Crystal structures of [IrCl₂(NHCHPh)((dppm)- $(C(N_2dppm))-\kappa^3P,C,P')$]Cl·5.5MeCN and [IrI(NHCHPh)(((dppm)C(N₂))- $\kappa^2 P$,C)(dppm- $\kappa^2 P, P'$]I(I₃)·0.5I₂·MeOH·0.5CH₂Cl₂: triazene fragmentation in a PCN pincer iridium complex

Bettina Pauer, Gabriel Julian Partl,* Stefan Oberparleiter, Walter Schuh, Holger Kopacka, Klaus Wurst and Paul Peringer

Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria. *Correspondence e-mail: gabriel.partl@uibk.ac.at

The structure of $[IrCl_2(C_{58}H_{51}N_3P_4)]Cl \cdot 5.5CH_3CN$ or $[IrCl_2(NHCHPh) (((dppm)C(N_2dppm))-\kappa^3 P, C, P)]Cl \cdot 5.5CH_3CN$ [3, dppm = bis(diphenylphosphino)methane; systematic name: dichlorido(1,1,3,3,7,7,9,9-octaphenyl-4,5-diaza-1,3 λ^5 ,7 λ^4 ,9-tetraphosphanona-3,5-dien-6-yl- $\kappa^2 P^1$, P^9)(phenylmethanimine- κN)iridium(III) chloride acetonitrile hemihendecasolvate], resulting from an oxygen-mediated cleavage of a triazeneylidenephosphorane ligand producing a diazomethylenephosphorane and a nitrene moiety, which in turn rearrange via a Staudinger reaction and a 1,2-hydride shift to the first title complex, involves a six-coordinate Ir^{III} complex cation coordinated by a *facial* PCP pincer ligand, a benzaldimine and two chlorido ligands. The pincer system features a five- and a seven-membered ring, with the central divalent carbon of the PCP pincer ligand being connected to a phosphine and a diazophosphorane. The chlorido ligands are positioned *trans* to the central carbon atom and to the phosphorus donor of the seven-membered ring of the pincer system, respectively. A chloride ion serves as counter-ion for the monocationic complex. The structure of [IrI(C₂₆H₂₂N₂P₂)(C₂₆H₂₂P₂)(C₆H₇N)]I(I₃)·0.5I₂·CH₃OH·0.5CH₂Cl₂ or [IrI(NH-CHPh)((dppm)C(N₂)- $\kappa^2 P, C$)(dppm- $\kappa^2 P, P'$)]I(I₃)·0.5I₂·CH₃OH·0.5CH₂Cl₂ **{4**, name: $(4-\text{diazo-}1,1,3,3,-\text{tetraphenyl-}1,3\lambda^4-\text{diphosphabutan-}4-\text{vl-}$ systematic κP^1)iodido[methylenebis(diphenylphosphine)- $\kappa^2 P, P'$](phenylmethanimine- κN)iridium(III) iodide-triiodide-dichloromethane-iodine-methanol (2/2/1/1/2)}, accessed via treatment of the triazeneylidenephosphorane complex $[Ir((BnN_3)C(dppm)-\kappa^3 P, C, N)(dppm-\kappa^2 P, P')]Cl$ with hydroiodic acid, consists of a dicationic six-coordinate Ir^{III} complex, coordinated by a bidentate diazomethylenephosphorane, a benzaldimine, a chelating dppm moiety and an iodido ligand. The phosphorus atoms of the chelating dppm are trans to the central carbon atom of the diazomethylenephosphorane and the iodide ligand, respectively. Both an iodide and a triiodide moiety function as counter-ions. The acetonitrile solvent molecules in 3 are severely disordered in position and occupation. In 4, the I_3^- anion is positionally disordered (ratio roughly 1:1), as is the I⁻ anion with a ratio of 9:1. The dichloromethane solvent molecule lies near a twofold rotation axis (disorder) and was refined with an occupancy of 0.5. Another disorder occurs for the solvent methanol with a 1:1 ratio.

1. Chemical context

A peculiarity of triazenes is that their N-N bonds are comparatively easily cleaved. This may result, other than N₂ extrusion reactions, in diazonium and quaternary ammonium moieties, in diazo compounds and amines (Baumgarten, 1967;

OPEN $\overline{\mathbf{O}}$ ACCESS

Received 20 December 2018 Accepted 3 January 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; carbodiphosphorane; divalent carbon; triazene; fragmentation; diazomethylenephosphorane: diazophosphorane: nitrene: iridium(III).

CCDC references: 1885936; 1885935

Supporting information: this article has supporting information at journals.jucr.org/e

research communications

Schroen & Bräse, 2005), or in diazo compounds and amides (Myers & Raines, 2009) depending on the triazene substitution pattern. By taking advantage of their reactivity, the transformation of organic azides into diazo compounds *via* triazene intermediates has developed into a broad synthetic route to diazo compounds (Myers & Raines, 2009).

In this contribution, we describe the fragmentation of a triazene into diazo and nitrene parts in the coordination sphere of iridium. Recently, we reported on the synthesis of [Ir((4-Cl-C₆H₄N₃)C(dppm)- $\kappa^{3}P$,C,N)(dppm- $\kappa^{2}P$,P')]Cl via treatment of $[Ir(Cl)(H)(MeCN)(C(dppm)_2 - \kappa^3 P, C, P)]$ (1) with 1-azido-4-chlorobenzene under an inert atmosphere (Partl et al., 2019). The triazeneylidenephosphorane $(4-Cl-C_6H_4N_3)C-$ (dppm) unit of this compound is generated via substitution of one phosphine moiety of the carbodiphosphorane (CDP) $C(dppm)_2$ of **1** for the organic azide. This substitution reaction results in the formation of a labile Ir^I intermediate, whose coordination sphere features the PCN pincer ligand (4-Cl- $C_6H_4N_3$)C(dppm) and a monodentate dppm (Partl et al., 2019). Analogously, a related intermediate and product (2) are created by using benzyl azide, rather than 1-azido-4-chlorobenzene, under an inert atmosphere.

When the intermediate (in the case of benzyl azide) is brought into contact with air, pale-yellow crystals of compound **3** separate within a few hours. It contains a novel PCP pincer system involving one seven- and one fivemembered ring. The difference to the PCP pincer ligand of the starting complex **1** is that the pincer of **3** has an N₂ moiety inserted into one P–C bond of the CDP functionality of $C(dppm)_2$. Regarding the reaction mechanism, we propose that first, the Ir^I center of the intermediate is oxidized by atmospheric oxygen. This is presumably followed by a homolytic cleavage of the N2–N3 bond (numbering according to the crystal structure of **3**) of (BnN₃)C(dppm), producing the diazomethylenephosphorane (dppm)C(N₂) involving N1 and N2, and a benzylnitrene moiety containing N3.

Via an intramolecular Staudinger reaction (Staudinger & Meyer, 1919a,b) of the diazo functionality of $(dppm)C(N_2)$

with the pendent phosphine of the monodentate dppm ligand, the phosphazine (dppm)C(N₂dppm) is formed and subsequently acts as PCP pincer ligand. In this ligand, the central divalent carbon (Petz & Frenking, 2010) of (dppm)C(N₂dppm) connects to one tertiary phosphine of the dppm unit, and to a diazophosphorane (Murahashi *et al.*, 2005). The benzylnitrene undergoes a 1,2-hydride shift, thus producing a benzaldimine moiety that remains in the coordination sphere of iridium. In this context, it is very noteworthy that the scission of the N1–N2 bond occurs in the course of the aforementioned transformation of organic azides into diazo compounds *via* triazenes (Myers & Raines, 2009).

In a related fragmentation reaction, compound **4** was obtained through treatment of $[Ir((BnN_3)C(dppm)-\kappa^3 P,C,N)(dppm-\kappa^2 P,P')]Cl$ (**2**) with hydroiodic acid. It is apparent that a rupture of the N1–N2 bond (numbering as in the structure of **4**) of $(BnN_3)C(dppm)$ occurred again, resulting in the formation of a diazomethylenephosphorane $(dppm)C(N_2)$ and a benzylnitrene part. However, in this case, the diazo functionality remains unchanged, since in contrast to the formation of **3**, no free phosphine functionality is available. The benzylnitrene unit again undergoes a 1,2-hydride shift and, as a benzaldimine, coordinates to the Ir metal center.

The resonance structures of diazo compounds include ylene and ylide structures, as is the case for phosphorus ylides. The diazomethylenephosphorane (dppm)C(N₂) moiety contains a central divalent carbon (Petz & Frenking, 2010), to which a phosphine and an N₂ donor are formally attached and which may be considered as a mixed double ylide (Petz & Frenking, 2010). Related compounds of the type C(PX(NMe₂)₂)(N₂), X = Cl, Br, were obtained by addition of CX₄ to P((NMe₂)₂)(CH(N₂)) (Sotiropoulos *et al.*, 1987).

2. Structural commentary

The structure of 3 (Fig. 1) shows a six-coordinate monocationic Ir^{III} complex and one chloride counter-ion. The asymmetric unit contains one formula unit and 5.5 molecules of MeCN. Selected bond lengths and bond angles of 3 are given in Table 1. The most significant intramolecular interactions are listed in Table 2. The iridium center is coordinated by the facial PCP pincer system, which involves one sevenmembered IrC(N₂dppm) ring and one five-membered IrC(dppm) ring. A benzaldimine ligand is positioned trans to the phosphorus donor of the five-membered ring, the remaining two coordination sites being occupied by chlorido ligands cis to each other. The deviations of the angles C1- $Ir1-Cl1 = 170.06 (13)^{\circ}$ and $N3-Ir1-P1 = 169.02 (11)^{\circ}$ from a regular octahedral geometry indicate some strain in the pincer system. Both the N1–C1 bond length [1.280 (5) Å] and the N1–N2 bond length [1.445 (5) Å] are typical for a C=N double bond and an N-N single bond, respectively. The P3-N2 bond length [1.586 (4) Å] is in the range of P=N double bonds observed for iminophosphoranes (Ireland et al., 2010; Peng et al., 2011; Sun et al., 2011). Corresponding bond lengths in other phosphazene systems exhibit values of 1.62-1.64 Å for P-N, 1.36-1.39 Å for N-N and 1.31 Å for C-N. (Bethell

Table 1 Selected bond distances (Å) and angles (°) for compounds 3 and 4.

3		4	
Ir1–C1	2.044 (4)	Ir1-C1	2.150 (6)
Ir1-N3	2.077 (4)	Ir1-N1	2.107 (5)
Ir1-P1	2.3090 (12)	Ir1-P1	2.3468 (16)
Ir1-P4	2.3151 (11)	Ir1-P4	2.3241 (15)
Ir1-Cl1	2.4595 (12)	Ir1-P3	2.3536 (15)
Ir1-Cl2	2.4094 (11)	Ir1–I1	2.7206 (5)
P2-C1	1.837 (4)	P2-C1	1.753 (6)
N1-C1	1.280 (5)	N3-C1	1.305 (9)
N1-N2	1.445 (5)	N2-N3	1.095 (9)
N3-C4	1.270 (6)	N1-C4	1.267 (8)
P3-N2	1.586 (4)		
N3–Ir1–P1	169.02 (11)	N1-Ir1-P1	170.93 (14)
P4-Ir1-Cl2	176.55 (4)	P4-Ir1-I1	165.12 (4)
C1-Ir1-Cl1	170.06 (13)	C1-Ir1-P3	170.90 (18)
C1-Ir1-P1	86.06 (12)	C1-Ir1-P1	84.37 (17)
N1-C1-Ir1	134.2 (3)	P4–Ir1–P3	70.80 (5)
N1-C1-P2	109.1 (3)	N3-C1-P2	114.8 (5)
P2-C1-Ir1	116.4 (2)	N3-C1-Ir1	121.4 (5)
N1-N2-P3	110.3 (3)	P2-C1-Ir1	122.9 (3)
C1-N1-N2	117.5 (3)	N2-N3-C1	175.8 (7)

et al., 1992; Supurgibekov et al., 2011; Galina et al., 2013; Nikolaev et al., 2016). The P2–C1 bond length [1.836 (4) Å] indicates a single bond. The environment around C1 is strictly planar (sum of the angles amounts to 359.7°). Examination of the C4–N3 bond length within the benzaldimine ligand [1.270 (6) Å] indicates a double bond and is almost identical to that observed in compound **4** [1.267 (8) Å] and a previously reported iridium benzaldimine complex [1.260 (6) Å] involving a phosphorus donor atom *trans* to the benzaldimine nitrogen donor (Albertin et al., 2008). The most striking intramolecular interaction of **3** is the hydrogen bond N3– H3 $N \cdots$ N2 [H \cdots A 2.15 (5) Å, D–H \cdots A 138 (4)°], while other intramolecular interactions involve atoms N1 and Cl1 and the various phenyl rings (Table 2).

Figure 1

A view of the molecular structure of the cation of compound **3**, with displacement ellipsoids drawn at the 30% probability level and atom labelling. Only the *ipso* carbon atoms of the dppm phenyl groups are shown, and solvate molecules have been omitted for clarity.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for 3.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3−H3 <i>N</i> ···N2	0.82 (5)	2.15 (5)	2.807 (6)	138 (4)
C208−H208···N1	0.93	2.41	3.088 (7)	130
C402-H402···N3	0.93	2.56	3.120 (6)	119
C102-H102···Cl1	0.93	2.71	3.329 (5)	125
C402-H402···Cl1	0.93	2.66	3.428 (5)	140
C412-H412···Cl1	0.93	2.60	3.440 (5)	151
$C3-H3A\cdots Cl3$	0.97	2.63	3.563 (5)	162
$C105 - H105 \cdots Cl3^{i}$	0.93	2.69	3.586 (7)	162
$C408\!-\!H408\!\cdots\!Cl3$	0.93	2.82	3.533 (6)	134

Symmetry code: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 3

Hydrogen-bond geometry (Å, °) for **4**. *Cg* is the centroid of the C407–C412 ring

es is the control of the City Citz fing.						
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
N1 $-$ H1 N \cdots Cg	0.86 (2)	2.87 (5)	3.608 (6)	145 (4)		
C408-H408···N2	0.94	2.57	3.35(1)	141		
C4−H4···I1	0.94	2.98	3.45 (1)	112		
$C2-H2A\cdots O1$	0.98	2.25	3.19 (2)	160		
$C2-H2A\cdots O1A$	0.98	2.28	3.11 (3)	142		
C112−H112···O1	0.94	2.55	3.41 (3)	154		
C212−H212···O1A	0.94	2.31	3.20 (4)	159		
$C3-H3B\cdots I2$	0.98	3.02	3.89(1)	149		
$C106 - H106 \cdots I2A^{i}$	0.94	2.97	3.51 (1)	117		
$C205 - H205 \cdots Cg^{ii}$	0.94	2.86	3.749 (9)	159		

Symmetry codes: (i) $x, -y - 1, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

The structure of **4** (Fig. 2) consists of a six-coordinate dicationic Ir^{III} complex, one iodide and one triiodide counterion. The asymmetric unit contains one half molecule of dichloromethane and iodine and one molecule of methanol. Selected bond lengths and angles of **4** are summarized in Table 1. The most significant intramolecular interactions are listed in Table 3. The iridium center is coordinated by the bidentate ligand (dppm)C(N₂), which forms a five-membered chelate ring *via* one C and one P donor atom. A fourmembered ring is formed by a bidentate dppm ligand and is oriented perpendicular to the plane of the five-membered ring

A view of the molecular structure of the cation of compound **4**, with displacement ellipsoids drawn at the 30% probability level and atom labelling. Only the *ipso* carbon atoms of the dppm phenyl groups are shown, the anions and solvate molecules have been omitted for clarity.

research communications

with one phosphorus donor trans to the carbon donor of the five-membered ring. The benzaldimine ligand is located *trans* to the phosphorus donor of the five-membered ring, the sixth coordination site is occupied by an iodido ligand. Deviations from the octahedral symmetry around the Ir center are mainly due to the strained four-membered ring [P4-Ir1-P3 = $70.80 (5)^{\circ}$ with consequences for the bond angles P4-Ir1-I1 $[165.12 (4)^{\circ}]$ and C1-Ir1-P3 $[170.90 (17)^{\circ}]$. The C1-Ir1-P1 bond angle of the five-membered ring is $84.37 (17)^\circ$. The environment around the vlidic carbon C1 is trigonal planar, with the bond angle N3-C1-P2 exhibiting the largest deviation from a regular symmetry [114.8 $(5)^{\circ}$]. Both the N3-N2 [1.095 (9) Å] and the N3-C1 [1.305 (9) Å] bond lengths are slightly shorter, compared to the corresponding mean values of ten previously reported structures of diazo compounds [1.121 and 1.323 Å, respectively; Cambridge Structural Database (Groom et al., 2016)]. The P2-C1 bond length [1.753 (6) Å] is shorter than a P–C single bond, but is similar to phosphorus ylide complexes of iridium (Campos et al., 2013). The most striking intramolecular interaction of 4 is an N-H··· π interaction N1-H1N···Cg (Cg being the centroid of phenyl ring C407–C412, H···Cg 2.87 (5) Å, N− $H \cdots Cg$ 145 (4)°); see Table 3. Other intramolecular interactions involve atoms N2 and I1 (C408-H408···N2 and C4-H4···I1) given in Table 3.

3. Supramolecular features

In the crystal of 3, the cationic complexes are interconnected through the chloride anions *via* essentially $C-H\cdots Cl3$

Figure 3

A view along the a^* axis of the crystal packing of **3**, highlighting some of the intra- and intermolecular interactions. For clarity, solvate molecules and non-involved H atoms have been omitted, and for uninvolved phenyl moieties, only the *ipso* carbon atoms are displayed.

Figure 4

A view along the c axis of the crystal ordering of **4**, highlighting some of the intermolecular interactions. For clarity, uninvolved solvate molecules and H atoms have been omitted, and for non-involved phenyl groups, only the *ipso* carbon atoms are displayed.

hydrogen bonds. The most significant hydrogen-bonding interactions are given in Table 2. Of these, two stem from phenyl groups and one from a methylene group of the PCP pincer's dppmN₂ part (H3A···Cl3 2.63 Å). It is worth mentioning that such interactions are frequently observed in dppm and related ligands (Jones & Ahrens, 1998). A graphical representation of these interactions is given in Fig. 3. Effectively, the C-H···Cl3 hydrogen bonds link the cationic complexes, forming chains propagating along the *b*-axis direction.

In the crystal of 4, solvent interactions are centered around atoms O1 and O1A of the methanol molecule viz. two phenyl protons (H112···O1 2.55 and H212···O1A 2.31 Å) and one dppm methylene moiety (H2A···O1 2.25 and H2A···O1A 2.28 Å) (Jones & Ahrens, 1998) attach to the oxygen atom of the disordered methanol group via hydrogen bonding (Fig. 4). These and the other most significant intermolecular interactions are given in Table 3. Together with $C-H \cdot \cdot \cdot I2(I2A)$ hydrogen bonds and a $C-H\cdots\pi$ interaction, a supramolecular layer is formed lying parallel to the bc plane (Table 3). The iodine hemisolvate coordinates to the iodide anion $[I2 \cdot \cdot \cdot I3 \ 3.443 \ (1) \ A]$. As far as true intermolecular interactions go, iridium-bound iodide moieties appear to bind to each other through weak halogen-halogen interactions $[I1 \cdots I1' 3.890(1) \text{ Å}]$. Fig. 4 displays these interactions in graphical fashion.

4. Synthesis and crystallization

The syntheses of the title compounds are summarized in the reaction scheme. ¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker DPX 300 NMR spectrometer (300 MHz) and were referenced against ¹³C/¹H solvent peaks or an external 85% H₃PO₄ standard, respectively. The phosphorus atoms in the NMR data are labelled in the same way as in the figures.

Synthesis and crystallization of complex 3: A mixture of [IrCl(cod)]₂ (8.5 mg; 0.0125 mmol) and [CH(dppm)₂]Cl (Reitsamer *et al.*, 2012) (20.5 mg; 0.025 mmol) was placed

Table 4Experimental details.

	3	4
Crystal data		
Chemical formula	$[IrCl_2(C_{58}H_{51}N_3P_4)]Cl{\cdot}5.5C_2H_3N$	$[IrI(C_{26}H_{22}N_2P_2)(C_{26}H_{22}P_2)(C_6H_7N](I)(I_3) - 0.5I_3 \cdot CH_4O \cdot 0.5CH_5CI_3$
M _r	1438.24	1942.00
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $C2/c$
Temperature (K)	293	233
a, b, c (Å)	15.8874 (2), 21.0665 (3), 23.2646 (3)	37.2962 (3), 18.7310 (2), 19.2348 (2)
β (°)	106.107 (1)	106.631 (1)
$V(Å^3)$	7480.82 (18)	12875.2 (2)
Z	4	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.02	5.13
Crystal size (mm)	$0.31 \times 0.08 \times 0.04$	$0.32 \times 0.19 \times 0.14$
Data collection		
Diffractometer	Nonius KappaCCD	Nonius KappaCCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	47352, 13143, 10797	40122, 11285, 10348
R _{int}	0.049	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595	0.595
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.100, 1.08	0.041, 0.114, 1.11
No. of reflections	13143	11285
No. of parameters	734	732
No. of restraints	27	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.77, -0.44	1.30, -2.92

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and publcIF (Westrip, 2010).

under an inert atmosphere (N₂), dissolved in acetone (0.6 ml) and stirred for 3 h. The resulting white precipitate of [IrCl₂H(C(dppm)₂)] (Partl *et al.*, 2018) was separated via centrifugation and decantation. To it, MeCN (0.5 mL) and a solution of BnN₃ in CH₂Cl₂ (0.1 ml; 0.5 mol L⁻¹; 0.050 mmol) were added. After stirring for 1 min, the deep-purple solution was stirred for 2 h under atmospheric conditions, resulting in the slow precipitation of a white product. Colourless to paleyellow prismatic crystals of **3** were obtained by allowing the purple intermediate solution to stand overnight under ambient conditions.

³¹P{¹H}-NMR (CHCl₃/MeOH 1:1): δ = 0.7 (P1, *dd*, *J*_{P1P2} = 30.7, *J*_{P1P4} = 14.0 Hz); 16.9 (P2, *ddd*, *J*_{P2P3} = 13.6 Hz, *J*_{P2P4} = 3.7 Hz); 6.9 (P3, *d*); -43.1 (P4, *dd*) ppm. ¹³C{¹H}-NMR (CHCl₃/MeOH 1:1): δ =157.9 (C1, *dd*, *J*_{C1P2} = 47.4, *J*_{C1P3} = 16.5 Hz) ppm.

Synthesis and crystallization of complex 4: Under an inert atmosphere, a mixture of $[IrCl(cod)]_2$ (8.5 mg; 0.0125 mmol), $[CH(dppm)_2]Cl$ (20.5 mg; 0.025 mmol) (Reitsamer *et al.*, 2012) and MeCN (0.1 ml) was allowed to stir for 3 min. While stirring, MeOH (0.5 ml) and BnN₃ in CH₂Cl₂ (0.1 ml; 0.5 mol/L; 0.050 mmol) were added. After heating to 333 K for 15 min, the volatiles were removed *in vacuo*. The residue was dissolved in CH₂Cl₂ and hydroiodic acid (0.030 ml, 0.31 mmol, 67%) was added whilst stirring. The orange–brown precipitate that formed slowly was separated, washed with water and dried *in vacuo*. A solution of the residue in CH₂Cl₂/MeOH 2:1 (0.6 ml) quantitatively contained an unidentified intermediate,

which transformed to the product within 1 h. Red prismatic crystals of **4** formed within a few hours, when a solution of the intermediate in $CH_2Cl_2/MeOH$ (5:1) was kept at 254 K for 24 h and subsequently warmed to room temperature.

³¹P{¹H}-NMR (CH₂Cl₂/MeOH 2:1): δ = -15.8 (P1, ddd, J_{P1P2} = 16.8, J_{P1P3} = 15.3, J_{P1P4} = 13.8 Hz); 37.8 (P2, d); -72.1 (P3, dd, J_{P3P4} = 28.3 Hz); -62.8 (P4, dd) ppm. ¹³C[¹H}-NMR (CH₂Cl₂/MeOH 2:1): δ = -3.0 (C1, ddd, J_{C1P2} = 68.2, J_{C1P3} = 105.2, J_{C1P4} = 4.6 Hz) ppm.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The acetonitrile solvent molecules in the crystal lattice of **3** are severely disordered in position and occupation. At least 5.5 molecules in the asymmetric units were refined. Occupation values were varied to give a reasonable isotropic displacement factor. All C- and N-atoms of solvent molecules were refined isotropically with bond restraints, the hydrogen atoms were omitted. The proton on N3 was freely refined.

The hydrogen atom at N1 of **4** was found and refined with a bond restraint of 0.87 (2) Å. The I_3^- anion (I4–I6) is positionally disordered (ratio roughly 1:1), as is the I⁻ anion with a ratio I2:I2A of 9:1. The dichloromethane solvent molecule lies near a twofold rotation axis (disorder) and was refined with an occupancy of 0.5. Another disorder occurs for the solvent methanol with a ratio of 1:1. The C and O atoms of methanol were refined isotropically with bond restraints of 1.40 Å. The hydrogen atoms of methanol were calculated, those of dichloromethane omitted. All other H atoms were positioned geometrically (C-H = 0.94–0.98 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2$ -1.5 $U_{\rm eq}({\rm C})$.

Acknowledgements

GJP thanks Dr Inge Schlapp-Hackl for technical assistance.

References

- Albertin, G., Antoniutti, S., Baldan, D., Castro, J. & Garcia-Fontán, S. (2008). Inorg. Chem. 47, 742–748.
- Baumgarten, R. J. (1967). J. Org. Chem. 32, 484-485.
- Bethell, D., Brown, M. P., Harding, M. M., Herbert, C. A., Khodaei, M. M., Rios, M. I. & Woolstencroft, K. (1992). Acta Cryst. B48, 683– 687.
- Campos, J., Peloso, R., Brookhart, M. & Carmona, E. (2013). Organometallics, **32**, 3423–3426.
- Galina, Yu. P., Lobov, A. N., Sultanova, R. M., Spirikhin, L. V., Dokichev, V. A. & Suponitsky, K. Yu. (2013). J. Struct. Chem. 54, 468–470.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ireland, B. J., Wheaton, C. A. & Hayes, P. G. (2010). *Organometallics*, **29**, 1079–1084.
- Jones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307-2308.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Murahashi, T., Clough, C. R., Figueroa, J. S. & Cummins, C. C. (2005). Angew. Chem. Int. Ed. 44, 2560–2563.
- Myers, E. L. & Raines, R. T. (2009). Angew. Chem. Int. Ed. 48, 2359–2363.
- Nikolaev, V. A., Cantillo, D., Kappe, C. O., Medvedev, J. J., Prakash, G. K. & Supurgibekov, M. B. (2016). *Chem. Eur. J.* **22**, 174–184.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography, Part A*, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Partl, G. J., Nussbaumer, F., Schlapp-Hackl, I., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2018). *Acta Cryst.* E74, 846–852.
- Partl, G. J., Nussbaumer, F., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2019). Acta Cryst. E75, 75–80.
- Peng, X., Yuan, Y. & Chen, X. (2011). Acta Cryst. E67, o2683.
- Petz, W. & Frenking, G. (2010). *Topics in Organometallic Chemistry*, vol. 30, edited by R. Chauvin & Y. Canac, pp. 49–92. Berlin, Heidelberg: Springer.
- Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). *Dalton Trans.* **41**, 3503–3514.
- Schroen, M. & Bräse, S. (2005). Tetrahedron, 61, 12186–12192.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sotiropoulos, J.-M., Baceiredo, A. & Bertrand, G. (1987). J. Am. Chem. Soc. 109, 4711–4712.
- Staudinger, H. & Meyer, I. (1919a). Helv. Chim. Acta, 2, 619-635.
- Staudinger, H. & Meyer, I. (1919b). Helv. Chim. Acta, 2, 635-646.
- Sun, H., Ritch, J. S. & Hayes, P. G. (2011). Inorg. Chem. 50, 8063-8072.
- Supurgibekov, M. B., Zakharova, V. M., Sieler, J. & Nikolaev, V. A. (2011). *Tetrahedron Lett.* **52**, 341–345.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2019). E75, 179-184 [https://doi.org/10.1107/S2056989019000136]

Crystal structures of $[IrCl_2(NHCHPh)((dppm)(C(N_2dppm))-\kappa^3P,C,P')]Cl\cdot5.5MeCN and <math>[IrI(NHCHPh)(((dppm)C(N_2))-\kappa^2P,C)(dppm-\kappa^2P,P')]I(I_3)\cdot0.5I_2\cdotMeOH\cdot0.5CH_2Cl_2$: triazene fragmentation in a PCN pincer iridium complex

Bettina Pauer, Gabriel Julian Partl, Stefan Oberparleiter, Walter Schuh, Holger Kopacka, Klaus Wurst and Paul Peringer

Computing details

For both structures, data collection: *COLLECT* (Nonius, 1998); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2008) and *publCIF* (Westrip, 2010).

Dichlorido(phenylmethanimine- κN)(1,1,3,3,7,7,9,9-octaphenyl-4,5-diaza-1,3 λ^5 ,7 λ^4 ,9-tetraphosphanona-3,5-dien-6-yl- $\kappa^2 P^1$, P^9)iridium(III) chloride acetonitrile hemihendecasolvate (3)

Crystal data

$[IrCl_{2}(C_{58}H_{51}N_{3}P_{4})]Cl \cdot 5.5C_{2}H_{3}N$ $M_{r} = 1438.24$ Monoclinic, $P2_{1}/n$ $a = 15.8874 (2) Å$ $b = 21.0665 (3) Å$ $c = 23.2646 (3) Å$ $\beta = 106.107 (1)^{\circ}$ $V = 7480.82 (18) Å^{3}$ $Z = 4$ Data collection	F(000) = 2916 $D_x = 1.277 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 117075 reflections $\theta = 1.0-26.0^{\circ}$ $\mu = 2.02 \text{ mm}^{-1}$ T = 293 K Prism, colorless $0.31 \times 0.08 \times 0.04 \text{ mm}$
Nonius KappaCCD diffractometer phi– and ω -scans 47352 measured reflections 13143 independent reflections 10797 reflections with $I > 2\sigma(I)$	$R_{int} = 0.049$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -18 \rightarrow 18$ $k = -25 \rightarrow 25$ $l = -27 \rightarrow 27$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.100$ S = 1.08	13143 reflections734 parameters27 restraintsHydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.77 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 16.2457P]$	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces in a good approximation semi-empirical absorptions methods (absorption correction programs like SORTAV lead to no better data sets).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen at N3 was found and refined normally with isotropic displacement parameters. The solvent molecules of acetonitrile in the crystal lattice are strongly disordered in position and occupation. At least a sum of 5.5 molecules in the asymmetric units were refined. Occupation values were varied to a more or less reasonable isotropic displacement factor. All C and N-atoms of solvents were isotropically refined with a sum of bond restraints and hydrogen atoms were omitted.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ir1	0.85062 (2)	0.50587 (2)	0.13892 (2)	0.03393 (7)	
P1	0.87793 (8)	0.57823 (5)	0.21646 (5)	0.0379 (3)	
P2	0.72156 (8)	0.63106 (5)	0.12389 (6)	0.0394 (3)	
P3	0.61365 (7)	0.41793 (5)	0.11211 (5)	0.0356 (3)	
P4	0.80771 (7)	0.42085 (5)	0.18720 (5)	0.0347 (3)	
C11	0.99975 (8)	0.46384 (6)	0.15473 (6)	0.0479 (3)	
C12	0.89854 (8)	0.58983 (5)	0.08509 (6)	0.0481 (3)	
C13	0.63193 (10)	0.30927 (6)	0.28422 (6)	0.0627 (4)	
N1	0.6530(2)	0.52482 (16)	0.08207 (16)	0.0376 (9)	
N2	0.6460 (2)	0.45866 (15)	0.06499 (16)	0.0361 (8)	
N3	0.8199 (3)	0.45600 (17)	0.05876 (17)	0.0375 (9)	
H3N	0.771 (3)	0.440(2)	0.0499 (19)	0.034 (13)*	
C1	0.7285 (3)	0.54535 (19)	0.11152 (19)	0.0372 (10)	
C2	0.8197 (3)	0.6504 (2)	0.1823 (2)	0.0416 (11)	
H2A	0.8041	0.6754	0.2129	0.050*	
H2B	0.8581	0.6759	0.1657	0.050*	
C3	0.6916 (3)	0.4194 (2)	0.18611 (19)	0.0368 (10)	
H3A	0.6817	0.3822	0.2080	0.044*	
H3B	0.6797	0.4565	0.2073	0.044*	
C4	0.8626 (3)	0.4518 (2)	0.0201 (2)	0.0449 (11)	
H4	0.9153	0.4738	0.0281	0.054*	
C5	0.8365 (3)	0.4158 (2)	-0.0357 (2)	0.0469 (12)	
C6	0.7747 (3)	0.3677 (3)	-0.0448 (3)	0.0602 (14)	
H6	0.7489	0.3572	-0.0147	0.072*	
C7	0.7516 (4)	0.3353 (3)	-0.0985 (3)	0.0771 (19)	
H7	0.7104	0.3028	-0.1048	0.092*	
C8	0.7903 (5)	0.3517 (4)	-0.1427 (3)	0.088 (2)	
H8	0.7738	0.3305	-0.1792	0.106*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C9	0.8513 (5)	0.3977 (4)	-0.1343 (3)	0.0802 (19)
H9	0.8771	0.4080	-0.1645	0.096*
C10	0.8752 (4)	0.4296 (3)	-0.0800(2)	0.0596 (14)
H10	0.9182	0.4608	-0.0736	0.072*
C101	0.9882 (3)	0.6079 (2)	0.2502 (2)	0.0432 (11)
C102	1.0578 (3)	0.5652 (3)	0.2687 (2)	0.0606 (15)
H102	1.0482	0.5219	0.2629	0.073*
C103	1,1406 (4)	0.5878(3)	0.2956 (3)	0.0753 (19)
H103	1.1867	0.5592	0.3083	0.090*
C104	1.1566 (4)	0.6511(3)	0.3040(3)	0.0738 (18)
H104	1 2130	0.6657	0.3220	0.089*
C105	1.0047(4)	0.6722(3)	0.2596 (3)	0.0601 (15)
H105	0.9590	0.7013	0.2484	0.072*
C106	1.0888(4)	0.6930 (3)	0.2857(3)	0.072
H106	1.0997	0.7363	0.2909	0.093*
C107	0.8336(3)	0.5665 (2)	0.2909 0.2801 (2)	0.095 0.0452(12)
C108	0.0000(0) 0.7437(4)	0.5603(2)	0.2601(2) 0.2698(3)	0.0522(12)
H108	0.7078	0.5646	0.2307	0.063*
C109	0.7058 (4)	0.5560 (3)	0.2307 0.3172(3)	0.005
H109	0.6453	0.5530	0.3098	0.0000 (10)
C110	0.7584 (5)	0.5538 (3)	0.3740(3)	0.030 0.0745(18)
H110	0.7337	0.5396 (3)	0.4057	0.0745 (10)
C111	0.7557 0.8474 (5)	0.5470	0.4057 0.3852 (3)	0.03°
U111	0.8824	0.5564	0.3852 (5)	0.0743 (10)
C112	0.8824 0.8872 (4)	0.5504	0.4240 0.3384(2)	0.089
U112	0.0872 (4)	0.5663	0.3384 (2)	0.0508 (14)
C201	0.9478 0.7162 (2)	0.5005	0.3404	0.008°
C201	0.7102(3) 0.7523(4)	0.0777(2) 0.7378(2)	0.0382(2) 0.0635(3)	0.0400(12)
U202	0.7323 (4)	0.7576 (2)	0.0033 (3)	0.0043 (10)
П202 С202	0.7830 0.7421 (5)	0.7330	0.1007 0.0128 (3)	0.077°
C205	0.7421(3)	0.7739(3)	0.0128 (5)	0.064 (2)
П203 С204	0.7034	0.8147	0.0139	0.101°
C204	0.6976 (5)	0.7505 (3)	-0.0428 (3)	0.0795 (19)
H204 C205	0.6924	0.7/40	-0.0/70	0.095*
C205	0.6014 (4)	0.6915 (3)	-0.04/3(3)	0.0/31(18)
П203 С206	0.0300	0.0700	-0.0840	0.088°
C206	0.6700 (4)	0.6548 (2)	0.0026 (2)	0.0601 (15)
H206	0.6447	0.614/	-0.0008	0.072*
C207	0.6287(3)	0.6555 (2)	0.1492 (2)	0.0450 (12)
C208	0.5559 (4)	0.6182 (3)	0.1437 (3)	0.0749 (19)
H208	0.5529	0.5778	0.1270	0.090*
C209	0.4863 (4)	0.6415 (3)	0.1635 (4)	0.096 (3)
H209	0.4377	0.6159	0.1611	0.116*
C210	0.4891 (4)	0.7007 (3)	0.1861 (3)	0.083 (2)
H210	0.4426	0.7158	0.1992	0.099*
C211	0.5596 (4)	0.7381 (3)	0.1895 (3)	0.081 (2)
H211	0.5605	0.7794	0.2038	0.097*
C212	0.6299 (4)	0.7159 (2)	0.1720 (3)	0.0646 (16)
H212	0.6786	0.7418	0.1756	0.078*

C301	0.5921 (3)	0.3392 (2)	0.0821 (2)	0.0420 (11)
C302	0.5830 (4)	0.3293 (2)	0.0220 (2)	0.0564 (14)
H302	0.5922	0.3623	-0.0020	0.068*
C303	0.5599 (5)	0.2691 (3)	-0.0021(3)	0.084(2)
H303	0.5553	0.2616	-0.0423	0.101*
C304	0.5442 (5)	0.2211(3)	0.0328(3)	0.084(2)
H304	0.5283	0.1811	0.0164	0.100*
C305	0.5516 (4)	0.2315 (3)	0.0919 (3)	0.0765 (19)
H305	0.5409	0.1985	0.1155	0.092*
C306	0.5747(4)	0.2904(2)	0 1169 (2)	0.052
H306	0.5786	0.2973	0.1570	0.068*
C307	0.5700	0.2975 0.4445 (2)	0.1256(2)	0.000
C308	0.5125(3) 0.4517(3)	0.4752(2)	0.1290(2) 0.0794(2)	0.0470(12)
H308	0.4651	0.4833	0.0436	0.056*
C309	0.4031 0.3723 (4)	0.4034(2)	0.0450	0.050
H309	0.3316	0.5131	0.0546	0.0592 (15)
C310	0.3572(4)	0.3131 0.4831(3)	0.0340 0.1387 (3)	0.071
H310	0.2085	0.4065	0.1337 (5)	0.088*
C311	0.2983	0.4529 (4)	0.1451 0.1852(3)	0.082(2)
H311	0.3076	0.4327 (4)	0.1052 (5)	0.002 (2)
C312	0.3970 0.4017 (4)	0.4437 0.4331(3)	0.2210 0.1787 (3)	0.099
H312	0.5315	0.4123	0.1787 (5)	0.074*
C401	0.3313 0.8230 (3)	0.4125 0.3406 (2)	0.2100 0.1607 (2)	0.074
C402	0.8239(3)	0.3400(2)	0.1007(2) 0.1248(2)	0.0422(11) 0.0540(13)
U402	0.8774 (4)	0.3270 (2)	0.1248 (2)	0.0549 (15)
C403	0.9009	0.2658 (3)	0.1122 0.1060 (3)	0.000
H403	0.9241	0.2576	0.1009 (3)	0.0750 (10)
C404	0.9241 0.8451 (5)	0.2370 0.2167(3)	0.0825	0.0783 (19)
H404	0.8509	0.1754	0.1200 (3)	0.094*
C405	0.0000	0.1754 0.2291 (2)	0.1130	0.074 0.0701 (17)
H405	0.7659	0.1959	0.1034 (3)	0.084*
C406	0.7832(4)	0.1999	0.1771 0.1807 (3)	0.0546 (13)
H406	0.7485	0.2980	0.1007 (5)	0.0540(15)
C407	0.8643 (3)	0.2380 0.4134(2)	0.2002	0.005
C408	0.8210(4)	0.4154(2) 0.4055(2)	0.2071(2) 0.3110(2)	0.0427(11) 0.0503(12)
U408	0.7601	0.4056	0.3007	0.0505 (12)
C409	0.8686 (4)	0.3974 (3)	0.3007	0.0626 (15)
U400	0.8304	0.3018	0.3003	0.0020 (13)
C410	0.0597	0.3976 (3)	0.3999	0.0713 (18)
H410	0.9906	0.3925	0.4259	0.086*
C/11	1.0026 (4)	0.3923	0.425	0.000 (18)
H411	1.0635	0.4058	0.3549	0.0750 (18)
C412	0.9556 (3)	0.4050 0.4125(3)	0.337(2)	0.0567(14)
H412	0.9854	0.4167	0.2637 (2)	0.068*
N4	0.9094	0.7744 (0)	0.2377	0.242 (8)*
C11	1,0108(11)	0.7622 (8)	0.015 + (7)	0.170 (6)*
C12	1 0126 (7)	0.7022(0) 0.7481(5)	0.0000(7)	0 114 (3)*
N5	0.8063(14)	0.6058 (0)	-0.3070(0)	0.117(3) 0.240(8)*
110	0.0000 (17)	0.0750(7)	0.30/2(2)	0.270 (0)

0.8 0.8 0.8 0.7

C13	0.7960 (14)	0.6511 (9)	-0.2805 (9)	0.193 (8)*	0.7
C14	0.7862 (10)	0.5920 (7)	-0.2552 (7)	0.132 (5)*	0.7
N6	0.1837 (13)	0.3904 (10)	-0.5292 (9)	0.245 (9)*	0.7
C15	0.2378 (13)	0.3567 (9)	-0.5377 (8)	0.163 (6)*	0.7
C16	0.3195 (16)	0.3349 (13)	-0.5382 (12)	0.257 (12)*	0.7
N7	0.0715 (11)	0.5571 (8)	-0.5313 (7)	0.212 (6)*	0.8
C17	0.1364 (11)	0.5537 (8)	-0.5404 (7)	0.154 (5)*	0.8
C18	0.2271 (12)	0.5480 (10)	-0.5379 (9)	0.220 (8)*	0.8
N8	0.8726 (13)	0.6302 (9)	-0.0689 (8)	0.125 (6)*	0.5
C19	0.823 (3)	0.654 (2)	-0.1087 (19)	0.34 (3)*	0.5
C20	0.776 (2)	0.6924 (16)	-0.1596 (12)	0.215 (13)*	0.5
N8A	0.8369 (14)	0.7278 (9)	-0.1420 (9)	0.159 (7)*	0.5
C19A	0.8575 (13)	0.6878 (10)	-0.1068 (8)	0.115 (6)*	0.5
C20A	0.9118 (15)	0.6550 (11)	-0.0539 (9)	0.134 (8)*	0.5
N9	0.3776 (13)	0.5841 (10)	-0.3990 (9)	0.172 (7)*	0.5
C21	0.4509 (15)	0.5722 (11)	-0.3647 (10)	0.147 (8)*	0.5
C22	0.5442 (15)	0.5790 (17)	-0.3576 (15)	0.236 (14)*	0.5
N9A	0.4319 (17)	0.4368 (12)	-0.4302 (12)	0.202 (9)*	0.5
C21A	0.485 (2)	0.4212 (17)	-0.3857 (14)	0.236 (15)*	0.5
C22A	0.566 (3)	0.381 (2)	-0.3607 (19)	0.32 (2)*	0.5
N10	0.6366 (18)	0.4471 (13)	-0.2927 (12)	0.228 (11)*	0.5
C23	0.6014 (19)	0.3984 (14)	-0.3021 (14)	0.177 (10)*	0.5
C24	0.569 (2)	0.3356 (15)	-0.3187 (17)	0.238 (15)*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.03548 (11)	0.02598 (10)	0.03721 (11)	-0.00083 (7)	0.00487 (7)	0.00162 (7)
P1	0.0399 (7)	0.0288 (6)	0.0402 (6)	-0.0016 (5)	0.0033 (5)	0.0001 (5)
P2	0.0404 (7)	0.0232 (5)	0.0480 (7)	-0.0019 (5)	0.0012 (5)	0.0011 (5)
Р3	0.0384 (6)	0.0243 (5)	0.0412 (6)	-0.0022 (4)	0.0063 (5)	0.0004 (5)
P4	0.0370 (6)	0.0256 (5)	0.0383 (6)	0.0031 (4)	0.0050 (5)	0.0024 (5)
Cl1	0.0395 (6)	0.0454 (7)	0.0552 (7)	0.0034 (5)	0.0070 (5)	0.0033 (5)
Cl2	0.0501 (7)	0.0378 (6)	0.0566 (7)	-0.0046 (5)	0.0150 (6)	0.0070 (5)
C13	0.0773 (9)	0.0441 (7)	0.0646 (9)	-0.0076 (6)	0.0165 (7)	0.0147 (6)
N1	0.044 (2)	0.0241 (18)	0.041 (2)	-0.0015 (16)	0.0062 (18)	-0.0002 (16)
N2	0.039 (2)	0.0242 (18)	0.042 (2)	-0.0032 (15)	0.0064 (17)	-0.0026 (15)
N3	0.036 (2)	0.034 (2)	0.042 (2)	-0.0035 (17)	0.0104 (19)	-0.0025 (17)
C1	0.044 (3)	0.026 (2)	0.038 (2)	0.0010 (19)	0.005 (2)	0.0040 (18)
C2	0.043 (3)	0.027 (2)	0.049 (3)	-0.0036 (19)	0.002 (2)	-0.001 (2)
C3	0.042 (3)	0.026 (2)	0.040 (2)	0.0016 (18)	0.007 (2)	0.0028 (18)
C4	0.042 (3)	0.040 (3)	0.051 (3)	-0.004 (2)	0.010 (2)	0.000 (2)
C5	0.041 (3)	0.048 (3)	0.050 (3)	0.004 (2)	0.011 (2)	-0.007 (2)
C6	0.052 (3)	0.066 (4)	0.064 (4)	-0.008 (3)	0.019 (3)	-0.016 (3)
C7	0.061 (4)	0.083 (4)	0.087 (5)	-0.015 (3)	0.021 (4)	-0.035 (4)
C8	0.074 (5)	0.115 (6)	0.068 (4)	0.009 (4)	0.007 (4)	-0.041 (4)
C9	0.080 (5)	0.109 (6)	0.059 (4)	-0.008 (4)	0.031 (3)	-0.021 (4)
C10	0.053 (3)	0.071 (4)	0.058 (3)	0.000 (3)	0.021 (3)	-0.009 (3)

C101	0.042 (3)	0.043 (3)	0.038 (3)	-0.004 (2)	0.000(2)	-0.004(2)
C102	0.050 (3)	0.059 (3)	0.061 (3)	0.003 (3)	-0.005 (3)	-0.013 (3)
C103	0.052 (4)	0.089 (5)	0.073 (4)	0.011 (3)	-0.003 (3)	-0.024 (4)
C104	0.045 (3)	0.099 (5)	0.068 (4)	-0.014 (3)	0.001 (3)	-0.021 (4)
C105	0.051 (3)	0.047 (3)	0.070 (4)	-0.008(2)	-0.004(3)	-0.006(3)
C106	0.072 (4)	0.064 (4)	0.081 (4)	-0.024(3)	-0.005(3)	-0.014(3)
C107	0.066 (3)	0.025 (2)	0.045 (3)	-0.003(2)	0.015 (2)	-0.0015(19)
C108	0.061 (3)	0.031 (3)	0.066 (3)	0.000 (2)	0.020 (3)	0.001 (2)
C109	0.081 (4)	0.043 (3)	0.089 (5)	0.004 (3)	0.046 (4)	0.002 (3)
C110	0.105 (6)	0.052 (4)	0.081 (5)	-0.008(3)	0.050 (4)	-0.008(3)
C111	0.118 (6)	0.055 (4)	0.052 (3)	-0.009(4)	0.026 (4)	-0.003(3)
C112	0.075 (4)	0.042 (3)	0.052(3)	-0.004(3)	0.017 (3)	0.000 (2)
C201	0.045 (3)	0.032(2)	0.052(3)	-0.001(2)	0.000 (2)	0.006(2)
C202	0.079 (4)	0.039(3)	0.065(4)	-0.015(3)	0.001 (3)	0.012(3)
C203	0.104 (5)	0.045(3)	0.091 (5)	-0.020(3)	0.009 (4)	0.023 (3)
C204	0.095 (5)	0.069 (4)	0.062 (4)	-0.004(4)	0.000 (4)	0.025(3)
C205	0.082(4)	0.069 (4)	0.054(4)	-0.011(3)	-0.003(3)	0.014(3)
C206	0.071(4)	0.042(3)	0.055(3)	-0.007(3)	-0.004(3)	0.006(2)
C207	0.042(3)	0.030(2)	0.059(3)	0.004(2)	0.006 (2)	-0.001(2)
C208	0.053(4)	0.048(3)	0.122 (6)	-0.005(3)	0.021 (4)	-0.030(3)
C209	0.056 (4)	0.071 (4)	0.173 (8)	-0.013(3)	0.049 (5)	-0.046(5)
C210	0.058 (4)	0.063 (4)	0.127 (6)	0.007 (3)	0.024 (4)	-0.036(4)
C211	0.072 (4)	0.049 (3)	0.112 (5)	0.005 (3)	0.012 (4)	-0.032(3)
C212	0.057 (3)	0.039 (3)	0.096 (5)	-0.003(2)	0.018 (3)	-0.020(3)
C301	0.044 (3)	0.032 (2)	0.047 (3)	-0.003(2)	0.006 (2)	-0.005(2)
C302	0.068 (4)	0.041 (3)	0.060 (3)	-0.013 (3)	0.017 (3)	-0.010(2)
C303	0.120 (6)	0.061 (4)	0.075 (4)	-0.026 (4)	0.033 (4)	-0.032(3)
C304	0.114 (6)	0.042 (3)	0.094 (5)	-0.026 (3)	0.027 (4)	-0.026(3)
C305	0.100 (5)	0.035 (3)	0.083 (5)	-0.015 (3)	0.007 (4)	0.002 (3)
C306	0.074 (4)	0.033 (3)	0.057 (3)	-0.010 (2)	0.006 (3)	0.001 (2)
C307	0.037 (3)	0.031 (2)	0.051 (3)	-0.0031 (19)	0.009 (2)	-0.001(2)
C308	0.043 (3)	0.041 (3)	0.052 (3)	0.002 (2)	0.005 (2)	-0.001(2)
C309	0.045 (3)	0.054 (3)	0.070 (4)	0.009 (2)	0.002 (3)	0.002 (3)
C310	0.045 (3)	0.086 (4)	0.092 (5)	0.010 (3)	0.022 (3)	-0.004 (4)
C311	0.064 (4)	0.112 (6)	0.078 (4)	0.013 (4)	0.031 (4)	0.015 (4)
C312	0.050 (3)	0.078 (4)	0.059 (3)	0.011 (3)	0.017 (3)	0.015 (3)
C401	0.046 (3)	0.032 (2)	0.045 (3)	0.008 (2)	0.006 (2)	0.002 (2)
C402	0.066 (3)	0.032 (3)	0.071 (4)	0.004 (2)	0.027 (3)	0.003 (2)
C403	0.092 (5)	0.047 (3)	0.097 (5)	0.013 (3)	0.052 (4)	-0.004 (3)
C404	0.109 (5)	0.027 (3)	0.109 (5)	0.006 (3)	0.046 (4)	-0.002(3)
C405	0.092 (5)	0.031 (3)	0.100 (5)	0.002 (3)	0.047 (4)	0.005 (3)
C406	0.066 (3)	0.028 (2)	0.076 (4)	0.003 (2)	0.030 (3)	0.007 (2)
C407	0.054 (3)	0.026 (2)	0.040 (3)	0.003 (2)	0.001 (2)	0.0065 (19)
C408	0.054 (3)	0.042 (3)	0.050 (3)	-0.002 (2)	0.007 (3)	0.003 (2)
C409	0.085 (4)	0.055 (3)	0.045 (3)	-0.003 (3)	0.014 (3)	0.012 (3)
C410	0.085 (5)	0.077 (4)	0.038 (3)	0.000 (3)	-0.004 (3)	0.016 (3)
C411	0.060 (4)	0.085 (4)	0.062 (4)	0.001 (3)	-0.015 (3)	0.017 (3)
C412	0.053 (3)	0.059 (3)	0.052 (3)	0.003 (3)	0.004 (3)	0.014 (3)

Geometric parameters (Å, °)

Ir1—C1	2.044 (4)	C210—C211	1.355 (9)
Ir1—N3	2.077 (4)	C211—C212	1.372 (8)
Ir1—P1	2.3090 (12)	C301—C302	1.381 (7)
Ir1—P4	2.3151 (11)	C301—C306	1.384 (7)
Ir1—Cl2	2.4094 (11)	C302—C303	1.395 (7)
Ir1—Cl1	2.4595 (12)	C303—C304	1.364 (9)
P1—C101	1.821 (5)	C304—C305	1.365 (9)
P1—C107	1.825 (5)	C305—C306	1.375 (7)
P1—C2	1.842 (4)	C_{307} — C_{312}	1.383 (7)
P2—C201	1.800 (5)	C_{307} C_{308}	1.389 (6)
P2—C2	1.808 (4)	C308—C309	1.370 (7)
P2—C207	1.808 (5)	$C_{309} - C_{310}$	1.363 (8)
P2—C1	1.837 (4)	C310—C311	1.378 (9)
P3—N2	1.586 (4)	$C_{311} - C_{312}$	1.389 (8)
P3—C301	1.795 (4)	C401—C402	1.375 (7)
P3—C307	1.812 (5)	C401—C406	1.389 (7)
P3—C3	1.821 (4)	C402—C403	1.392 (7)
P4—C407	1.832 (5)	C403—C404	1.379 (8)
P4—C3	1.837 (5)	C404—C405	1.373 (8)
P4—C401	1.842 (5)	C405—C406	1.374 (7)
N1—C1	1.280 (5)	C407—C408	1.392 (7)
N1—N2	1.445 (5)	C407—C412	1.394 (7)
N3—H3N	0.81 (5)	C408—C409	1.382 (7)
N3—C4	1.270 (6)	C409—C410	1.384 (8)
C4—C5	1.462 (7)	C410—C411	1.355 (9)
C5—C10	1.371 (7)	C411—C412	1.400 (7)
C5—C6	1.386 (7)	N4	1.162 (13)
C6—C7	1.380 (8)	C11—C12	1.391 (13)
С7—С8	1.382 (10)	N5—C13	1.175 (14)
C8—C9	1.347 (10)	C13—C14	1.403 (14)
C9—C10	1.387 (8)	N6—C15	1.172 (14)
C101—C105	1.385 (7)	C15—C16	1.380 (15)
C101—C102	1.397 (7)	N7—C17	1.112 (13)
C102—C103	1.375 (8)	C17—C18	1.432 (13)
C103—C104	1.362 (9)	N8—C20A	0.81 (3)
C104—C106	1.365 (9)	N8—C19	1.152 (17)
C105—C106	1.377 (8)	N8—C19A	1.48 (3)
C107—C108	1.382 (7)	C19—C19A	0.88 (6)
C107—C112	1.388 (7)	C19—C20	1.456 (17)
C108—C109	1.404 (8)	C19—C20A	1.61 (4)
C109—C110	1.354 (9)	C19—N8A	1.77 (5)
C110—C111	1.368 (9)	C20—N8A	1.20 (4)
C111—C112	1.409 (8)	C20—C19A	1.52 (3)
C201—C202	1.382 (7)	N8A—C19A	1.158 (14)
C201—C206	1.383 (7)	C19A—C20A	1.465 (15)
C202—C203	1.373 (8)	N9—C21	1.242 (15)

C203—C204	1.385 (9)	C21—C22	1.453 (16)
C204—C205	1.356 (8)	N9A—C21A	1.183 (17)
C205—C206	1.371 (7)	C21A—C22A	1.510 (18)
C207—C212	1.376 (7)	C22A—C24	1.36 (5)
C207—C208	1.376 (7)	C22A—C23	1.37 (5)
C208—C209	1.399 (8)	N10—C23	1.159 (15)
C209—C210	1.350 (8)	C23—C24	1.433 (16)
C1—Ir1—N3	87.68 (17)	C208—C207—P2	123.3 (4)
C1—Ir1—P1	86.06 (12)	C207—C208—C209	119.4 (5)
N3—Ir1—P1	169.02 (11)	C210—C209—C208	120.6 (6)
C1—Ir1—P4	94.83 (12)	C209—C210—C211	119.9 (6)
N3—Ir1—P4	90.96 (11)	C210—C211—C212	120.8 (5)
P1—Ir1—P4	98.54 (4)	C211—C212—C207	120.3 (5)
C1—Ir1—Cl2	87.06 (12)	C302—C301—C306	119.8 (4)
N3—Ir1—Cl2	86.22 (11)	C302—C301—P3	119.3 (4)
P1—Ir1—Cl2	84.45 (4)	C306—C301—P3	120.5 (4)
P4—Ir1—Cl2	176.55 (4)	C301—C302—C303	119.2 (5)
C1—Ir1—Cl1	170.06 (13)	C304—C303—C302	120.3 (6)
N3—Ir1—Cl1	85.93 (12)	C303—C304—C305	120.2 (5)
P1—Ir1—Cl1	98.99 (4)	C304—C305—C306	120.6 (6)
P4—Ir1—C11	92.87 (4)	C305—C306—C301	119.8 (5)
Cl2—Ir1—Cl1	84.94 (4)	C312—C307—C308	119.1 (5)
C101—P1—C107	103.8 (2)	C312—C307—P3	122.9 (4)
C101—P1—C2	102.2 (2)	C308—C307—P3	117.9 (4)
C107—P1—C2	101.6 (2)	C309—C308—C307	120.3 (5)
C101—P1—Ir1	120.89 (16)	C310—C309—C308	120.7 (5)
C107—P1—Ir1	120.87 (15)	C309—C310—C311	119.9 (6)
C2—P1—Ir1	104.20 (15)	C310—C311—C312	120.1 (6)
C201—P2—C2	110.1 (2)	C307—C312—C311	119.8 (5)
C201—P2—C207	105.7 (2)	C402—C401—C406	118.5 (4)
C2—P2—C207	107.6 (2)	C402—C401—P4	123.6 (4)
C201—P2—C1	113.2 (2)	C406—C401—P4	117.9 (4)
C2—P2—C1	105.3 (2)	C401—C402—C403	121.0 (5)
C207—P2—C1	114.9 (2)	C404—C403—C402	119.5 (6)
N2—P3—C301	107.1 (2)	C405—C404—C403	119.8 (5)
N2—P3—C307	115.3 (2)	C404—C405—C406	120.4 (5)
C301—P3—C307	105.6 (2)	C405—C406—C401	120.8 (5)
N2—P3—C3	112.2 (2)	C408—C407—C412	118.8 (4)
C301—P3—C3	112.9 (2)	C408—C407—P4	123.5 (4)
С307—Р3—С3	103.6 (2)	C412—C407—P4	117.6 (4)
C407—P4—C3	102.8 (2)	C409—C408—C407	120.0 (5)
C407—P4—C401	100.7 (2)	C408—C409—C410	120.5 (6)
C3—P4—C401	102.3 (2)	C411—C410—C409	120.4 (5)
C407—P4—Ir1	115.50 (15)	C410—C411—C412	120.0 (6)
C3—P4—Ir1	115.85 (14)	C407—C412—C411	120.3 (6)
C401—P4—Ir1	117.40 (16)	N4—C11—C12	172 (2)
C1—N1—N2	117.5 (3)	N5-C13-C14	171 (3)

N1—N2—P3	110.3 (3)	N6-C15-C16	160 (3)
H3N—N3—C4	117 (3)	N7—C17—C18	167 (2)
H3N—N3—Ir1	114 (3)	C20A—N8—C19	109 (4)
C4—N3—Ir1	129.2 (3)	C20A—N8—C19A	73 (2)
N1—C1—P2	109.1 (3)	C19—N8—C19A	37 (3)
N1—C1—Ir1	134.2 (3)	C19A—C19—N8	92 (4)
P2—C1—Ir1	116.4 (2)	C19A—C19—C20	77 (3)
P2—C2—P1	111.3 (2)	N8—C19—C20	169 (6)
P3—C3—P4	115.5 (2)	C19A—C19—C20A	64 (3)
N3—C4—C5	126.1 (4)	N8—C19—C20A	28.5 (18)
C10—C5—C6	119.2 (5)	C20—C19—C20A	141 (5)
C10—C5—C4	118.9 (5)	C19A—C19—N8A	34.6 (18)
C6—C5—C4	122.0 (5)	N8—C19—N8A	127 (5)
C7—C6—C5	120.0 (6)	C20—C19—N8A	42.4 (19)
C6—C7—C8	119.2 (6)	C20A—C19—N8A	99 (3)
C9—C8—C7	121.6 (6)	N8A—C20—C19	83 (3)
C8—C9—C10	119.0 (6)	N8A—C20—C19A	48.5 (13)
C5—C10—C9	121.0 (6)	C19—C20—C19A	34 (2)
C105—C101—C102	118.8 (5)	C19A—N8A—C20	80 (2)
C105—C101—P1	121.4 (4)	C19A—N8A—C19	25.6 (17)
C102—C101—P1	119.8 (4)	C20—N8A—C19	54.7 (16)
C103—C102—C101	119.6 (5)	C19—C19A—N8A	120 (3)
C104—C103—C102	121.3 (6)	C19—C19A—C20A	83 (2)
C103—C104—C106	119.3 (6)	N8A—C19A—C20A	157 (3)
C106—C105—C101	119.9 (5)	C19—C19A—N8	51.1 (19)
C104—C106—C105	121.1 (6)	N8A—C19A—N8	170 (2)
C108—C107—C112	119.5 (5)	C20A—C19A—N8	32.1 (11)
C108—C107—P1	118.6 (4)	C19—C19A—C20	69 (2)
C112—C107—P1	121.8 (4)	N8A—C19A—C20	51.1 (16)
C107—C108—C109	121.1 (5)	C20A—C19A—C20	152 (2)
C110-C109-C108	119.2 (6)	N8—C19A—C20	120 (2)
C109—C110—C111	120.6 (6)	N8—C20A—C19A	75 (2)
C110—C111—C112	121.3 (6)	N8—C20A—C19	42 (2)
C107—C112—C111	118.3 (6)	C19A—C20A—C19	32.8 (19)
C202—C201—C206	120.2 (5)	N9—C21—C22	143 (2)
C202—C201—P2	120.3 (4)	N9A—C21A—C22A	144 (3)
C206—C201—P2	119.4 (4)	C24—C22A—C23	63 (2)
C203—C202—C201	118.9 (5)	C24—C22A—C21A	122 (4)
C202—C203—C204	120.8 (6)	C23—C22A—C21A	108 (4)
C205—C204—C203	119.7 (6)	N10-C23-C22A	118 (4)
C204—C205—C206	120.6 (6)	N10-C23-C24	170 (4)
C205—C206—C201	119.8 (5)	C22A—C23—C24	58 (2)
C212—C207—C208	119.0 (5)	C22A—C24—C23	59 (2)
C212—C207—P2	117.6 (4)		
C1—N1—N2—P3	96.1 (4)	C301—P3—C307—C312	88.1 (5)
C301—P3—N2—N1	172.0 (3)	C3—P3—C307—C312	-30.8 (5)
C307—P3—N2—N1	54.7 (3)	N2—P3—C307—C308	29.0 (4)

C3—P3—N2—N1	-63.5 (3)	C301—P3—C307—C308	-89.1 (4)
N2—N1—C1—P2	176.7 (3)	C3—P3—C307—C308	152.0 (4)
N2—N1—C1—Ir1	3.4 (6)	C312—C307—C308—C309	-0.5(7)
C201—P2—C1—N1	-75.6 (4)	P3-C307-C308-C309	176.8 (4)
C2—P2—C1—N1	164.1 (3)	C307—C308—C309—C310	1.5 (8)
$C_{207} - P_{2} - C_{1} - N_{1}$	46.0 (4)	C308—C309—C310—C311	-1.3(10)
$C_{201} = P_{2} = C_{1} = I_{r_{1}}$	99.0 (3)	$C_{309} - C_{310} - C_{311} - C_{312}$	0.3(11)
$C_{2}^{2} = P_{2}^{2} = C_{1}^{2} = Ir_{1}^{2}$	-213(3)	$C_{308} - C_{307} - C_{312} - C_{311}$	-0.5(8)
$C_{207} P_{2} C_{1} I_{1} I_{1}$	-1394(2)	$P_3 = C_307 = C_312 = C_311$	-1777(5)
$C_{201} = P_{2} = C_{2} = P_{1}$	-132.6(3)	$C_{310} - C_{311} - C_{312} - C_{307}$	0.6(10)
$C_{201} = P_{2} = C_{2} = P_{1}$	132.0(3) 112.7(3)	C407 - P4 - C401 - C402	-110.3(5)
$C_{1}P_{2}C_{2}P_{1}$	-10.2(3)	$C_{407} = 14 - C_{401} - C_{402}$	144.0(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.2(3)	$L_{r1} = P_{4} = C_{401} = C_{402}$	144.0(4)
$C_{101} = 1 = C_2 = 12$	-02.8(2)	$C_{407} = P_4 = C_{401} = C_{402}$	10.0(3)
$L_1 = L_2 = L_2$	33.8(3)	$C_{407} = 14 = C_{401} = C_{400}$	-20.5(4)
$\frac{111-r_1-c_2-r_2}{c_2-r_2}$	32.3(3)	C_{3} F_{4} C_{401} C_{406}	-39.3(4)
$N_2 - P_3 - C_3 - P_4$	-55.0(5)	111 - P4 - C401 - C400	-107.3(3)
$C_{301} - P_{3} - C_{3} - P_{4}$	85.6 (3)	C406-C401-C402-C403	2.5 (8)
C_{30}/P_{3} C_{3} P_{4}	-160.6 (2)	P4—C401—C402—C403	178.9 (5)
C40/-P4-C3-P3	-174.1(2)	C401 - C402 - C403 - C404	-0.6 (10)
C401—P4—C3—P3	-70.0(3)	C402—C403—C404—C405	-1.4 (11)
Ir1—P4—C3—P3	59.0 (3)	C403—C404—C405—C406	1.6 (11)
H3N—N3—C4—C5	-7 (4)	C404—C405—C406—C401	0.3 (10)
Ir1—N3—C4—C5	-179.8 (3)	C402—C401—C406—C405	-2.3 (8)
N3—C4—C5—C10	161.9 (5)	P4—C401—C406—C405	-179.0 (5)
N3—C4—C5—C6	-18.8 (8)	C3—P4—C407—C408	2.9 (4)
C10—C5—C6—C7	-1.4 (8)	C401—P4—C407—C408	-102.4 (4)
C4—C5—C6—C7	179.4 (5)	Ir1—P4—C407—C408	130.0 (4)
C5—C6—C7—C8	-0.4 (10)	C3—P4—C407—C412	179.6 (4)
C6—C7—C8—C9	1.3 (11)	C401—P4—C407—C412	74.2 (4)
C7—C8—C9—C10	-0.5 (11)	Ir1—P4—C407—C412	-53.3 (4)
C6-C5-C10-C9	2.2 (8)	C412—C407—C408—C409	0.5 (7)
C4—C5—C10—C9	-178.5 (5)	P4C407C408C409	177.2 (4)
C8—C9—C10—C5	-1.3 (10)	C407—C408—C409—C410	0.5 (8)
C107—P1—C101—C105	-88.5 (5)	C408—C409—C410—C411	-0.5 (9)
C2—P1—C101—C105	16.9 (5)	C409—C410—C411—C412	-0.6 (10)
Ir1—P1—C101—C105	131.8 (4)	C408—C407—C412—C411	-1.5 (8)
C107—P1—C101—C102	89.6 (5)	P4—C407—C412—C411	-178.4 (4)
C2—P1—C101—C102	-165.0(4)	C410—C411—C412—C407	1.6 (9)
Ir1—P1—C101—C102	-50.1 (5)	C20A—N8—C19—C19A	8 (7)
C105—C101—C102—C103	-0.2(8)	C20A—N8—C19—C20	28 (33)
P1—C101—C102—C103	-178.3(5)	C19A—N8—C19—C20	20 (27)
C101—C102—C103—C104	-0.7(10)	C19A—N8—C19—C20A	-8(7)
C102 - C103 - C104 - C106	0.4(11)	C20A—N8—C19—N8A	11(7)
C_{102} C_{101} C_{105} C_{106} C_{106}	14(9)	C19A - N8 - C19 - N8A	2.5(17)
P1-C101-C105-C106	179 5 (5)	C19A - C19 - C20 - N8A	0(5)
C103 - C104 - C106 - C105	0.9(11)	N8-C19-C20-N8A	-21(32)
C101 - C105 - C106 - C104	-1 8 (10)	$C_{20}A - C_{19} - C_{20} - N_{8}A$	0(8)
C101 - P1 - C107 - C108	160 6 (4)	N8-C19-C20-R0A	-20(28)
-0.01 -0.00 -0.000	100.0(7)	100017-020-017A	20 (20)

C2-P1-C107-C108	54.9 (4)	C20A—C19—C20—C19A	1 (4)
Ir1—P1—C107—C108	-59.6 (4)	N8A-C19-C20-C19A	0 (5)
C101—P1—C107—C112	-16.6(4)	C19—C20—N8A—C19A	0 (3)
C2—P1—C107—C112	-122.4 (4)	C19A—C20—N8A—C19	0 (3)
Ir1—P1—C107—C112	123.2 (4)	N8—C19—N8A—C19A	-4(3)
C112—C107—C108—C109	-0.4 (7)	C20-C19-N8A-C19A	-180(8)
P1-C107-C108-C109	-177.7 (4)	C20A—C19—N8A—C19A	1 (4)
C107—C108—C109—C110	0.7 (8)	C19A - C19 - N8A - C20	180 (8)
C108—C109—C110—C111	-0.4(9)	N8—C19—N8A—C20	175 (8)
C_{109} C_{110} C_{111} C_{112}	-0.2(9)	$C_{20A} - C_{19} - N_{8A} - C_{20}$	-180(5)
$C_{108} - C_{107} - C_{112} - C_{111}$	-0.2(7)	N8-C19-C19A-N8A	176(2)
P1-C107-C112-C111	177.0(4)	C_{20} C_{19} C_{19A} N_{8A}	0(5)
$C_{110} - C_{111} - C_{112} - C_{107}$	0.5(8)	$C_{20} = C_{19} = C_{19} = N_{84}$	-179(4)
$C_2 = P_2 = C_2 O_1 = C_2 O_2$	-30.7(5)	N8-C19-C19A-C20A	-4(4)
$C_{207} P_{2} C_{201} C_{202}$	85.1.(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{180}$
$C_{207} - 12 - C_{201} - C_{202}$	-148.2(4)	$N_{20} = C_{19} = C_{19} = C_{20} = C_{20}$	170(3)
$C_1 = 12 = C_2 01 = C_2 02$	140.2(4)	C_{20} C_{10} C_{10A} N_{8}	1/3(4)
$C_2 - 12 - C_2 01 - C_2 00$	-90.1(5)	$C_{20} = C_{19} = C_{19} = C_{19} = C_{19} = C_{10} = C$	170(3)
$C_{20} = F_2 = C_{201} = C_{200}$	-90.1(3)	$C_{20}A = C_{19} = C_{19}A = N_{0}$	4(4) -176(2)
$C_{1} = F_{2} = C_{2} O_{1} = C_{2} O_{2} O_{2$	30.0(3)	$N_{0}A - C_{19} - C_{19}A - N_{0}$	-170(2)
$C_{200} = C_{201} = C_{202} = C_{203}$	-0.6(9)	N8 - C19 - C19A - C20	1/0(5)
P2 = C201 = C202 = C203	-1/5./(5)	$C_{20}A = C_{10}A = C_{20}A$	-180(3)
$C_{201} = C_{202} = C_{203} = C_{204}$	-1.0(11)	N8A - C19 - C19A - C20	0(5)
$C_{202} = C_{203} = C_{204} = C_{205}$	1.8 (12)	C_{20} N8A C_{19} C_{19}	0(6)
C203—C204—C205—C206	-1.2 (11)	C_{20} N8A C_{19} C_{20} C_{20}	-178 (6)
C204—C205—C206—C201	-0.3 (10)	C19—N8A—C19A—C20A	-178 (11)
C202—C201—C206—C205	1.2 (9)	C19—N8A—C19A—C20	0 (6)
P2—C201—C206—C205	176.4 (5)	C20A—N8—C19A—C19	-172 (7)
C201—P2—C207—C212	-68.6 (5)	C19—N8—C19A—C20A	172 (7)
C2—P2—C207—C212	48.9 (5)	C20A—N8—C19A—C20	-176 (3)
C1—P2—C207—C212	165.8 (4)	C19—N8—C19A—C20	-4 (6)
C201—P2—C207—C208	107.7 (5)	N8A—C20—C19A—C19	180 (6)
C2—P2—C207—C208	-134.7 (5)	C19—C20—C19A—N8A	-180 (6)
C1—P2—C207—C208	-17.9 (6)	N8A-C20-C19A-C20A	179 (5)
C212—C207—C208—C209	-2.4 (10)	C19—C20—C19A—C20A	-1 (5)
P2-C207-C208-C209	-178.7 (6)	N8A-C20-C19A-N8	-177 (3)
C207—C208—C209—C210	2.1 (12)	C19—C20—C19A—N8	3 (5)
C208—C209—C210—C211	0.2 (13)	C19—N8—C20A—C19A	-5 (4)
C209—C210—C211—C212	-2.1 (12)	C19A—N8—C20A—C19	5 (4)
C210—C211—C212—C207	1.7 (11)	C19—C19A—C20A—N8	6 (5)
C208—C207—C212—C211	0.6 (9)	N8A—C19A—C20A—N8	-175 (6)
P2-C207-C212-C211	177.1 (5)	C20-C19A-C20A-N8	7 (6)
N2-P3-C301-C302	-16.6 (5)	N8A—C19A—C20A—C19	178 (9)
C307—P3—C301—C302	106.8 (4)	N8-C19A-C20A-C19	-6 (5)
C3—P3—C301—C302	-140.7(4)	C20-C19A-C20A-C19	1 (5)
N2—P3—C301—C306	170.8 (4)	C19A—C19—C20A—N8	-171 (8)
C307—P3—C301—C306	-65.8 (5)	C20-C19-C20A-N8	-172 (10)
C3—P3—C301—C306	46.8 (5)	N8A—C19—C20A—N8	-171 (6)
C306—C301—C302—C303	-2.7 (8)	N8—C19—C20A—C19A	171 (8)
	× /		× /

P3—C301—C302—C303 C301—C302—C303—C304 C302—C303—C304—C305 C303—C304—C305—C306 C304—C305—C306—C301 C302—C301—C306—C305 P3—C301—C306—C305	-175.3 (5)	C20—C19—C20A—C19A	-1 (4)
	1.8 (10)	N8A—C19—C20A—C19A	0 (2)
	-0.5 (12)	N9A—C21A—C22A—C24	-123 (7)
	0.2 (11)	N9A—C21A—C22A—C23	167 (6)
	-1.2 (10)	C24—C22A—C23—N10	170 (4)
	2.4 (8)	C21A—C22A—C23—N10	-73 (5)
	174.9 (5)	C21A—C22A—C23—C24	117 (5)
P3-C301-C306-C305	174.9 (5)	C21A—C22A—C23—C24	117 (5)
N2-P3-C307-C312	-153.8 (4)	C21A—C22A—C24—C23	-96 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	D—H···A
N3—H3 <i>N</i> ···N2	0.82 (5)	2.15 (5)	2.807 (6)	138 (4)
C208—H208…N1	0.93	2.41	3.088 (7)	130
C402—H402···N3	0.93	2.56	3.120 (6)	119
C102—H102···Cl1	0.93	2.71	3.329 (5)	125
C402—H402···Cl1	0.93	2.66	3.428 (5)	140
C412—H412···Cl1	0.93	2.60	3.440 (5)	151
C3—H3 <i>A</i> ···Cl3	0.97	2.63	3.563 (5)	162
C105—H105…Cl3 ⁱ	0.93	2.69	3.586 (7)	162
C408—H408…Cl3	0.93	2.82	3.533 (6)	134

Symmetry code: (i) -x+3/2, y+1/2, -z+1/2.

 $(4-Diazo-1,1,3,3,-tetraphenyl-1,3\lambda^4-diphosphabut-4-yl-\kappa P^1)iodido[methylenebis(diphenylphosphine)-\kappa^2 P, P']$ (phenylmethanimine- κN)iridium(III) iodide-triiodide-dichloromethane-iodine-methanol (2/2/1/1/2) (4)

Crystal data

$[IrI(C_{26}H_{22}N_2P_2)(C_{26}H_{22}P_2) (C_6H_7N]I \cdot I_3 \cdot 0.5I_2 \cdot CH_4O \cdot 0.5CH_2CI_2 M_r = 1942.00 Monoclinic, C2/c a = 37.2962 (3) Å b = 18.7310 (2) Å c = 19.2348 (2) Å \beta = 106.631 (1)^{\circ} V = 12875.2 (2) Å3Z = 8$	F(000) = 7312 $D_x = 2.004 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 93745 reflections $\theta = 1.0-27.0^{\circ}$ $\mu = 5.13 \text{ mm}^{-1}$ T = 233 K Prism, red $0.32 \times 0.19 \times 0.14 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer phi– and ω –scans 40122 measured reflections 11285 independent reflections 10348 reflections with $I > 2\sigma(I)$	$R_{int} = 0.035$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -44 \rightarrow 43$ $k = -22 \rightarrow 22$ $l = -22 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$	$wR(F^2) = 0.114$ S = 1.11 11285 reflections

732 parameters	$w = 1/[\sigma^2(F_o^2) + (0.049P)^2 + 158.7648P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} = 0.087$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 1.30 \text{ e } \text{\AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -2.92 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces, in good approximation, semi-empirical absorption correction methods (programs such as SORTAV lead to no better data sets).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen at atom at N1 was found and refined isotropically with a bond restraint of 87 pm. The I_3 anion (I4–I6) is approx. 1:1 positionally disordered, as is the I anion with an I2:I2A ratio of 9:1. The solvent dichloromethane lies nearby a twofold rotation axis (disorder) and was refined with an occupancy of 0.5. A further disorder occurs for the solvent methanol with ratio 1:1. C- and O-atoms of methanol were refined isotropically with bond restraints of 140 pm. Hydrogen atoms at dichloromethane were omitted.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ir1	0.11639 (2)	0.74873 (2)	0.26275 (2)	0.02540 (8)	
I1	0.04230 (2)	0.71763 (2)	0.20983 (2)	0.03876 (12)	
I3	0.24552 (2)	0.80905 (4)	0.04188 (4)	0.0793 (2)	
I2	0.23487 (3)	0.96021 (5)	0.13591 (5)	0.0582 (2)	0.9
I4	0.13471 (7)	0.81381 (13)	-0.23669 (10)	0.0861 (6)	0.5
15	0.08532 (19)	0.7555 (3)	-0.3728 (3)	0.0512 (7)	0.5
I6	0.03254 (16)	0.7100 (3)	-0.5087 (3)	0.0634 (9)	0.5
I2A	0.2335 (2)	0.9909 (4)	0.1530 (5)	0.0579 (19)	0.1
I4A	0.14566 (8)	0.77918 (11)	-0.22728 (11)	0.0848 (6)	0.5
I5A	0.0893 (2)	0.7472 (4)	-0.3638 (4)	0.0752 (19)	0.5
I6A	0.03306 (18)	0.7104 (3)	-0.4957 (3)	0.0895 (17)	0.5
P1	0.13493 (4)	0.63702 (9)	0.22985 (9)	0.0321 (3)	
P2	0.12819 (5)	0.60579 (9)	0.37883 (9)	0.0358 (4)	
P3	0.12112 (4)	0.81498 (9)	0.16178 (8)	0.0309 (3)	
P4	0.17512 (4)	0.80175 (9)	0.28981 (8)	0.0293 (3)	
N1	0.09804 (14)	0.8404 (3)	0.3061 (3)	0.0291 (11)	
H1N	0.1117 (15)	0.877 (2)	0.305 (3)	0.026 (16)*	
N2	0.1250 (2)	0.7681 (4)	0.4709 (3)	0.0557 (18)	
N3	0.12187 (17)	0.7344 (3)	0.4229 (3)	0.0423 (14)	
C1	0.11981 (18)	0.6975 (3)	0.3644 (3)	0.0326 (13)	
C2	0.15339 (19)	0.5866 (4)	0.3141 (4)	0.0389 (15)	
H2A	0.1517	0.5354	0.3032	0.047*	
H2B	0.1799	0.5986	0.3354	0.047*	
C3	0.17213 (17)	0.8208 (4)	0.1954 (3)	0.0337 (13)	
H3A	0.1847	0.7846	0.1739	0.040*	
H3B	0.1816	0.8684	0.1888	0.040*	
C4	0.07356 (18)	0.8478 (3)	0.3397 (4)	0.0362 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H4	0.0590	0.8076	0.3430	0.043*
C5	0.0662 (2)	0.9138 (4)	0.3734 (4)	0.0449 (17)
C6	0.0811 (2)	0.9795 (4)	0.3619 (5)	0.062 (2)
H6	0.0952	0.9837	0.3286	0.075*
C7	0.0750 (3)	1.0382 (6)	0.4001 (8)	0.094 (4)
H7	0.0852	1.0826	0.3933	0.113*
C8	0.0542 (4)	1.0324 (8)	0.4475 (8)	0.111 (6)
H8	0.0502	1.0730	0.4729	0.133*
C9	0.0396(4)	0.9702 (9)	0.4584 (6)	0.103 (5)
H9	0.0256	0.9676	0 4919	0.123*
C10	0.0230	0.9091 (6)	0.4213(5)	0.068(3)
H10	0.0334	0.8657	0.4282	0.081*
C101	0.17337 (19)	0.6296 (4)	0.1891 (4)	0.0389(15)
C102	0.17557(17)	0.6290(1) 0.6367(4)	0.1091(1) 0.1145(4)	0.0505(18)
H102	0.1413	0.6446	0.0859	0.0505 (10)
C103	0.1942 (3)	0.6324 (5)	0.0818(5)	0.001
H103	0.1942 (5)	0.6367	0.0312	0.003 (2)
C104	0.1007 0.2310(2)	0.6215 (5)	0.0312 0.1238 (5)	0.077
H104	0.2510 (2)	0.0213 (3)	0.1238 (5)	0.007 (3)
C105	0.2300	0.0201	0.1021	0.080
U105	0.2381 (2)	0.0129 (3)	0.1900 (3)	0.007(2)
C106	0.2028	0.0042	0.2247 0.2204 (4)	0.080°
U106	0.2102 (2)	0.0100 (4)	0.2304 (4)	0.0505 (18)
C107	0.2130	0.0103	0.2809	0.000°
C107	0.09997(19)	0.3787(4)	0.1700(4)	0.0404(13)
C108	0.0778 (2)	0.60/5 (4)	0.1047 (4)	0.04/4 (1/)
H108	0.0790	0.6565	0.0951	0.05/*
C109	0.0540 (2)	0.5625 (5)	0.0535 (5)	0.063 (2)
H109	0.0395	0.5816	0.0091	0.075*
C110	0.0516 (2)	0.4922 (5)	0.06/0 (6)	0.068 (3)
HIIO	0.0357	0.4624	0.0323	0.081*
C111	0.0726 (3)	0.4647 (5)	0.1316 (6)	0.072 (3)
H111	0.0704	0.4159	0.1410	0.086*
C112	0.0972 (2)	0.5069 (4)	0.1844 (5)	0.0519 (19)
H112	0.1116	0.4867	0.2283	0.062*
C201	0.1573 (2)	0.5867 (4)	0.4688 (4)	0.0430 (16)
C202	0.1415 (2)	0.5952 (5)	0.5260 (4)	0.057 (2)
H202	0.1162	0.6084	0.5166	0.068*
C203	0.1632 (3)	0.5843 (6)	0.5964 (5)	0.071 (3)
H203	0.1527	0.5905	0.6350	0.085*
C204	0.2000 (3)	0.5643 (6)	0.6103 (5)	0.070 (3)
H204	0.2147	0.5568	0.6584	0.084*
C205	0.2151 (2)	0.5554 (6)	0.5550 (5)	0.071 (3)
H205	0.2404	0.5417	0.5653	0.085*
C206	0.1944 (2)	0.5660 (5)	0.4832 (5)	0.059 (2)
H206	0.2052	0.5593	0.4452	0.071*
C207	0.08725 (19)	0.5514 (4)	0.3634 (4)	0.0399 (15)
C208	0.0521 (2)	0.5804 (4)	0.3541 (4)	0.0455 (17)
H208	0.0488	0.6301	0.3537	0.055*

C209	0.0217 (2)	0.5345 (5)	0.3453 (5)	0.056(2)
H209	-0.0023	0.5535	0.3386	0.068*
C210	0.0265 (2)	0.4626 (5)	0.3464 (5)	0.063 (2)
H210	0.0056	0.4325	0.3405	0.076*
C211	0.0607 (3)	0.4338 (4)	0.3558 (6)	0.072 (3)
H211	0.0635	0.3839	0.3555	0.086*
C212	0.0920 (2)	0.4776 (4)	0.3661 (5)	0.062 (2)
H212	0.1160	0.4575	0.3747	0.074*
C301	0.10947 (19)	0.7897 (4)	0.0665 (3)	0.0362 (14)
C302	0.0724 (2)	0.7742 (4)	0.0291 (4)	0.0451 (17)
H302	0.0538	0.7739	0.0535	0.054*
C303	0.0632 (3)	0.7592 (5)	-0.0438 (4)	0.055 (2)
H303	0.0383	0.7493	-0.0696	0.066*
C304	0.0905 (3)	0.7588 (5)	-0.0795 (4)	0.063 (2)
H304	0.0842	0.7472	-0.1291	0.075*
C305	0.1264 (3)	0.7750 (5)	-0.0435 (4)	0.063 (2)
H305	0.1448	0.7751	-0.0683	0.076*
C306	0.1364 (2)	0.7917 (4)	0.0309 (4)	0.0477 (18)
H306	0.1612	0.8039	0.0558	0.057*
C307	0.10216 (19)	0.9046 (4)	0.1558 (4)	0.0377 (15)
C308	0.0669 (2)	0.9158 (4)	0.1655 (4)	0.0453 (17)
H308	0.0531	0.8769	0.1751	0.054*
C309	0.0520 (3)	0.9853 (5)	0.1609 (5)	0.064 (2)
H309	0.0284	0.9930	0.1681	0.077*
C310	0.0719 (3)	1.0414 (5)	0.1460 (6)	0.080 (3)
H310	0.0621	1.0878	0.1435	0.096*
C311	0.1069 (3)	1.0301 (5)	0.1342 (6)	0.071 (3)
H311	0.1203	1.0690	0.1233	0.085*
C312	0.1217 (2)	0.9624 (4)	0.1386 (4)	0.0495 (18)
H312	0.1450	0.9550	0.1299	0.059*
C401	0.21967 (18)	0.7613 (4)	0.3329 (4)	0.0362 (14)
C402	0.22359 (19)	0.7185 (4)	0.3947 (4)	0.0411 (15)
H402	0.2030	0.7102	0.4127	0.049*
C403	0.2585 (2)	0.6886 (5)	0.4288 (5)	0.061 (2)
H403	0.2616	0.6604	0.4705	0.073*
C404	0.2883 (2)	0.7001 (5)	0.4016 (6)	0.071 (3)
H404	0.3117	0.6792	0.4244	0.085*
C405	0.2841 (2)	0.7413 (5)	0.3419 (6)	0.069 (3)
H405	0.3047	0.7491	0.3238	0.083*
C406	0.2497 (2)	0.7725 (4)	0.3070 (5)	0.0516 (19)
H406	0.2472	0.8012	0.2658	0.062*
C407	0.17832 (16)	0.8864 (3)	0.3373 (3)	0.0305 (13)
C408	0.17667 (19)	0.8850 (4)	0.4097 (4)	0.0403 (15)
H408	0.1741	0.8413	0.4319	0.048*
C409	0.1788 (2)	0.9477 (4)	0.4478 (4)	0.0500 (18)
H409	0.1783	0.9465	0.4963	0.060*
C410	0.1816 (2)	1.0119 (4)	0.4157 (5)	0.056 (2)
H410	0.1823	1.0546	0.4417	0.068*

C411	0.1834 (2)	1.0139 (4)	0.3462 (5)	0.0527 (19)		
H411	0.1855	1.0581	0.3246	0.063*		
C412	0.18208 (19)	0.9513 (4)	0.3065 (4)	0.0427 (16)		
H412	0.1838	0.9534	0.2587	0.051*		
01	0.1679 (7)	0.4193 (12)	0.3071 (17)	0.102 (6)*	0.5	
H1	0.1783	0.4272	0.2751	0.153*	0.5	
C11	0.1643 (12)	0.3480 (15)	0.314 (2)	0.161 (15)*	0.5	
H11A	0.1869	0.3292	0.3477	0.241*	0.5	
H11B	0.1602	0.3252	0.2673	0.241*	0.5	
H11C	0.1432	0.3384	0.3328	0.241*	0.5	
O1A	0.1721 (9)	0.4273 (16)	0.3540 (17)	0.164 (11)*	0.5	
H1A	0.1867	0.4008	0.3836	0.246*	0.5	
C11A	0.1680 (13)	0.403 (2)	0.2844 (18)	0.126 (16)*	0.5	
H11D	0.1637	0.4426	0.2511	0.189*	0.5	
H11E	0.1468	0.3702	0.2705	0.189*	0.5	
H11F	0.1905	0.3775	0.2829	0.189*	0.5	
C12	0.0153 (9)	0.1878 (19)	0.240 (3)	0.143 (13)	0.5	
Cl1	0.0000	0.2759 (3)	0.2500	0.136 (2)		
C12	0.0099 (3)	0.1265 (5)	0.2798 (6)	0.148 (4)	0.5	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Ir1	0.02273 (13)	0.02864 (14)	0.02459 (13)	-0.00078 (8)	0.00637 (9)	-0.00107 (8)
I1	0.0262 (2)	0.0431 (3)	0.0455 (2)	-0.00481 (17)	0.00787 (17)	-0.00686 (19)
13	0.0753 (4)	0.0922 (5)	0.0786 (4)	-0.0076 (4)	0.0351 (4)	0.0119 (4)
I2	0.0637 (5)	0.0537 (5)	0.0638 (5)	-0.0096 (5)	0.0289 (3)	0.0017 (4)
I4	0.1132 (16)	0.0966 (15)	0.0474 (8)	-0.0265 (13)	0.0213 (8)	-0.0073 (10)
15	0.0682 (13)	0.0416 (13)	0.0479 (9)	-0.0051 (12)	0.0232 (8)	-0.0029 (12)
I6	0.0571 (15)	0.0670 (19)	0.0634 (11)	-0.0164 (13)	0.0131 (9)	-0.0131 (12)
I2A	0.052 (3)	0.045 (4)	0.081 (6)	-0.003 (4)	0.026 (4)	0.019 (4)
I4A	0.1442 (19)	0.0694 (11)	0.0533 (9)	-0.0075 (11)	0.0484 (11)	-0.0041 (9)
I5A	0.095 (3)	0.0558 (19)	0.095 (4)	0.0038 (14)	0.059 (3)	0.0079 (14)
I6A	0.0633 (18)	0.083 (3)	0.112 (4)	0.0089 (16)	0.0100 (19)	0.030 (2)
P1	0.0299 (8)	0.0315 (8)	0.0352 (8)	0.0026 (6)	0.0098 (7)	-0.0034 (7)
P2	0.0325 (9)	0.0353 (9)	0.0392 (9)	-0.0002 (7)	0.0097 (7)	0.0080 (7)
P3	0.0290 (8)	0.0380 (9)	0.0242 (7)	-0.0001 (6)	0.0051 (6)	0.0023 (6)
P4	0.0239 (8)	0.0355 (8)	0.0272 (7)	-0.0018 (6)	0.0051 (6)	0.0028 (6)
N1	0.026 (3)	0.028 (3)	0.032 (3)	-0.001 (2)	0.006 (2)	0.000 (2)
N2	0.087 (5)	0.058 (4)	0.021 (3)	-0.022 (4)	0.013 (3)	-0.005 (3)
N3	0.042 (3)	0.048 (3)	0.039 (3)	-0.007 (3)	0.014 (3)	0.007 (3)
C1	0.036 (3)	0.031 (3)	0.031 (3)	0.001 (3)	0.009 (3)	0.001 (3)
C2	0.034 (4)	0.038 (4)	0.044 (4)	0.004 (3)	0.010 (3)	0.004 (3)
C3	0.028 (3)	0.044 (4)	0.030 (3)	-0.001 (3)	0.009 (2)	0.001 (3)
C4	0.035 (3)	0.031 (3)	0.040 (3)	0.000 (3)	0.008 (3)	0.000 (3)
C5	0.042 (4)	0.051 (4)	0.037 (4)	0.009 (3)	0.004 (3)	-0.009 (3)
C6	0.054 (5)	0.044 (5)	0.081 (6)	0.006 (4)	0.007 (4)	-0.022 (4)
C7	0.082 (8)	0.054 (6)	0.125 (10)	0.010 (5)	-0.005 (7)	-0.037 (6)

C8	0.102 (10)	0.099 (10)	0.110 (10)	0.038 (8)	-0.005 (8)	-0.068 (9)
C9	0.107 (10)	0.130 (12)	0.075 (7)	0.049 (9)	0.031 (7)	-0.035 (8)
C10	0.070 (6)	0.082 (6)	0.055 (5)	0.023 (5)	0.025 (4)	-0.012 (5)
C101	0.040 (4)	0.037 (4)	0.046 (4)	0.002 (3)	0.022 (3)	-0.006 (3)
C102	0.046 (4)	0.053 (4)	0.057 (5)	0.015 (3)	0.023 (4)	0.009 (4)
C103	0.073 (6)	0.073 (6)	0.060 (5)	0.021 (5)	0.039 (5)	0.026 (4)
C104	0.055 (5)	0.083 (6)	0.078 (6)	0.020 (5)	0.046 (5)	0.018 (5)
C105	0.045 (5)	0.077 (6)	0.082 (6)	0.016 (4)	0.022 (4)	-0.004 (5)
C106	0.043 (4)	0.059 (5)	0.054 (4)	0.005 (3)	0.020 (3)	-0.011 (4)
C107	0.038 (4)	0.035 (4)	0.047 (4)	0.005 (3)	0.010 (3)	-0.013 (3)
C108	0.049 (4)	0.047 (4)	0.043 (4)	0.000 (3)	0.007 (3)	-0.010 (3)
C109	0.046 (5)	0.082 (6)	0.054 (5)	0.003 (4)	0.003 (4)	-0.030 (5)
C110	0.047 (5)	0.065 (6)	0.083 (7)	-0.003 (4)	0.006 (4)	-0.041 (5)
C111	0.060 (6)	0.035 (4)	0.119 (9)	-0.004(4)	0.024 (6)	-0.024 (5)
C112	0.045 (4)	0.034 (4)	0.073 (5)	0.004 (3)	0.010 (4)	-0.008 (4)
C201	0.039 (4)	0.041 (4)	0.044 (4)	0.003 (3)	0.004 (3)	0.013 (3)
C202	0.046 (4)	0.079 (6)	0.044 (4)	0.002 (4)	0.013 (3)	0.018 (4)
C203	0.067 (6)	0.096 (7)	0.046 (5)	0.002 (5)	0.009 (4)	0.019 (5)
C204	0.060 (6)	0.083 (7)	0.057 (5)	-0.002(5)	0.000 (4)	0.030 (5)
C205	0.042 (5)	0.098 (7)	0.065 (6)	0.008 (5)	0.002 (4)	0.037 (5)
C206	0.043 (4)	0.076 (6)	0.057 (5)	0.008 (4)	0.012 (4)	0.023 (4)
C207	0.035 (4)	0.036 (4)	0.047 (4)	-0.003 (3)	0.008 (3)	0.008 (3)
C208	0.044 (4)	0.043 (4)	0.052 (4)	0.002 (3)	0.016 (3)	0.009 (3)
C209	0.033 (4)	0.061 (5)	0.072 (5)	-0.003 (3)	0.010 (4)	0.016 (4)
C210	0.050 (5)	0.049 (5)	0.086 (6)	-0.020 (4)	0.014 (4)	0.009 (4)
C211	0.070 (6)	0.033 (4)	0.115 (8)	-0.009 (4)	0.032 (6)	0.010 (5)
C212	0.053 (5)	0.038 (4)	0.094 (7)	0.002 (4)	0.021 (5)	0.016 (4)
C301	0.040 (4)	0.038 (4)	0.027 (3)	0.006 (3)	0.005 (3)	0.006 (3)
C302	0.046 (4)	0.051 (4)	0.033 (3)	-0.006 (3)	0.003 (3)	0.002 (3)
C303	0.060 (5)	0.065 (5)	0.032 (4)	-0.013 (4)	0.002 (4)	-0.002 (3)
C304	0.089 (7)	0.068 (6)	0.028 (4)	-0.015 (5)	0.012 (4)	-0.004 (4)
C305	0.080 (6)	0.080 (6)	0.034 (4)	0.005 (5)	0.021 (4)	0.000 (4)
C306	0.054 (5)	0.059 (5)	0.030 (3)	0.003 (4)	0.012 (3)	0.007 (3)
C307	0.041 (4)	0.033 (3)	0.036 (3)	0.005 (3)	0.006 (3)	0.006 (3)
C308	0.039 (4)	0.047 (4)	0.048 (4)	0.008 (3)	0.008 (3)	0.008 (3)
C309	0.055 (5)	0.060 (5)	0.078 (6)	0.023 (4)	0.017 (4)	0.011 (5)
C310	0.088 (8)	0.049 (5)	0.097 (8)	0.021 (5)	0.020 (6)	0.017 (5)
C311	0.079 (7)	0.042 (5)	0.084 (7)	-0.007 (4)	0.013 (5)	0.018 (4)
C312	0.046 (4)	0.042 (4)	0.055 (4)	0.000 (3)	0.006 (3)	0.010 (3)
C401	0.024 (3)	0.043 (4)	0.037 (3)	0.002 (3)	0.000 (3)	-0.001(3)
C402	0.034 (4)	0.049 (4)	0.035 (3)	0.002 (3)	0.001 (3)	0.001 (3)
C403	0.048 (5)	0.062 (5)	0.056 (5)	0.005 (4)	-0.010 (4)	0.005 (4)
C404	0.036 (5)	0.076 (6)	0.086 (7)	0.012 (4)	-0.007(4)	0.006 (5)
C405	0.032 (4)	0.087 (7)	0.090 (7)	0.008 (4)	0.021 (4)	0.009 (5)
C406	0.033 (4)	0.054 (4)	0.066 (5)	0.002 (3)	0.011 (3)	0.014 (4)
C407	0.023 (3)	0.031 (3)	0.034 (3)	-0.005 (2)	0.002 (2)	-0.001 (3)
C408	0.040 (4)	0.040 (4)	0.038 (3)	-0.007 (3)	0.005 (3)	0.001 (3)
C409	0.051 (4)	0.058 (5)	0.038 (4)	-0.002(4)	0.007 (3)	-0.010 (3)
	· · /	\- /	× /	\ /	\- /	- (-)

C410	0.054 (5)	0.048 (4)	0.060 (5)	-0.007 (4)	0.006 (4)	-0.018 (4)
C411	0.051 (5)	0.037 (4)	0.064 (5)	-0.009 (3)	0.007 (4)	-0.003 (4)
C412	0.038 (4)	0.046 (4)	0.039 (4)	-0.006 (3)	0.004 (3)	0.005 (3)
C12	0.09 (2)	0.13 (3)	0.23 (4)	0.001 (18)	0.07 (2)	0.02 (3)
Cl1	0.166 (6)	0.076 (3)	0.128 (4)	0.000	-0.020 (4)	0.000
Cl2	0.146 (8)	0.101 (5)	0.163 (9)	0.009 (5)	-0.012 (6)	0.021 (5)

Geometric parameters (Å, °)

Ir1—N1	2.107 (5)	C205—C206	1.392 (12)
Ir1—C1	2.150 (6)	С205—Н205	0.9400
Ir1—P4	2.3241 (15)	C206—H206	0.9400
Ir1—P1	2.3468 (16)	C207—C208	1.381 (10)
Ir1—P3	2.3536 (16)	C207—C212	1.394 (10)
Ir1—I1	2.7206 (5)	C208—C209	1.394 (11)
I3—I3 ⁱ	2.8121 (16)	C208—H208	0.9400
I4—I5	2.946 (5)	C209—C210	1.356 (12)
I5—I6	2.913 (7)	С209—Н209	0.9400
I4A—I5A	2.917 (7)	C210—C211	1.350 (13)
I5A—I6A	2.876 (9)	C210—H210	0.9400
P1-C101	1.826 (7)	C211—C212	1.392 (12)
P1—C107	1.828 (7)	C211—H211	0.9400
P1—C2	1.831 (7)	C212—H212	0.9400
P2—C1	1.753 (6)	C301—C306	1.369 (10)
P2—C207	1.788 (7)	C301—C302	1.396 (10)
P2-C201	1.796 (7)	C302—C303	1.374 (11)
P2—C2	1.797 (7)	С302—Н302	0.9400
P3—C307	1.813 (7)	C303—C304	1.381 (13)
P3—C301	1.820 (6)	С303—Н303	0.9400
Р3—С3	1.829 (6)	C304—C305	1.353 (14)
P4—C401	1.798 (7)	C304—H304	0.9400
P4—C407	1.816 (6)	C305—C306	1.407 (11)
P4—C3	1.823 (6)	С305—Н305	0.9400
N1C4	1.267 (8)	C306—H306	0.9400
N1—H1N	0.86 (2)	C307—C308	1.395 (10)
N2—N3	1.095 (9)	C307—C312	1.397 (10)
N3—C1	1.305 (9)	C308—C309	1.409 (11)
C2—H2A	0.9800	C308—H308	0.9400
C2—H2B	0.9800	C309—C310	1.364 (14)
С3—НЗА	0.9800	С309—Н309	0.9400
C3—H3B	0.9800	C310—C311	1.404 (15)
C4—C5	1.459 (9)	С310—Н310	0.9400
C4—H4	0.9400	C311—C312	1.376 (12)
C5—C6	1.393 (12)	C311—H311	0.9400
C5—C10	1.394 (12)	С312—Н312	0.9400
C6—C7	1.378 (14)	C401—C406	1.366 (10)
С6—Н6	0.9400	C401—C402	1.406 (10)
С7—С8	1.36 (2)	C402—C403	1.395 (10)

C7 H7	0.0400	C402 H402	0.0400
C^{2}	0.9400	C402 - C402	0.9400
	1.55 (2)	C403 - C404	1.370 (14)
C8—H8	0.9400	C403—H403	0.9400
C9—C10	1.389 (15)	C404—C405	1.355 (14)
С9—Н9	0.9400	C404—H404	0.9400
C10—H10	0.9400	C405—C406	1.396 (12)
C101—C102	1.387 (10)	C405—H405	0.9400
C101—C106	1.396 (10)	C406—H406	0.9400
C102—C103	1.375 (11)	C407—C412	1.378 (9)
C102—H102	0.9400	C407—C408	1.412 (9)
C103—C104	1.394 (13)	C408—C409	1.374 (10)
C103—H103	0.9400	C408—H408	0.9400
C104—C105	1.357 (13)	C409—C410	1.369 (12)
C104—H104	0.9400	С409—Н409	0.9400
C105-C106	1380(11)	C410-C411	1 358 (12)
C105—H105	0.9400	C410—H410	0.9400
C106 H106	0.9400	C411 C412	1.302(11)
C100—11100	1, 291 (10)	C411_C412	1.392 (11)
C107 - C112	1.381 (10)	С411—Н411	0.9400
	1.406 (10)	C412—H412	0.9400
C108—C109	1.403 (11)		1.353 (19)
C108—H108	0.9400	OI—HI	0.8300
C109—C110	1.351 (14)	C11—H11A	0.9700
С109—Н109	0.9400	C11—H11B	0.9700
C110—C111	1.365 (15)	C11—H11C	0.9700
C110—H110	0.9400	O1A—C11A	1.382 (19)
C111—C112	1.402 (12)	O1A—H1A	0.8300
C111—H111	0.9400	C11A—H11D	0.9700
C112—H112	0.9400	C11A—H11E	0.9700
C201—C206	1.386 (11)	C11A—H11F	0.9700
C201—C202	1.397 (11)	C12—C12 ⁱⁱ	1.30 (6)
C202—C203	1.379 (11)	C12—Cl2	1.42 (4)
C202—H202	0.9400	C12—C12 ⁱⁱ	1.47 (3)
C203—C204	1 374 (14)	C12—C11	1 77 (4)
C203—H203	0.9400	$C11 - C12^{ii}$	1.77(4)
$C_{205} = 11205$	1 349 (14)	$C12 - C12^{ii}$	1.77(1) 1.174(17)
$C_{204} = C_{205}$	0.0400	$C_{12} = C_{12}^{ii}$	1.17 + (17) 1.47 (3)
C204—n204	0.9400	C12—C12	1.47 (3)
N1—Ir1—C1	86.8 (2)	C202—C203—H203	119.9
N1—Ir1—P4	87.44 (14)	C205—C204—C203	120.0 (8)
C1—Ir1—P4	100.39 (18)	C205—C204—H204	120.0
N1— $Ir1$ — $P1$	170.93 (14)	C203—C204—H204	120.0
C1—Ir1—P1	84 37 (17)	$C_{204} - C_{205} - C_{206}$	121 7 (8)
P4Ir1P1	96 31 (6)	C204—C205—H205	119.2
$N1 _ Ir1 _ P3$	90.31(0)	$C_{204} = C_{205} = H_{205}$	119.2
$C_1 I_{r1} D_2$	170.00(18)	$C_{200} = C_{200} = 11203$	119.2
$D_{1} = 111 = 15$	1,0.50(10)	$C_{201} = C_{200} = C_{203}$	120.7
I = I I = I D	10.00(3)	$C_{201} - C_{200} - \Pi_{200}$	120.7
P1—III—P3	98.03 (0)	$C_{205} - C_{205} - H_{205}$	120.7
NI - IrI - II	84.97 (14)	C208—C207—C212	120.0(7)

C1—lr1—l1	91.96 (17)	C208—C207—P2	122.1 (5)
P4—Ir1—I1	165.12 (4)	C212—C207—P2	117.8 (6)
P1—Ir1—I1	93.11 (4)	C207—C208—C209	118.8 (7)
P3—Ir1—I1	96.44 (4)	C207—C208—H208	120.6
I6—I5—I4	174.7 (3)	С209—С208—Н208	120.6
I6A—I5A—I4A	177.7 (3)	C210—C209—C208	120.8 (8)
C101—P1—C107	101.2 (3)	С210—С209—Н209	119.6
C101—P1—C2	101.5 (3)	C208—C209—H209	119.6
C107—P1—C2	105.3 (3)	C211—C210—C209	120.9 (8)
C101—P1—Ir1	120.8 (2)	C211—C210—H210	119.6
C107—P1—Ir1	119.2 (2)	C209—C210—H210	119.6
C2-P1-Ir1	106.6 (2)	C210—C211—C212	120.4 (8)
C1 - P2 - C207	115 2 (3)	C210—C211—H211	119.8
C1 - P2 - C201	112.2(3)	C_{212} C_{211} H_{211}	119.8
$C_{207} = P_{2} = C_{201}$	107.3(3)	$C_{211} = C_{211} = C_{207}$	119.1 (8)
$C1_P2_C2$	107.5(3) 101.0(3)	$C_{211} = C_{212} = C_{207}$	120.4
$C_1 = 12 = C_2$	101.0(3) 111.2(3)	$C_{211} = C_{212} = H_{212}$	120.4
$C_{20} = 12 = C_{2}$	111.3(3) 100.7(2)	$C_{207} - C_{212} - H_{212}$	120.4
$C_{201} - P_{2} - C_{2}$	109.7(3)	$C_{300} - C_{301} - C_{302}$	120.3(0)
C_{307} P3 C_{301}	101.0(3)	$C_{300} = C_{301} = P_3$	119.9 (5)
C_{30}/P_{3}	108.3 (3)	$C_{302} - C_{301} - P_3$	119.3 (5)
C301—P3—C3	107.2 (3)	C303—C302—C301	119.2 (8)
C307—P3—Ir1	114.9 (2)	C303—C302—H302	120.4
C301—P3—Ir1	129.9 (2)	C301—C302—H302	120.4
C3—P3—Ir1	93.2 (2)	C302—C303—C304	120.4 (8)
C401—P4—C407	102.6 (3)	С302—С303—Н303	119.8
C401—P4—C3	109.0 (3)	С304—С303—Н303	119.8
C407—P4—C3	107.8 (3)	C305—C304—C303	120.4 (8)
C401—P4—Ir1	127.6 (2)	С305—С304—Н304	119.8
C407—P4—Ir1	114.1 (2)	С303—С304—Н304	119.8
C3—P4—Ir1	94.3 (2)	C304—C305—C306	120.4 (9)
C4—N1—Ir1	130.8 (4)	С304—С305—Н305	119.8
C4—N1—H1N	116 (4)	C306—C305—H305	119.8
Ir1—N1—H1N	112 (4)	C301—C306—C305	119.0 (8)
N2—N3—C1	175.8 (7)	C301—C306—H306	120.5
N3—C1—P2	114.8 (5)	C305—C306—H306	120.5
N3—C1—Ir1	121 4 (5)	C308 - C307 - C312	1195(7)
$P_2 = C_1 = Ir_1$	122.9(3)	$C_{308} - C_{307} - P_{3}$	119.3(7)
$P_2 = C_2 = P_1$	111.8(3)	$C_{312} - C_{307} - P_3$	120.8 (6)
$P_2 = C_2 = H_2 \Lambda$	100.3	$C_{307} = C_{308} = C_{309}$	120.0(0) 120.0(7)
$P_1 = C_2 = H_2 A$	109.3	$C_{307} = C_{308} = C_{309}$	120.0 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{200} = C_{208} = 11308$	120.0
$P_2 = C_2 = H_2 D$	109.5	$C_{309} - C_{308} - H_{308}$	120.0
F1 - C2 - H2B	107.0	$C_{210} = C_{200} = U_{200}$	119.7 (9)
$H_2A - C_2 - H_2B$	107.9	C310—C309—H309	120.1
r4	95.8 (3)	C308—C309—H309	120.1
P4—C3—H3A	112.6	C309—C310—C311	120.5 (9)
P3—C3—H3A	112.6	C309—C310—H310	119.8
P4—C3—H3B	112.6	С311—С310—Н310	119.8
Р3—С3—Н3В	112.6	C312—C311—C310	120.2 (8)

H3A—C3—H3B	110.1	C312—C311—H311	119.9
N1—C4—C5	125.0 (6)	C310—C311—H311	119.9
N1—C4—H4	117.5	C311—C312—C307	120.1 (8)
C5—C4—H4	117.5	С311—С312—Н312	120.0
C6—C5—C10	119.6 (8)	С307—С312—Н312	120.0
C6—C5—C4	123.0 (7)	C406—C401—C402	119.9 (6)
C10—C5—C4	117.3 (8)	C406—C401—P4	120.8 (6)
C7—C6—C5	119.1 (11)	C402—C401—P4	119.2 (5)
С7—С6—Н6	120.5	C403—C402—C401	118.9 (7)
С5—С6—Н6	120.5	C403—C402—H402	120.5
C8—C7—C6	120.5 (12)	C401—C402—H402	120.5
C8—C7—H7	119.8	C404 - C403 - C402	120.3 (8)
C6-C7-H7	119.8	C404 - C403 - H403	110.8
C9 - C8 - C7	121.0 (10)	C402 - C403 - H403	119.0
$C_{2} = C_{3} = C_{1}$	110.5	$C_{402} - C_{403} - 11403$	119.0
C_{2}	119.5	C405 - C404 - C403	120.1 (6)
C^{\prime} C° C° C°	119.5	C403 - C404 - H404	120.0
	121.4 (13)	C403—C404—H404	120.0
C8—C9—H9	119.3	C404—C405—C406	121.0 (9)
С10—С9—Н9	119.3	C404—C405—H405	119.5
C9—C10—C5	118.4 (11)	C406—C405—H405	119.5
C9—C10—H10	120.8	C401—C406—C405	119.8 (8)
C5—C10—H10	120.8	C401—C406—H406	120.1
C102—C101—C106	118.5 (6)	C405—C406—H406	120.1
C102—C101—P1	119.2 (5)	C412—C407—C408	118.6 (6)
C106—C101—P1	122.3 (5)	C412—C407—P4	123.7 (5)
C103—C102—C101	121.0 (8)	C408—C407—P4	117.7 (5)
C103—C102—H102	119.5	C409—C408—C407	119.9 (7)
C101—C102—H102	119.5	C409—C408—H408	120.1
C102—C103—C104	119.9 (8)	C407—C408—H408	120.1
C102—C103—H103	120.0	C410—C409—C408	120.7 (7)
C104—C103—H103	120.0	C410—C409—H409	119.6
C105-C104-C103	1191(7)	C408 - C409 - H409	119.6
C105 - C104 - H104	120.5	$C_{411} - C_{410} - C_{409}$	119.0
C103 C104 H104	120.5	C411 C410 H410	120.0
C103 - C104 - 11104	120.5	C400 C410 H410	120.0
$C_{104} = C_{105} = C_{100}$	121.9 (0)	$C_{410} = C_{411} = C_{412}$	120.0 120.0(7)
C104 - C105 - H105	119.1	C410 - C411 - C412	120.9 (7)
C106—C105—H105	119.1	C410—C411—H411	119.5
C105 - C106 - C101	119.6 (8)	C412 - C411 - H411	119.5
C105—C106—H106	120.2	C40/—C412—C411	119.9 (7)
C101—C106—H106	120.2	C407—C412—H412	120.0
C112—C107—C108	119.3 (7)	C411—C412—H412	120.0
C112—C107—P1	122.8 (6)	C11—O1—H1	109.3
C108—C107—P1	117.6 (5)	01—C11—H11A	109.4
C109—C108—C107	119.6 (8)	O1—C11—H11B	109.7
C109—C108—H108	120.2	H11A—C11—H11B	109.5
C107—C108—H108	120.2	O1—C11—H11C	109.3
C110—C109—C108	120.9 (9)	H11A—C11—H11C	109.5
C110-C109-H109	119.6	H11B—C11—H11C	109.5

C108—C109—H109	119.6	C11A—O1A—H1A	109.6
C109—C110—C111	119.4 (8)	O1A—C11A—H11D	109.6
C109—C110—H110	120.3	O1A—C11A—H11E	109.4
C111—C110—H110	120.3	H11D—C11A—H11E	109.5
C110—C111—C112	122.2 (8)	O1A—C11A—H11F	109.4
C110—C111—H111	118.9	H11D—C11A—H11F	109.5
C112—C111—H111	118.9	H11E—C11A—H11F	109.5
C107—C112—C111	118.6 (8)	C12 ⁱⁱ —C12—C12	65 (2)
C107—C112—H112	120.7	C12 ⁱⁱ —C12—C12 ⁱⁱ	61.6 (17)
C111—C112—H112	120.7	Cl2—Cl2—Cl2 ⁱⁱ	47.9 (13)
C206—C201—C202	119.8 (7)	C12 ⁱⁱ —C12—Cl1	68.4 (9)
C206—C201—P2	122.7 (6)	Cl2—C12—Cl1	126 (2)
C202—C201—P2	117.5 (6)	Cl2 ⁱⁱ —C12—Cl1	123.6 (19)
C203—C202—C201	119.7 (8)	C12—C11—C12 ⁱⁱ	43.1 (19)
C203—C202—H202	120.2	$C12^{ii}$ — $C12$ — $C12$	67.9 (18)
C201—C202—H202	120.2	$C12^{ii}$ — $C12$ — $C12^{ii}$	64.2 (18)
C204—C203—C202	120.3 (9)	C12—C12—C12 ⁱⁱ	54 (2)
C204—C203—H203	119.9		- (_)
	11)1)		
C207—P2—C1—N3	97.2 (6)	C1—P2—C207—C212	173.0 (6)
C201 - P2 - C1 - N3	-26.0(6)	C201—P2—C207—C212	-61.2(8)
C2 - P2 - C1 - N3	-142.8(5)	C2—P2—C207—C212	58.8 (7)
C207 - P2 - C1 - Ir1	-93.5 (4)	C212—C207—C208—C209	-2.0(12)
C201 - P2 - C1 - Ir1	143.2 (4)	P2-C207-C208-C209	-177.4(6)
C2—P2—C1—Ir1	26.5 (4)	C207—C208—C209—C210	0.5 (13)
C1—P2—C2—P1	-37.8(4)	C208—C209—C210—C211	-0.2(15)
C207—P2—C2—P1	85.0 (4)	C209—C210—C211—C212	1.3 (17)
C201—P2—C2—P1	-156.4(4)	C210—C211—C212—C207	-2.7(16)
C101—P1—C2—P2	162.8 (4)	C208—C207—C212—C211	3.0 (14)
C107—P1—C2—P2	-92.0 (4)	P2-C207-C212-C211	178.7 (8)
Ir1—P1—C2—P2	35.6 (4)	C307—P3—C301—C306	101.7 (6)
C401—P4—C3—P3	152.6 (3)	C3—P3—C301—C306	-11.8(7)
C407—P4—C3—P3	-96.7 (3)	Ir1—P3—C301—C306	-121.4(5)
Ir1—P4—C3—P3	20.3 (3)	C307—P3—C301—C302	-73.1 (6)
C307—P3—C3—P4	97.6 (3)	C3—P3—C301—C302	173.4 (6)
C301—P3—C3—P4	-153.6 (3)	Ir1—P3—C301—C302	63.8 (6)
Ir1—P3—C3—P4	-20.0(3)	C306—C301—C302—C303	1.4 (11)
Ir1—N1—C4—C5	173.5 (5)	P3-C301-C302-C303	176.2 (6)
N1—C4—C5—C6	11.2 (11)	C301—C302—C303—C304	0.7 (12)
N1—C4—C5—C10	-166.2 (7)	C302—C303—C304—C305	-1.8(14)
C10—C5—C6—C7	2.1 (13)	C303—C304—C305—C306	0.7 (14)
C4—C5—C6—C7	-175.3 (8)	C302—C301—C306—C305	-2.4(11)
C5—C6—C7—C8	-1.0 (16)	P3-C301-C306-C305	-177.2(6)
C6—C7—C8—C9	0 (2)	C304—C305—C306—C301	1.4 (13)
C7—C8—C9—C10	-1 (2)	C301—P3—C307—C308	97.5 (6)
C8—C9—C10—C5	1.9 (18)	C3—P3—C307—C308	-149.8 (5)
C6—C5—C10—C9	-2.5 (13)	Ir1—P3—C307—C308	-47.1 (6)
C4—C5—C10—C9	175.0 (8)	C301—P3—C307—C312	-79.7 (6)

C107—P1—C101—C102	47.5 (7)	C3—P3—C307—C312	33.0(7)
C2—P1—C101—C102	155.9 (6)	Ir1—P3—C307—C312	135.6 (5)
Ir1—P1—C101—C102	-86.7 (6)	C312—C307—C308—C309	-2.7 (11)
C107—P1—C101—C106	-132.1 (6)	P3-C307-C308-C309	-179.9 (6)
C2—P1—C101—C106	-23.7 (7)	C307—C308—C309—C310	0.9 (13)
Ir1—P1—C101—C106	93.7 (6)	C308—C309—C310—C311	0.9 (16)
C106—C101—C102—C103	-1.2 (12)	C309—C310—C311—C312	-0.8 (16)
P1-C101-C102-C103	179.2 (7)	C310—C311—C312—C307	-1.0 (14)
C101—C102—C103—C104	-0.7 (14)	C308—C307—C312—C311	2.7 (12)
C102—C103—C104—C105	2.2 (15)	P3-C307-C312-C311	180.0 (7)
C103—C104—C105—C106	-1.9 (16)	C407—P4—C401—C406	-89.6 (7)
C104—C105—C106—C101	-0.1 (14)	C3—P4—C401—C406	24.6 (7)
C102—C101—C106—C105	1.6 (12)	Ir1—P4—C401—C406	136.1 (6)
P1-C101-C106-C105	-178.8 (7)	C407—P4—C401—C402	89.3 (6)
C101—P1—C107—C112	91.0 (7)	C3—P4—C401—C402	-156.5 (5)
C2-P1-C107-C112	-14.3 (7)	Ir1—P4—C401—C402	-45.0(7)
Ir1—P1—C107—C112	-133.9 (6)	C406—C401—C402—C403	0.4 (11)
C101—P1—C107—C108	-82.3 (6)	P4-C401-C402-C403	-178.5 (6)
C2-P1-C107-C108	172.4 (6)	C401—C402—C403—C404	-0.9 (12)
Ir1—P1—C107—C108	52.9 (6)	C402—C403—C404—C405	0.9 (15)
C112—C107—C108—C109	-1.5 (11)	C403—C404—C405—C406	-0.3 (16)
P1-C107-C108-C109	172.0 (6)	C402—C401—C406—C405	0.2 (12)
C107—C108—C109—C110	1.0 (13)	P4-C401-C406-C405	179.1 (7)
C108—C109—C110—C111	0.3 (14)	C404—C405—C406—C401	-0.3 (15)
C109—C110—C111—C112	-1.2 (15)	C401—P4—C407—C412	108.3 (6)
C108—C107—C112—C111	0.7 (12)	C3—P4—C407—C412	-6.7 (6)
P1-C107-C112-C111	-172.5 (6)	Ir1—P4—C407—C412	-110.0 (5)
C110-C111-C112-C107	0.7 (14)	C401—P4—C407—C408	-72.0 (6)
C1—P2—C201—C206	-106.7 (7)	C3—P4—C407—C408	173.0 (5)
C207—P2—C201—C206	125.8 (7)	Ir1—P4—C407—C408	69.7 (5)
C2—P2—C201—C206	4.8 (8)	C412—C407—C408—C409	0.1 (10)
C1—P2—C201—C202	71.6 (7)	P4—C407—C408—C409	-179.6 (6)
C207—P2—C201—C202	-55.9 (7)	C407—C408—C409—C410	1.5 (11)
C2—P2—C201—C202	-176.9 (6)	C408—C409—C410—C411	-1.8 (13)
C206—C201—C202—C203	1.2 (13)	C409—C410—C411—C412	0.6 (13)
P2-C201-C202-C203	-177.2 (7)	C408—C407—C412—C411	-1.3 (10)
C201—C202—C203—C204	-0.7 (15)	P4—C407—C412—C411	178.4 (6)
C202—C203—C204—C205	0.1 (16)	C410—C411—C412—C407	1.0 (11)
C203—C204—C205—C206	0.1 (17)	Cl2—C12—Cl1—C12 ⁱⁱ	-30.7 (15)
C202—C201—C206—C205	-1.0 (13)	Cl2 ⁱⁱ —C12—Cl1—C12 ⁱⁱ	28.6 (14)
P2-C201-C206-C205	177.2 (7)	C12 ⁱⁱ —C12—Cl2—Cl2 ⁱⁱ	73 (3)
C204—C205—C206—C201	0.4 (15)	Cl1—Cl2—Cl2—Cl2 ⁱⁱ	105 (3)
C1—P2—C207—C208	-11.5 (7)	Cl2 ⁱⁱ —C12—Cl2—C12 ⁱⁱ	-73 (3)
C201—P2—C207—C208	114.3 (6)	Cl1—C12—Cl2—C12 ⁱⁱ	31.6 (14)
C2—P2—C207—C208	-125.7 (6)		

Symmetry codes: (i) -x+1/2, -y+3/2, -z; (ii) -x, y, -z+1/2.

g is the centroid of the C407–C412 ring.					
D—H···A	D—H	H···A	D····A	D—H…A	
N1—H1 <i>N</i> ··· <i>Cg</i>	0.86 (2)	2.87 (5)	3.608 (6)	145 (4)	
C408—H408…N2	0.94	2.57	3.35(1)	141	
C4—H4…I1	0.94	2.98	3.45 (1)	112	
C2—H2A…O1	0.98	2.25	3.19 (2)	160	
C2—H2A…O1A	0.98	2.28	3.11 (3)	142	
С112—Н112…О1	0.94	2.55	3.41 (3)	154	
C212—H212···O1A	0.94	2.31	3.20 (4)	159	
C3—H3 <i>B</i> …I2	0.98	3.02	3.89(1)	149	
C106—H106…I2A ⁱⁱⁱ	0.94	2.97	3.51 (1)	117	
C205—H205···· Cg^{iv}	0.94	2.86	3.749 (9)	159	

Hydrogen-bond geometry $(\text{\AA}, \circ)$

Symmetry codes: (iii) x, -y-1, z-1/2; (iv) -x+1/2, -y+3/2, -z+1.