture again changed color to a darker red. The mixture was concentrated on a rotary evaporator and the salts were precipitated with ethanol. The solution was filtered, evapo-

research communications

Table	3	
Experi	mental	details

	3	5
Crystal data		
Chemical formula	$[C_0(C_6H_5N)(C_6H_5O_2)]Cl \cdot H_2O$	$[Co(C_6H_5O_2)]PF_6 \cdot H_2O$
M_r	301.60	543.29
Crystal system, space group	Orthorhombic, $Pca2_1$	Triclinic, $P\overline{1}$
Temperature (K)	193	191
a, b, c (Å)	14.7269 (5), 6.7024 (3), 11.7607 (4)	7.9891 (4), 9.4310 (5), 15.5425 (8)
α, β, γ (°)	90, 90, 90	74.415 (3), 78.183 (2), 73.798 (2)
$V(A^3)$	1160.85 (8)	1072.48 (10)
Z	4	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.70	0.95
Crystal size (mm)	$0.13\times0.11\times0.03$	$0.16 \times 0.16 \times 0.03$
Data collection		
Diffractometer	Bruker D8 QUEST PHOTON 100	Bruker D8 QUEST PHOTON 100
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.858, 0.942	0.826, 0.901
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14289, 2163, 2099	20686, 3945, 3290
R _{int}	0.031	0.043
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.020, 0.046, 1.08	0.035, 0.086, 1.04
No. of reflections	2163	3945
No. of parameters	175	372
No. of restraints	6	5
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.50, -0.31	0.54, -0.31
Absolute structure	Refined as an inversion twin	-
Absolute structure parameter	0.067 (17)	-

Computer programs: APEX3 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), CHEMDRAW (Cambridge Soft, 2001), ORTEP-3 for Windows (Farrugia, 2012) and publcIF (Westrip, 2010).

rated to dryness, the residue taken up in acetonitrile and after filtering and evaporating to dryness the product was dissolved in small amounts of water, and a few drops of aqueous HPF₆ (60%) were added. The solution was extracted three times with dichloromethane, the combined dark-violet-colored organic phases were evaporated to dryness and the product (**5**) was dried *in vacuo*. Yield: 92.1 mg (52.2%) as a dark orange–red powder. Slow concentration of a solution in ethanol yielded single crystals suitable for X-ray analysis. ¹H NMR (CD₃OD), ppm: $\delta = 2.3$ (2,6-Me, *t*, J = 0.6 Hz), 5.80 (pseudo-*t*, J = 2.1 Hz), 5.89 (pseudo-*t*, J = 2.1 Hz), 6.15 (pseudo-*t*, J = 2.1 Hz), 6.29 (pseudo-*t*, J = 2.1 Hz), 7.52 (3,5-CH, *t*, J = 0.6 Hz). ESI-MS showed a signal at 380.0836 *m*/*z* in accordance with the molecular cation.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. In both compounds, C-bound H atoms were positioned geometrically (C–H = 0.95–0.98) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(Cmethyl)$. For the refinement of **3**, H atoms bound to N1, O2 and O3 were found in difference-Fourier maps and were treated with restraints on bond lengths (d = 0.89 Å for N and d = 0.83 Å for O) and refined with isotropic displacement parameters. The crystal studied was refined as an inversion twin. For **5**, H atoms bound to N3 and O2 were treated in the same way as for **3** while the H atoms of the water molecule (also found from a difference-Fourier map and treated with restraints on the bond length) were refined with $U_{\rm iso}(H) = 1.2U_{\rm eq}(O3)$. The hexafluoridophosphate ion shows positional disorder. Each of the six F atoms was refined with two sets of sites in a 1:1 ratio.

Funding information

Funding for this research was provided by: Austrian Science Fund (FWF), P 30221.

References

- Barišić, L., Cakić, M., Mahmoud, K. A., Liu, Y., Kraatz, H.-B., Pritzkow, H., Kirin, S. I., Metzler-Nolte, N. & Rapić, V. (2006a). *Chem. Eur. J.* **12**, 4965–4980.
- Barišić, L., Dropučić, M., Rapić, V., Pritzkow, H., Kirin, S. I. & Metzler-Nolte, N. (2004). *Chem. Commun.* pp. 2004–2005.
- Barišić, L., Kovačević, M., Mamić, M., Kodrin, I., Mihalić, Z. & Rapić, V. (2012). Eur. J. Inorg. Chem. pp. 1810–1822.
- Barišić, L., Rapíc, V. & Kovač, V. (2002). Croat. Chim. Acta, 75, 199–210.
- Barišić, L., Rapić, V. & Metzler-Nolte, N. (2006b). Eur. J. Inorg. Chem. pp. 4019–4021.
- Barišić, L., Roščić, M., Kovačević, M., Semenčić, M. C., Horvat, S. & Rapić, V. (2011). Carbohydr. Res. 346, 678–684.
- Bruker (2013). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butler, I. R. & Quayle, S. C. (1998). J. Organomet. Chem. 552, 63-68.

- Cambridge Soft (2001). CHEMDRAW. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Erb, W., Levanen, G., Roisnel, T. & Dorcet, V. (2018). New J. Chem. 42, 3808–3818.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Förster, C., Kovačević, M., Barišić, L., Rapić, V. & Heinze, K. (2012). Organometallics, 31, 3683–3694.
- Heinze, K. & Beckmann, M. (2005). Eur. J. Inorg. Chem. pp. 3450-3457.
- Heinze, K. & Schlenker, M. (2004). Eur. J. Inorg. Chem. pp. 2974–2988.
- Heinze, K., Wild, U. & Beckmann, M. (2007). Eur. J. Inorg. Chem. pp. 617–623.
- Kovač, V., Radolović, K., Habuš, I., Siebler, D., Heinze, K. & Rapić, V. (2009). Eur. J. Inorg. Chem. pp. 389–399.
- Kovačević, M., Molčanov, K., Radošević, K., Srček, V. G., Roca, S., Cače, A. & Barišić, L. (2014). *Molecules*, **19**, 12852–12880.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

- Mahmoud, K. A. & Kraatz, H.-B. (2007). Chem. Eur. J. 13, 5885–5895.
- Semenčić, M. C., Heinze, K., Förster, C. & Rapić, V. (2010). Eur. J. Inorg. Chem. pp. 1089–1097.
- Semenčić, M. C., Siebler, D., Heinze, K. & Rapić, V. (2009). Organometallics, 28, 2028–2037.
- Sheats, J. E. (1979). Organomet. Chem. Rev. 7, 461-521.
- Sheats, J. E. & Rausch, M. D. (1970). J. Org. Chem. 35, 3245-3249.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Siebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986–3992.
- Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101– 2109.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wolter-Steingrube, A., Bugenhagen, B. E. C., Herrmann, C. & Heck, J. (2014). Eur. J. Inorg. Chem. pp. 4115–4122.

Acta Cryst. (2019). E75, 208-213 [https://doi.org/10.1107/S2056989019000562]

Crystal structures of 1'-aminocobaltocenium-1-carboxylic acid chloride monohydrate and of its azo dye 1'-[2-(1-amino-2,6-dimethylphenyl)diazen-1yl]cobaltocenium-1-carboxylic acid hexafluoridophosphate monohydrate

Markus Jochriem, Klaus Wurst, Holger Kopacka and Benno Bildstein

Computing details

For both structures, data collection: *APEX3* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *CHEMDRAW* (Cambridge Soft, 2001) and *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

1'-Aminocobaltocenium-1-carboxylic acid chloride monohydrate (3)

Crystal data

 $[Co(C_5H_6N)(C_6H_5O_2)]Cl \cdot H_2O$ $M_r = 301.60$ Orthorhombic, $Pca2_1$ a = 14.7269 (5) Å b = 6.7024 (3) Å c = 11.7607 (4) Å V = 1160.85 (8) Å³ Z = 4F(000) = 616

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.858$, $T_{\max} = 0.942$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.046$ S = 1.082163 reflections 175 parameters $D_x = 1.726 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9295 reflections $\theta = 2.7-50.7^{\circ}$ $\mu = 1.70 \text{ mm}^{-1}$ T = 193 KPlate, orange $0.13 \times 0.11 \times 0.03 \text{ mm}$

14289 measured reflections 2163 independent reflections 2099 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.7^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -17 \rightarrow 17$ $k = -8 \rightarrow 8$ $l = -14 \rightarrow 13$

6 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0262P)^2 + 0.115P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$

$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$	Absolute structure: Refined as an inversion twin
$\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$	Absolute structure parameter: 0.067 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. Hydrogens at N1, O2 and O3 were found and refined isotropically with bond restraints (d = 89 pm for N and d = 83 pm for O).

 $U_{\rm iso}*/U_{\rm eq}$ х v z 0.01564 (11) Co1 0.52686(2)0.10826 (4) 0.58678 (3) C11 0.23429(5)-0.07147(13)0.31541 (7) 0.0317(2)01 0.29710(11) 0.3651(3)0.5834(2)0.0246(4)O2 0.36058 (15) 0.3830 (4) 0.41056 (19) 0.0286(5)H2O 0.3077 (19) 0.393 (6) 0.389 (4) 0.037 (12)* N1 0.33888(18)-0.1222(4)0.5573(2)0.0256 (6) H1N 0.310(3)-0.099(5)0.623(2)0.041 (12)* H2N 0.035 (10)* 0.315(2)-0.102(5)0.489(2)C1 0.42978 (19) -0.1291(4)0.0180(6) 0.5660(2)C2 0.4952(3)-0.1153(5)0.4754(3)0.0262(8)H2 -0.09250.3975 0.031* 0.4817 C3 0.5837(3)-0.1416(6)0.5224(4)0.0307(9)H3 0.6390 -0.14800.4810 0.037* C4 0.5743 (2) -0.1564(5)0.6425 (3) 0.0301 (8) H4 0.6225 -0.17460.6953 0.036* C5 0.4807(2)-0.1393(5)0.6701(3)0.0212(8)Н5 0.4560 -0.13520.7447 0.025* C6 0.5386(2)0.3681(4)0.4969(3)0.0191 (6) H6 0.5413 0.3791 0.4164 0.023* C7 0.61365 (18) 0.3494(4)0.5717 (3) 0.0249(7)H7 0.6757 0.5499 0.030* 0.3472 C8 0.5806(2)0.0228 (6) 0.3345(5)0.6843(3)H8 0.6166 0.3198 0.7509 0.027* C9 0.4845 (2) 0.3453 (5) 0.6807(3)0.0194 (6) Н9 0.4449 0.3391 0.7443 0.023* C10 0.45771 (18) 0.3671 (4) 0.5654 (2) 0.0161(7)C11 0.3632 (2) 0.3719 (4) 0.5221(2)0.0176 (6) O3 0.20765 (15) 0.4689(4)0.3159(2)0.0312(5)H₃A 0.212(3)0.590(4)0.309(4)0.036 (12)* H3B 0.210(2)0.428 (5) 0.251(2)0.024 (10)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01400 (17)	0.01243 (17)	0.02049 (19)	-0.00030 (13)	0.00119 (18)	0.0009 (2)

C11	0.0290 (5)	0.0424 (4)	0.0238 (4)	0.0066 (3)	-0.0033 (3)	-0.0045 (3)
01	0.0177 (8)	0.0342 (10)	0.0219 (9)	0.0028 (8)	0.0008 (12)	-0.0004 (11)
O2	0.0193 (11)	0.0487 (15)	0.0177 (11)	0.0029 (10)	-0.0022 (9)	0.0023 (9)
N1	0.0211 (13)	0.0325 (15)	0.0231 (16)	-0.0081 (11)	-0.0023 (10)	-0.0003 (10)
C1	0.0234 (14)	0.0120 (12)	0.0187 (18)	-0.0042 (10)	-0.0029 (12)	0.0002 (11)
C2	0.0400 (18)	0.0180 (17)	0.0205 (17)	-0.0060 (14)	0.0091 (16)	-0.0037 (13)
C3	0.0271 (19)	0.0152 (18)	0.050(2)	0.0015 (14)	0.0104 (16)	-0.0045 (15)
C4	0.0236 (18)	0.0145 (17)	0.052 (2)	0.0019 (15)	-0.0080 (16)	0.0072 (16)
C5	0.0260 (18)	0.0177 (17)	0.0197 (18)	-0.0040 (12)	-0.0021 (13)	0.0044 (12)
C6	0.0158 (15)	0.0155 (16)	0.0259 (16)	-0.0028 (12)	0.0032 (12)	0.0020 (12)
C7	0.0152 (12)	0.0158 (12)	0.044 (2)	-0.0029 (10)	0.0041 (15)	0.0010 (15)
C8	0.0207 (15)	0.0180 (14)	0.0296 (16)	0.0001 (13)	-0.0077 (12)	-0.0042 (12)
C9	0.0195 (16)	0.0169 (14)	0.0218 (16)	0.0020 (12)	-0.0032 (12)	-0.0038 (12)
C10	0.0168 (12)	0.0128 (12)	0.019 (2)	0.0016 (10)	0.0002 (12)	-0.0009 (11)
C11	0.0195 (14)	0.0149 (14)	0.0186 (15)	0.0029 (11)	-0.0021 (11)	0.0001 (10)
03	0.0283 (12)	0.0415 (16)	0.0237 (12)	-0.0009 (11)	-0.0054 (11)	-0.0047 (12)

Geometric parameters (Å, °)

Co1—C4	2.016 (4)	C2—H2	0.9500
Col—C3	2.019 (4)	C3—C4	1.423 (5)
Co1-C10	2.028 (3)	С3—Н3	0.9500
Col—C9	2.033 (3)	C4—C5	1.421 (5)
Col—C5	2.043 (3)	C4—H4	0.9500
Co1—C2	2.044 (4)	С5—Н5	0.9500
Col—C6	2.044 (3)	C6—C7	1.418 (4)
Col—C8	2.060 (3)	C6—C10	1.439 (4)
Col—C7	2.068 (3)	С6—Н6	0.9500
Col—Cl	2.153 (3)	C7—C8	1.414 (5)
01—C11	1.213 (4)	С7—Н7	0.9500
O2—C11	1.314 (4)	C8—C9	1.419 (4)
O2—H2O	0.82 (2)	C8—H8	0.9500
N1—C1	1.343 (4)	C9—C10	1.419 (4)
N1—H1N	0.89 (2)	С9—Н9	0.9500
N1—H2N	0.89 (2)	C10—C11	1.482 (4)
C1—C5	1.437 (4)	O3—H3A	0.82 (2)
C1—C2	1.439 (5)	O3—H3B	0.81 (2)
C2—C3	1.427 (6)		
C4—Co1—C3	41.29 (13)	C1—C2—Co1	74.07 (18)
C4—Co1—C10	165.32 (14)	C3—C2—H2	125.8
C3—Co1—C10	150.63 (14)	C1—C2—H2	125.8
C4—Co1—C9	128.13 (14)	Co1—C2—H2	123.2
C3—Co1—C9	168.22 (15)	C4—C3—C2	107.7 (4)
C10-Co1-C9	40.91 (12)	C4—C3—Co1	69.2 (2)
C4—Co1—C5	40.98 (16)	C2—C3—Co1	70.4 (2)
C3—Co1—C5	69.17 (14)	C4—C3—H3	126.1
C10-Co1-C5	125.96 (13)	С2—С3—Н3	126.1

C9—Co1—C5	105.78 (15)	Co1—C3—H3	125.8
C4—Co1—C2	69.06 (16)	C5—C4—C3	108.4 (4)
C3—Co1—C2	41.12 (17)	C5-C4-Co1	70.53 (19)
C10—Co1—C2	115.67 (14)	C3—C4—Co1	69.5 (2)
C9—Co1—C2	148.29 (15)	C5—C4—H4	125.8
C5—Co1—C2	68.66 (15)	C3—C4—H4	125.8
C4—Co1—C6	152.63 (14)	Co1—C4—H4	125.8
C3—Co1—C6	118.50 (14)	C4—C5—C1	108.4 (3)
C10—Co1—C6	41.38 (11)	C4—C5—Co1	68.49 (18)
C9—Co1—C6	68.98 (12)	C1C5Co1	74.15 (18)
C5—Co1—C6	165.42 (13)	C4—C5—H5	125.8
C2—Co1—C6	108.20 (14)	C1—C5—H5	125.8
C4-Co1-C8	109 46 (15)	Co1 - C5 - H5	123.2
C_{3} — C_{0}]— C_{8}	131 28 (15)	C7-C6-C10	107.3(3)
C10-C01-C8	68 42 (12)	C7-C6-C01	70.72(17)
C9-C01-C8	40 56 (12)	C10-C6-C01	68 68 (16)
$C_{5}-C_{0}1-C_{8}$	117 29 (15)	C7—C6—H6	126.4
C_{2} C_{01} C_{8}	169.83 (14)	$C_10-C_6-H_6$	126.4
$C_{2} = C_{01} = C_{03}$	68 19 (12)	C_{01} C_{0-H6}	125.4
C_{4} Col C7	120.07(14)	C_{8} C_{7} C_{6}	123.0 108.7(3)
$C_{4} = C_{1} = C_{7}$	120.07 (14) 111.08 (14)	C_{8} C_{7} C_{91}	69.65(17)
C_{10} C_{21} C_{7}	68 35 (11)	C6 C7 Col	68.94 (16)
C_{10}^{0} Col C_{7}^{0}	68 01 (13)	C_{8} C_{7} H_{7}	125 7
$C_{2} = C_{1} = C_{1}$	151.70(13)	$C_{0} = C_{1} = H_{1}$	125.7
$C_3 = C_0 = C_7$	131.79(15) 121.22(15)	$C_0 = C_1 = C_1 = H_1$	123.7
$C_2 = C_0 = C_7$	131.23(13) 40.34(12)	C_{1} C_{2} C_{3} C_{3}	127.3 108 1 (3)
$C_0 = C_0 = C_7$	40.34(13)	$C_{1}^{2} = C_{0}^{2} = C_{0}^{2}$	100.1(3)
$C_{0} = C_{0} = C_{1}$	40.07(14)	C^{-}	70.27(17)
$C_{4} = C_{1} = C_{1}$	07.48(13)	C_{2}	125.0
C_{3}	0/.0/(15) 106 55 (11)	$C = C = H \delta$	125.9
$C_{10} = C_{11} = C_{11}$	100.55(11) 115.70(11)	C_{2}	125.9
$C_{9} = C_{1} = C_{1}$	115.79 (11)	$C_0 = C_0 = C_1 $	120.0
	39.94 (12)	$C_8 = C_9 = C_{10}$	108.1 (3)
	40.01 (13)		/0./3(1/)
	128.84 (12)	C10-C9-C01	69.34 (17)
	149.60 (12)	C8—C9—H9	125.9
C/-Col-Cl	168.03 (13)	С10—С9—Н9	125.9
C11—O2—H2O	110 (3)	Co1—C9—H9	125.6
Cl—Nl—HlN	114 (3)	C9—C10—C6	107.8 (2)
CI—NI—H2N	118 (2)	C9—C10—C11	126.3 (3)
H1N—N1—H2N	125 (4)	C6—C10—C11	125.8 (3)
N1—C1—C5	125.9 (3)	C9—C10—Co1	69.76 (16)
N1—C1—C2	127.4 (3)	C6—C10—Co1	69.94 (16)
C5—C1—C2	106.5 (3)	C11—C10—Co1	122.18 (18)
N1—C1—Co1	130.2 (2)	O1—C11—O2	124.9 (3)
C5-C1-Co1	65.91 (16)	O1—C11—C10	123.3 (3)
C2-C1-Co1	65.92 (18)	O2—C11—C10	111.8 (3)
C3—C2—C1	108.5 (3)	НЗА—ОЗ—НЗВ	104 (4)
C3—C2—Co1	68.5 (2)		

-176.6 (3)	C6—C7—C8—C9	-0.4 (3)
7.0 (3)	Co1—C7—C8—C9	-58.5 (2)
60.2 (2)	C6—C7—C8—Co1	58.0 (2)
123.2 (3)	C7—C8—C9—C10	0.0 (3)
-53.2 (2)	Co1—C8—C9—C10	-59.5 (2)
-4.4 (4)	C7—C8—C9—Co1	59.4 (2)
59.4 (3)	C8—C9—C10—C6	0.5 (3)
-63.7 (2)	Co1—C9—C10—C6	-59.84 (19)
-0.1 (5)	C8—C9—C10—C11	176.0 (2)
60.0 (3)	Co1—C9—C10—C11	115.7 (3)
-60.1 (3)	C8—C9—C10—Co1	60.3 (2)
4.5 (4)	C7—C6—C10—C9	-0.8 (3)
63.9 (2)	Co1—C6—C10—C9	59.7 (2)
-59.4 (3)	C7—C6—C10—C11	-176.3 (2)
176.5 (3)	Co1—C6—C10—C11	-115.8 (3)
-7.0 (3)	C7—C6—C10—Co1	-60.49 (19)
-60.2 (2)	C9-C10-C11-O1	3.0 (4)
-123.3 (3)	C6-C10-C11-O1	177.8 (3)
53.22 (19)	Co1-C10-C11-O1	90.4 (3)
0.7 (3)	C9—C10—C11—O2	-176.6 (3)
-58.5 (2)	C6-C10-C11-O2	-1.8 (4)
59.19 (19)	Co1-C10-C11-O2	-89.2 (3)
	$\begin{array}{c} -176.6 (3) \\ 7.0 (3) \\ 60.2 (2) \\ 123.2 (3) \\ -53.2 (2) \\ -4.4 (4) \\ 59.4 (3) \\ -63.7 (2) \\ -0.1 (5) \\ 60.0 (3) \\ -60.1 (3) \\ 4.5 (4) \\ 63.9 (2) \\ -59.4 (3) \\ 176.5 (3) \\ -7.0 (3) \\ -60.2 (2) \\ -123.3 (3) \\ 53.22 (19) \\ 0.7 (3) \\ -58.5 (2) \\ 59.19 (19) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
02—H2 <i>O</i> ···O3	0.82 (2)	1.78 (3)	2.577 (3)	163 (4)
N1—H1N····Cl1 ⁱ	0.89 (2)	2.36 (3)	3.239 (3)	166 (4)
N1—H2 <i>N</i> ···Cl1	0.89 (2)	2.37 (3)	3.253 (3)	172 (3)
O3—H3A···Cl1 ⁱⁱ	0.82 (2)	2.30 (2)	3.106 (3)	172 (4)
O3—H3 <i>B</i> ···O1 ⁱⁱⁱ	0.81 (2)	2.02 (3)	2.822 (4)	171 (3)

Symmetry codes: (i) -*x*+1/2, *y*, *z*+1/2; (ii) *x*, *y*+1, *z*; (iii) -*x*+1/2, *y*, *z*-1/2.

1'-[2-(1-Amino-2,6-dimethylphenyl)diazen-1-yl]cobaltocenium-1-carboxylic acid hexafluoridophosphate monohydrate (5)

Crystal data

$[Co(C_{13}H_{14}N_3)(C_6H_5O_2)]PF_6 H_2O$	Z = 2
$M_r = 543.29$	F(000) = 552
Triclinic, P1	$D_{\rm x} = 1.682 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.9891 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.4310(5) Å	Cell parameters from 8266 reflections
c = 15.5425 (8) Å	$\theta = 2.3 - 25.3^{\circ}$
$\alpha = 74.415 \ (3)^{\circ}$	$\mu = 0.95 \text{ mm}^{-1}$
$\beta = 78.183 \ (2)^{\circ}$	T = 191 K
$\gamma = 73.798 \ (2)^{\circ}$	Plate, brown
$V = 1072.48 (10) \text{ Å}^3$	$0.16 \times 0.16 \times 0.03 \text{ mm}$

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015) $T_{\min} = 0.826, T_{\max} = 0.901$	20686 measured reflections 3945 independent reflections 3290 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.086$	and constrained refinement $w = 1/[\sigma^2(F^2) + (0.0353P)^2 + 0.0550P]$
S = 1.04	where $P = (F_0^2 + 2F_c^2)/3$
3945 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
372 parameters	$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$
5 restraints	$\Delta ho_{ m min} = -0.31$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms at N3 and O2 were found and refined isotropically with bond restraints (d=89pm for N and d=83pm for). Also the hydrogens at water molecule were found, refined with bond restraints but with isotropic displacement parameter of 1.2 higher than U(iso) of O3. The flourine of the anion PF6- show a nearly 1:1 positional disorder F1-F1: F1A-F6A.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Co1 $0.45960(4)$ $0.32404(4)$ $0.84877(2)$ $0.02519(11)$ O1 $0.6004(3)$ $0.7001(2)$ $0.75554(15)$ $0.0513(6)$ O2 $0.8374(3)$ $0.5069(2)$ $0.75963(15)$ $0.0469(5)$ H2O $0.895(5)$ $0.564(4)$ $0.722(2)$ $0.091(14)^*$ N1 $0.3994(3)$ $0.5104(3)$ $0.65242(15)$ $0.0361(5)$ N2 $0.5502(3)$ $0.5139(3)$ $0.60815(14)$ $0.0352(5)$ N3 $0.6392(4)$ $1.0108(3)$ $0.33140(16)$ $0.0381(5)$ H1N $0.746(3)$ $1.013(4)$ $0.303(2)$ $0.057(10)^*$ H2N $0.549(3)$ $1.087(3)$ $0.317(2)$ $0.057(10)^*$ C1 $0.5893(3)$ $0.4716(3)$ $0.86280(16)$ $0.0280(5)$ C2 $0.6649(4)$ $0.3213(3)$ $0.90866(18)$ $0.0350(6)$ H2 0.7831 0.2661 0.8968 0.042^* C3 $0.5322(4)$ $0.2695(3)$ $0.97471(18)$ $0.0449(7)$ H3 0.5459 0.1732 1.0155 0.054^*	c. (<1)
$O1$ $0.6004(3)$ $0.7001(2)$ $0.75554(15)$ $0.0513(6)$ $O2$ $0.8374(3)$ $0.5069(2)$ $0.75963(15)$ $0.0469(5)$ $H2O$ $0.895(5)$ $0.564(4)$ $0.722(2)$ $0.091(14)^*$ $N1$ $0.3994(3)$ $0.5104(3)$ $0.65242(15)$ $0.0361(5)$ $N2$ $0.5502(3)$ $0.5139(3)$ $0.60815(14)$ $0.0352(5)$ $N3$ $0.6392(4)$ $1.0108(3)$ $0.33140(16)$ $0.0381(5)$ $H1N$ $0.746(3)$ $1.013(4)$ $0.303(2)$ $0.057(10)^*$ $H2N$ $0.549(3)$ $1.087(3)$ $0.317(2)$ $0.057(10)^*$ $C1$ $0.5893(3)$ $0.4716(3)$ $0.86280(16)$ $0.0280(5)$ $C2$ $0.6649(4)$ $0.3213(3)$ $0.90866(18)$ $0.0350(6)$ $H2$ 0.7831 0.2661 0.8968 0.042^* $C3$ $0.5322(4)$ $0.2695(3)$ $0.97471(18)$ $0.0449(7)$ $H3$ 0.5459 0.1732 1.0155 0.054^* $C4$ $0.3756(4)$ $0.3851(4)$ $0.96977(18)$ $0.0462(8)$	
$O2$ $0.8374(3)$ $0.5069(2)$ $0.75963(15)$ $0.0469(5)$ $H2O$ $0.895(5)$ $0.564(4)$ $0.722(2)$ $0.091(14)^*$ $N1$ $0.3994(3)$ $0.5104(3)$ $0.65242(15)$ $0.0361(5)$ $N2$ $0.5502(3)$ $0.5139(3)$ $0.60815(14)$ $0.0352(5)$ $N3$ $0.6392(4)$ $1.0108(3)$ $0.33140(16)$ $0.0381(5)$ $H1N$ $0.746(3)$ $1.013(4)$ $0.303(2)$ $0.057(10)^*$ $H2N$ $0.549(3)$ $1.087(3)$ $0.317(2)$ $0.057(10)^*$ $C1$ $0.5893(3)$ $0.4716(3)$ $0.86280(16)$ $0.0280(5)$ $C2$ $0.6649(4)$ $0.3213(3)$ $0.90866(18)$ $0.0350(6)$ $H2$ 0.7831 0.2661 0.8968 0.042^* $C3$ $0.5322(4)$ $0.2695(3)$ $0.97471(18)$ $0.0449(7)$ $H3$ 0.5459 0.1732 1.0155 0.054^* $C4$ $0.3756(4)$ $0.3851(4)$ $0.96977(18)$ $0.0462(8)$	
H2O $0.895 (5)$ $0.564 (4)$ $0.722 (2)$ $0.091 (14)^*$ N1 $0.3994 (3)$ $0.5104 (3)$ $0.65242 (15)$ $0.0361 (5)$ N2 $0.5502 (3)$ $0.5139 (3)$ $0.60815 (14)$ $0.0352 (5)$ N3 $0.6392 (4)$ $1.0108 (3)$ $0.33140 (16)$ $0.0381 (5)$ H1N $0.746 (3)$ $1.013 (4)$ $0.303 (2)$ $0.057 (10)^*$ H2N $0.549 (3)$ $1.087 (3)$ $0.317 (2)$ $0.057 (10)^*$ C1 $0.5893 (3)$ $0.4716 (3)$ $0.86280 (16)$ $0.0280 (5)$ C2 $0.6649 (4)$ $0.3213 (3)$ $0.90866 (18)$ $0.0350 (6)$ H2 0.7831 0.2661 0.8968 0.042^* C3 $0.5322 (4)$ $0.2695 (3)$ $0.97471 (18)$ $0.0449 (7)$ H3 0.5459 0.1732 1.0155 0.054^* C4 $0.3756 (4)$ $0.3851 (4)$ $0.96977 (18)$ $0.0462 (8)$	
N10.3994 (3)0.5104 (3)0.65242 (15)0.0361 (5)N20.5502 (3)0.5139 (3)0.60815 (14)0.0352 (5)N30.6392 (4)1.0108 (3)0.33140 (16)0.0381 (5)H1N0.746 (3)1.013 (4)0.303 (2)0.057 (10)*H2N0.549 (3)1.087 (3)0.317 (2)0.057 (10)*C10.5893 (3)0.4716 (3)0.86280 (16)0.0280 (5)C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
N20.5502 (3)0.5139 (3)0.60815 (14)0.0352 (5)N30.6392 (4)1.0108 (3)0.33140 (16)0.0381 (5)H1N0.746 (3)1.013 (4)0.303 (2)0.057 (10)*H2N0.549 (3)1.087 (3)0.317 (2)0.057 (10)*C10.5893 (3)0.4716 (3)0.86280 (16)0.0280 (5)C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
N30.6392 (4)1.0108 (3)0.33140 (16)0.0381 (5)H1N0.746 (3)1.013 (4)0.303 (2)0.057 (10)*H2N0.549 (3)1.087 (3)0.317 (2)0.057 (10)*C10.5893 (3)0.4716 (3)0.86280 (16)0.0280 (5)C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
H1N0.746 (3)1.013 (4)0.303 (2)0.057 (10)*H2N0.549 (3)1.087 (3)0.317 (2)0.057 (10)*C10.5893 (3)0.4716 (3)0.86280 (16)0.0280 (5)C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
H2N0.549 (3)1.087 (3)0.317 (2)0.057 (10)*C10.5893 (3)0.4716 (3)0.86280 (16)0.0280 (5)C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
C10.5893 (3)0.4716 (3)0.86280 (16)0.0280 (5)C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
C20.6649 (4)0.3213 (3)0.90866 (18)0.0350 (6)H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
H20.78310.26610.89680.042*C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
C30.5322 (4)0.2695 (3)0.97471 (18)0.0449 (7)H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
H30.54590.17321.01550.054*C40.3756 (4)0.3851 (4)0.96977 (18)0.0462 (8)	
C4 0.3756 (4) 0.3851 (4) 0.96977 (18) 0.0462 (8)	
H4 0.2657 0.3796 1.0064 0.055*	
C5 0.4106 (4) 0.5106 (3) 0.90090 (18) 0.0366 (6)	

Н5	0.3287	0.6042	0.8834	0.044*	
C6	0.4099 (4)	0.3705 (3)	0.71763 (16)	0.0327 (6)	
C7	0.5527 (4)	0.2416 (3)	0.73550 (17)	0.0339 (6)	
H7	0.6701	0.2312	0.7053	0.041*	
C8	0.4880 (4)	0.1317 (3)	0.80667 (18)	0.0379 (6)	
H8	0.5542	0.0336	0.8314	0.046*	
С9	0.3095 (4)	0.1925 (3)	0.83431 (18)	0.0403 (7)	
Н9	0.2345	0.1427	0.8811	0.048*	
C10	0.2603 (4)	0.3404 (3)	0.78064 (18)	0.0390 (6)	
H10	0.1473	0.4078	0.7857	0.047*	
C11	0.6753 (3)	0.5731 (3)	0.78691 (18)	0.0330 (6)	
C12	0.5566 (4)	0.6439 (3)	0.53849 (16)	0.0326 (6)	
C13	0.7250 (4)	0.6491 (3)	0.49348 (17)	0.0351 (6)	
H13	0.8212	0.5671	0.5109	0.042*	
C14	0.7569 (4)	0.7695 (3)	0.42443 (17)	0.0350 (6)	
C15	0.6122 (3)	0.8902 (3)	0.39860 (16)	0.0310 (6)	
C16	0.4380 (3)	0.8863 (3)	0.44206 (16)	0.0316 (6)	
C17	0.4144 (4)	0.7632 (3)	0.51119 (16)	0.0345 (6)	
H17	0.2988	0.7593	0.5410	0.041*	
C18	0.9404 (4)	0.7752 (4)	0.3787 (2)	0.0503 (8)	
H18A	1.0240	0.6850	0.4065	0.076*	
H18B	0.9683	0.8662	0.3854	0.076*	
H18C	0.9486	0.7782	0.3145	0.076*	
C19	0.2862 (4)	1.0137 (3)	0.41259 (19)	0.0406 (7)	
H19A	0.1771	0.9950	0.4507	0.061*	
H19B	0.2775	1.0203	0.3496	0.061*	
H19C	0.3046	1.1091	0.4182	0.061*	
P1	1.02857 (10)	1.13338 (9)	0.12566 (5)	0.0440 (2)	
F1	0.8815 (9)	1.0964 (8)	0.0890 (6)	0.108 (2)	0.5
F2	1.1759 (6)	1.1734 (6)	0.1606 (5)	0.0803 (14)	0.5
F3	0.9908 (6)	1.2937 (6)	0.0619 (6)	0.090 (2)	0.5
F4	1.0704 (9)	0.9680 (7)	0.1867 (4)	0.088 (3)	0.5
F5	0.8818 (13)	1.1883 (11)	0.2032 (6)	0.083 (3)	0.5
F6	1.1786 (15)	1.0780 (13)	0.0534 (6)	0.105 (4)	0.5
F1A	0.9618 (12)	1.1992 (12)	0.0352 (5)	0.142 (3)	0.5
F2A	1.0947 (12)	1.0805 (10)	0.2208 (4)	0.141 (3)	0.5
F3A	1.0275 (11)	1.3037 (7)	0.1226 (5)	0.113 (3)	0.5
F4A	1.0215 (11)	0.9684 (8)	0.1367 (7)	0.118 (3)	0.5
F5A	0.8398 (14)	1.1641 (10)	0.1748 (9)	0.179 (7)	0.5
F6A	1.2124 (13)	1.0946 (12)	0.0709 (8)	0.138 (6)	0.5
O3	1.0363 (3)	0.6853 (3)	0.65768 (18)	0.0613 (7)	
H3A	1.145 (3)	0.639 (4)	0.650 (2)	0.074*	
H3B	1.037 (5)	0.747 (4)	0.687 (2)	0.074*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.02688 (19)	0.02523 (18)	0.02200 (18)	-0.00943 (13)	-0.00294 (12)	0.00010 (13)

01	0.0437 (12)	0.0342 (12)	0.0620 (14)	-0.0097 (9)	-0.0085 (10)	0.0136 (10)
O2	0.0301 (11)	0.0478 (12)	0.0540 (13)	-0.0124 (9)	0.0035 (9)	-0.0004 (10)
N1	0.0384 (13)	0.0396 (13)	0.0323 (12)	-0.0122 (10)	-0.0057 (10)	-0.0077 (10)
N2	0.0373 (13)	0.0398 (13)	0.0321 (12)	-0.0150 (10)	-0.0042 (10)	-0.0083 (10)
N3	0.0470 (16)	0.0303 (13)	0.0344 (13)	-0.0147 (11)	-0.0037 (11)	0.0015 (10)
C1	0.0291 (13)	0.0281 (13)	0.0287 (13)	-0.0080 (10)	-0.0059 (10)	-0.0067 (10)
C2	0.0380 (15)	0.0338 (14)	0.0363 (15)	-0.0084 (11)	-0.0174 (12)	-0.0037 (11)
C3	0.072 (2)	0.0444 (17)	0.0244 (14)	-0.0280 (16)	-0.0155 (13)	0.0040 (12)
C4	0.0558 (19)	0.063 (2)	0.0282 (14)	-0.0323 (16)	0.0116 (13)	-0.0178 (14)
C5	0.0375 (15)	0.0362 (15)	0.0373 (15)	-0.0087 (12)	0.0005 (12)	-0.0145 (12)
C6	0.0462 (16)	0.0307 (14)	0.0247 (13)	-0.0169 (12)	-0.0096 (11)	-0.0004 (10)
C7	0.0374 (15)	0.0374 (15)	0.0305 (14)	-0.0143 (12)	-0.0001 (11)	-0.0116 (11)
C8	0.0528 (18)	0.0266 (14)	0.0368 (15)	-0.0132 (12)	-0.0126 (13)	-0.0024 (11)
C9	0.0482 (17)	0.0484 (17)	0.0306 (14)	-0.0320 (14)	-0.0096 (12)	0.0051 (12)
C10	0.0321 (15)	0.0485 (17)	0.0370 (15)	-0.0121 (12)	-0.0116 (12)	-0.0030 (13)
C11	0.0298 (14)	0.0337 (15)	0.0360 (14)	-0.0116 (11)	-0.0057 (11)	-0.0035 (12)
C12	0.0466 (16)	0.0268 (13)	0.0241 (13)	-0.0124 (11)	-0.0073 (11)	0.0002 (10)
C13	0.0408 (15)	0.0322 (14)	0.0308 (14)	-0.0107 (12)	-0.0073 (11)	-0.0008 (11)
C14	0.0407 (15)	0.0342 (14)	0.0304 (14)	-0.0137 (12)	-0.0044 (11)	-0.0030 (11)
C15	0.0435 (15)	0.0291 (13)	0.0236 (12)	-0.0157 (11)	-0.0035 (11)	-0.0048 (10)
C16	0.0418 (15)	0.0300 (13)	0.0244 (13)	-0.0110 (11)	-0.0031 (11)	-0.0070 (10)
C17	0.0427 (16)	0.0402 (15)	0.0256 (13)	-0.0212 (12)	0.0033 (11)	-0.0096 (11)
C18	0.0426 (17)	0.0498 (18)	0.0515 (18)	-0.0149 (14)	-0.0056 (14)	0.0038 (15)
C19	0.0439 (17)	0.0366 (15)	0.0388 (16)	-0.0082 (12)	-0.0016 (12)	-0.0089 (12)
P1	0.0332 (4)	0.0384 (4)	0.0465 (4)	-0.0085 (3)	0.0011 (3)	0.0085 (3)
F1	0.076 (4)	0.119 (5)	0.139 (6)	-0.058 (4)	-0.049 (4)	0.015 (5)
F2	0.058 (3)	0.085 (4)	0.114 (4)	-0.017 (3)	-0.029 (3)	-0.036 (4)
F3	0.039 (2)	0.050 (3)	0.122 (6)	0.002 (2)	0.019 (3)	0.043 (3)
F4	0.086 (5)	0.048 (3)	0.075 (4)	0.005 (3)	0.024 (3)	0.028 (3)
F5	0.088 (6)	0.090 (5)	0.067 (3)	-0.024 (4)	0.030 (3)	-0.036 (3)
F6	0.128 (9)	0.098 (6)	0.056 (3)	-0.013 (5)	0.049 (4)	-0.026 (4)
F1A	0.155 (7)	0.152 (8)	0.096 (5)	0.018 (6)	-0.083 (5)	0.002 (5)
F2A	0.240 (9)	0.110 (6)	0.063 (4)	-0.009 (6)	-0.071 (5)	-0.002 (4)
F3A	0.185 (8)	0.060 (4)	0.099 (5)	-0.057 (4)	0.013 (5)	-0.019 (4)
F4A	0.116 (6)	0.049 (4)	0.194 (9)	-0.035 (4)	-0.003 (6)	-0.031 (6)
F5A	0.064 (5)	0.073 (6)	0.249 (14)	0.029 (4)	0.091 (7)	0.081 (7)
F6A	0.034 (3)	0.095 (7)	0.178 (11)	0.016 (3)	0.024 (5)	0.083 (7)
O3	0.0341 (12)	0.0587 (16)	0.0721 (17)	-0.0104 (11)	0.0085 (11)	0.0039 (12)

Geometric parameters (Å, °)

Co1—C8	2.029 (3)	С8—Н8	0.9500
Col—Cl	2.029 (2)	C9—C10	1.414 (4)
Co1—C9	2.030 (3)	С9—Н9	0.9500
Co1—C7	2.033 (3)	C10—H10	0.9500
Co1—C2	2.036 (3)	C12—C13	1.391 (4)
Co1-C10	2.036 (3)	C12—C17	1.402 (4)
Co1—C5	2.039 (3)	C13—C14	1.379 (3)

G 1 G1	0.041.(0)	C12 H12	0.0500
Col—C4	2.041 (3)	С13—Н13	0.9500
Col—C3	2.047 (3)	C14—C15	1.415 (4)
Co1—C6	2.064 (2)	C14—C18	1.501 (4)
O1—C11	1.199 (3)	C15—C16	1.422 (4)
O2—C11	1.309 (3)	C16—C17	1.381 (3)
O2—H2O	0.837 (19)	C16—C19	1.498 (4)
N1—N2	1.263 (3)	C17—H17	0.9500
N1—C6	1.200(3)	C18—H18A	0.9800
N2 C12	1.424(3) 1.407(3)		0.9800
N2 C15	1.407(3)	C18_H18D	0.9800
	1.350 (3)		0.9800
N3—HIN	0.8/8 (18)	С19—Н19А	0.9800
N3—H2N	0.881 (18)	С19—Н19В	0.9800
C1—C5	1.415 (4)	С19—Н19С	0.9800
C1—C2	1.428 (3)	P1—F1A	1.517 (6)
C1—C11	1.486 (3)	P1—F5A	1.531 (8)
C2—C3	1.411 (4)	P1—F4A	1.534 (7)
С2—Н2	0.9500	P1—F6A	1.540 (9)
C3—C4	1 411 (4)	P1—F6	1544(7)
C3 H3	0.9500	P1 F3	1.5 + (7) 1 556 (4)
C4 C5	1.417(4)	D1 E1	1.550(4)
C4 - C3	1.417 (4)		1.501(3)
C4—H4	0.9500	PI—F2	1.562 (4)
С5—Н5	0.9500	P1—F4	1.577 (5)
C6—C10	1.424 (4)	P1—F2A	1.579 (5)
C6—C7	1.425 (4)	P1—F5	1.585 (8)
С7—С8	1.419 (4)	P1—F3A	1.592 (6)
С7—Н7	0.9500	O3—H3A	0.856 (19)
C8—C9	1.404 (4)	O3—H3B	0.835 (19)
			~ /
C8-C01-C1	144 40 (11)	C8-C7-Co1	69 40 (15)
C_{8} C_{01} C_{9}	40.48 (12)	C6-C7-Co1	70.80 (15)
C_1 C_2 C_2	174.67(11)	C° C^{7} H^{7}	126.2
$C_1 = C_0 = C_2$	1/4.0/(11)	Со-С/Н/	120.2
	40.90 (10)	C6C/H/	126.2
CI = CoI = C/	113.95 (10)	Col—C/—H/	125.2
C9—Co1—C7	68.65 (11)	C9—C8—C7	108.5 (2)
C8—Co1—C2	113.50 (11)	C9—C8—Co1	69.78 (16)
C1—Co1—C2	41.12 (10)	C7—C8—Co1	69.70 (15)
C9—Co1—C2	143.37 (11)	С9—С8—Н8	125.8
C7—Co1—C2	109.64 (11)	С7—С8—Н8	125.8
C8—Co1—C10	68.40 (12)	Co1-C8-H8	126.3
C1—Co1—C10	135.01 (11)	C8—C9—C10	108.4(2)
C_{9} C_{01} C_{10}	40.70 (11)	C8 - C9 - Co1	69 74 (15)
$C7-C_{01}-C_{10}$	68 79 (11)	C10-C9-Co1	60 00 (15)
$C_{1} = C_{1} = C_{10}$	175 25 (11)	$C_{0}^{0} = C_{0}^{0} = U_{0}^{0}$	125.90 (13)
$C_2 = C_0 = C_1 = C_5$	1/3.33 (11)		125.8
	1/4.0/(11)	C10—C9—H9	125.8
C1—Co1—C5	40.70 (10)	Со1—С9—Н9	126.1
C9—Co1—C5	134.61 (12)	C9—C10—C6	108.0 (2)
C7—Co1—C5	144.43 (11)	C9—C10—Co1	69.39 (15)
C2—Co1—C5	68.73 (11)	C6-C10-Co1	70.71 (14)

C10-Co1-C5	109.82 (12)	C9—C10—H10	126.0
C8—Co1—C4	134.27 (11)	C6—C10—H10	126.0
C1—Co1—C4	68.36 (10)	Co1-C10-H10	125.5
C9—Co1—C4	109.53 (11)	O1—C11—O2	125.5 (2)
C7—Co1—C4	174.18 (12)	01—C11—C1	122.3 (2)
C2—Co1—C4	68.28 (12)	O2—C11—C1	112.2 (2)
C10—Co1—C4	113.72 (12)	C13—C12—C17	118.9 (2)
C5-Co1-C4	40.63 (11)	C_{13} — C_{12} — N_{2}	114.1(2)
C8-Co1-C3	109 59 (11)	C17 - C12 - N2	1271(2)
C1 - Co1 - C3	68 37 (10)	C14-C13-C12	127.1(2) 122.1(3)
C_{P} C_{01} C_{3}	113 47 (11)	C14-C13-H13	119.0
C_{7}^{-} C_{01}^{-} C_{3}^{-}	134 63 (12)	C_{12} C_{13} H_{13}	119.0
C^2 C^{-1} C^3	104.05(12)	$C_{12} = C_{13} = 1115$	119.0 118.3(2)
$C_2 = C_0 = C_3$	40.43(11) 142.60(12)	$C_{13}^{} C_{14}^{} C_{13}^{} C_{14}^{} C_{15}^{} C_{14}^{} C_{15}^{} C_{1$	110.3(2)
$C_{10} = C_{01} = C_{3}$	(12)	$C_{15} = C_{14} = C_{18}$	121.2(3)
$C_{3} = C_{01} = C_{3}$	08.24(12)	C13 - C14 - C18	120.4(2)
C4 - C01 - C3	40.39 (13)	$N_{3} = C_{15} = C_{14}$	119.8 (2)
	68.24 (11)	N3-C15-C16	119.4 (2)
C1 = C01 = C6	110.41 (10)	C14 - C15 - C16	120.8 (2)
C9—C01—C6	68.23 (10)		118.3 (2)
C/ColC6	40.71 (11)	C17 - C16 - C19	121.7 (2)
C2—Co1—C6	135.43 (11)	C15—C16—C19	120.0 (2)
C10—Co1—C6	40.65 (10)	C16—C17—C12	121.6 (2)
C5—Co1—C6	114.40 (11)	C16—C17—H17	119.2
C4—Co1—C6	144.43 (13)	С12—С17—Н17	119.2
C3—Co1—C6	174.79 (12)	C14—C18—H18A	109.5
C11—O2—H2O	115 (3)	C14—C18—H18B	109.5
N2—N1—C6	109.2 (2)	H18A—C18—H18B	109.5
N1—N2—C12	114.9 (2)	C14—C18—H18C	109.5
C15—N3—H1N	120 (2)	H18A—C18—H18C	109.5
C15—N3—H2N	119 (2)	H18B—C18—H18C	109.5
H1N—N3—H2N	121 (3)	С16—С19—Н19А	109.5
C5—C1—C2	108.0 (2)	C16—C19—H19B	109.5
C5—C1—C11	123.9 (2)	H19A—C19—H19B	109.5
C2—C1—C11	128.0 (2)	C16—C19—H19C	109.5
C5—C1—Co1	70.02 (14)	H19A—C19—H19C	109.5
C2-C1-Co1	69.69 (14)	H19B—C19—H19C	109.5
C11—C1—Co1	124.91 (18)	F1A—P1—F5A	90.6 (6)
C3—C2—C1	107.6 (2)	F1A—P1—F4A	98.4 (6)
$C_3 - C_2 - C_0 1$	70.20 (15)	F5A—P1—F4A	88.8 (6)
C1-C2-Co1	69 19 (14)	F1A—P1—F6A	86.0 (6)
C3—C2—H2	126.2	F5A - P1 - F6A	1745(9)
C1 - C2 - H2	126.2	F4A - P1 - F6A	874(6)
$Col - C^2 - H^2$	126.0	F6-P1-F3	89 5 (5)
$C_2 - C_3 - C_4$	108 4 (2)	F6—P1—F1	951(6)
$C_2 = C_3 = C_0 1$	69 37 (15)	F3P1F1	88 6 (4)
C_{4} C_{3} C_{01}	69.60 (16)	F6P1F2	84 5 (5)
$C_2 C_3 H_3$	125.8	F_{3} F_{1} F_{2} F_{2}	00.2(4)
$C_2 = C_3 = H_2$	125.8	1 - 1 - 1 - 1 - 2 F1 D1 F2	178 8 (2)
U 1 —UJ—IIJ	123.0	1 1-1 1-1 2	1/0.0(3)

Co1—C3—H3	126.8	F6—P1—F4	88.3 (5)
C3—C4—C5	108.3 (2)	F3—P1—F4	177.6 (5)
C3—C4—Co1	70.01 (16)	F1—P1—F4	90.6 (4)
C5-C4-Co1	69.60 (15)	F2—P1—F4	90.5 (4)
C3—C4—H4	125.9	F1A—P1—F2A	174.7 (5)
C5—C4—H4	125.9	F5A—P1—F2A	88.1 (7)
Co1—C4—H4	126.1	F4A—P1—F2A	86.7 (4)
C1—C5—C4	107.7 (2)	F6A—P1—F2A	95.6 (6)
C1—C5—Co1	69.27 (14)	F6—P1—F5	177.1 (6)
C4—C5—Co1	69.78 (16)	F3—P1—F5	91.9 (5)
С1—С5—Н5	126.1	F1—P1—F5	87.5 (5)
С4—С5—Н5	126.1	F2—P1—F5	92.9 (4)
Co1—C5—H5	126.4	F4—P1—F5	90.4 (4)
C10—C6—N1	121.0 (2)	F1A—P1—F3A	84.8 (4)
C10—C6—C7	107.5 (2)	F5A—P1—F3A	87.5 (6)
N1—C6—C7	131.5 (2)	F4A—P1—F3A	175.2 (4)
C10—C6—Co1	68.64 (14)	F6A—P1—F3A	96.4 (5)
N1—C6—Co1	127.67 (18)	F2A—P1—F3A	90.0 (5)
C7—C6—Co1	68.48 (14)	H3A—O3—H3B	103 (4)
C8—C7—C6	107.6 (2)		
C6—N1—N2—C12	177.3 (2)	C7—C8—C9—Co1	-59.15 (18)
C5—C1—C2—C3	-0.2 (3)	C8—C9—C10—C6	1.1 (3)
C11—C1—C2—C3	-179.0 (2)	Co1—C9—C10—C6	60.46 (18)
Co1—C1—C2—C3	-59.96 (18)	C8—C9—C10—Co1	-59.34 (19)
C5-C1-C2-Co1	59.76 (18)	N1—C6—C10—C9	178.3 (2)
C11—C1—C2—Co1	-119.0 (3)	C7—C6—C10—C9	-2.1(3)
C1—C2—C3—C4	0.5 (3)	Co1—C6—C10—C9	-59.63 (19)
Co1—C2—C3—C4	-58.8 (2)	N1—C6—C10—Co1	-122.0 (2)
C1-C2-C3-Co1	59.32 (18)	C7—C6—C10—Co1	57.55 (18)
C2—C3—C4—C5	-0.6 (3)	C5-C1-C11-O1	4.2 (4)
Co1—C3—C4—C5	-59.28 (19)	C2-C1-C11-O1	-177.2 (3)
C2-C3-C4-Co1	58.70 (19)	Co1-C1-C11-O1	92.3 (3)
C2—C1—C5—C4	-0.2 (3)	C5-C1-C11-O2	-175.4 (2)
C11—C1—C5—C4	178.7 (2)	C2-C1-C11-O2	3.3 (4)
Co1—C1—C5—C4	59.40 (19)	Co1—C1—C11—O2	-87.2 (3)
C2-C1-C5-Co1	-59.55 (17)	N1—N2—C12—C13	177.0 (2)
C11—C1—C5—Co1	119.3 (2)	N1—N2—C12—C17	-3.4 (4)
C3—C4—C5—C1	0.5 (3)	C17—C12—C13—C14	1.6 (4)
Co1—C4—C5—C1	-59.08 (18)	N2-C12-C13-C14	-178.7 (2)
C3—C4—C5—Co1	59.5 (2)	C12—C13—C14—C15	-0.7 (4)
N2—N1—C6—C10	176.2 (2)	C12—C13—C14—C18	178.0 (3)
N2—N1—C6—C7	-3.3 (4)	C13—C14—C15—N3	179.5 (2)
N2—N1—C6—Co1	90.4 (3)	C18—C14—C15—N3	0.8 (4)
C10—C6—C7—C8	2.3 (3)	C13—C14—C15—C16	-0.8 (4)
N1—C6—C7—C8	-178.2 (3)	C18—C14—C15—C16	-179.5 (3)
Co1—C6—C7—C8	59.90 (18)	N3-C15-C16-C17	-179.0 (2)
C10—C6—C7—Co1	-57.65 (18)	C14—C15—C16—C17	1.3 (4)
	. /		

	121 0 (2)		0.0 (4)
NI-C6-C/-C01	121.9 (3)	N3-C15-C16-C19	0.9 (4)
C6—C7—C8—C9	-1.6(3)	C14—C15—C16—C19	-178.8(2)
Co1—C7—C8—C9	59.20 (19)	C15—C16—C17—C12	-0.3 (4)
C6—C7—C8—Co1	-60.79 (18)	C19—C16—C17—C12	179.8 (2)
C7—C8—C9—C10	0.3 (3)	C13—C12—C17—C16	-1.1 (4)
Co1—C8—C9—C10	59.45 (19)	N2-C12-C17-C16	179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H2 N ···O1 ⁱ	0.88 (2)	2.18 (2)	3.015 (3)	159 (3)
N3—H1 <i>N</i> …F5	0.88 (2)	2.29 (3)	2.994 (10)	137 (3)
N3—H1 <i>N</i> …F5 <i>A</i>	0.88 (2)	2.24 (3)	2.896 (8)	131 (3)
O2—H2 <i>O</i> ···O3	0.84 (2)	1.80(2)	2.625 (3)	170 (4)
O3—H3A···N1 ⁱⁱ	0.86 (2)	2.06 (2)	2.907 (3)	171 (4)
O3—H3 <i>B</i> …F5 ⁱⁱⁱ	0.84 (2)	2.22 (3)	2.988 (8)	153 (4)
O3—H3 B ···F2 A ⁱⁱⁱ	0.84 (2)	2.34 (3)	3.112 (8)	154 (4)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, -*y*+2, -*z*+1.