

Received 21 November 2018 Accepted 19 December 2018

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; iminopyridine; 2,6bis(imino)pyridine derivative; $C-H\cdots\pi$ interactions.

CCDC reference: 1886124

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a new 2,6-bis(imino)pyridine derivative: (1*E*,1'*E*)-1,1'-(pyridine-2,6-diyl)bis[*N*-(4-chlorophenyl)ethan-1-imine]

Rajagopal Rajesh,^a E. S. Sella,^a Olivier Blacque^{b*} and Kunjanpillai Rajesh^{a*}

^aDepartment of Chemistry, St. Albert's College (Autonomous), Ernakulam, Kochi, Kerala 682018, India, and ^bDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. *Correspondence e-mail: olivier.blacque@chem.uzh.ch, rajeshmail101@gmail.com

The asymmetric unit of the title compound, $C_{21}H_{17}Cl_2N_3$, contains two crystallographically independent molecules (*A* and *B*). Both molecules have *E* configurations for both imine double bonds with regard to the aryl and pyridine groups. The conformations of the two molecules differ with the 4-chlorophenyl rings being inclined to the central pyridine ring by 77.64 (6) and 86.18 (6)° in molecule *A*, and 80.02 (5) and 43.41 (6)° in molecule *B*. In the crystal, molecules are linked by a number of $C-H\cdots\pi$ interactions, forming layers parallel to the *bc* plane.

1. Chemical context

2,6-Bis(imino)pyridines have acquired widespread interest because of their potential application as ligands in olefin polymerization reactions: see, for example, the work of Antonov *et al.* (2012) or Kawakami *et al.* (2015). Metal complexes of such ligands have been applied to aryl C–H activation (Dayan *et al.*, 2010; Sigen *et al.*, 2013) and transfer hydrogenation reactions (Dayan & Çetinkaya, 2007). As a result of the redox activity of the ligand (Noss *et al.*, 2018), electrochemical and luminescent properties of its complexes have been reported (Fan *et al.*, 2004). Recently, the biomimetic reactivity of Zn–alkyl complexes has also been revealed (Sandoval *et al.*, 2018). We report herein on the crystal structure of a new 2,6-bis(imino)pyridine derivative with terminal 4-chlorophenyl rings.

The asymmetric unit of the title compound contains two crystallographically independent molecules (A and B), illustrated in Fig. 1. Both molecules have E-configurations for both imine double bonds with regard to the aryl and pyridine groups. The C=N bond lengths of the imine groups are in a narrow range, 1.2675 (15) to 1.2808 (14) Å (Table 1). These values are similar to the C=N bond lengths found in the

research communications

Figure 1

Molecular structure of the title compound showing the two crystallographically independent molecules (A and B), with the atom labelling. Displacement ellipsoids drawn at the 30% probability level.

Figure 2 View of the molecular overlay of the two independent molecules.

crystal structures of other 2,6-bis(imino)pyridyl ligands; for example 1.266 (4) Å in the 'parent' compound 2,6-bis[1-(phenylimino)ethyl]pyridine (Mentes *et al.*, 2001).

In molecule *A*, the 4-chlorophenyl rings (C1–C6 and C16–C21) are inclined to the central pyridine ring (N2/C9–C13) by 77.64 (6) and 86.18 (6)°, respectively. In molecule *B*, the dihedral angles between the 4-chlorophenyl rings (C22–C27 and C37–C42) and the central pyridine ring (N5/C30–C34) are 80.02 (5) and 43.41 (6)°, respectively. The terminal ring (C37–

Table 1		
Selected	bond lengths (Å).	

C7-N1	1.2772 (14)	C28-N4	1.2808 (14)
C14-N3	1.2696 (14)	C35-N6	1.2675 (15)

Table 2Hydrogen-bond geometry (Å, °).

*Cg*1, *Cg*2, *Cg*4, *Cg*5 and *Cg*6 are the centroids of rings N2/C9–C13, C1–C6, N5/C30–C34, C22–C27 and C37–C42, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C20-H20\cdots Cg6$	0.95	2.94	3.6735 (14)	135
$C32-H32\cdots Cg1$	0.95	2.73	3.3273 (12)	121
$C2-H2\cdots Cg4^{i}$	0.95	2.67	3.4012 (13)	134
$C10-H10\cdots Cg5^{ii}$	0.95	2.81	3.6446 (13)	147
$C17 - H17 \cdot \cdot \cdot Cg1^{iii}$	0.95	2.70	3.5850 (14)	155
$C31 - H31 \cdots Cg2^{ii}$	0.95	2.93	3.5795 (12)	127

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z.

C42) in molecule B adopts a significantly different conformation from the other benzene rings, as shown in Fig. 2, a molecular overlay figure calculated with *Mercury* (Macrae *et al.*, 2008).

3. Supramolecular features

In the crystal, molecules are linked by a series of $C-H\cdots\pi$ interactions, forming layers lying parallel to the *bc* plane (Table 2 and Fig. 3). There are no other significant intermolecular interactions present in the crystal structure. All $H\cdots N$ and $H\cdots Cl$ intermolecular distances exceed the sum of their van der Waals radii.

Figure 3

A view along the *a* axis of the crystal packing of the title compound, showing the $C-H \cdots \pi$ interactions as dashed lines (Table 2; colour code: molecule *A* blue, molecule *B* red). Only the H atoms (blue and red balls) involved in these interactions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.39, last update August 2018; Groom et al., 2016) confirmed that 2,6-bis(imino)pyridine derivatives are widely used as tridentate chelating ligands for transition metals (more than 600 hits). A search for the substructure 1,1'-(pyridine-2,6-diyl)bis(N-(phenyl)ethan-1-imine) gave 25 hits. The crystal structure of the 2,6-bis[1-(phenylimino)ethyl]pyridine molecule was reported in 2001 (CSD refcode QOQROD; Mentes et al., 2001). The first crystal structure with that molecule used a tridentate ligand for a transition metal (M = Ni) was reported earlier in 1975 (PIEPNI10; Alyea et al., 1975). The crystal structure of the bis(4-methoxyphenyl) derivative has also been reported (REMSEH; Meehan et al., 1997). In the 25 structures deposited in the CSD, the C=N bond lengths range from ca 1.262–1.294 Å and the dihedral angles involving the outer benzene rings with respect to the central pyridine ring range from ca 52.75 to 88.76°. In QOQROD and REMSEH, which both possess mirror symmetry, the C=N bond lengths are 1.266 (4) and 1.274 (5) Å, respectively, while the benzene rings are inclined to the central pyridine ring by 60.2 (2) and 55.2 (2)°, respectively. While the conformation of molecule A conforms to the overall limits, that of molecule B does not, with the terminal ring (C37-C42) being inclined to the pyridine ring by only $43.41 (6)^{\circ}$.

The crystal structures of two 2,6-dihalogeno (X = Cl, Br) derivatives have also been reported, *viz.* 2,6-bis[1-(2,6-dibromophenylimino)ethyl]pyridine (EMEJIP; Chen *et al.*, 2003) and 2,6-bis[1-(2,6-dichlorophenylimino)ethyl]pyridine (EYACUD; Sieh *et al.*, 2011). Both compounds have *E* configurations around both C=N imine bonds. Owing to steric hindrance, the 2,6-dihalophenyl rings are inclined to the central pyridine ring by 85.7 (3) and 88.0 (3)° in EMEJIP and 81.13 (6) and 74.22 (7)° in EYACUD. In the crystals of these two compounds, as in the crystal of the title compound, the H···N and H···Br/Cl intermolecular distances all exceed the sum of their van der Waals radii.

5. Synthesis and crystallization

To a solution of 2,6-diacetylpyridine (0.5 g, 3.06 mmol) and p-chloroaniline (0.977 g, 7.66 mmol) in 20 ml of toluene was added 20 mg of p-toluenesulfonic acid (Görl et al., 2011). The reaction mixture was refluxed for 24 h using a Dean-Stark trap, then cooled to room temperature and 50 ml of saturated sodium bicarbonate solution was added. The organic layer was separated and filtered over sodium sulfate. The solvent was removed in a rotary evaporator giving a light-brown-coloured mass. Ethanol (ca 25 ml) was added to this solid mass followed by the addition of hexane (ca 10 ml). The solution was then kept in the deep-freezer at 253 K. The title compound was obtained as a yellow solid in 31% yield (0.363 g, 0.95 mmol). A very dilute solution of the compound was prepared in a 1:1 mixture of ethanol and hexane. On slow evaporation of the solvents at room temperature, pale-yellow crystals were obtained over a period of two weeks.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{21}H_{17}Cl_2N_3$
M _r	382.27
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	160
a, b, c (Å)	10.5375 (2), 10.8479 (2), 16.8936 (3)
α, β, γ (°)	82.261 (2), 88.543 (1), 84.930 (2)
$V(Å^3)$	1905.85 (6)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.35
Crystal size (mm)	$0.36 \times 0.28 \times 0.20$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction	Analytical (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.919, 0.941
No. of measured, independent and observed $[L > 2\sigma(L)]$ reflections	54775, 11604, 9934
$R_{\rm c}$	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.714
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.111, 1.06
No. of reflections	11604
No. of parameters	473
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.47, -0.67

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

An alternate method for the synthesis is as follows: To a solution of 2,6-diacetylpyridine (0.5 g, 3.06 mmol) and *p*-chloroaniline (0.782 g, 6.13 mmol) in 5 mL of absolute ethanol was added three drops of acetic acid. The reaction mixture was refluxed for 24 h, cooled to room temperature and then approximately 15 mL of hexane were added. The mixture was heated on a water bath and filtered hot using filter paper. The solution was kept in a deep freezer at 253 K. The title compound was obtained as a yellow solid in 26% yield (0.305 g, 0.80 mmol).

Spectroscopic data: IR (ATR, cm⁻¹): 3072 (w), 1638 (s), 1567 (w), 1482 (s), 1450 (w), 1362 (s), 1322 (w), 1297 (m), 1216 (s), 1171 (w), 1148 (w), 1119 (m), 1091 (m), 1010 (w), 994 (w), 955 (w), 842 (s), 787 (s), 743 (w), 723 (m), 672 (m), 635 (w), 597 (m), 532 (w), 517 (m); ¹H NMR (400 MHz, CDCl₃): 2.40 (s, 6H), 6.79 (d, J = 8.5 Hz, 4H), 7.35 (d, J = 8.5 Hz, 4H), 7.88 (t, J = 7.8 Hz, 1H), 8.32 (d, J = 7.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): 16.6, 121.0, 122.9, 129.4, 129.5, 137.3, 150.0, 155.6, 168.3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in calculated positions and refined as riding atoms: C-H = 0.95-0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

We are grateful to Ms D. Haritha, Department of Applied Chemistry, Cochin University of Science & Technology, Kochi, Kerala, for her help with the synthesis of the title compound.

Funding information

Funding from the DST–SERB Young Scientist Scheme (YSS/ 2014/000729), Govt. of India is gratefully acknowledged.

References

- Alyea, E. C., Ferguson, G. & Restivo, R. J. (1975). *Inorg. Chem.* 14, 2491–2495.
- Antonov, A. A., Semikolenova, N. V., Zakharov, V. A., Zhang, W., Wang, Y., Sun, W. H., Talsi, E. P. & Bryliakov, K. P. (2012). *Organometallics*, **31**, 1143–1149.
- Chen, Y., Chen, R., Qian, C., Dong, X. & Sun, J. (2003). Organometallics, 22, 4312–4321.
- Dayan, O. & Çetinkaya, B. (2007). J. Mol. Catal. A Chem. 271, 134– 141.
- Dayan, O., Doĝan, F., Kaya, I. & Çetinkaya, B. (2010). Synth. React. Inorg. M. 40, 337-344.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

- Fan, R. Q., Zhu, D. S., Mu, Y., Li, G., Yang, Y., Su, Q. & Feng, S. (2004). *Eur. J. Inorg. Chem.* pp. 4891–4897.
- Görl, C., Englmann, T. & Alt, H. G. (2011). Appl. Catal. A: Gen. 403, 25–35.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kawakami, T., Ito, S. & Nozaki, K. (2015). Dalton Trans. 44, 20745– 20752.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Meehan, P. R., Alyea, E. C. & Ferguson, G. (1997). Acta Cryst. C53, 888–890.
- Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, 0424–0425.
- Noss, M. E., Hylden, A. T., Carroll, P. J. & Berry, D. H. (2018). *Inorg. Chem.* 57, 435–445.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sandoval, J. J., Álvarez, E., Palma, P., Rodríguez-Delgado, A. & Cámpora, J. (2018). Organometallics, 37, 1734–1744.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sieh, D., Schöffel, J. & Burger, P. (2011). Dalton Trans. 40, 9512-9524.
- Sigen, A., Liu, X., Li, H., He, C. & Mu, Y. (2013). Asian J. Chem. 2, 857–861.

supporting information

Acta Cryst. (2019). E75, 115-118 [https://doi.org/10.1107/S2056989018017966]

Crystal structure of a new 2,6-bis(imino)pyridine derivative: (1*E*,1'*E*)-1,1'-(pyridine-2,6-diyl)bis[*N*-(4-chlorophenyl)ethan-1-imine]

Rajagopal Rajesh, E. S. Sella, Olivier Blacque and Kunjanpillai Rajesh

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

(1E,1'E)-1,1'-(Pyridine-2,6-diyl)bis[N-(4-chlorophenyl)ethan-1-imine]

Crystal data

 $C_{21}H_{17}Cl_2N_3$ $M_r = 382.27$ Triclinic, *P*1 *a* = 10.5375 (2) Å *b* = 10.8479 (2) Å *c* = 16.8936 (3) Å *a* = 82.261 (2)° *β* = 88.543 (1)° *γ* = 84.930 (2)° *V* = 1905.85 (6) Å³

Data collection

XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source Mirror monochromator ω scans Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2018) $T_{\min} = 0.919, T_{\max} = 0.941$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.111$ S = 1.0611604 reflections 473 parameters 0 restraints Z = 4 F(000) = 792 $D_x = 1.332 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 27060 reflections $\theta = 2.3-33.2^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 160 K Block, pale yellow $0.36 \times 0.28 \times 0.20 \text{ mm}$

54775 measured reflections 11604 independent reflections 9934 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 30.5^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -14 \rightarrow 15$ $k = -15 \rightarrow 15$ $l = -24 \rightarrow 24$

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0577P)^2 + 0.5294P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.47 \text{ e} \text{ Å}^{-3}$

$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

		1 1	1 1 1		
	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.33253 (11)	0.84351 (11)	0.52377 (7)	0.0277 (2)	
C2	0.39558 (13)	0.89874 (11)	0.45751 (7)	0.0319 (2)	
H2	0.403602	0.986096	0.450265	0.038*	
C3	0.44713 (13)	0.82499 (11)	0.40155 (7)	0.0310(2)	
H3	0.492617	0.861820	0.356481	0.037*	
C4	0.43261 (11)	0.69734 (10)	0.41106 (7)	0.0254 (2)	
C5	0.37049 (12)	0.64286 (11)	0.47914 (7)	0.0282 (2)	
H5	0.362343	0.555521	0.486755	0.034*	
C6	0.32057 (11)	0.71611 (11)	0.53576 (7)	0.0285 (2)	
H6	0.278606	0.679231	0.582298	0.034*	
C7	0.42305 (10)	0.57357 (10)	0.30817 (6)	0.02233 (19)	
C8	0.27998 (11)	0.58318 (13)	0.30540 (8)	0.0320 (2)	
H8A	0.248873	0.504655	0.330749	0.048*	
H8B	0.252739	0.599462	0.249660	0.048*	
H8C	0.245071	0.651695	0.333999	0.048*	
C9	0.49567 (10)	0.49648 (9)	0.25206 (6)	0.02101 (19)	
C10	0.62744 (11)	0.47078 (10)	0.25912 (7)	0.0249 (2)	
H10	0.672537	0.503405	0.298482	0.030*	
C11	0.69096 (11)	0.39668 (12)	0.20746 (7)	0.0291 (2)	
H11	0.780494	0.377219	0.211023	0.035*	
C12	0.62190 (11)	0.35128 (11)	0.15043 (7)	0.0271 (2)	
H12	0.663229	0.300253	0.114345	0.032*	
C13	0.49066 (10)	0.38206 (10)	0.14718 (6)	0.02198 (19)	
C14	0.41233 (10)	0.33185 (10)	0.08780 (6)	0.0232 (2)	
C15	0.27004 (12)	0.35106 (16)	0.09431 (10)	0.0425 (3)	
H15A	0.231832	0.322186	0.048576	0.064*	
H15B	0.244269	0.440024	0.094688	0.064*	
H15C	0.240977	0.303534	0.143916	0.064*	
C16	0.41268 (10)	0.21412 (11)	-0.01944 (7)	0.0252 (2)	
C17	0.41070 (12)	0.26750 (12)	-0.09902 (7)	0.0306 (2)	
H17	0.438136	0.348713	-0.113385	0.037*	
C18	0.36890 (12)	0.20299 (12)	-0.15767 (7)	0.0304 (2)	
H18	0.367791	0.239417	-0.212058	0.036*	
C19	0.32891 (11)	0.08498 (11)	-0.13579 (7)	0.0267 (2)	
C20	0.32610 (13)	0.03190 (12)	-0.05683 (7)	0.0320 (2)	
H20	0.295806	-0.048126	-0.042522	0.038*	

C21	0.36821 (13)	0.09712 (12)	0.00144 (7)	0.0322 (2)
H21	0.366580	0.061451	0.055952	0.039*
Cl1	0.26945 (4)	0.93500 (3)	0.59507 (2)	0.04153 (9)
C12	0.28305 (4)	0.00035 (3)	-0.20954 (2)	0.04044 (9)
N1	0.49029 (10)	0.62550 (10)	0.35388 (6)	0.0281 (2)
N2	0 42787 (9)	0 45348 (8)	0 19705 (5)	0.02178(17)
N3	0.12707(9) 0.47403(10)	0.7235(10)	0.03734(6)	0.0296(2)
C22	0.04883(11)	0.27233(10) 0.44751(12)	0.03751(0)	0.0278(2)
C22	0.04388(11)	0.53195(11)	0.65837 (8)	0.0270(2)
H23	0.005700	0.614549	0.658940	0.0255 (2)
C24	0.005739	0.014349 0.40444(11)	0.58700 (7)	0.035
U24	0.09327 (11)	0.49444 (11)	0.58799 (7)	0.0207 (2)
П24	0.093327	0.332097	0.540340	0.032°
C25	0.14904(10) 0.15281(12)	0.37279(10)	0.38084(7)	0.0238(2)
C20	0.15581 (12)	0.28959 (11)	0.65750(7)	0.0298 (2)
H26	0.191543	0.206783	0.65/329	0.036*
C27	0.10335 (12)	0.32680 (12)	0.72790 (7)	0.0305 (2)
H27	0.106202	0.269881	0.775889	0.037*
C28	0.16246 (10)	0.25644 (10)	0.47943 (6)	0.02186 (19)
C29	0.04079 (11)	0.19559 (11)	0.50021 (7)	0.0266 (2)
H29A	0.060896	0.106970	0.519780	0.040*
H29B	-0.011964	0.203652	0.452537	0.040*
H29C	-0.005754	0.236549	0.541826	0.040*
C30	0.23750 (10)	0.21730 (10)	0.40933 (6)	0.02175 (19)
C31	0.36130 (10)	0.25147 (10)	0.39370 (7)	0.0236 (2)
H31	0.399260	0.302265	0.426474	0.028*
C32	0.42741 (11)	0.20937 (10)	0.32913 (7)	0.0250 (2)
H32	0.511683	0.231219	0.316838	0.030*
C33	0.36935 (11)	0.13513 (10)	0.28271 (7)	0.0253 (2)
H33	0.412512	0.106145	0.237813	0.030*
C34	0.24608 (11)	0.10387 (10)	0.30336 (6)	0.0244 (2)
C35	0.18171 (12)	0.01753 (12)	0.25878 (7)	0.0290 (2)
C36	0.0712 (2)	-0.0429(2)	0.29993 (11)	0.0687 (7)
H36A	-0.003006	0.018417	0.298850	0.103*
H36B	0.093131	-0.074184	0.355476	0.103*
H36C	0.051163	-0.112627	0.272397	0.103*
C37	0.051105 0.18205(12)	-0.08525(11)	0.272397 0.14453 (7)	0.103 0.0274(2)
C38	0.16205(12) 0.26630(12)	-0.18181(13)	0.14433(7) 0.12313(8)	0.0277(2)
U28	0.20030 (12)	-0.103775	0.12313 (0)	0.0332 (3)
C30	0.349787	-0.26005(13)	0.144341 0.07117 (8)	0.040
1120	0.25000 (15)	0.20095 (15)	0.07117 (6)	0.0331(3)
П39	0.287777	-0.327234	0.03/339	0.042
C40	0.10945(13)	-0.2419/(12)	0.04003(7)	0.0321(2)
C41	0.02384 (13)	-0.146/0 (14)	0.06006 (8)	0.03//(3)
H41	-0.059284	-0.135010	0.038303	0.045*
C42	0.06052 (13)	-0.06/93 (13)	0.11246 (8)	0.0355 (3)
H42	0.002237	-0.002089	0.126326	0.043*
Cl3	-0.01235 (3)	0.49452 (4)	0.81635 (2)	0.04202 (9)
Cl4	0.06545 (4)	-0.33813 (4)	-0.02725 (2)	0.04994 (10)
N4	0.20804 (9)	0.33848 (9)	0.51589 (6)	0.02557 (18)

supporting information

N5	0.18092 (9)	0.14407 (9)	0.36555 (6)	0.02414 (18)	
N6	0.23082 (10)	-0.00296 (10)	0.19202 (6)	0.0294 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0296 (5)	0.0297 (5)	0.0252 (5)	0.0036 (4)	-0.0053 (4)	-0.0117 (4)
C2	0.0443 (7)	0.0233 (5)	0.0289 (6)	-0.0020 (5)	-0.0045 (5)	-0.0058 (4)
C3	0.0413 (7)	0.0274 (5)	0.0253 (5)	-0.0070 (5)	0.0014 (5)	-0.0050 (4)
C4	0.0256 (5)	0.0270 (5)	0.0259 (5)	-0.0043 (4)	-0.0019 (4)	-0.0107 (4)
C5	0.0313 (6)	0.0251 (5)	0.0301 (5)	-0.0071 (4)	0.0012 (4)	-0.0081 (4)
C6	0.0292 (5)	0.0325 (6)	0.0251 (5)	-0.0054 (4)	0.0014 (4)	-0.0068 (4)
C7	0.0262 (5)	0.0204 (4)	0.0209 (5)	-0.0038 (4)	0.0006 (4)	-0.0036 (4)
C8	0.0251 (5)	0.0400 (6)	0.0336 (6)	0.0012 (5)	-0.0030 (4)	-0.0163 (5)
C9	0.0240 (5)	0.0193 (4)	0.0203 (4)	-0.0050 (4)	0.0009 (4)	-0.0031 (3)
C10	0.0239 (5)	0.0269 (5)	0.0256 (5)	-0.0068 (4)	-0.0011 (4)	-0.0062 (4)
C11	0.0206 (5)	0.0355 (6)	0.0337 (6)	-0.0050 (4)	0.0003 (4)	-0.0113 (5)
C12	0.0232 (5)	0.0316 (5)	0.0284 (5)	-0.0040 (4)	0.0028 (4)	-0.0108 (4)
C13	0.0238 (5)	0.0219 (4)	0.0213 (5)	-0.0053 (4)	0.0013 (4)	-0.0049 (4)
C14	0.0229 (5)	0.0244 (5)	0.0231 (5)	-0.0032 (4)	-0.0008 (4)	-0.0059 (4)
C15	0.0246 (6)	0.0600 (9)	0.0490 (8)	0.0030 (6)	-0.0048 (5)	-0.0327 (7)
C16	0.0210 (5)	0.0317 (5)	0.0251 (5)	-0.0023 (4)	0.0021 (4)	-0.0118 (4)
C17	0.0344 (6)	0.0298 (5)	0.0289 (6)	-0.0079 (5)	-0.0029 (5)	-0.0048 (4)
C18	0.0337 (6)	0.0351 (6)	0.0228 (5)	-0.0060(5)	-0.0031 (4)	-0.0032 (4)
C19	0.0287 (5)	0.0293 (5)	0.0237 (5)	-0.0006 (4)	-0.0033 (4)	-0.0102 (4)
C20	0.0405 (7)	0.0296 (6)	0.0275 (6)	-0.0097 (5)	-0.0028 (5)	-0.0048 (4)
C21	0.0381 (6)	0.0394 (6)	0.0214 (5)	-0.0125 (5)	0.0014 (4)	-0.0060 (4)
Cl1	0.04879 (19)	0.04263 (17)	0.03431 (16)	0.01175 (14)	-0.00271 (13)	-0.01911 (13)
Cl2	0.0540 (2)	0.03864 (16)	0.03227 (16)	-0.00355 (14)	-0.01178 (13)	-0.01599 (12)
N1	0.0285 (5)	0.0300 (5)	0.0288 (5)	-0.0063 (4)	0.0019 (4)	-0.0130 (4)
N2	0.0237 (4)	0.0214 (4)	0.0212 (4)	-0.0038 (3)	0.0001 (3)	-0.0049 (3)
N3	0.0253 (5)	0.0389 (5)	0.0282 (5)	-0.0061 (4)	0.0019 (4)	-0.0157 (4)
C22	0.0203 (5)	0.0394 (6)	0.0273 (5)	-0.0086 (4)	0.0029 (4)	-0.0144 (4)
C23	0.0247 (5)	0.0302 (5)	0.0349 (6)	-0.0012 (4)	-0.0006 (4)	-0.0121 (5)
C24	0.0276 (5)	0.0268 (5)	0.0264 (5)	-0.0031 (4)	-0.0023 (4)	-0.0056 (4)
C25	0.0232 (5)	0.0258 (5)	0.0242 (5)	-0.0057 (4)	0.0000 (4)	-0.0074 (4)
C26	0.0363 (6)	0.0255 (5)	0.0277 (5)	-0.0021 (4)	0.0000 (5)	-0.0048 (4)
C27	0.0336 (6)	0.0344 (6)	0.0246 (5)	-0.0089 (5)	0.0003 (4)	-0.0045 (4)
C28	0.0237 (5)	0.0209 (4)	0.0208 (4)	-0.0013 (4)	-0.0001 (4)	-0.0024 (3)
C29	0.0263 (5)	0.0282 (5)	0.0267 (5)	-0.0058 (4)	0.0039 (4)	-0.0068 (4)
C30	0.0246 (5)	0.0204 (4)	0.0204 (4)	-0.0035 (4)	0.0006 (4)	-0.0026 (3)
C31	0.0251 (5)	0.0216 (4)	0.0246 (5)	-0.0054 (4)	-0.0011 (4)	-0.0025 (4)
C32	0.0241 (5)	0.0246 (5)	0.0261 (5)	-0.0067 (4)	0.0021 (4)	-0.0005 (4)
C33	0.0280 (5)	0.0265 (5)	0.0217 (5)	-0.0057 (4)	0.0047 (4)	-0.0028 (4)
C34	0.0289 (5)	0.0256 (5)	0.0200 (5)	-0.0079 (4)	0.0025 (4)	-0.0045 (4)
C35	0.0331 (6)	0.0335 (6)	0.0233 (5)	-0.0130 (5)	0.0051 (4)	-0.0082 (4)
C36	0.0795 (13)	0.1008 (15)	0.0441 (9)	-0.0696 (12)	0.0337 (9)	-0.0417 (9)
C37	0.0318 (6)	0.0315 (5)	0.0207 (5)	-0.0096 (4)	0.0043 (4)	-0.0068 (4)

supporting information

N5 $0.0257(4)$ $0.0267(4)$ $0.0212(4)$ $-0.0071(3)$ $0.0022(3)$ $-0.0052(3)$	C38 C39 C40 C41 C42 C13 C14 N4 N5	0.0297 (6) 0.0349 (6) 0.0371 (6) 0.0329 (6) 0.0337 (6) 0.03482 (16) 0.0486 (2) 0.0283 (5) 0.0257 (4)	0.0390 (6) 0.0355 (6) 0.0371 (6) 0.0483 (7) 0.0416 (7) 0.0619 (2) 0.0618 (2) 0.0257 (4) 0.0267 (4)	0.0332 (6) 0.0375 (6) 0.0256 (5) 0.0345 (6) 0.0332 (6) 0.03569 (16) 0.0484 (2) 0.0239 (4) 0.0212 (4)	$\begin{array}{c} -0.0049 \ (5) \\ -0.0036 \ (5) \\ -0.0127 \ (5) \\ -0.0032 \ (5) \\ 0.0003 \ (5) \\ -0.01407 \ (14) \\ -0.01678 \ (17) \\ -0.0049 \ (4) \\ -0.0071 \ (3) \\ 0.0107 \ (4) \end{array}$	$\begin{array}{c} -0.0012 (5) \\ 0.0025 (5) \\ 0.0025 (5) \\ -0.0057 (5) \\ -0.0008 (5) \\ 0.01212 (12) \\ -0.00091 (16) \\ 0.0019 (4) \\ 0.0022 (3) \\ 0.0022 (4) \end{array}$	$\begin{array}{c} -0.0119 \ (5) \\ -0.0145 \ (5) \\ -0.0113 \ (5) \\ -0.0139 \ (6) \\ -0.0140 \ (5) \\ -0.02555 \ (15) \\ -0.03205 \ (18) \\ -0.0067 \ (3) \\ -0.0052 \ (3) \\ 0.00022 \ (4) \end{array}$

Geometric parameters (Å, °)

C1—C2	1.3803 (18)	C22—C23	1.3849 (18)
C1—C6	1.3860 (17)	C22—C27	1.3823 (18)
C1—C11	1.7442 (11)	C22—Cl3	1.7376 (12)
С2—Н2	0.9500	C23—H23	0.9500
С2—С3	1.3891 (17)	C23—C24	1.3895 (16)
С3—Н3	0.9500	C24—H24	0.9500
C3—C4	1.3939 (16)	C24—C25	1.3939 (16)
C4—C5	1.3956 (17)	C25—C26	1.3953 (16)
C4—N1	1.4138 (14)	C25—N4	1.4128 (14)
С5—Н5	0.9500	C26—H26	0.9500
C5—C6	1.3887 (16)	C26—C27	1.3854 (17)
С6—Н6	0.9500	С27—Н27	0.9500
С7—С8	1.5035 (16)	C28—C29	1.5057 (15)
С7—С9	1.4989 (15)	C28—C30	1.4955 (15)
C7—N1	1.2772 (14)	C28—N4	1.2808 (14)
C8—H8A	0.9800	C29—H29A	0.9800
C8—H8B	0.9800	C29—H29B	0.9800
C8—H8C	0.9800	C29—H29C	0.9800
C9—C10	1.3968 (15)	C30—C31	1.3966 (15)
C9—N2	1.3420 (13)	C30—N5	1.3408 (13)
C10—H10	0.9500	C31—H31	0.9500
C10-C11	1.3856 (16)	C31—C32	1.3868 (16)
C11—H11	0.9500	С32—Н32	0.9500
C11—C12	1.3882 (16)	C32—C33	1.3853 (15)
C12—H12	0.9500	С33—Н33	0.9500
C12—C13	1.3945 (16)	C33—C34	1.3953 (15)
C13—C14	1.5009 (14)	C34—C35	1.4942 (15)
C13—N2	1.3433 (13)	C34—N5	1.3414 (14)
C14—C15	1.4987 (17)	C35—C36	1.4967 (18)
C14—N3	1.2696 (14)	C35—N6	1.2675 (15)
C15—H15A	0.9800	C36—H36A	0.9800
C15—H15B	0.9800	C36—H36B	0.9800
C15—H15C	0.9800	C36—H36C	0.9800
C16—C17	1.3902 (17)	C37—C38	1.3919 (18)
C16—C21	1.3895 (17)	C37—C42	1.3907 (18)

	1 41 5 6 (1 4)		1 41 41 (1 4)
C16—N3	1.4156 (14)	C3/—N6	1.4141 (14)
С17—Н17	0.9500	C38—H38	0.9500
C17—C18	1.3888 (16)	C38—C39	1.3898 (17)
C18—H18	0.9500	С39—Н39	0.9500
C18—C19	1.3831 (17)	C39—C40	1.3758 (19)
C19—C20	1.3805 (17)	C40—C41	1.382 (2)
C19—Cl2	1.7453 (11)	C40—C14	1.7397 (12)
С20—Н20	0.9500	C41—H41	0.9500
C_{20} C_{21}	1 3899 (16)	C41-C42	1 3938 (18)
C21 H21	0.0500	C_{42} H_{42}	0.0500
021-1121	0.9500	042—1142	0.9300
$C_2 C_1 C_6$	101 22 (11)	C22 C22 C12	110 52 (10)
$C_2 = C_1 = C_0$	121.55 (11)		119.33 (10)
	119.49 (9)	$C_2/-C_{22}-C_{23}$	121.20 (11)
C6–C1–Cl1	119.17 (9)	C27—C22—C13	119.25 (10)
C1—C2—H2	120.4	С22—С23—Н23	120.4
C1—C2—C3	119.17 (11)	C22—C23—C24	119.22 (11)
С3—С2—Н2	120.4	С24—С23—Н23	120.4
С2—С3—Н3	119.8	C23—C24—H24	119.8
C2—C3—C4	120.48 (11)	C23—C24—C25	120.45 (11)
С4—С3—Н3	119.8	C25—C24—H24	119.8
$C_{3}-C_{4}-C_{5}$	119 47 (10)	$C_{24} - C_{25} - C_{26}$	119 23 (10)
$C_3 - C_4 - N_1$	118 39 (11)	C_{24} C_{25} N_{4}	119.60 (10)
$C_5 = C_4 = N_1$	110.37(11) 121.07(10)	$C_{24} = C_{25} = N_{4}$	119.00(10)
C_{3} C_{4} N_{1}	121.97 (10)	$C_{20} = C_{20} = N_4$	120.39 (10)
C4—C5—H5	119.9	C25—C26—H26	119.7
C6—C5—C4	120.10 (10)	C27—C26—C25	120.52 (11)
С6—С5—Н5	119.9	С27—С26—Н26	119.7
C1—C6—C5	119.40 (11)	C22—C27—C26	119.38 (11)
С1—С6—Н6	120.3	С22—С27—Н27	120.3
С5—С6—Н6	120.3	С26—С27—Н27	120.3
С9—С7—С8	117.79 (9)	C30—C28—C29	116.83 (9)
N1—C7—C8	126.31 (10)	N4—C28—C29	126.40 (10)
N1—C7—C9	115.90 (10)	N4—C28—C30	116.77 (10)
C7-C8-H8A	109.5	C28—C29—H29A	109.5
C7 C8 H8B	109.5	C_{28} C_{29} H_{29R}	109.5
C7 C8 H8C	109.5	$C_{20} = C_{20} = H_{20}C$	109.5
	109.5		109.5
	109.5	$H_29A - C_{29} - H_{29}B$	109.5
H8A—C8—H8C	109.5	H29A—C29—H29C	109.5
H8B—C8—H8C	109.5	H29B—C29—H29C	109.5
C10—C9—C7	120.17 (9)	C31—C30—C28	120.98 (9)
N2—C9—C7	116.86 (9)	N5—C30—C28	116.05 (9)
N2—C9—C10	122.96 (10)	N5—C30—C31	122.91 (10)
С9—С10—Н10	120.7	С30—С31—Н31	120.8
C11—C10—C9	118.57 (10)	C32—C31—C30	118.31 (10)
C11—C10—H10	120.7	C32—C31—H31	120.8
C10—C11—H11	120.5	С31—С32—Н32	120.3
C10—C11—C12	119.05 (11)	C33—C32—C31	119.35 (10)
C12—C11—H11	120 5	C33—C32—H32	120.3
C11 - C12 - H12	120.7	C32—C33—H33	120.5
CII CIZ 1112	1 - V · /	11	

C11—C12—C13	118.68 (10)	C32—C33—C34	118.54 (10)
C13—C12—H12	120.7	С34—С33—Н33	120.7
C12—C13—C14	120.18 (10)	C33—C34—C35	120.98 (10)
N2—C13—C12	122.87 (10)	N5—C34—C33	122.76 (10)
N2—C13—C14	116.92 (9)	N5—C34—C35	116.20 (10)
C15—C14—C13	118.42 (10)	C34—C35—C36	116.71 (10)
N3—C14—C13	116.05 (10)	N6-C35-C34	116.71 (10)
N3—C14—C15	125.49 (10)	N6—C35—C36	126.43 (11)
C14—C15—H15A	109.5	С35—С36—Н36А	109.5
C14—C15—H15B	109.5	С35—С36—Н36В	109.5
C14—C15—H15C	109.5	С35—С36—Н36С	109.5
H15A—C15—H15B	109.5	H36A—C36—H36B	109.5
H15A—C15—H15C	109.5	H36A—C36—H36C	109.5
H15B—C15—H15C	109.5	H36B—C36—H36C	109.5
C17—C16—N3	119.44 (10)	C38—C37—N6	116.87 (11)
C21—C16—C17	119.39 (10)	C42—C37—C38	118.98 (11)
C21—C16—N3	120.71 (11)	C42—C37—N6	123.86 (11)
C16—C17—H17	119.8	С37—С38—Н38	119.5
C18—C17—C16	120.49 (11)	C39—C38—C37	120.95 (12)
C18—C17—H17	119.8	С39—С38—Н38	119.5
C17—C18—H18	120.5	С38—С39—Н39	120.5
C19—C18—C17	119.08 (11)	C40—C39—C38	119.09 (12)
C19—C18—H18	120.5	С40—С39—Н39	120.5
C18—C19—Cl2	119.41 (9)	C39—C40—C41	121.24 (11)
C20—C19—C18	121.38 (10)	C39—C40—Cl4	119.16 (10)
C20—C19—Cl2	119.21 (9)	C41—C40—Cl4	119.58 (10)
С19—С20—Н20	120.5	C40—C41—H41	120.3
C19—C20—C21	119.10 (11)	C40—C41—C42	119.41 (12)
C21—C20—H20	120.5	C42—C41—H41	120.3
C16—C21—C20	120.49 (11)	C37—C42—C41	120.32 (12)
C16—C21—H21	119.8	C37—C42—H42	119.8
C20—C21—H21	119.8	C41—C42—H42	119.8
C7—N1—C4	121.10 (10)	C28—N4—C25	120.59 (9)
C9—N2—C13	117.87 (9)	C30—N5—C34	118.12 (9)
C14—N3—C16	122.28 (10)	C35—N6—C37	122.78 (10)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg4, Cg5 and Cg6 are the centroids of rings N2/C9–C13, C1–C6, N5/C30–C34, C22–C27 and C37–C42, respectively.

D—H···A	D—H	H···A	D··· A	D—H···A
C20—H20…Cg6	0.95	2.94	3.6735 (14)	135
C32—H32···Cg1	0.95	2.73	3.3273 (12)	121
$C2$ — $H2$ ··· $Cg4^{i}$	0.95	2.67	3.4012 (13)	134
C10—H10…Cg5 ⁱⁱ	0.95	2.81	3.6446 (13)	147
C17—H17··· <i>Cg</i> 1 ⁱⁱⁱ	0.95	2.70	3.5850 (14)	155
C31—H31···· <i>Cg</i> 2 ⁱⁱ	0.95	2.93	3.5795 (12)	127

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*.