

Received 2 January 2019 Accepted 8 January 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; spiro compounds; cycloaddition; piperidine; nitrogen-containing heterocycle; pyran; pyrrolidine; hydrogen bonding.

CCDC references: 1024915; 1024235

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\odot}$ ACCESS

The crystal structures of 6'-(4-chlorophenyl)- and 6'-(4-methoxyphenyl)-6a'-nitro-6a',6b',7',9',10',-12a'-hexahydro-2*H*,6'*H*,8'*H*-spiro[acenaphthylene-1,12'-chromeno[3,4-a]indolizin]-2-one

S. Syed Abuthahir,^a M. NizamMohideen,^a* V. Viswanathan,^b D. Velmurugan^c and J. Nagasivarao^d

^aPG & Research Department of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India, ^bDepartment of Biophysics, All India Institute of medical Science, New Delhi 110 029, India, ^cCAS in Crystallography and Biophysics, University of Madras, Chennai 600 025, India, and ^dGVK Biosciences Pvt. Ltd, Hyderabad 500 076, India. *Correspondence e-mail: mnizam.new@gmail.com

In the title compounds, $C_{32}H_{25}ClN_2O_4$ (I) and $C_{33}H_{28}N_2O_5$ (II), the sixmembered pyran and piperidine rings adopt envelope and chair conformations, respectively. The five-membered pyrrolidine rings adopt twist conformations. Compound (II) crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. In all three molecules there is a C-H···O intramolecular hydrogen bond present enclosing an *S*(7) ring motif. In (I), both oxygen atoms of the nitro group are disordered, while in (II) the methoxybenzene group is disordered in molecule *B*. The geometries were regularized by soft restraints. In the crystal of (I), molecules are linked by C-H···Cl hydrogen bonds, forming layers parallel to (101). Within the layer there are C-H··· π interactions present. In the crystal of (II), the *A* and *B* molecules are linked *via* C-H···O hydrogen bonds, forming a square four-membered *A*-*B*-*A*-*B* unit. These units are linked by a number of C-H··· π interactions, forming a three-dimensional supramolecular structure.

1. Chemical context

Nitrogen-containing heterocyclic compounds are reported to possess a diverse range of biological activities such as antimicrobial, antitumor and anti-inflammatory (Thirunavukkarsu et al., 2017) properties. Spiro compounds are encountered in many pharmacologically active alkaloids (NizamMohideen et al., 2009c; Cravotto et al., 2001). The cornerstone for cycloaddition reactions, nitrones, are excellent spin-trapping and highly versatile synthetic intermediates (Bernotas et al., 1996; NizamMohideen et al., 2009b). Highly substituted spiro compounds result from the 1,3-dipolar cycloaddition of exocylic olefins with nitrones and these spiro compounds have also been transformed into complex heterocycles (Hossain et al., 1993; NizamMohideen et al., 2009a). Recognizing the importance of such compounds in drug discovery and our ongoing research on the construction of novel heterocycles has prompted us to investigate the title compounds and we report herein on their synthesis and crystal structures.

2. Structural commentary

The molecular structure of compound (I) is shown in Fig. 1, while the molecular structures of the two independent mol-

ecules, A and B, of compound (II) are shown in Figs. 2 and 3, respectively: they are in fact enantiomers. The bond lengths and angles in all three molecules are very similar. In (II), the methoxybenzene group of molecule B is positionally disordered and only the major component will be taken into consideration concerning the conformation of the molecule. The structural overlap of compound (I) on the major component of molecule B of compound (II) is shown in Fig. 4. The two molecules have an r.m.s. deviation of 0.212 Å. The molecular overlap of inverted molecule B of compound II (major component) on molecule A is shown in Fig. 5. Here the r.m.s. deviation is 0.297 Å and it can be seen that the major difference between the two molecules concerns the orientation of the 4-methoxyphenyl group. In all three molecules (I and IIA and IIB) the pyran rings have envelope conformations with the methylene C atom C21 as the flap. The piperidine rings adopt chair conformations, while the pyrrolidine rings adopt twist conformations on the N1-C12 bond (N1A-C12A in IIA and N1B-C12B in IIB).

(II) $R = OCH_3$

The mean plane of the five-membered pyrrolidine ring (N1/ C12/C13/C21/C22) is inclined to the mean plane of the cyclopen3-en-1-one ring (C1/C2/C10-C12) by 85.7 (1)° in compound (I), and the equivalent dihedral angles in molecules A and B of compound (II) are 87.5 (1) and 89.3 (1)°, respectively. In compound (I) the dihedral angles between the acenaphthylene ring system (C1-C12) and the benzene rings (C14-C19 and C27-C32) are 73.1 (1) and 57.3 (1)°, respectively. In (II) the corresponding dihedral angles are, respectively, 65.1 (2) and 53.6 (2)° for molecule A and 66.7 (2) and 59.3 (5)° for molecule B. The benzene rings (C27–C32 and C14-C19) are inclined to each other by $50.0(1)^{\circ}$ in (I), and 62.2 (2)° in molecule A and 71.6 (2)° in molecule B of (II). The mean plane of the pyrrolidine ring (N1/C12/C13/C21/C22) makes a dihedral angle with the mean plane of the pyran ring (O2/C13/C14/C219-C21) of 30.2 (2)° in (I), and 33.2 (2) for

View of the molecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C-H···O hydrogen bond (see Table 1) is shown as a dashed line.

View of the molecular structure of molecule A of compound (II), with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular C-H···O hydrogen bond (see Table 2) is shown as a dashed line.

Table 1				
Hydrogen-bond	geometry	(Å,	$^{\circ}$) for	(I).

Cg1 is the centroid of the C14–C19 ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C20-H20···O1	0.98	2.46	3.284 (3)	142
$C4-H4\cdots O4^{i}$	0.93	2.59	3.481 (8)	160
$C16-H16\cdots Cl1^{ii}$	0.93	2.79	3.459 (2)	130
$C9-H9\cdots Cg1^{iii}$	0.93	2.88	3.607 (3)	136

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y - 1, z - 1; (iii) -x, -y + 1, -z.

molecule A and 36.1 (2)° for molecule B in (II), and is inclined to the piperidine ring mean plane (N1/C22–C26) by 9.9 (2)° in (I), and 11.1 (2)° in molecule A and 13.1 (2)° in molecule B of compound (II). The mean planes of the pyran and piperidine ring are inclined to each other by 29.1 (2)° in (I), and 33.5 (2) in molecule A and 36.2 (2)° in molecule B of compound (II). Full details of the puckering parameters and lowest displacement asymmetry parameters are given in the supporting information. The keto atom O1 deviates from the mean plane of the plane of the acenaphthylene ring system (C1–C12) by 0.070 (2) Å in (I), and by 0.049 (2) and 0.162 (1) Å, respectively, in molecules A and B of compound (II). Chlorine atom Cl1 deviates by 0.109 (2) Å from the plane of the benzene ring (C27–C32) in (I). It can be seen that the conformations and the values of the dihedral angles in all three molecules of the Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C27A-C32A, C14B-C19B, C27B-C32B and C2B-C6B/C11B, respecively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C20.4 H20.4 O1.4	0.08	2.38	3 225 (2)	144
$C20B = H20B \cdots O1B$	0.98	2.38	3.152(2)	144
$C4B-H4B\cdots O1A^{i}$	0.93	2.55	3.315 (2)	139
$C25A - H25A \cdots O5B^{ii}$	0.97	2.53	3.233 (3)	129
$C9B - H9B \cdot \cdot \cdot Cg1^{iii}$	0.93	2.87	3.709 (2)	150
$C17A - H17A \cdots Cg2^{iv}$	0.93	2.77	3.667 (2)	161
$C26B - H26C \cdot \cdot \cdot Cg3^{v}$	0.97	2.88	3.575 (3)	129
$C33B - H33F \cdots Cg4^{ii}$	0.96	2.86	3.707 (7)	148

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$; (v) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

title compounds are very similar. The bond lengths and angles are also close to those reported for similar compounds (Devi *et al.*, 2013a,b).

3. Supramolecular features

For both compounds, the crystal structure is stabilized by intermolecular C-H···O hydrogen bonds (Tables 1 and 2). In (I), the C-H···O hydrogen bonds link adjacent molecules, forming chains propagating along the *b*-axis direction. The chains are linked by C-H···Cl hydrogen bonds, forming layers parallel to the (101) plane; see Table 1 and Fig. 6. Within the layers there are C-H··· π interactions present (Table 1).

Figure 3

View of the molecular structure of molecule *B* of compound (II), with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular $C-H\cdots O$ hydrogen bond (see Table 2) is shown as a dashed line.

The structural overlay of compound (I) on the major component of molecule B of compound (II).

The molecular overlay of inverted molecule B (major component) on molecule A of compound (II).

Figure 6

A view normal to plane $(10\overline{1})$ of the crystal structure of (I), showing the C-H···O and C-H···Cl hydrogen bonds (dashed lines; see Table 1).

In compound (II), the interlinking of A and B molecules via $C-H\cdots O$ hydrogen bonds generates four-membered units (Table 2 and Fig. 7). These are linked by $C-H\cdots \pi$ interactions, forming a three-dimensional supramolecular structure (Table 2 and Fig. 8).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, August 2018; Groom *et al.*, 2016) for the 6'-(4-phenyl)-6a'-hexahydro-2*H*,6'*H*,6b'*H*-spiro[benzopyrano[3,4-*a*]indolizin]-2-one skeleton yielded two hits: namely 6-(4-methoxyphenyl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octahydrospiro-[chromeno[3,4-*a*]indolizine-12,3-indolin]-2-one (CSD refcode AFONEQ; Devi *et al.*, 2013*a*) and 6-(4-methoxyphenyl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octahydrospiro[chromeno[3,4-*a*]-indolizine-12,3-indolin]-2-one (FIDCOM; Devi *et al.*, 2013*b*).

Figure 7

A partial view along the *b* axis of the crystal packing of compound (II). The *A* (blue) and *B* (red) molecules are linked *via* $C-H\cdots O$ hydrogen bonds (dashed lines; see Table 2).

A view along the *b* axis of the crystal packing of compound (II). The *A* (blue) and *B* (red) molecules are linked *via* $C-H\cdots O$ hydrogen bonds and $C-H\cdots \pi$ interactions (dashed lines; see Table 2). For clarity, H atoms not involved in the various intermolecular interactions have been omitted.

In both compounds, the piperidine ring has a chair conformation, as do the title compounds. In AFONEQ, the pyran ring has a envelope conformation, as do the title compounds, while in FIDCOM the pyran ring has a planar conformation. In these two compounds, the pyrrolidine ring adopts an envelope conformation, while in the title compounds these rings have twisted conformations. The bond lengths and bond angles are very similar to those reported here for the title compounds.

5. Synthesis and crystallization

To a solution of acenaphthoquinone (1.0 mmol) and piperidine-2-carboxylic acid (1.5 mmol) in dry toluene, was added 2-(4-chlorophenyl)-3-nitro-2*H*-chromene (1 mmol) for (I), and 2-(4-methoxyphenyl)-3-nitro-2*H*-chromene (1 mmol) for (II), under a nitrogen atmosphere. The solutions were refluxed for 18 h in a Dean–Stark apparatus to give the cycloadducts. After completion of the reactions as indicated by TLC, the solvent was evaporated under reduced pressure. The crude products obtained were purified by column chromatography using hexane/EtOAc (8:2) as eluent (yield 89%). Colourless block-like crystals of the title compounds, suitable for X-ray diffraction analysis, were obtained by slow evaporation of solutions in ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For both compounds the H atoms were positioned geometrically and constrained to ride on their

research communications

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{32}H_{25}ClN_2O_4$	$C_{33}H_{28}N_2O_5$
M_r	536.99	532.57
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	293	293
a, b, c (Å)	10.6777 (4), 11.6095 (4), 12.6037 (8)	19.8942 (2), 13.6097 (7), 20.7822 (1)
α, β, γ (°)	98.383 (3), 105.378 (3), 115.522 (2)	90, 107.268 (3), 90
$V(\dot{A}^3)$	1297.32 (11)	5373.2 (3)
Z	2	8
Radiation type	Μο <i>Κα</i>	Μο Κα
$\mu (\text{mm}^{-1})$	0.19	0.09
Crystal size (mm)	$0.20 \times 0.15 \times 0.10$	$0.30 \times 0.26 \times 0.20$
Data collection		
Diffractometer	Bruker Kappa APEXII CCD	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2008)	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.752, 0.863	0.789, 0.846
No. of measured, independent and	19013, 5294, 3713	50874, 13194, 7862
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.037	0.033
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625	0.667
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.150, 1.02	0.048, 0.130, 1.02
No. of reflections	5294	13194
No. of parameters	371	795
No. of restraints	2	31
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.29, -0.38	0.30, -0.20

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS2018/3 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009), and publCIF (Westrip, 2010).

parent atoms: C-H = 0.93–0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ methyl) and $1.2U_{eq}(C)$ for other H atoms. In compound (I) the nitro group oxygen atoms, O3 and O4, are disordered over two positions with a refined occupancy ratio of 0.54 (3):0.46 (3). In compound (II), the methoxybenzene group of molecule *B* is disordered, as detectable from the large displacement parameters for the C and O atoms and short C-C and C-O bond lengths. This disorder over two positions was modelled and the site occupancies refined to 0.739 (5) and 0.261 (5). The geometry was regularized by soft restraints.

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

- Bernotas, R. C., Adams, G. & Carr, A. A. (1996). *Tetrahedron*, **52**, 6519–6526.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453.

- Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013*a*). Acta Cryst. E69, o1047.
- Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013b). Acta Cryst. E69, 0993.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). *Tetrahedron*, **49**, 10133–10156.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- NizamMohideen, M., Damodiran, M., SubbiahPandi, A. & Perumal, P. T. (2009a). Acta Cryst. E65, o1156.
- NizamMohideen, M., Damodiran, M., SubbiahPandi, A. & Perumal, P. T. (2009b). Acta Cryst. E65, 02305–02306.
- NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Savitha, G. & Perumal, P. T. (2009c). Acta Cryst. E65, 0977–0978.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thirunavukkarsu, A., Sujatha, T., Umarani, P. R., Nizam Mohideen, M., Silambarasan, A. & Kumar, R. M. (2017). J. Cryst. Growth, 460, 42–47.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 218-222 [https://doi.org/10.1107/S2056989019000422]

The crystal structures of 6'-(4-chlorophenyl)- and 6'-(4-methoxyphenyl)-6a'nitro-6a',6b',7',9',10',12a'-hexahydro-2*H*,6'*H*,8'*H*-spiro[acenaphthylene-1,12'chromeno[3,4-*a*]indolizin]-2-one

S. Syed Abuthahir, M. NizamMohideen, V. Viswanathan, D. Velmurugan and J. Nagasivarao

Computing details

For both structures, data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS2018/3* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *PLATON* (Spek, 2009), *SHELXL2018/3* (Sheldrick, 2015) and *publCIF* (Westrip, 2010).

6'-(4-Chlorophenyl)-6a'-nitro-6a',6b',7',9',10',12a'-hexahydro-2*H*,6'*H*,8'*H*-spiro[acenaphthylene-1,12'chromeno[3,4-a]indolizin]-2-one (I)

Crystal data

 $C_{32}H_{25}CIN_2O_4$ $M_r = 536.99$ Triclinic, $P\overline{1}$ a = 10.6777 (4) Å b = 11.6095 (4) Å c = 12.6037 (8) Å a = 98.383 (3)° $\beta = 105.378$ (3)° $\gamma = 115.522$ (2)° V = 1297.32 (11) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.752, T_{\max} = 0.863$ 19013 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.150$ S = 1.02 Z = 2 F(000) = 560 $D_x = 1.375 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5294 reflections $\theta = 1.8-26.4^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.20 \times 0.15 \times 0.10 \text{ mm}$

5294 independent reflections 3713 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 1.8^\circ$ $h = -11 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$

5294 reflections371 parameters2 restraintsHydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0789P)^2 + 0.345P]$	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.38 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.2881 (2)	0.3825 (2)	0.25371 (18)	0.0459 (5)	
C2	0.1842 (2)	0.2368 (2)	0.21187 (17)	0.0466 (5)	
C3	0.2047 (3)	0.1270 (2)	0.20568 (19)	0.0561 (6)	
H3	0.299884	0.137107	0.232341	0.067*	
C4	0.0781 (3)	-0.0002(2)	0.1582 (2)	0.0646 (7)	
H4	0.090771	-0.074825	0.155382	0.077*	
C5	-0.0632 (3)	-0.0190 (2)	0.11575 (19)	0.0609 (6)	
H5	-0.143848	-0.105415	0.083782	0.073*	
C6	-0.0885 (3)	0.0914 (2)	0.11975 (17)	0.0492 (5)	
C7	-0.2264 (3)	0.0891 (2)	0.07867 (19)	0.0579 (6)	
H7	-0.314492	0.007943	0.041761	0.069*	
C8	-0.2302 (3)	0.2063 (2)	0.0933 (2)	0.0606 (6)	
H8	-0.322135	0.202763	0.066518	0.073*	
C9	-0.1006 (2)	0.3325 (2)	0.1472 (2)	0.0550 (6)	
H9	-0.107296	0.410328	0.157064	0.066*	
C10	0.0346 (2)	0.33842 (19)	0.18448 (17)	0.0438 (5)	
C11	0.0387 (2)	0.21777 (19)	0.17054 (16)	0.0438 (5)	
C12	0.1921 (2)	0.45489 (18)	0.24065 (17)	0.0419 (4)	
C13	0.2339 (2)	0.55885 (18)	0.17313 (16)	0.0409 (4)	
H13	0.146419	0.570080	0.144336	0.049*	
C14	0.2711 (2)	0.52501 (19)	0.06933 (17)	0.0453 (5)	
C15	0.1738 (3)	0.4053 (2)	-0.02013 (18)	0.0578 (6)	
H15	0.089528	0.341149	-0.012400	0.069*	
C16	0.2015 (3)	0.3815 (3)	-0.11943 (19)	0.0674 (7)	
H16	0.137258	0.300386	-0.177120	0.081*	
C17	0.3231 (3)	0.4764 (3)	-0.13407 (19)	0.0622 (7)	
H17	0.338960	0.460843	-0.202545	0.075*	
C18	0.4217 (3)	0.5951 (2)	-0.04682 (19)	0.0563 (6)	
H18	0.505257	0.659264	-0.055468	0.068*	
C19	0.3945 (2)	0.6173 (2)	0.05370 (17)	0.0467 (5)	
C20	0.5079 (2)	0.7327 (2)	0.25230 (17)	0.0437 (5)	
H20	0.530350	0.660589	0.262283	0.052*	
C21	0.3561 (2)	0.69182 (18)	0.26509 (16)	0.0398 (4)	
C22	0.3564 (2)	0.66574 (19)	0.38201 (17)	0.0423 (4)	
H22	0.437692	0.646499	0.411112	0.051*	
C23	0.3709 (3)	0.7696 (2)	0.48007 (18)	0.0509 (5)	

H23A	0.465123	0.851367	0.502512	0.061*	
H23B	0.290754	0.789981	0.455425	0.061*	
C24	0.3637 (3)	0.7141 (2)	0.58148 (19)	0.0601 (6)	
H24B	0.367040	0.777458	0.643088	0.072*	
H24A	0.449553	0.702064	0.610330	0.072*	
C25	0.2216 (3)	0.5812 (2)	0.5462 (2)	0.0642 (6)	
H25A	0.222340	0.544821	0.610801	0.077*	
H25B	0.136013	0.594954	0.525425	0.077*	
C26	0.2080 (3)	0.4825 (2)	0.44468 (19)	0.0567 (6)	
H26A	0.287900	0.461395	0.467360	0.068*	
H26B	0.113644	0.400231	0.419912	0.068*	
C27	0.6420 (2)	0.8610 (2)	0.33494 (17)	0.0445 (5)	
C28	0.6967 (2)	0.9762 (2)	0.30247 (18)	0.0528 (5)	
H28	0.649586	0.974101	0.228077	0.063*	
C29	0.8183 (3)	1.0935 (2)	0.37688 (19)	0.0563 (6)	
H29	0.854267	1.169595	0.352950	0.068*	
C30	0.8866 (2)	1.0972 (2)	0.48772 (19)	0.0540 (5)	
C31	0.8373 (3)	0.9844 (3)	0.5221 (2)	0.0630 (6)	
H31	0.884924	0.987365	0.596696	0.076*	
C32	0.7169 (2)	0.8664 (2)	0.4457 (2)	0.0571 (6)	
H32	0.685213	0.789244	0.468568	0.069*	
N2	0.3151 (2)	0.80137 (17)	0.24890 (16)	0.0485 (4)	
N1	0.21621 (18)	0.54109 (15)	0.34986 (14)	0.0438 (4)	
01	0.42335 (18)	0.43921 (15)	0.29281 (15)	0.0614 (4)	
O2	0.49612 (16)	0.73855 (14)	0.13750 (12)	0.0521 (4)	
Cl1	1.03556 (8)	1.24711 (7)	0.58385 (6)	0.0799 (2)	
O3	0.3964 (11)	0.9095 (5)	0.3177 (6)	0.0596 (18)	0.54 (3)
O4	0.2186 (17)	0.7792 (7)	0.1611 (8)	0.076 (3)	0.54 (3)
O3′	0.4053 (12)	0.9176 (7)	0.281 (2)	0.107 (5)	0.46 (3)
O4′	0.1793 (6)	0.7649 (6)	0.214 (2)	0.085 (5)	0.46 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0514 (13)	0.0431 (10)	0.0460 (11)	0.0284 (10)	0.0115 (9)	0.0154 (9)
C2	0.0584 (13)	0.0423 (10)	0.0409 (10)	0.0299 (10)	0.0114 (9)	0.0137 (8)
C3	0.0726 (15)	0.0511 (12)	0.0515 (12)	0.0417 (12)	0.0125 (11)	0.0169 (10)
C4	0.096 (2)	0.0437 (12)	0.0574 (14)	0.0436 (13)	0.0162 (13)	0.0155 (10)
C5	0.0838 (18)	0.0366 (11)	0.0481 (12)	0.0257 (11)	0.0110 (12)	0.0115 (9)
C6	0.0636 (14)	0.0391 (10)	0.0381 (10)	0.0229 (10)	0.0125 (10)	0.0128 (8)
C7	0.0543 (14)	0.0459 (12)	0.0502 (12)	0.0130 (10)	0.0050 (10)	0.0155 (10)
C8	0.0460 (13)	0.0537 (13)	0.0694 (15)	0.0213 (11)	0.0064 (11)	0.0221 (11)
C9	0.0512 (13)	0.0452 (11)	0.0678 (14)	0.0268 (10)	0.0129 (11)	0.0209 (10)
C10	0.0474 (12)	0.0372 (10)	0.0453 (11)	0.0226 (9)	0.0103 (9)	0.0147 (8)
C11	0.0536 (12)	0.0387 (10)	0.0375 (10)	0.0245 (9)	0.0103 (9)	0.0135 (8)
C12	0.0447 (11)	0.0374 (10)	0.0435 (10)	0.0236 (9)	0.0100 (9)	0.0126 (8)
C13	0.0417 (11)	0.0371 (10)	0.0438 (10)	0.0233 (9)	0.0079 (8)	0.0135 (8)
C14	0.0540 (12)	0.0423 (10)	0.0390 (10)	0.0294 (10)	0.0056 (9)	0.0128 (8)

C15	0.0722 (16)	0.0471 (12)	0.0417 (12)	0.0277 (11)	0.0061 (11)	0.0124 (9)
C16	0.098 (2)	0.0561 (14)	0.0375 (11)	0.0412 (14)	0.0056 (12)	0.0090 (10)
C17	0.0880 (18)	0.0741 (16)	0.0391 (11)	0.0563 (15)	0.0170 (12)	0.0155 (11)
C18	0.0625 (14)	0.0684 (14)	0.0487 (12)	0.0430 (12)	0.0169 (11)	0.0183 (11)
C19	0.0539 (13)	0.0490 (11)	0.0413 (11)	0.0333 (10)	0.0104 (9)	0.0122 (9)
C20	0.0449 (11)	0.0450 (10)	0.0418 (10)	0.0243 (9)	0.0134 (9)	0.0124 (9)
C21	0.0430 (11)	0.0336 (9)	0.0453 (10)	0.0234 (8)	0.0116 (9)	0.0119 (8)
C22	0.0420 (11)	0.0398 (10)	0.0450 (11)	0.0218 (9)	0.0122 (9)	0.0138 (8)
C23	0.0495 (12)	0.0435 (11)	0.0521 (12)	0.0199 (10)	0.0163 (10)	0.0075 (9)
C24	0.0644 (15)	0.0601 (14)	0.0450 (12)	0.0274 (12)	0.0143 (11)	0.0074 (10)
C25	0.0713 (16)	0.0615 (14)	0.0509 (13)	0.0249 (13)	0.0226 (12)	0.0175 (11)
C26	0.0623 (14)	0.0477 (12)	0.0529 (13)	0.0207 (11)	0.0190 (11)	0.0199 (10)
C27	0.0406 (11)	0.0495 (11)	0.0437 (11)	0.0228 (9)	0.0149 (9)	0.0139 (9)
C28	0.0537 (13)	0.0553 (13)	0.0396 (11)	0.0206 (11)	0.0125 (10)	0.0161 (10)
C29	0.0571 (14)	0.0511 (12)	0.0470 (12)	0.0170 (11)	0.0154 (10)	0.0155 (10)
C30	0.0461 (12)	0.0584 (13)	0.0435 (11)	0.0181 (10)	0.0132 (10)	0.0080 (10)
C31	0.0509 (13)	0.0762 (16)	0.0445 (12)	0.0220 (12)	0.0063 (10)	0.0220 (12)
C32	0.0483 (13)	0.0594 (13)	0.0568 (13)	0.0218 (11)	0.0122 (10)	0.0274 (11)
N2	0.0535 (11)	0.0410 (10)	0.0576 (11)	0.0287 (9)	0.0184 (9)	0.0182 (9)
N1	0.0466 (10)	0.0367 (8)	0.0452 (9)	0.0198 (7)	0.0136 (8)	0.0127 (7)
01	0.0505 (10)	0.0527 (9)	0.0795 (11)	0.0307 (8)	0.0117 (8)	0.0208 (8)
O2	0.0527 (9)	0.0507 (8)	0.0434 (8)	0.0196 (7)	0.0161 (7)	0.0099 (6)
Cl1	0.0707 (4)	0.0686 (4)	0.0534 (4)	0.0104 (3)	0.0042 (3)	0.0021 (3)
03	0.073 (4)	0.026 (2)	0.066 (4)	0.021 (2)	0.014 (2)	0.005 (2)
O4	0.095 (5)	0.056 (2)	0.065 (3)	0.049 (3)	-0.008 (3)	0.015 (2)
O3′	0.064 (4)	0.044 (3)	0.224 (13)	0.030 (3)	0.057 (7)	0.057 (5)
O4′	0.059 (3)	0.058 (3)	0.131 (11)	0.039 (2)	0.008 (3)	0.023 (4)

Geometric parameters (Å, °)

C1-01	1.213 (3)	C20—O2	1.433 (2)
C1—C2	1.477 (3)	C20—C27	1.507 (3)
C1—C12	1.574 (3)	C20—C21	1.542 (3)
С2—С3	1.378 (3)	C20—H20	0.9800
C2—C11	1.406 (3)	C21—N2	1.535 (2)
C3—C4	1.399 (3)	C21—C22	1.547 (3)
С3—Н3	0.9300	C22—N1	1.463 (2)
C4—C5	1.365 (4)	C22—C23	1.519 (3)
C4—H4	0.9300	C22—H22	0.9800
C5—C6	1.416 (3)	C23—C24	1.518 (3)
С5—Н5	0.9300	C23—H23A	0.9700
C6—C11	1.398 (3)	C23—H23B	0.9700
C6—C7	1.412 (3)	C24—C25	1.519 (3)
С7—С8	1.366 (3)	C24—H24B	0.9700
С7—Н7	0.9300	C24—H24A	0.9700
С8—С9	1.409 (3)	C25—C26	1.517 (3)
С8—Н8	0.9300	C25—H25A	0.9700
C9—C10	1.362 (3)	C25—H25B	0.9700

С9—Н9	0.9300	C26—N1	1.463 (3)
C10—C11	1.407 (3)	C26—H26A	0.9700
C10—C12	1.512 (3)	C26—H26B	0.9700
C12—N1	1.466 (3)	C27—C28	1.383 (3)
C12—C13	1.555 (3)	C27—C32	1.390 (3)
C13—C14	1.511 (3)	C28—C29	1.371 (3)
C13—C21	1.539 (3)	C28—H28	0.9300
C13—H13	0.9800	C29—C30	1.379 (3)
C14—C19	1.380 (3)	С29—Н29	0.9300
C14—C15	1.400 (3)	C30—C31	1.368 (3)
C15—C16	1.377 (3)	C30—Cl1	1.734 (2)
C15—H15	0.9300	C31—C32	1.378 (3)
C16—C17	1.374 (4)	С31—Н31	0.9300
C16—H16	0.9300	С32—Н32	0.9300
C17—C18	1.382 (3)	N2—O3′	1.194 (6)
С17—Н17	0.9300	N2—O3	1.194 (5)
C18—C19	1.386 (3)	N2—O4	1.199 (4)
C18—H18	0.9300	N2—O4′	1.247 (5)
C19—O2	1.385 (2)		
O1—C1—C2	127.43 (19)	С27—С20—Н20	106.7
O1—C1—C12	124.78 (18)	C21—C20—H20	106.7
C2—C1—C12	107.79 (17)	N2—C21—C13	108.98 (15)
C3—C2—C11	119.4 (2)	N2-C21-C20	108.70 (15)
C3—C2—C1	133.3 (2)	C13—C21—C20	110.44 (15)
C11—C2—C1	107.33 (17)	N2—C21—C22	111.16 (15)
C2—C3—C4	118.1 (2)	C13—C21—C22	105.13 (15)
С2—С3—Н3	120.9	C20—C21—C22	112.37 (15)
С4—С3—Н3	120.9	N1—C22—C23	110.13 (17)
C5—C4—C3	122.6 (2)	N1-C22-C21	103.32 (15)
C5—C4—H4	118.7	C23—C22—C21	120.98 (16)
C3—C4—H4	118.7	N1—C22—H22	107.2
C4—C5—C6	120.9 (2)	С23—С22—Н22	107.2
С4—С5—Н5	119.5	C21—C22—H22	107.2
С6—С5—Н5	119.5	C24—C23—C22	108.70 (18)
C11—C6—C7	116.29 (18)	С24—С23—Н23А	110.0
C11—C6—C5	115.8 (2)	С22—С23—Н23А	110.0
C7—C6—C5	127.9 (2)	С24—С23—Н23В	110.0
C8—C7—C6	119.8 (2)	С22—С23—Н23В	110.0
С8—С7—Н7	120.1	H23A—C23—H23B	108.3
С6—С7—Н7	120.1	C23—C24—C25	110.87 (19)
C7—C8—C9	122.8 (2)	C23—C24—H24B	109.5
С7—С8—Н8	118.6	C25—C24—H24B	109.5
С9—С8—Н8	118.6	C23—C24—H24A	109.5
C10—C9—C8	118.8 (2)	C25—C24—H24A	109.5
С10—С9—Н9	120.6	H24B—C24—H24A	108.1
С8—С9—Н9	120.6	C26—C25—C24	110.8 (2)
C9—C10—C11	118.46 (19)	C26—C25—H25A	109.5

C9—C10—C12	132.14 (18)	C24—C25—H25A	109.5
C11—C10—C12	109.40 (17)	C26—C25—H25B	109.5
C6—C11—C2	123.11 (18)	C24—C25—H25B	109.5
C6-C11-C10	123.72 (19)	H25A—C25—H25B	108.1
C2-C11-C10	113.16 (18)	N1—C26—C25	109.29 (18)
N1—C12—C10	112.51 (17)	N1—C26—H26A	109.8
N1—C12—C13	100.06 (14)	C25—C26—H26A	109.8
C10—C12—C13	114.76 (15)	N1—C26—H26B	109.8
N1—C12—C1	114.02 (15)	C25—C26—H26B	109.8
C10-C12-C1	102.23 (15)	H26A—C26—H26B	108.3
C_{13} C_{12} C_{1}	113 83 (16)	C_{28} C_{27} C_{32}	117 78 (19)
C14 - C13 - C21	114 28 (17)	$C_{28} = C_{27} = C_{20}$	121 29 (18)
C_{14} C_{13} C_{12} C_{12}	118.20(17) 118.24(15)	$C_{20} = C_{27} = C_{20}$	121.29(10) 120.91(19)
$C_{11} = C_{13} = C_{12}$	105.24(15)	C_{29} C_{28} C_{27} C_{20}	120.91(19) 121.8(2)
C_{14} C_{13} H_{13}	106.1	$C_{29} = C_{28} = H_{28}$	110 1
C21 C13 H13	106.1	$C_{27} = C_{28} = H_{28}$	119.1
$C_{12} = C_{13} = H_{13}$	106.1	$C_{27} = C_{28} = C_{20} = C_{20}$	119.1
C_{12} C_{13} C_{14} C_{15}	100.1	$C_{28} = C_{29} = C_{30}$	119.0 (2)
C19 - C14 - C13	117.3(2) 120.80(17)	$C_{20} = C_{20} = H_{20}$	120.5
C19 - C14 - C13	120.89(17)	$C_{30} = C_{29} = H_{29}$	120.3
C15 - C14 - C13	121.3(2)	$C_{31} = C_{30} = C_{29}$	120.7(2)
C16 - C15 - C14	120.8 (2)		120.15 (18)
C16—C15—H15	119.6	$C_{29} = C_{30} = C_{11}$	119.15 (18)
C14—C15—H15	119.6	$C_{30} = C_{31} = C_{32}$	119.7 (2)
C17—C16—C15	120.6 (2)	С30—С31—Н31	120.2
C17—C16—H16	119.7	C32—C31—H31	120.2
C15—C16—H16	119.7	C31—C32—C27	120.9 (2)
C16—C17—C18	119.9 (2)	С31—С32—Н32	119.5
С16—С17—Н17	120.1	С27—С32—Н32	119.5
C18—C17—H17	120.1	O3—N2—O4	123.8 (5)
C17—C18—C19	119.1 (2)	O3'—N2—O4'	120.1 (7)
C17—C18—H18	120.4	O3'—N2—C21	123.1 (7)
C19—C18—H18	120.4	O3—N2—C21	116.7 (5)
C14—C19—O2	121.30 (18)	O4—N2—C21	118.5 (3)
C14—C19—C18	122.1 (2)	O4'—N2—C21	116.0 (4)
O2—C19—C18	116.6 (2)	C22—N1—C26	112.40 (16)
O2—C20—C27	107.76 (16)	C22—N1—C12	107.98 (16)
O2—C20—C21	110.04 (16)	C26—N1—C12	116.80 (15)
C27—C20—C21	118.30 (16)	C19—O2—C20	113.34 (15)
O2—C20—H20	106.7		
O1—C1—C2—C3	1.2 (4)	C14—C13—C21—C20	-21.1 (2)
C12—C1—C2—C3	-178.0 (2)	C12—C13—C21—C20	110.28 (17)
O1—C1—C2—C11	-177.8 (2)	C14—C13—C21—C22	-142.51 (16)
C12—C1—C2—C11	3.0 (2)	C12—C13—C21—C22	-11.14 (19)
C11—C2—C3—C4	-0.1 (3)	O2—C20—C21—N2	-64.05 (19)
C1—C2—C3—C4	-179.0(2)	C27—C20—C21—N2	60.4 (2)
C2—C3—C4—C5	1.5 (4)	O2—C20—C21—C13	55.46 (19)
C3—C4—C5—C6	-1.1 (4)	C27—C20—C21—C13	179.88 (16)

C4—C5—C6—C11	-0.8(3)	O2—C20—C21—C22	172.49 (15)
C4—C5—C6—C7	179.1 (2)	C27—C20—C21—C22	-63.1 (2)
C11—C6—C7—C8	-2.2(3)	N2-C21-C22-N1	103.19(17)
C5—C6—C7—C8	177.9 (2)	C_{13} C_{21} C_{22} N_{1}	-14.58(18)
C6-C7-C8-C9	0.8(4)	C_{20} C_{21} C_{22} N_1	-13474(15)
C7-C8-C9-C10	13(4)	N_{2} C_{21} C_{22} C_{23}	-205(2)
C8 - C9 - C10 - C11	-1.8(3)	C_{13} C_{21} C_{22} C_{23} C_{23}	-13827(18)
$C_{8} - C_{9} - C_{10} - C_{12}$	1.0(3)	C_{20} C_{21} C_{22} C_{23} C_{20} C_{21} C_{22} C_{23}	101.6(2)
C_{7} C_{6} C_{11} C_{7}	-177.70(19)	$N1 - C^{22} - C^{23} - C^{24}$	58.2(2)
$C_{1}^{-} = C_{0}^{-} = C_{11}^{-} = C_{2}^{-}$	23(3)	C_{21} C_{22} C_{23} C_{24}	17858(18)
$C_{3} = C_{0} = C_{11} = C_{2}$	2.3(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	-55.8(2)
$C_{}C_{-$	1.0(3) -178 4 (2)	$C_{22} = C_{23} = C_{24} = C_{25}$	-33.8(3)
$C_3 = C_1 $	-1/8.4(2)	$C_{23} = C_{24} = C_{23} = C_{20}$	55.5(5)
$C_{3} - C_{2} - C_{11} - C_{6}$	-1.8(3)	$C_{24} = C_{25} = C_{26} = N_1$	-55.7(3)
CI = C2 = CII = C6	177.29 (18)	02 - 020 - 027 - 028	23.7 (3)
C_{3} C_{2} C_{11} C_{10}	1/8.78 (19)	$C_{21} = C_{20} = C_{27} = C_{28}$	-101.8 (2)
C1—C2—C11—C10	-2.1 (2)	02-C20-C27-C32	-154.8 (2)
C9—C10—C11—C6	0.4 (3)	C21—C20—C27—C32	79.7 (3)
C12—C10—C11—C6	-179.14 (18)	C32—C27—C28—C29	-1.6(3)
C9—C10—C11—C2	179.76 (19)	C20—C27—C28—C29	179.9 (2)
C12—C10—C11—C2	0.2 (2)	C27—C28—C29—C30	-1.0 (4)
C9—C10—C12—N1	59.4 (3)	C28—C29—C30—C31	2.3 (4)
C11—C10—C12—N1	-121.17 (18)	C28—C29—C30—C11	-177.30 (18)
C9—C10—C12—C13	-54.1 (3)	C29—C30—C31—C32	-0.9 (4)
C11—C10—C12—C13	125.30 (18)	Cl1—C30—C31—C32	178.65 (19)
C9—C10—C12—C1	-177.9 (2)	C30—C31—C32—C27	-1.7 (4)
C11—C10—C12—C1	1.6 (2)	C28—C27—C32—C31	2.9 (3)
O1-C1-C12-N1	-60.3 (3)	C20—C27—C32—C31	-178.5 (2)
C2-C1-C12-N1	118.94 (18)	C13—C21—N2—O3'	-156.1 (16)
O1—C1—C12—C10	178.0 (2)	C20—C21—N2—O3'	-35.7 (16)
C2-C1-C12-C10	-2.8 (2)	C22—C21—N2—O3'	88.5 (16)
O1—C1—C12—C13	53.7 (3)	C13—C21—N2—O3	176.6 (5)
C2-C1-C12-C13	-127.12 (18)	C20—C21—N2—O3	-62.9(6)
N1—C12—C13—C14	161.39 (17)	C22—C21—N2—O3	61.2 (6)
C10—C12—C13—C14	-77.9 (2)	C13—C21—N2—O4	-13.9 (11)
C1-C12-C13-C14	39.4 (2)	C20—C21—N2—O4	106.6 (11)
N1—C12—C13—C21	32.34 (18)	C22—C21—N2—O4	-129.3(11)
C10-C12-C13-C21	153.01 (16)	C13-C21-N2-O4'	33.7 (14)
C1 - C12 - C13 - C21	-89.68 (18)	$C_{20} - C_{21} - N_{2} - O_{4'}$	154 1 (14)
C_{21} C_{13} C_{14} C_{19}	-9.2(2)	$C_{22} = C_{21} = N_{2} = O_{4'}$	-81.7(14)
C12-C13-C14-C19	-133.89(19)	C_{23} C_{22} N_{12} C_{26}	-61.6(2)
C_{21} C_{13} C_{14} C_{15}	177 82 (17)	$C_{23} = C_{22} = N_1 = C_{26}$	167.85(16)
$C_{12} C_{13} C_{14} C_{15}$	53.1(2)	$C_{21} = C_{22} = N_1 = C_{20}$	168 13 (16)
$C_{12} = C_{13} = C_{14} = C_{15}$	0.2(3)	$C_{23} = C_{22} = N_1 = C_{12}$	100.15(10) 37.57(18)
C13 - C14 - C15 - C16	173 4 (2)	$C_{21} - C_{22} - N_{1} - C_{12}$	59 5 (2)
$C_{14} = C_{15} = C_{16} = C_{17}$	-18(4)	$C_{25} = C_{20} = C_{11} = C_{22}$	-174.01.(19)
$C_{14} = C_{13} = C_{10} = C_{17} = C_{19}$	1.0(4)	$C_{23} - C_{20} - N_1 - C_{12}$	1/4.91(10) -166.20(15)
C_{13} C_{10} C	2.3(4)	$C_{10} - C_{12} - N_1 - C_{22}$	-42.02(19)
$C_{10} - C_{17} - C_{10} - C_{19}$	-1.1(3)	C13 - C12 - IN1 - C22	-43.92(18)
U13 - U14 - U19 - U2	1/9.00(1/)	CI - CI2 - NI - C22	//.9/(19)

C13—C14—C19—O2	6.4 (3)	C10—C12—N1—C26	66.0 (2)
C15—C14—C19—C18	1.0 (3)	C13—C12—N1—C26	-171.71 (17)
C13—C14—C19—C18	-172.22 (18)	C1—C12—N1—C26	-49.8 (2)
C17—C18—C19—C14	-0.6 (3)	C14—C19—O2—C20	29.9 (2)
C17—C18—C19—O2	-179.25 (18)	C18—C19—O2—C20	-151.41 (18)
C14—C13—C21—N2	98.26 (18)	C27—C20—O2—C19	168.71 (16)
C12—C13—C21—N2	-130.38 (16)	C21—C20—O2—C19	-61.0 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H···A	D—H	H···A	D····A	D—H··· A
C20—H20…O1	0.98	2.46	3.284 (3)	142
$C4$ — $H4$ ···· $O4^{i}$	0.93	2.59	3.481 (8)	160
C16—H16…Cl1 ⁱⁱ	0.93	2.79	3.459 (2)	130
C9—H9···· <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.88	3.607 (3)	136

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*-1, *y*-1, *z*-1; (iii) -*x*, -*y*+1, -*z*.

6'-(4-Methoxyphenyl)-6a'-nitro-6a',6b',7',9',10',12a'-hexahydro-2H,6'H,8'H-spiro[acenaphthylene-1,12'-

chromeno[3,4-a]indolizin]-2-one (II)

Crystal data

 $\begin{array}{l} C_{33}H_{28}N_2O_5\\ M_r = 532.57\\ \text{Monoclinic, } P2_1/n\\ a = 19.8942 \ (2) \text{ Å}\\ b = 13.6097 \ (7) \text{ Å}\\ c = 20.7822 \ (1) \text{ Å}\\ \beta = 107.268 \ (3)^\circ\\ V = 5373.2 \ (3) \text{ Å}^3\\ Z = 8 \end{array}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.789, T_{\max} = 0.846$
50874 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.130$ S = 1.0213194 reflections 795 parameters 31 restraints F(000) = 2240 $D_x = 1.317 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13194 reflections $\theta = 1.8-28.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.26 \times 0.20 \text{ mm}$

13194 independent reflections 7862 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.8^\circ$ $h = -26 \rightarrow 26$ $k = -13 \rightarrow 17$ $l = -27 \rightarrow 22$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.049P)^2 + 1.2075P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C33A	0.11183 (18)	-0.0458 (3)	0.94638 (17)	0.1429 (14)	
H33A	0.091028	-0.100767	0.918673	0.214*	
H33B	0.086829	-0.033549	0.978617	0.214*	
H33C	0.160207	-0.060057	0.969642	0.214*	
C1A	0.37825 (8)	-0.08129 (11)	0.65483 (8)	0.0434 (4)	
C1B	0.66638 (8)	0.51698 (11)	0.87412 (8)	0.0426 (4)	
C2A	0.41462 (8)	-0.11334 (12)	0.60633 (8)	0.0453 (4)	
C2B	0.65231 (8)	0.54727 (11)	0.93711 (8)	0.0422 (4)	
C3A	0.39800 (10)	-0.18088 (14)	0.55500 (9)	0.0600 (5)	
H3A	0.356240	-0.216408	0.545117	0.072*	
C3B	0.69487 (9)	0.56035 (13)	1.00181 (8)	0.0541 (4)	
H3B	0.742803	0.546846	1.013331	0.065*	
C4A	0.44547 (13)	-0.19487 (17)	0.51797 (10)	0.0736 (6)	
H4A	0.434672	-0.240401	0.483024	0.088*	
C4B	0.66398 (10)	0.59473 (16)	1.05019 (9)	0.0650 (5)	
H4B	0.692362	0.604339	1.094171	0.078*	
C5A	0.50731 (12)	-0.14379 (17)	0.53144 (10)	0.0706 (6)	
H5A	0.537090	-0.154749	0.505112	0.085*	
C5B	0.59352 (10)	0.61455 (15)	1.03476 (9)	0.0620 (5)	
H5B	0.575339	0.637806	1.068246	0.074*	
C6A	0.52695 (9)	-0.07461 (14)	0.58457 (9)	0.0535 (4)	
C6B	0.54800 (9)	0.60039 (12)	0.96908 (8)	0.0477 (4)	
C7A	0.58937 (10)	-0.01846 (16)	0.60677 (11)	0.0653 (5)	
H7A	0.623616	-0.023772	0.584710	0.078*	
C7B	0.47451 (9)	0.61578 (13)	0.94512 (10)	0.0571 (5)	
H7B	0.450423	0.637686	0.974494	0.069*	
C8A	0.59949 (9)	0.04308 (15)	0.66006 (11)	0.0647 (5)	
H8A	0.641245	0.078607	0.673949	0.078*	
C8B	0.43870 (9)	0.59871 (14)	0.87922 (9)	0.0578 (5)	
H8B	0.390427	0.610009	0.864580	0.069*	
C9A	0.54936 (8)	0.05575 (13)	0.69556 (9)	0.0539 (4)	
H9A	0.557795	0.098970	0.731748	0.065*	
C9B	0.47216 (9)	0.56451 (13)	0.83236 (9)	0.0524 (4)	
H9B	0.446413	0.553579	0.787657	0.063*	
C10A	0.48837 (8)	0.00295 (11)	0.67535 (8)	0.0421 (4)	
C10B	0.54287 (8)	0.54781 (11)	0.85382 (8)	0.0419 (4)	
C11A	0.47845 (8)	-0.06154 (12)	0.62081 (8)	0.0429 (4)	
C11B	0.57983 (8)	0.56623 (11)	0.92149 (8)	0.0406 (3)	
C12A	0.42520(7)	-0.00163 (11)	0.70198 (8)	0.0392 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C12B	0.59354 (8)	0.51258 (11)	0.81684 (8)	0.0398 (3)
C13A	0.38740 (8)	0.09837 (11)	0.70197 (8)	0.0412 (3)
H13A	0.424361	0.148054	0.717293	0.049*
C13B	0.57563 (8)	0.40974 (11)	0.78342 (8)	0.0424 (4)
H13B	0.524655	0.408968	0.761728	0.051*
C14A	0.33912 (8)	0.13395 (12)	0.63518 (8)	0.0467 (4)
C14B	0.59240 (8)	0.31992 (12)	0.82777 (8)	0.0457 (4)
C15A	0.36298 (10)	0.14494 (15)	0.57927 (10)	0.0666 (5)
H15A	0.409068	0.127670	0.582403	0.080*
C15B	0.55970 (10)	0.30295 (14)	0.87725 (10)	0.0594(5)
H15B	0.529711	0.350570	0.885427	0.071*
C16A	0.31992(12)	0.18082 (18)	0.51933(11)	0.0812(7)
H16A	0 336601	0 186172	0.482145	0.097*
C16B	0.57045(12)	0.21752(15)	0.91455(10)	0.0701 (6)
H16B	0 547553	0 207581	0 947049	0.084*
C17A	0.25206 (11)	0 20883 (18)	0.51445(11)	0.0788 (6)
H17A	0.222830	0.232912	0.473896	0.095*
C17B	0.222090 0.61539(12)	0.232912 0.14692 (14)	0.90334(10)	0.0670 (5)
H17B	0.622904	0.089131	0.928349	0.080*
C18A	0.022901 0.22761(10)	0.20122 (16)	0.56933 (10)	0.0664(5)
H18A	0.182157	0.221450	0.566455	0.080*
C18B	0.64890(11)	0.16181 (13)	0.85549 (9)	0.0597(5)
H18B	0.679967	0 114769	0.848603	0.072*
C19A	0 27095 (9)	0 16322 (13)	0 62912 (9)	0.0503(4)
C19B	0.27055(9)	0.24711(12)	0.81718(8)	0.0202(1) 0.0487(4)
C20A	0.03030(9) 0.27049(8)	0.27711(12) 0.07604(12)	0.72646 (8)	0.0460(4)
H20A	0.263258	0.016851	0.698369	0.055*
C20B	0.67977 (8)	0.34979 (11)	0.74663 (8)	0.0455(4)
H20B	0.710566	0.381435	0.787027	0.055*
C21A	0.35131 (8)	0.08860 (11)	0.75771 (8)	0.0428(4)
C21B	0.61020 (8)	0.41002 (11)	0.72630 (8)	0.0436 (4)
C22A	0.38451 (8)	-0.00405(12)	0.79834 (8)	0.0476 (4)
H22A	0.350762	-0.057897	0.783413	0.057*
C22B	0.62549 (9)	0.51980 (11)	0.71546 (8)	0.0455 (4)
H22B	0.676045	0.530283	0.736231	0.055*
C23A	0.40814 (11)	-0.00510(16)	0.87480 (9)	0.0700 (6)
H23A	0.368302	0.007301	0.891535	0.084*
H23B	0.442939	0.045889	0.891870	0.084*
C23B	0.60610(12)	0.56658 (14)	0.64586 (9)	0.0653 (5)
H23C	0.556070	0.558995	0.623743	0.078*
H23D	0.631522	0.534571	0.618457	0.078*
C24A	0.43983 (13)	-0.10576 (18)	0.89869 (11)	0.0858 (7)
H24A	0.458127	-0.105855	0.947460	0.103*
H24B	0.403309	-0.155412	0.885646	0.103*
C24B	0.62518 (13)	0.67563 (15)	0.65357 (11)	0.0756 (6)
H24C	0.675830	0.682527	0.671795	0.091*
H24D	0.610696	0.706873	0.609649	0.091*
C25A	0.49835 (11)	-0.13104 (16)	0.86895 (10)	0.0730 (6)
	× /	× /	· /	~ /

H25A	0.537540	-0.086482	0.886693	0.088*	
H25B	0.514735	-0.197299	0.882073	0.088*	
C25B	0.58989 (11)	0.72645 (14)	0.69972 (10)	0.0636 (5)	
H25C	0.605044	0.794446	0.705938	0.076*	
H25D	0.539244	0.725563	0.679418	0.076*	
C26A	0.47364 (9)	-0.12383(13)	0.79310 (9)	0.0567 (5)	
H26A	0.512746	-0.135699	0.775219	0.068*	
H26B	0.437793	-0.173014	0.774723	0.068*	
C26B	0.60860 (9)	0.67515 (12)	0.76724 (9)	0.0526 (4)	
H26C	0.658765	0.680734	0.789392	0.063*	
H26D	0 583857	0 705750	0 795785	0.063*	
C27A	0.22640 (9)	0.06439(13)	0.77352 (8)	0.003 0.0487 (4)	
C28A	0.19594(10)	0.14391(15)	0.79585 (9)	0.0613(5)	
H28A	0 202640	0.206892	0.781513	0.074*	
C29A	0.15615(12)	0.13088(18)	0.83872(11)	0.0742 (6)	
H29A	0.135111	0 184939	0.852216	0.089*	
C30A	0.14685 (11)	0.0391(2)	0.86210(11)	0.0758 (6)	
C31A	0.17454 (11)	-0.04134(18)	0.83929(12)	0.0781 (6)	
H31A	0.167428	-0.104056	0.853796	0.094*	
C32A	0.107420 0.21313(10)	-0.02820(15)	0.00079449(10)	0.094	
H32A	0.230622	-0.082992	0.778022	0.0042 (5)	
N1A	0.230022	-0.02564(9)	0.77373 (6)	0.077	
NIR	0.58882(7)	0.02504(9)	0.75699 (6)	0.0427(3)	
N2A	0.36328(8)	0.37109(9) 0.18310(11)	0.75099 (0)	0.0422(3)	
N2R	0.56020 (8)	0.16510(11) 0.35036(11)	0.79903 (8)	0.0503(4)	
N2D	0.30029(8) 0.32204(6)	-0.11223(0)	0.66020 (6)	0.0334(4) 0.0587(3)	
OIR OIR	0.32294(0) 0.72347(6)	0.11223(9)	0.00020 (0)	0.0587(3)	
016	0.72347(0) 0.24310(6)	0.30202(9) 0.15600(0)	0.80013(0)	0.0570(3)	
02A 02D	0.24319(0)	0.13090(9)	0.08239(0) 0.76614(6)	0.0505(3)	
026	0.00700(7)	0.23213(8) 0.25581(11)	0.70014(0) 0.77506(0)	0.0331(3)	
OJA	0.38209 (11)	0.23381(11) 0.20057(12)	0.77590(9)	0.1030(0)	
038	0.51849 (9)	0.30057(12)	0.07551(7)	0.0855(5)	
04A	0.34989 (9)	0.18385(12)	0.85182 (8)	0.0898(5)	
04B	0.56698 (8)	0.3/44/(11)	0.60975(7)	0.0736 (4)	
USA C27D	0.10816(11)	0.03538 (18)	0.90686 (10)	0.1248(7)	0.720 (5)
C2/B	0.7205 (4)	0.3453 (5)	0.6970(3)	0.0462 (18)	0.739 (5)
C28B	0.7051 (4)	0.2848 (5)	0.6416 (3)	0.0641 (18)	0.739 (5)
H28B	0.669868	0.237860	0.635/18	0.07/*	0.739 (5)
C32B	0.//906(1/)	0.4073 (3)	0.70849 (18)	0.0493 (9)	0.739 (5)
H32B	0.792727	0.445090	0./4/49/	0.059*	0.739(5)
C31B	0.81621 (16)	0.4127 (3)	0.66306 (17)	0.0554 (8)	0.739 (5)
H3IB	0.855771	0.452769	0.671879	0.066*	0.739 (5)
C29B	0.7415 (2)	0.2927 (3)	0.5943 (2)	0.0547 (10)	0.739 (5)
H29B	0.729465	0.253408	0.555934	0.066*	0.739 (5)
C30B	0.79578 (18)	0.3597 (3)	0.60473 (18)	0.0543 (10)	0.739 (5)
O5B	0.83334 (10)	0.3747 (2)	0.56040 (11)	0.0872 (11)	0.739 (5)
C33B	0.8100 (5)	0.3359 (5)	0.49718 (19)	0.120 (2)	0.739 (5)
H33D	0.842041	0.352981	0.472371	0.180*	0.739 (5)
H33E	0.807307	0.265729	0.500147	0.180*	0.739(5)

H33F	0.764164	0.361772	0.474512	0.180*	0.739 (5)
C30C	0.7756 (7)	0.3199 (7)	0.5848 (5)	0.071 (4)	0.261 (5)
C31C	0.7930 (8)	0.3979 (8)	0.6284 (7)	0.093 (6)	0.261 (5)
H31C	0.825093	0.444831	0.623408	0.112*	0.261 (5)
C29C	0.7286 (6)	0.2499 (8)	0.5939 (5)	0.054 (3)	0.261 (5)
H29C	0.718689	0.193041	0.567970	0.064*	0.261 (5)
C27C	0.7154 (9)	0.3417 (11)	0.6924 (7)	0.044 (5)	0.261 (5)
C28C	0.6974 (7)	0.2692 (10)	0.6437 (6)	0.037 (3)	0.261 (5)
H28C	0.659949	0.228793	0.644641	0.044*	0.261 (5)
C32C	0.7625 (6)	0.4060 (9)	0.6799 (5)	0.064 (3)	0.261 (5)
H32C	0.775175	0.459998	0.708356	0.077*	0.261 (5)
C33C	0.8139 (10)	0.3749 (10)	0.4920 (6)	0.088 (4)	0.261 (5)
H33G	0.828998	0.346416	0.456279	0.133*	0.261 (5)
H33H	0.772775	0.414295	0.473055	0.133*	0.261 (5)
H33I	0.850886	0.415265	0.519569	0.133*	0.261 (5)
O5C	0.7985 (8)	0.3018 (5)	0.5303 (5)	0.174 (6)	0.261 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C33A	0.118 (2)	0.221 (4)	0.104 (2)	-0.017 (3)	0.055 (2)	0.049 (3)
C1A	0.0380 (8)	0.0415 (9)	0.0464 (9)	0.0001 (7)	0.0060(7)	-0.0003 (7)
C1B	0.0433 (8)	0.0379 (8)	0.0448 (9)	0.0023 (6)	0.0103 (7)	-0.0032 (7)
C2A	0.0458 (9)	0.0473 (9)	0.0396 (9)	0.0007 (7)	0.0076 (7)	-0.0014 (7)
C2B	0.0452 (8)	0.0399 (8)	0.0399 (9)	0.0006 (7)	0.0101 (7)	-0.0022 (7)
C3A	0.0672 (11)	0.0629 (12)	0.0453 (10)	-0.0053 (9)	0.0097 (9)	-0.0095 (9)
C3B	0.0495 (9)	0.0629 (11)	0.0445 (10)	-0.0003 (8)	0.0056 (8)	-0.0021 (8)
C4A	0.0940 (16)	0.0789 (14)	0.0477 (11)	0.0054 (12)	0.0207 (11)	-0.0126 (10)
C4B	0.0667 (12)	0.0880 (15)	0.0366 (10)	-0.0059 (10)	0.0100 (9)	-0.0078 (9)
C5A	0.0842 (15)	0.0859 (15)	0.0502 (11)	0.0204 (12)	0.0331 (11)	0.0082 (11)
C5B	0.0680 (12)	0.0772 (13)	0.0454 (10)	-0.0058 (10)	0.0238 (9)	-0.0120 (9)
C6A	0.0567 (10)	0.0590 (11)	0.0486 (10)	0.0130 (8)	0.0214 (8)	0.0180 (9)
C6B	0.0540 (9)	0.0490 (10)	0.0435 (9)	-0.0033 (7)	0.0197 (8)	-0.0044 (8)
C7A	0.0522 (10)	0.0785 (14)	0.0725 (14)	0.0085 (10)	0.0299 (10)	0.0268 (12)
C7B	0.0579 (11)	0.0627 (11)	0.0583 (12)	0.0011 (9)	0.0289 (9)	-0.0082 (9)
C8A	0.0433 (9)	0.0676 (13)	0.0813 (15)	-0.0093 (9)	0.0158 (9)	0.0210 (11)
C8B	0.0427 (9)	0.0698 (12)	0.0624 (12)	0.0050 (8)	0.0178 (8)	-0.0078 (9)
C9A	0.0456 (9)	0.0499 (10)	0.0610(11)	-0.0076 (7)	0.0079 (8)	0.0058 (8)
C9B	0.0454 (9)	0.0622 (11)	0.0474 (10)	0.0025 (8)	0.0105 (8)	-0.0064 (8)
C10A	0.0379 (8)	0.0406 (8)	0.0451 (9)	0.0025 (6)	0.0079 (7)	0.0069 (7)
C10B	0.0445 (8)	0.0411 (8)	0.0400 (9)	0.0020 (7)	0.0123 (7)	-0.0040 (7)
C11A	0.0425 (8)	0.0439 (9)	0.0407 (9)	0.0041 (7)	0.0099 (7)	0.0071 (7)
C11B	0.0459 (8)	0.0380 (8)	0.0381 (8)	-0.0016 (6)	0.0128 (7)	-0.0026 (7)
C12A	0.0369 (7)	0.0378 (8)	0.0405 (9)	-0.0011 (6)	0.0080 (6)	0.0001 (7)
C12B	0.0399 (8)	0.0420 (8)	0.0366 (8)	0.0022 (6)	0.0101 (6)	-0.0052 (7)
C13A	0.0408 (8)	0.0392 (8)	0.0421 (9)	0.0009 (6)	0.0099 (7)	0.0010 (7)
C13B	0.0434 (8)	0.0429 (9)	0.0397 (9)	-0.0014 (7)	0.0105 (7)	-0.0081 (7)
C14A	0.0482 (9)	0.0464 (9)	0.0461 (10)	0.0052 (7)	0.0150 (7)	0.0071 (7)

C14D	0.050((0)	0.0417(0)	0.0401 (0)	0.0004 (7)	0.0120 (7)	0.00((7))
CI4B	0.0526 (9)	0.0417 (9)	0.0421 (9)	-0.0084 (7)	0.0132(7)	-0.0066 (7)
CISA	0.0598 (11)	0.0842 (14)	0.0623 (12)	0.0224 (10)	0.0281 (10)	0.0286 (11)
CISB	0.0708 (12)	0.0508 (11)	0.0636 (12)	-0.0091 (9)	0.0307 (10)	-0.0035 (9)
CI6A	0.0805 (14)	0.1118 (18)	0.0593 (13)	0.0331 (13)	0.0329 (11)	0.0383 (12)
CI6B	0.0945 (15)	0.0601 (13)	0.0634 (13)	-0.0204 (11)	0.0351 (11)	-0.0010 (10)
C17A	0.0696 (13)	0.1061 (17)	0.0602 (13)	0.0260 (12)	0.0184 (11)	0.0340 (12)
C17B	0.0973 (15)	0.0454 (11)	0.0553 (12)	-0.0147 (10)	0.0180 (11)	0.0025 (9)
C18A	0.0509 (10)	0.0855 (14)	0.0622 (12)	0.0183 (10)	0.0158 (9)	0.0207 (11)
C18B	0.0807 (13)	0.0430 (10)	0.0507 (11)	0.0003 (9)	0.0121 (10)	-0.0029 (8)
C19A	0.0485 (9)	0.0563 (10)	0.0470 (10)	0.0070 (8)	0.0155 (8)	0.0074 (8)
C19B	0.0606 (10)	0.0434 (9)	0.0395 (9)	-0.0034 (8)	0.0108 (8)	-0.0058 (7)
C20A	0.0470 (9)	0.0486 (9)	0.0419 (9)	0.0051 (7)	0.0126 (7)	-0.0018 (7)
C20B	0.0535 (9)	0.0400 (9)	0.0410 (9)	0.0032 (7)	0.0107 (7)	-0.0058 (7)
C21A	0.0481 (8)	0.0417 (9)	0.0372 (8)	0.0021 (7)	0.0106 (7)	-0.0046 (7)
C21B	0.0495 (9)	0.0421 (9)	0.0364 (8)	0.0019 (7)	0.0084 (7)	-0.0076 (7)
C22A	0.0485 (9)	0.0474 (9)	0.0461 (10)	0.0013 (7)	0.0129 (7)	0.0044 (7)
C22B	0.0518 (9)	0.0439 (9)	0.0413 (9)	0.0053 (7)	0.0145 (7)	-0.0019 (7)
C23A	0.0767 (13)	0.0877 (15)	0.0461 (11)	0.0142 (11)	0.0187 (10)	0.0157 (10)
C23B	0.0923 (14)	0.0616 (12)	0.0473 (11)	0.0162 (10)	0.0290 (10)	0.0067 (9)
C24A	0.0932 (16)	0.1017 (18)	0.0651 (14)	0.0218 (13)	0.0273 (12)	0.0403 (13)
C24B	0.1044 (17)	0.0631 (13)	0.0685 (14)	0.0133 (11)	0.0398 (13)	0.0208 (11)
C25A	0.0659 (12)	0.0767 (14)	0.0724 (14)	0.0132 (10)	0.0141 (10)	0.0339 (11)
C25B	0.0795 (13)	0.0463 (10)	0.0662 (13)	0.0087 (9)	0.0236 (10)	0.0090 (9)
C26A	0.0525 (10)	0.0478 (10)	0.0674 (12)	0.0068 (8)	0.0141 (9)	0.0137 (9)
C26B	0.0587 (10)	0.0411 (9)	0.0579 (11)	0.0040 (8)	0.0172 (8)	-0.0023 (8)
C27A	0.0495 (9)	0.0541 (10)	0.0441 (9)	0.0036 (8)	0.0165 (8)	-0.0023(8)
C28A	0.0729 (12)	0.0595 (11)	0.0572 (11)	0.0113 (9)	0.0282 (10)	-0.0017(9)
C29A	0.0859 (15)	0.0831 (16)	0.0632 (13)	0.0219 (12)	0.0371 (12)	-0.0039(12)
C30A	0.0720 (13)	0.1079 (19)	0.0574 (13)	0.0161 (12)	0.0344 (11)	0.0134 (12)
C31A	0.0748 (14)	0.0784 (15)	0.0916 (17)	0.0060 (11)	0.0407 (13)	0.0218 (13)
C32A	0.0627 (11)	0.0590 (12)	0.0786 (14)	0.0051 (9)	0.0329 (10)	0.0009 (10)
NIA	0.0425 (7)	0.0423 (7)	0.0406 (7)	0.0028 (5)	0.0081 (6)	0.0054 (6)
N1B	0.0484(7)	0.0395(7)	0.0384(7)	0.0049 (6)	0.0127 (6)	-0.0026(6)
N2A	0.0664(9)	0.0497(9)	0.0507(9)	0.0029(7)	0.0121(0)	-0.0073(7)
N2B	0.0001(9)	0.0157(9)	0.0207(9) 0.0433(9)	0.0025(7)	0.00111(7)	-0.0119(7)
01A	0.0012(9)	0.0598(8)	0.0754(9)	-0.0114(5)	0.0001(7)	-0.0147(6)
O1R	0.0413 (6)	0.0716 (8)	0.0759(7)	0.0114(3)	0.0103(0)	-0.0147(0)
024	0.0507(6)	0.0699 (8)	0.0507(7)	0.00178(6)	0.0113(5)	0.0121 (6)
02A 02B	0.0507(0) 0.0748(8)	0.0099(6)	0.0507(7)	0.0178(0)	0.0107(0)	-0.0013(5)
02.0	0.0740(0) 0.1712(18)	0.0410(0)	0.0525(7) 0.1053(13)	-0.0144(10)	0.0245(0)	-0.0157(9)
O2P	0.1712(18) 0.1002(11)	0.0493(9)	0.1055(15)	-0.0257(0)	0.0009(13)	-0.0137(9)
036	0.1002(11) 0.1208(14)	0.0800(10)	0.0038(9)	-0.0337(9) -0.0117(0)	0.0090(8)	-0.0199(8) -0.0272(8)
04A 04D	0.1308(14)	0.0030(11)	0.0029(10)	-0.0117(9)	0.0410(9)	-0.0272(8)
040	0.0855(10) 0.1276(15)	0.0923(10)	0.0390(7)	0.0034(8)	0.0127(7)	-0.0105(7)
COTP	0.1270(13)	0.1//(2)	0.0977(14)	0.0317(14)	0.0707(12)	0.0410(14)
C29D	0.050(3)	0.043(4)	0.041(3)	0.002(2)	0.009(2)	-0.002(2)
C22D	0.055(2)	0.005(3)	0.071(4)	-0.0138(19)	0.010(2)	-0.011(2)
C32B	0.0444 (15)	0.0466(16)	0.051(2)	0.0017(12)	0.0045 (15)	-0.013/(1/)
C31B	0.0461 (15)	0.0484 (17)	0.068 (2)	-0.0019 (12)	0.0111 (15)	-0.0030 (14)

C29B	0.0517 (19)	0.065 (3)	0.0460 (19)	-0.003 (2)	0.0115 (14)	-0.016 (2)
C30B	0.0475 (16)	0.066 (3)	0.049 (2)	-0.0010 (18)	0.0131 (16)	0.0008 (18)
O5B	0.0664 (13)	0.135 (3)	0.0689 (15)	-0.0143 (12)	0.0334 (11)	-0.0017 (14)
C33B	0.179 (5)	0.131 (5)	0.081 (3)	-0.036 (5)	0.085 (4)	-0.016 (3)
C30C	0.098 (11)	0.052 (7)	0.084 (8)	0.002 (6)	0.061 (8)	-0.008 (5)
C31C	0.130 (13)	0.062 (8)	0.121 (13)	-0.029 (7)	0.089 (11)	-0.021 (7)
C29C	0.074 (7)	0.050 (6)	0.040 (5)	0.013 (5)	0.022 (4)	-0.005 (5)
C27C	0.044 (9)	0.030 (9)	0.061 (11)	0.006 (6)	0.020 (8)	-0.015 (7)
C28C	0.041 (6)	0.054 (6)	0.020 (5)	0.015 (4)	0.014 (4)	-0.015 (4)
C32C	0.074 (7)	0.052 (5)	0.066 (7)	-0.009(5)	0.021 (6)	-0.030 (6)
C33C	0.091 (8)	0.119 (11)	0.057 (7)	-0.012 (7)	0.023 (6)	0.006 (6)
O5C	0.365 (17)	0.056 (5)	0.200 (10)	0.013 (7)	0.238 (12)	-0.003 (6)

Geometric parameters (Å, °)

C33A—O5A	1.365 (4)	C20B—C27B	1.491 (4)
СЗЗА—НЗЗА	0.9600	C20B—C27C	1.5031 (10)
С33А—Н33В	0.9600	C20B—C21B	1.555 (2)
С33А—Н33С	0.9600	C20B—H20B	0.9800
C1A—O1A	1.2139 (18)	C21A—N2A	1.526 (2)
C1A—C2A	1.471 (2)	C21A—C22A	1.552 (2)
C1A—C12A	1.570 (2)	C21B—N2B	1.526 (2)
C1B—O1B	1.2126 (18)	C21B—C22B	1.554 (2)
C1B—C2B	1.476 (2)	C22A—N1A	1.467 (2)
C1B—C12B	1.580 (2)	C22A—C23A	1.518 (2)
C2A—C3A	1.372 (2)	C22A—H22A	0.9800
C2A—C11A	1.405 (2)	C22B—N1B	1.4663 (19)
C2B—C3B	1.371 (2)	C22B—C23B	1.521 (2)
C2B—C11B	1.405 (2)	C22B—H22B	0.9800
C3A—C4A	1.397 (3)	C23A—C24A	1.528 (3)
СЗА—НЗА	0.9300	C23A—H23A	0.9700
C3B—C4B	1.405 (2)	C23A—H23B	0.9700
СЗВ—НЗВ	0.9300	C23B—C24B	1.529 (3)
C4A—C5A	1.368 (3)	C23B—H23C	0.9700
C4A—H4A	0.9300	C23B—H23D	0.9700
C4B—C5B	1.369 (3)	C24A—C25A	1.511 (3)
C4B—H4B	0.9300	C24A—H24A	0.9700
C5A—C6A	1.415 (3)	C24A—H24B	0.9700
C5A—H5A	0.9300	C24B—C25B	1.514 (3)
C5B—C6B	1.409 (2)	C24B—H24C	0.9700
C5B—H5B	0.9300	C24B—H24D	0.9700
C6A—C11A	1.400 (2)	C25A—C26A	1.509 (3)
C6A—C7A	1.414 (3)	C25A—H25A	0.9700
C6B—C11B	1.403 (2)	C25A—H25B	0.9700
C6B—C7B	1.413 (2)	C25B—C26B	1.512 (2)
C7A—C8A	1.355 (3)	C25B—H25C	0.9700
С7А—Н7А	0.9300	C25B—H25D	0.9700
C7B—C8B	1.363 (3)	C26A—N1A	1.463 (2)

	0.0200		0.0700
C/B—H/B	0.9300	C26A—H26A	0.9700
C8A—C9A	1.416 (3)	C26A—H26B	0.9700
C8A—H8A	0.9300	C26B—N1B	1.461 (2)
C8B—C9B	1.412 (2)	C26B—H26C	0.9700
C8B—H8B	0.9300	C26B—H26D	0.9700
C9A—C10A	1.365 (2)	C27A—C32A	1.384 (3)
С9А—Н9А	0.9300	C27A—C28A	1.386 (2)
C9B-C10B	1 363 (2)	C_{28A} C_{29A}	1.268(2)
COB HOB	0.9300	$C_{20}A + C_{20}A$	0.0300
	1 400 (2)	$C_{20A} = C_{20A}$	0.9300
CIOA—CIIA	1.400(2)	$C_{29}A = C_{30}A$	1.372 (3)
CIOA—CI2A	1.517(2)	C29A—H29A	0.9300
C10B—C11B	1.403 (2)	C30A—C31A	1.372 (3)
C10B—C12B	1.515 (2)	C30A—O5A	1.373 (2)
C12A—N1A	1.4617 (19)	C31A—C32A	1.383 (3)
C12A—C13A	1.555 (2)	C31A—H31A	0.9300
C12B—N1B	1.461 (2)	C32A—H32A	0.9300
C12B—C13B	1.556 (2)	N2A—O4A	1.2028 (19)
C13A—C14A	1.514 (2)	N2A—O3A	1.207 (2)
C13A - C21A	1 539 (2)	N2B-04B	1 2146 (19)
C13A - H13A	0.9800	N2B-03B	1.217(2)
C13R C14R	1.507(2)	C27B C28B	1.217(2) 1.374(4)
$C_{13D} = C_{14D}$	1.507(2)	$C_{27D} = C_{20D}$	1.374(4)
C13D—C21D	1.338 (2)	$C_2/D - C_32D$	1.399 (3)
	0.9800	C28B—C29B	1.387 (5)
C14A—C19A	1.383 (2)	C28B—H28B	0.9300
C14A—C15A	1.387 (2)	C32B—C31B	1.363 (5)
C14B—C19B	1.385 (2)	C32B—H32B	0.9300
C14B—C15B	1.390 (2)	C31B—C30B	1.364 (5)
C15A—C16A	1.375 (3)	C31B—H31B	0.9300
C15A—H15A	0.9300	C29B—C30B	1.380 (5)
C15B—C16B	1.378 (3)	C29B—H29B	0.9300
C15B—H15B	0.9300	C30B-05B	1 363 (4)
C16A - C17A	1 377 (3)	05B-C33B	1 3632 (10)
C_{16A} H_{16A}	0.0300	C33B H33D	0.9600
C1(D - C17D)	0.9300		0.9000
	1.578 (5)		0.9600
	0.9300	C33B—H33F	0.9600
C17A—C18A	1.370 (3)	C30C—O5C	1.3620 (10)
C17A—H17A	0.9300	C30C—C31C	1.3718 (10)
C17B—C18B	1.367 (3)	C30C—C29C	1.3868 (10)
C17B—H17B	0.9300	C31C—C32C	1.3820 (10)
C18A—C19A	1.385 (2)	С31С—Н31С	0.9300
C18A—H18A	0.9300	C29C—C28C	1.3819 (10)
C18B—C19B	1.388 (2)	С29С—Н29С	0.9300
C18B—H18B	0.9300	C27C—C32C	1.3631 (10)
$C19A \rightarrow O2A$	1.3789 (19)	C27C - C28C	1.3814 (6)
C19B - O2B	1 378 (2)	$C_{28}C = H_{28}C$	0.9300
$C_{20} = 0.25$	1.376(2) 1.4316(10)	$C_{32}C_{H_{32}C}$	0.9300
$C_{20A} = O_{2A}$	1.7510(17)	$C_{22}C = 05C$	1 2660 (7)
$C_2UA - C_2/A$	1.504 (2)		1.3000(/)
C20A—C21A	1.555 (2)	C33C—H33G	0.9600

C20A—H20A	0.9800	С33С—Н33Н	0.9600
C20B—O2B	1.4308 (19)	C33C—H33I	0.9600
O5A—C33A—H33A	109.5	C22A—C21A—C20A	111.00 (13)
O5A—C33A—H33B	109.5	N2B—C21B—C13B	108.21 (13)
H33A—C33A—H33B	109.5	N2B—C21B—C22B	114.86 (13)
O5A—C33A—H33C	109.5	C13B—C21B—C22B	105.42 (12)
H33A—C33A—H33C	109.5	N2B—C21B—C20B	107.13 (12)
H33B—C33A—H33C	109.5	C13B-C21B-C20B	110.77 (13)
O1A— $C1A$ — $C2A$	127.15 (15)	C22B— $C21B$ — $C20B$	110.44 (13)
O1A— $C1A$ — $C12A$	124.73 (14)	N1A— $C22A$ — $C23A$	109.40 (14)
C2A— $C1A$ — $C12A$	108.06(12)	N1A - C22A - C21A	103.48(12)
O1B— $C1B$ — $C2B$	126 86 (14)	C_{23A} C_{22A} C_{21A}	121 79 (15)
O1B $C1B$ $C12B$	125.00(11) 125.27(14)	$N1A - C^{22}A - H^{22}A$	107.1
C2B— $C1B$ — $C12B$	107.81(12)	$C_{23}A = C_{22}A = H_{22}A$	107.1
$C_{2D} = C_{1D} = C_{12D}$	119 79 (16)	$C_{21}A - C_{22}A - H_{22}A$	107.1
C_{3A} C_{2A} C_{1A}	132 64 (16)	N1B_C22B_C23B	107.1 109.15(13)
C_{11A} C_{2A} C_{1A}	107.55(13)	NIB C22B C21B	102.07(12)
C_{11A} C_{2A} C_{11B}	107.55(15) 110.70(15)	$\begin{array}{c} \text{C22B} \\ \text{C22B} \\ \text{C22B} \\ \text{C22B} \\ \text{C21B} \\$	102.97(12) 122.32(14)
$C_{3B} = C_{2B} = C_{1B}$	119.70(15) 122.04(15)	$\frac{1}{10000000000000000000000000000000000$	122.32(14)
C_{11} C_{22} C_{12} C	132.94(13) 107.35(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.2
$C_{11}^{11} = C_{20}^{11} = C_{10}^{11} = $	107.33(13) 119.24(19)	$C_{23}D = C_{22}D = H_{22}D$	107.2
$C_{2A} = C_{3A} = C_{4A}$	110.24 (10)	$C_{21}B = C_{22}B = H_{22}B$	107.2 108 55 (17)
$C_{AA} = C_{AA} = H_{AA}$	120.9	$C_{22}A = C_{23}A = C_{24}A$	108.33(17)
$C_{A} = C_{A} = C_{A}$	120.9	C22A - C23A - H23A	110.0
C_{2B} C_{3B} C_{4B}	118.10 (16)	C_{24A} — C_{23A} — H_{23A}	110.0
C2B—C3B—H3B	121.0	С22А—С23А—Н23В	110.0
C4B—C3B—H3B	121.0	$C_{24}A - C_{23}A - H_{23}B$	110.0
C5A - C4A - C3A	122.14 (19)	H23A - C23A - H23B	108.4
CSA—C4A—H4A	118.9	C22B—C23B—C24B	108.76 (16)
C3A—C4A—H4A	118.9	C22B—C23B—H23C	109.9
C5B—C4B—C3B	122.20 (17)	C24B—C23B—H23C	109.9
C5B—C4B—H4B	118.9	C22B—C23B—H23D	109.9
C3B—C4B—H4B	118.9	C24B—C23B—H23D	109.9
C4A—C5A—C6A	121.40 (18)	H23C—C23B—H23D	108.3
C4A—C5A—H5A	119.3	C25A—C24A—C23A	111.41 (17)
С6А—С5А—Н5А	119.3	C25A—C24A—H24A	109.3
C4B—C5B—C6B	121.26 (17)	C23A—C24A—H24A	109.3
C4B—C5B—H5B	119.4	C25A—C24A—H24B	109.3
C6B—C5B—H5B	119.4	C23A—C24A—H24B	109.3
C11A—C6A—C7A	115.75 (17)	H24A—C24A—H24B	108.0
C11A—C6A—C5A	115.45 (17)	C25B—C24B—C23B	111.26 (17)
C7A—C6A—C5A	128.79 (18)	C25B—C24B—H24C	109.4
C11B—C6B—C5B	115.69 (15)	C23B—C24B—H24C	109.4
C11B—C6B—C7B	115.91 (15)	C25B—C24B—H24D	109.4
C5B—C6B—C7B	128.40 (16)	C23B—C24B—H24D	109.4
C8A—C7A—C6A	120.24 (17)	H24C—C24B—H24D	108.0
С8А—С7А—Н7А	119.9	C26A—C25A—C24A	111.15 (17)
C6A—C7A—H7A	119.9	C26A—C25A—H25A	109.4

C8B—C7B—C6B	120.42 (16)	C24A—C25A—H25A	109.4
C8B—C7B—H7B	119.8	C26A—C25A—H25B	109.4
C6B—C7B—H7B	119.8	C24A—C25A—H25B	109.4
C7A—C8A—C9A	122.98 (17)	H25A—C25A—H25B	108.0
С7А—С8А—Н8А	118.5	C26B—C25B—C24B	110.15 (15)
С9А—С8А—Н8А	118.5	C26B—C25B—H25C	109.6
C7B—C8B—C9B	122.44 (16)	C24B—C25B—H25C	109.6
C7B—C8B—H8B	118.8	C26B—C25B—H25D	109.6
C9B—C8B—H8B	118.8	C24B—C25B—H25D	109.6
C10A—C9A—C8A	118.35 (17)	H25C—C25B—H25D	108.1
С10А—С9А—Н9А	120.8	N1A—C26A—C25A	109.06 (16)
С8А—С9А—Н9А	120.8	N1A—C26A—H26A	109.9
C10B—C9B—C8B	118.79 (16)	C25A—C26A—H26A	109.9
C10B—C9B—H9B	120.6	N1A—C26A—H26B	109.9
C8B—C9B—H9B	120.6	C25A—C26A—H26B	109.9
C9A—C10A—C11A	118.54 (15)	H26A—C26A—H26B	108.3
C9A—C10A—C12A	131.79 (15)	N1B-C26B-C25B	109.17 (14)
C11A—C10A—C12A	109.66 (13)	N1B—C26B—H26C	109.8
C9B—C10B—C11B	118.77 (14)	C25B—C26B—H26C	109.8
C9B—C10B—C12B	131.63 (14)	N1B—C26B—H26D	109.8
C11B—C10B—C12B	109.59 (13)	C25B—C26B—H26D	109.8
C10A—C11A—C6A	124.12 (15)	H26C—C26B—H26D	108.3
C10A—C11A—C2A	112.91 (14)	C32A—C27A—C28A	117.54 (16)
C6A—C11A—C2A	122.97 (16)	C32A—C27A—C20A	120.22 (15)
C6B-C11B-C10B	123.66 (14)	C28A—C27A—C20A	122.21 (16)
C6B—C11B—C2B	123.04 (14)	C29A—C28A—C27A	120.80 (19)
C10B—C11B—C2B	113.30 (13)	C29A—C28A—H28A	119.6
N1A—C12A—C10A	112.44 (12)	C27A—C28A—H28A	119.6
N1A—C12A—C13A	100.29 (11)	C28A—C29A—C30A	120.90 (19)
C10A—C12A—C13A	114.64 (12)	С28А—С29А—Н29А	119.5
N1A—C12A—C1A	114.32 (12)	С30А—С29А—Н29А	119.5
C10A—C12A—C1A	101.79 (12)	C31A—C30A—C29A	119.59 (19)
C13A—C12A—C1A	113.97 (12)	C31A—C30A—O5A	124.6 (2)
N1B-C12B-C10B	111.91 (12)	C29A—C30A—O5A	115.8 (2)
N1B—C12B—C13B	99.61 (11)	C30A—C31A—C32A	119.3 (2)
C10B—C12B—C13B	114.35 (12)	C30A—C31A—H31A	120.3
N1B—C12B—C1B	115.69 (12)	C32A—C31A—H31A	120.3
C10B—C12B—C1B	101.85 (12)	C31A—C32A—C27A	121.70 (19)
C13B—C12B—C1B	114.06 (12)	С31А—С32А—Н32А	119.2
C14A—C13A—C21A	114.02 (12)	С27А—С32А—Н32А	119.2
C14A—C13A—C12A	117.08 (13)	C12A—N1A—C26A	116.69 (13)
C21A—C13A—C12A	104.95 (12)	C12A—N1A—C22A	108.19 (11)
C14A—C13A—H13A	106.7	C26A—N1A—C22A	112.40 (13)
C21A—C13A—H13A	106.7	C26B—N1B—C12B	117.40 (12)
C12A—C13A—H13A	106.7	C26B—N1B—C22B	112.99 (13)
C14B—C13B—C21B	113.91 (13)	C12B—N1B—C22B	108.58 (12)
C14B—C13B—C12B	118.47 (13)	04A—N2A—O3A	122.30 (16)
C_{21B} C_{13B} C_{12B}	104.28 (12)	04A - N2A - C21A	118.74 (16)
0115 0105 0125			

C14B—C13B—H13B	106.5	O3A—N2A—C21A	118.83 (15)
C21B—C13B—H13B	106.5	O4B—N2B—O3B	123.28 (16)
C12B—C13B—H13B	106.5	O4B—N2B—C21B	119.06 (16)
C19A—C14A—C15A	117.55 (15)	O3B—N2B—C21B	117.48 (15)
C19A—C14A—C13A	120.92 (14)	C19A—O2A—C20A	113.28 (12)
C15A—C14A—C13A	121.38 (15)	C19B—O2B—C20B	114.61 (12)
C19B—C14B—C15B	117.21 (16)	C33A—O5A—C30A	119.8 (2)
C19B—C14B—C13B	121.26 (14)	C28B—C27B—C32B	118.1 (4)
C15B—C14B—C13B	121.32 (15)	C28B—C27B—C20B	124.9 (4)
C16A—C15A—C14A	121.41 (17)	C32B—C27B—C20B	116.9 (4)
С16А—С15А—Н15А	119.3	C27B—C28B—C29B	120.9 (5)
C14A—C15A—H15A	119.3	C27B—C28B—H28B	119.5
C16B—C15B—C14B	121.84 (18)	C29B—C28B—H28B	119.5
C16B—C15B—H15B	119.1	C31B—C32B—C27B	120.6 (3)
C14B—C15B—H15B	119.1	C31B—C32B—H32B	119.7
C15A—C16A—C17A	119.90 (19)	C27B—C32B—H32B	119.7
C15A—C16A—H16A	120.1	C32B-C31B-C30B	120.5 (3)
C17A—C16A—H16A	120.1	C32B—C31B—H31B	119.8
C17B-C16B-C15B	119.55 (19)	C30B-C31B-H31B	119.8
C17B—C16B—H16B	120.2	C_{30B} C_{29B} C_{28B}	119.2 (4)
C15B— $C16B$ — $H16B$	120.2	C30B—C29B—H29B	120.4
C18A - C17A - C16A	120.01 (18)	C28B—C29B—H29B	120.4
C18A - C17A - H17A	120.0	O5B-C30B-C31B	116.3 (3)
C16A—C17A—H17A	120.0	O5B-C30B-C29B	123.5(3)
C18B-C17B-C16B	120.03 (18)	C_{31B} C_{30B} C_{29B}	120.1(3)
C18B—C17B—H17B	120.0	$C_{30B} = O_{5B} = C_{33B}$	119.7 (4)
C16B - C17B - H17B	120.0	O5B-C33B-H33D	109.5
C17A - C18A - C19A	119.64 (17)	O5B-C33B-H33E	109.5
C17A—C18A—H18A	120.2	H33D—C33B—H33E	109.5
C19A—C18A—H18A	120.2	O5B—C33B—H33F	109.5
C17B—C18B—C19B	120.01 (18)	H33D—C33B—H33F	109.5
C17B—C18B—H18B	120.0	H33E—C33B—H33F	109.5
C19B—C18B—H18B	120.0	O5C—C30C—C31C	127.4 (8)
O2A—C19A—C14A	121.64 (14)	O5C—C30C—C29C	113.2 (8)
O2A—C19A—C18A	116.90 (15)	C31C—C30C—C29C	119.3 (7)
C14A—C19A—C18A	121.46 (16)	C30C—C31C—C32C	119.3 (9)
O2B—C19B—C14B	122.48 (15)	C30C—C31C—H31C	120.3
O2B—C19B—C18B	116.09 (15)	C32C—C31C—H31C	120.3
C14B—C19B—C18B	121.33 (17)	C28C—C29C—C30C	116.3 (10)
O2A—C20A—C27A	108.26 (12)	C28C—C29C—H29C	121.9
O2A—C20A—C21A	109.37 (13)	C30C—C29C—H29C	121.9
C27A—C20A—C21A	118.07 (13)	C32C—C27C—C28C	111.3 (7)
O2A—C20A—H20A	106.9	C32C—C27C—C20B	126.9 (7)
C27A—C20A—H20A	106.9	C28C—C27C—C20B	121.6 (6)
C21A—C20A—H20A	106.9	C27C—C28C—C29C	127.4 (10)
O2B—C20B—C27B	109.3 (3)	C27C—C28C—H28C	116.3
O2B—C20B—C27C	107.6 (6)	C29C—C28C—H28C	116.3
O2B—C20B—C21B	110.78 (13)	C27C—C32C—C31C	125.5 (8)
			· /

C27B—C20B—C21B	117.2 (4)	С27С—С32С—Н32С	117.2
C27C—C20B—C21B	114.5 (8)	C31C—C32C—H32C	117.2
O2B—C20B—H20B	106.3	O5C—C33C—H33G	109.5
C27B—C20B—H20B	106.3	О5С—С33С—Н33Н	109.5
C21B—C20B—H20B	106.3	Н33G—С33С—Н33Н	109.5
N2A—C21A—C13A	108.75 (13)	O5C—C33C—H33I	109.5
N2A—C21A—C22A	114.12 (13)	H33G—C33C—H33I	109.5
C13A—C21A—C22A	105.15 (12)	H33H—C33C—H33I	109.5
N2A—C21A—C20A	107.29 (12)	C30C—O5C—C33C	122.8 (10)
C13A—C21A—C20A	110.53 (12)		~ /
O1A—C1A—C2A—C3A	1.8 (3)	O2A—C20A—C21A—C22A	-172.51 (12)
C12A—C1A—C2A—C3A	179.36 (18)	C27A—C20A—C21A—C22A	63.16 (18)
O1A—C1A—C2A—C11A	-176.79 (16)	C14B—C13B—C21B—N2B	89.18 (15)
C12A—C1A—C2A—C11A	0.74 (17)	C12B—C13B—C21B—N2B	-140.22 (12)
O1B—C1B—C2B—C3B	-4.9 (3)	C14B—C13B—C21B—C22B	-147.46 (13)
C12B—C1B—C2B—C3B	178.04 (17)	C12B—C13B—C21B—C22B	-16.86 (15)
O1B—C1B—C2B—C11B	173.74 (16)	C14B—C13B—C21B—C20B	-27.98 (17)
C12B—C1B—C2B—C11B	-3.31 (17)	C12B—C13B—C21B—C20B	102.62 (14)
C11A—C2A—C3A—C4A	-0.8 (3)	O2B-C20B-C21B-N2B	-62.61 (16)
C1A—C2A—C3A—C4A	-179.30 (18)	C27B—C20B—C21B—N2B	63.7 (3)
C11B—C2B—C3B—C4B	-1.4 (3)	C27C—C20B—C21B—N2B	59.2 (5)
C1B—C2B—C3B—C4B	177.13 (17)	O2B-C20B-C21B-C13B	55.21 (16)
C2A—C3A—C4A—C5A	0.1 (3)	C27B—C20B—C21B—C13B	-178.5(3)
C2B—C3B—C4B—C5B	0.5 (3)	C27C—C20B—C21B—C13B	177.0 (5)
C3A—C4A—C5A—C6A	0.9 (3)	O2B—C20B—C21B—C22B	171.62 (12)
C3B—C4B—C5B—C6B	0.6 (3)	C27B—C20B—C21B—C22B	-62.0(3)
C4A—C5A—C6A—C11A	-1.1 (3)	C27C—C20B—C21B—C22B	-66.6 (5)
C4A—C5A—C6A—C7A	177.58 (19)	N2A—C21A—C22A—N1A	-107.23 (15)
C4B-C5B-C6B-C11B	-0.7 (3)	C13A—C21A—C22A—N1A	11.86 (15)
C4B—C5B—C6B—C7B	179.02 (19)	C20A—C21A—C22A—N1A	131.41 (13)
C11A—C6A—C7A—C8A	0.1 (3)	N2A—C21A—C22A—C23A	16.2 (2)
C5A—C6A—C7A—C8A	-178.53 (19)	C13A—C21A—C22A—C23A	135.25 (16)
C11B—C6B—C7B—C8B	-0.7 (3)	C20A—C21A—C22A—C23A	-105.20 (18)
C5B—C6B—C7B—C8B	179.56 (19)	N2B-C21B-C22B-N1B	109.79 (14)
C6A—C7A—C8A—C9A	-0.7 (3)	C13B—C21B—C22B—N1B	-9.23 (15)
C6B—C7B—C8B—C9B	0.6 (3)	C20B—C21B—C22B—N1B	-128.93 (13)
C7A—C8A—C9A—C10A	0.5 (3)	N2B-C21B-C22B-C23B	-13.2 (2)
C7B—C8B—C9B—C10B	0.1 (3)	C13B—C21B—C22B—C23B	-132.19 (16)
C8A—C9A—C10A—C11A	0.4 (2)	C20B—C21B—C22B—C23B	108.11 (17)
C8A—C9A—C10A—C12A	179.46 (16)	N1A—C22A—C23A—C24A	-58.0 (2)
C8B—C9B—C10B—C11B	-0.7 (2)	C21A—C22A—C23A—C24A	-178.64 (16)
C8B-C9B-C10B-C12B	-179.43 (16)	N1B—C22B—C23B—C24B	57.3 (2)
C9A—C10A—C11A—C6A	-1.0 (2)	C21B—C22B—C23B—C24B	177.36 (16)
C12A—C10A—C11A—C6A	179.73 (14)	C22A—C23A—C24A—C25A	55.1 (3)
C9A—C10A—C11A—C2A	178.31 (14)	C22B—C23B—C24B—C25B	-56.0 (2)
C12A—C10A—C11A—C2A	-0.98 (18)	C23A—C24A—C25A—C26A	-54.5 (3)
C7A—C6A—C11A—C10A	0.7 (2)	C23B—C24B—C25B—C26B	55.9 (2)

C5A—C6A—C11A—C10A	179.58 (16)	C24A—C25A—C26A—N1A	55.5 (2)
C7A—C6A—C11A—C2A	-178.49 (15)	C24B—C25B—C26B—N1B	-56.4 (2)
C5A—C6A—C11A—C2A	0.3 (2)	O2A—C20A—C27A—C32A	144.97 (16)
C3A—C2A—C11A—C10A	-178.71 (15)	C21A—C20A—C27A—C32A	-90.2 (2)
C1A—C2A—C11A—C10A	0.12 (18)	O2A—C20A—C27A—C28A	-33.0 (2)
C3A—C2A—C11A—C6A	0.6 (2)	C21A—C20A—C27A—C28A	91.9 (2)
C1A—C2A—C11A—C6A	179.43 (14)	C32A—C27A—C28A—C29A	2.0 (3)
C5B-C6B-C11B-C10B	179.90 (16)	C20A—C27A—C28A—C29A	-179.94 (17)
C7B-C6B-C11B-C10B	0.1 (2)	C27A—C28A—C29A—C30A	1.7 (3)
C5B—C6B—C11B—C2B	-0.3 (2)	C28A—C29A—C30A—C31A	-3.7(3)
C7B—C6B—C11B—C2B	179.99 (15)	C28A—C29A—C30A—O5A	177.6 (2)
C9B—C10B—C11B—C6B	0.6 (2)	C29A—C30A—C31A—C32A	1.8 (3)
C12B—C10B—C11B—C6B	179.57 (14)	O5A—C30A—C31A—C32A	-179.5 (2)
C9B—C10B—C11B—C2B	-179.31 (15)	C30A—C31A—C32A—C27A	2.0 (3)
C12B—C10B—C11B—C2B	-0.28 (19)	C28A—C27A—C32A—C31A	-3.8(3)
C3B—C2B—C11B—C6B	1.3 (2)	C20A—C27A—C32A—C31A	178.07 (17)
C1B—C2B—C11B—C6B	-177.54 (14)	C10A—C12A—N1A—C26A	-66.24 (17)
C3B-C2B-C11B-C10B	-178.82(15)	C13A—C12A—N1A—C26A	171.53 (13)
C1B-C2B-C11B-C10B	2.32 (18)	C1A—C12A—N1A—C26A	49.18 (17)
C9A—C10A—C12A—N1A	-55.1 (2)	C10A—C12A—N1A—C22A	165.86 (12)
C11A—C10A—C12A—N1A	124.09 (13)	C13A—C12A—N1A—C22A	43.63 (14)
C9A—C10A—C12A—C13A	58.6 (2)	C1A—C12A—N1A—C22A	-78.72 (15)
C11A—C10A—C12A—C13A	-122.21 (14)	C25A—C26A—N1A—C12A	173.59 (14)
C9A—C10A—C12A—C1A	-177.84 (16)	C25A—C26A—N1A—C22A	-60.58 (18)
C11A—C10A—C12A—C1A	1.32 (15)	C23A—C22A—N1A—C12A	-166.81 (14)
O1A—C1A—C12A—N1A	54.9 (2)	C21A—C22A—N1A—C12A	-35.61 (15)
C2A—C1A—C12A—N1A	-122.71 (13)	C23A—C22A—N1A—C26A	62.87 (18)
O1A—C1A—C12A—C10A	176.38 (15)	C21A—C22A—N1A—C26A	-165.92 (13)
C2A-C1A-C12A-C10A	-1.23 (15)	C25B—C26B—N1B—C12B	-171.60 (13)
O1A—C1A—C12A—C13A	-59.6 (2)	C25B—C26B—N1B—C22B	60.83 (18)
C2A—C1A—C12A—C13A	122.74 (14)	C10B—C12B—N1B—C26B	64.10 (17)
C9B-C10B-C12B-N1B	53.0 (2)	C13B—C12B—N1B—C26B	-174.65 (13)
C11B—C10B—C12B—N1B	-125.88 (14)	C1B—C12B—N1B—C26B	-51.95 (18)
C9B—C10B—C12B—C13B	-59.3 (2)	C10B—C12B—N1B—C22B	-166.23 (12)
C11B—C10B—C12B—C13B	121.81 (14)	C13B—C12B—N1B—C22B	-44.98 (14)
C9B—C10B—C12B—C1B	177.15 (17)	C1B—C12B—N1B—C22B	77.72 (15)
C11B—C10B—C12B—C1B	-1.70 (16)	C23B—C22B—N1B—C26B	-61.76 (18)
O1B—C1B—C12B—N1B	-52.5 (2)	C21B-C22B-N1B-C26B	166.88 (12)
C2B—C1B—C12B—N1B	124.62 (14)	C23B—C22B—N1B—C12B	166.17 (14)
O1B-C1B-C12B-C10B	-174.09 (15)	C21B—C22B—N1B—C12B	34.81 (15)
C2B-C1B-C12B-C10B	3.02 (15)	C13A—C21A—N2A—O4A	-167.26 (15)
O1B—C1B—C12B—C13B	62.2 (2)	C22A—C21A—N2A—O4A	-50.2 (2)
C2B—C1B—C12B—C13B	-120.69 (14)	C20A—C21A—N2A—O4A	73.17 (19)
N1A—C12A—C13A—C14A	-161.37 (13)	C13A—C21A—N2A—O3A	16.8 (2)
C10A—C12A—C13A—C14A	77.97 (17)	C22A—C21A—N2A—O3A	133.81 (18)
C1A—C12A—C13A—C14A	-38.77 (18)	C20A—C21A—N2A—O3A	-102.80 (19)
N1A—C12A—C13A—C21A	-33.80 (14)	C13B—C21B—N2B—O4B	159.85 (14)
C10A—C12A—C13A—C21A	-154.46 (12)	C22B—C21B—N2B—O4B	42.4 (2)

C1A—C12A—C13A—C21A	88.79 (15)	C20B—C21B—N2B—O4B	-80.67 (18)
N1B—C12B—C13B—C14B	164.26 (13)	C13B—C21B—N2B—O3B	-24.8 (2)
C10B—C12B—C13B—C14B	-76.27 (17)	C22B—C21B—N2B—O3B	-142.24 (16)
C1B—C12B—C13B—C14B	40.40 (19)	C20B—C21B—N2B—O3B	94.69 (17)
N1B—C12B—C13B—C21B	36.40 (14)	C14A—C19A—O2A—C20A	-32.1(2)
C10B—C12B—C13B—C21B	155.88 (12)	C18A—C19A—O2A—C20A	148.56 (17)
C1B—C12B—C13B—C21B	-87.45 (15)	C27A—C20A—O2A—C19A	-168.62 (13)
C21A—C13A—C14A—C19A	5.9 (2)	C21A—C20A—O2A—C19A	61.49 (17)
C12A—C13A—C14A—C19A	128.88 (16)	C14B—C19B—O2B—C20B	28.4 (2)
C21A—C13A—C14A—C15A	-178.74 (16)	C18B—C19B—O2B—C20B	-155.07 (15)
C12A—C13A—C14A—C15A	-55.7 (2)	C27B—C20B—O2B—C19B	173.7 (3)
C21B—C13B—C14B—C19B	1.4 (2)	C27C—C20B—O2B—C19B	178.5 (8)
C12B—C13B—C14B—C19B	-121.74 (16)	C21B-C20B-O2B-C19B	-55.76 (17)
C21B—C13B—C14B—C15B	-173.16 (14)	C31A—C30A—O5A—C33A	19.1 (4)
C12B—C13B—C14B—C15B	63.7 (2)	C29A—C30A—O5A—C33A	-162.2 (3)
C19A—C14A—C15A—C16A	-1.9 (3)	O2B-C20B-C27B-C28B	47.4 (9)
C13A—C14A—C15A—C16A	-177.5 (2)	C21B—C20B—C27B—C28B	-79.6 (8)
C19B—C14B—C15B—C16B	0.1 (3)	O2B—C20B—C27B—C32B	-132.0 (5)
C13B—C14B—C15B—C16B	174.86 (17)	C21B—C20B—C27B—C32B	100.9 (6)
C14A—C15A—C16A—C17A	1.5 (4)	C32B—C27B—C28B—C29B	-7.3 (12)
C14B—C15B—C16B—C17B	0.7 (3)	C20B—C27B—C28B—C29B	173.3 (6)
C15A—C16A—C17A—C18A	0.2 (4)	C28B—C27B—C32B—C31B	5.1 (10)
C15B—C16B—C17B—C18B	0.0 (3)	C20B—C27B—C32B—C31B	-175.4 (4)
C16A-C17A-C18A-C19A	-1.4 (4)	C27B—C32B—C31B—C30B	1.8 (6)
C16B—C17B—C18B—C19B	-1.4 (3)	C27B—C28B—C29B—C30B	2.7 (10)
C15A—C14A—C19A—O2A	-178.68 (17)	C32B—C31B—C30B—O5B	175.8 (3)
C13A—C14A—C19A—O2A	-3.1 (3)	C32B—C31B—C30B—C29B	-6.5 (6)
C15A—C14A—C19A—C18A	0.7 (3)	C28B—C29B—C30B—O5B	-178.2 (5)
C13A—C14A—C19A—C18A	176.23 (17)	C28B—C29B—C30B—C31B	4.3 (7)
C17A—C18A—C19A—O2A	-179.63 (19)	C31B—C30B—O5B—C33B	-170.4 (5)
C17A—C18A—C19A—C14A	1.0 (3)	C29B—C30B—O5B—C33B	12.0 (7)
C15B—C14B—C19B—O2B	174.87 (15)	O5C—C30C—C31C—C32C	177.6 (13)
C13B—C14B—C19B—O2B	0.1 (2)	C29C—C30C—C31C—C32C	-1 (2)
C15B—C14B—C19B—C18B	-1.5 (2)	O5C—C30C—C29C—C28C	-173.1 (12)
C13B—C14B—C19B—C18B	-176.29 (15)	C31C—C30C—C29C—C28C	6 (2)
C17B—C18B—C19B—O2B	-174.41 (16)	O2B—C20B—C27C—C32C	-148.9 (17)
C17B—C18B—C19B—C14B	2.2 (3)	C21B—C20B—C27C—C32C	88 (2)
C14A—C13A—C21A—N2A	-94.40 (15)	O2B—C20B—C27C—C28C	38 (2)
C12A—C13A—C21A—N2A	136.20 (12)	C21B—C20B—C27C—C28C	-85.9 (18)
C14A—C13A—C21A—C22A	142.99 (13)	C32C—C27C—C28C—C29C	10 (3)
C12A—C13A—C21A—C22A	13.58 (15)	C20B—C27C—C28C—C29C	-175.7 (14)
C14A—C13A—C21A—C20A	23.14 (18)	C30C—C29C—C28C—C27C	-11 (2)
C12A—C13A—C21A—C20A	-106.27 (14)	C28C—C27C—C32C—C31C	-4 (3)
02A—C20A—C21A—N2A	62.20 (16)	C20B—C27C—C32C—C31C	-178.3 (15)
C27A—C20A—C21A—N2A	-62.13 (18)	C30C—C31C—C32C—C27C	0 (3)
O2A—C20A—C21A—C13A	-56.24 (16)	C31C—C30C—O5C—C33C	-32 (3)
C27A—C20A—C21A—C13A	179.44 (13)	C29C—C30C—O5C—C33C	146.5 (16)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings C27A-C32A, C14B-C19B, C27B-C32B and C2B-C6B/C11B, respectively.

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.98	2.38	3.225 (2)	144
0.98	2.28	3.152 (2)	147
0.93	2.55	3.315 (2)	139
0.97	2.53	3.233 (3)	129
0.93	2.87	3.709 (2)	150
0.93	2.77	3.667 (2)	161
0.97	2.88	3.575 (3)	129
0.96	2.86	3.707 (7)	148
	<i>D</i> —H 0.98 0.93 0.97 0.93 0.93 0.93 0.97 0.96	D—H H···A 0.98 2.38 0.98 2.28 0.93 2.55 0.97 2.53 0.93 2.87 0.93 2.77 0.97 2.88 0.96 2.86	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x+3/2, y-1/2, -z+3/2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) x-3/2, -y-1/2, z-3/2; (v) -x+3/2, y+1/2, -z+3/2.