

Received 3 December 2018 Accepted 28 December 2018

Edited by J. Jasinsk, Keene State College, USA

Keywords: crystal structure; semicarbazone; phenylhydrazinecarboxamide.

CCDC reference: 1887613

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 2-[(2*E*)-2-methyl-3-phenylprop-2-en-1-ylidene]-*N*-phenylhydrazinecarboxamide

S. R. Saritha,^a L. Anitha,^a S. R. Layana,^a M. Sithambaresan^{b*} and M. R. Sudarsanakumar^a

^aDepartment of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram 695 004, Kerala, India, and ^bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka. *Correspondence e-mail: msithambaresan@gmail.com

The title compound, $C_{17}H_{17}N_3O$, crystallizes with two independent molecules in the asymmetric unit. The semicarbazone moieties of these independent molecules (I and II) are essentially planar [maximum deviation of 0.042 (1) Å in molecule I and 0.041 (1) Å in molecule II], with the terminal phenyl rings twisted away from the mean plane of the semicarbazone moiety, making dihedral angles of 60.26 (8) and 28.76 (9)° in molecule I and 31.07 (9) and 35.45 (8)° in molecule II. The molecules both exhibit an *E* configuration with respect to the C=C and azomethine C=N bonds. In the crystal, two classical N-H···O hydrogen-bonding interactions are present between the two molecules, forming a centrosymmetric dimer, while a weak C-H···O nonclassical hydrogen-bonding interaction, with a donor-acceptor distance of 3.476 (2) Å, interconnects two neighbouring centrosymmetric dimers to form a cage-like structure. These cage structures are interconnected by weak C-H··· π interactions with an H··· π distance of 2.790 Å, forming supramolecular chains along the *c*-axis direction.

1. Chemical context

Semicarbazones are oxygen and nitrogen contributor ligands whose significance lies in their versatility of molecular sequence, which allows diverse geometries to be obtained. Semicarbazones exhibit amido-iminol tautomerism in solution due to the interaction of solvent molecules, but generally exist in the amido form in the solid state. The FT-IR and NMR spectra of semicarbazones indicate the existence of a keto form in the solid state that can be confirmed by single crystal X-ray diffraction analysis (Kurup et al., 2011; Sreekanth et al., 2004). Biological properties linked to antimicrobial (Siji et al., 2010) and antiparasitic (Soares et al., 2011) effects make semicarbazones important ligands in coordination chemistry. Compared to Gentamycin, a commonly used antibiotic, N^4 -phenylsemicarbazone derivatives exhibit moderate antibacterial activity at higher concentrations and also show DNA cleavage properties (Layana et al., 2016). Semicarbazones can function as brilliant ligands in a variety of metal ions (Kala et al., 2007) and co-ordinate to metal ions either in neutral (Siji et al., 2011) or in anionic forms (Reena et al., 2008). Structural studies of many semicarbazones and N⁴-phenylsemicarbazones have been reported and some of them adopt an Econfiguration with respect to the azomethine double bond along with both inter- and intramolecular hydrogen-bonding interactions (Reena et al., 2010; Layana et al., 2014, 2018). Semicarbazones form complexes with a variety of structural

research communications

features such as monomer, dimer and one-dimensional polymers (Kunnath *et al.*, 2016). α -Methyl-*trans*-cinnamaldehyde, a precursor for the synthesis of α -methyl-*trans*-cinnamaldehyde- N^4 -phenylsemicarbazone, has significant antifungal activity and can self-couple and form complexes with some transition metals (Shreaz *et al.*, 2011). The diverse structural features and substantial biological applications have prompted us to synthesize a new semicarbazone derived from α -methyl-*trans*cinnamaldehyde and N^4 -phenylsemicarbazide.

2. Structural commentary

The title compound crystallizes in the triclinic space group $P\overline{1}$ symmetry with two independent molecules, I and II, in the asymmetric unit (Fig. 1). The semicarbazone units in I and II are essentially planar, with maximum deviations from the least-squares plane of 0.042 (1) Å for N2 in molecule I and 0.041 (1) Å for N4 in molecule II. The terminal phenyl rings in both two molecules are twisted away from the semicarbazone mean plane, making dihedral angles of 60.26 (8) and 28.76 $(9)^{\circ}$ in molecule I and 31.07 (9) and 35.45 (8)° in molecule II. Both molecules exist in an *E* configuration with respect to the C=C and azomethine C-N bonds. The azomethine C-N and keto C=O bond lengths [1.273 (2) and 1.2269 (17) Å, respectively] in molecule I are shorter than those for molecule II [1.2766 (19) Å and 1.2302 (18) Å respectively]. In contrast, the C=N and C=O bond lengths bond lengths reported for the two independent molecules of 2-benzoylpyridine semicarbazone are 1.294 (2) and 1.295 (2) Å and 1.2360 (19) and 1.2390 (19) Å respectively (de Lima et al., 2008).

Figure 1

ORTEP diagram showing the two molecules in the asymmetric unit, with atom labels and 50% probability displacement ellipsoids.

Table 1	
Hydrogen-bond geometry (Å, $^\circ$).

Cg1 is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N5-H5′···O1	0.88(1)	1.99 (1)	2.8639 (19)	174 (2)
$N2-H2'\cdots O2$	0.88(1)	1.93 (1)	2.808 (2)	176 (2)
$N3-H3' \cdots N1$	0.87(1)	2.13 (2)	2.6146 (18)	115 (1)
$N6-H6' \cdots N4$	0.87(1)	2.17 (2)	2.6261 (19)	112 (2)
$C13-H13\cdots O2^{i}$	0.93	2.64	3.476 (2)	149
$C32-H32\cdots Cg1^{ii}$	0.93	2.79	3.518 (2)	136

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y, -z + 2.

3. Supramolecular features

In the crystal, two classical and one non-classical hydrogenbonding interactions are observed. Molecules I and II are linked into centrosymmetric dimers through N2-H2'···O2 and N5-H5'···O1 hydrogen bonds with D···A distances of 2.808 (2) Å, and 2.8639 (19) Å, respectively (Fig. 2, Table 1), while C13-H13···O2 interactions with a D···A distance of 3.476 (2) Å, interconnect adjacent dimers, creating cage-like structures that are linked by weak C-H··· π interactions into supramolecular chains along the c-axis direction (Fig. 3). No significant π - π interactions occur. The packing viewed along the *b* axis is shown in Fig. 4.

3.1. Database survey

The structure of the title compound has not previously been reported (CSD version 5.39, update of August 2018; Groom *et al.*, 2016). All geometric parameters in the title compound

Figure 2

 $N-H\cdots O$ hydrogen bonds and weak $C-H\cdots O$ intermolecular interactions (dashed lines) generating centrosymmetric dimers and a cage-like structure.

Weak C-H·· π intermolecular interactions (solid cones), linking the dimeric cage-like structures into a chain along the *c* axis.

agree well with those reported in the literature with the C10–N1/C27-N4 [1.273 (2) and 1.2766 (19) Å], N1-N2/N4-N5 [1.3691 (17) and 1.3679 (18) Å] and C11-O1/C28-O2 [1.2269 (17) and 1.2302 (18) Å] bond distances being comparable to those in benzaldehyde- N^4 -phenylsemicarb-

azone [1.273 (2), 1.369 (2) and 1.225 (2) Å; Layana *et al.*, 2014] and vanillin-*N*-phenylthiosemicarbazone [1.2726 (17), 1.3801 (15) and 1.2404 (15) Å; Layana *et al.*, 2016]

4. Synthesis and crystallization

Hot ethanolic solutions of N^4 -phenylsemicarbazide (0.1512 g, 1 mmol) and α -methyl-*trans*-cinnamaldehyde (0.14 ml, 1 mmol) were mixed and refluxed for about 4 h. Colourless block-shaped crystals of the title compound (yield 83%) were separated by filtration, washed with ethanol and dried over P₄O₁₀ *in vacuo*. Single crystals (m.p. 463±2 K) were obtained by slow evaporation of a 1:1 mixture of ethyl acetate and ethanol.

Analysis calculated: C, 73.03; H, 6.09, N, 15.04%. Found: C, 72.66; H, 6.32; N, 15.29%. Spectrometric data. FT-IR ν_{max} (KBr, cm^{-1}): The spectrum of the title compound shows characteristic absorption bands of the main functional groups at IR (ν_{max} , cm⁻¹): 3379 (⁴NH), 3192 (²NH), 1685 (C=O) 3072, 2960 (C-H aromatic), 1591 (C=N), 1029 (N-N). FT-Raman (cm⁻¹) 3055 (N-H), 1613 (C=O), 1577 (C=N), 1137 (N-N). ¹H NMR (400 MHz) (DMSO-*d*₆, ppm): $\delta_{\rm H}$ 2.2 (*s*, 3H, methyl), 7-7.5 (m, 10H, Ar-H), 6.7 (s, 1H, methine), 7.7 (s, 1H, azomethine), 8.6 (s, 2H, amine), 10.6 (s, 1H, iminol H). ¹³C NMR (400 MHz) (DMSO- d_6 , ppm): δ_C 135.2 (C6), 129.12 (C1 and C5), 128.4 (C2 and C4), 119.6 ppm (C3), 152.9 (C7), 146.4 (C8), 138.9 (C9), 136.5 (C10), 12.9 (C17), 134.3 (C11), 128.5 ppm (C12 and C16), 127.4 ppm (C13 and C15) and 122.4 ppm (C14). UV-visible (200–1000, nm): 268 (π – π *), 342 (n– *π**).

Figure 4 The packing viewed along the *b* axis.

research communications

Table 2
Experimental details.

C ₁₇ H ₁₇ N ₃ O
279.33
Triclinic, $P\overline{1}$
296
10.2140 (6), 10.5133 (8), 15.3297 (10)
106.652 (3), 99.111 (3), 97.416 (4)
1530.51 (18)
4
Μο Κα
0.08
$0.60 \times 0.50 \times 0.50$
Bruker Kappa APEXII CCD
Multi-scan (<i>SADABS</i> ; Bruker, 2004)
0.939, 0.948
12172, 7346, 4038
0.019
0.669
0.051 0.175 0.05
0.051, 0.175, 0.95
7346
397
4
H atoms treated by a mixture of independent and constrained refinement
0.16, -0.23

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXL2014 (Sheldrick, 2015), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Reflections ($\overline{111}$) and (001) were omitted due to bad agreement. All hydrogen atoms bound to carbon atoms were positioned geometrically with C–H distances of 0.93–0.96 Å and refined as riding, with $U_{iso}(H) =$ $1.2U_{eq}(C)$ or $1.5U_{eq}(C-methyl)$. The NH hydrogen atoms were located in a difference-Fourier map and refined with N–H restrained to 0.88 ± 0.01 Å.

Acknowledgements

The authors are thankful to the SAIF, STIC, Cochin University of Science and Technology, Kochi, Kerala, India for providing the instrumental facilities for single-crystal X-ray diffraction, elemental analysis, FT–IR, NMR and UV–Vis spectroscopic studies and to the SAIF IIT Madras, Chennai, India for the FT–Raman spectroscopic data. They are grateful to Dr. M. R. Prathapachandra Kurup, Department of Applied Chemistry, Cochin University of Science & Technology, Kochi-22, India, for the use of the *DIAMOND* software.

Funding information

Funding for this research was provided by: University of Kerala, Thiruvananthapuram, India.

References

- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kala, U. L., Suma, S., Kurup, M. R. P., Krishnan, S. & John, R. P. (2007). Polyhedron, 26, 1427–1435.
- Kunnath, R. J., Sithambaresan, M., Aravindakshan, A. A., Natarajan, A. & Kurup, M. R. P. (2016). *Polyhedron*, **113**, 73–80.
- Kurup, M. R. P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S. R. & Suresh, E. (2011). Polyhedron, 30, 70–78.
- Layana, S. R., Saritha, S. R., Anitha, L., Sithambaresan, M., Sudarsanakumar, M. R. & Suma, S. (2018). J. Mol. Struct. 1157, 579–586.
- Layana, S. R., Siji, V. L., Sudarsanakumar, M. R., Suma, S., Kurup, M. R. P. & Sikha, T. S. (2016). J. Indian Chem. Soc. 93, 577–586.
- Layana, S. R., Sithambaresan, M., Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2014). Acta Cryst. E70, 0591.
- Lima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, 0177.
- Reena, T. A. & Kurup, M. R. P. (2010). J. Chem. Crystallogr. 40, 927–932.
- Reena, T. A., Seena, E. B. & Kurup, M. R. P. (2008). Polyhedron, 27, 1825–1831.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shreaz, S., Sheikh, R. A., Bhatia, R., Neelofar, K., Imran, S., Hashmi, A. A., Manzoor, N., Basir, S. F. & Khan, L. A. (2011). *Biometals*, 24, 923–933.
- Siji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A, 76, 22–28.
- Siji, V. L., Sudarsanakumar, M. R., Suma, S., George, A. & Thomas, P. V. (2011). *Indian J. Chem. Sect. A*, **50**, 793–797.
- Soares, R. O. A., Echevarria, A., Bellieny, M. S. S., Pinho, R. T., de Leo, R. M. M., Seguins, W. S., Machado, E. M., Canto-Cavalheiro, M. M. & Leon, L. L. (2011). *Exp. Parasitol.* **129**, 381–387.
- Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2019). E75, 163-166 [https://doi.org/10.1107/S2056989018018376]

Crystal structure of 2-[(2*E*)-2-methyl-3-phenylprop-2-en-1-ylidene]-*N*-phenylhydrazinecarboxamide

S. R. Saritha, L. Anitha, S. R. Layana, M. Sithambaresan and M. R. Sudarsanakumar

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXL2014* (Sheldrick, 2015); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *publCIF* (Westrip, 2010).

2-[(2E)-2-Methyl-3-phenylprop-2-en-1-ylidene]-N-phenylhydrazinecarboxamide

Crystal data

 $\begin{array}{l} C_{17}H_{17}N_{3}O\\ M_{r}=279.33\\ Triclinic, P1\\ a=10.2140\ (6)\ Å\\ b=10.5133\ (8)\ Å\\ c=15.3297\ (10)\ Å\\ a=106.652\ (3)^{\circ}\\ \beta=99.111\ (3)^{\circ}\\ \gamma=97.416\ (4)^{\circ}\\ V=1530.51\ (18)\ Å^{3} \end{array}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.939, T_{\max} = 0.948$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.175$ S = 0.957346 reflections 397 parameters 4 restraints Z = 4 F(000) = 592 $D_x = 1.212 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3309 reflections $\theta = 2.6-27.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.60 \times 0.50 \times 0.50 \text{ mm}$

12172 measured reflections 7346 independent reflections 4038 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 2.2^\circ$ $h = -13 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -20 \rightarrow 15$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1017P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.88173 (19)	-0.1561 (2)	0.82683 (13)	0.0630 (5)	
H1	0.8824	-0.0637	0.8438	0.076*	
C2	0.9866 (2)	-0.2034 (3)	0.86846 (15)	0.0723 (6)	
H2	1.0576	-0.1430	0.9125	0.087*	
C3	0.9863 (2)	-0.3387 (3)	0.84506 (16)	0.0753 (6)	
Н3	1.0568	-0.3706	0.8732	0.090*	
C4	0.8822 (2)	-0.4271 (2)	0.78030 (15)	0.0734 (6)	
H4	0.8818	-0.5194	0.7647	0.088*	
C5	0.7773 (2)	-0.3802 (2)	0.73766 (13)	0.0613 (5)	
Н5	0.7073	-0.4415	0.6933	0.074*	
C6	0.77527 (16)	-0.2438 (2)	0.76005 (12)	0.0497 (4)	
C7	0.66419 (17)	-0.18955 (19)	0.71894 (12)	0.0502 (4)	
H7	0.6304	-0.1251	0.7604	0.060*	
C8	0.60596 (15)	-0.22156 (18)	0.62933 (11)	0.0442 (4)	
C9	0.64815 (19)	-0.3180 (2)	0.55182 (13)	0.0611 (5)	
H9A	0.7350	-0.3360	0.5739	0.092*	
H9B	0.6534	-0.2795	0.5025	0.092*	
H9C	0.5834	-0.4008	0.5290	0.092*	
C10	0.49813 (15)	-0.15284 (18)	0.60452 (11)	0.0448 (4)	
H10	0.4637	-0.0979	0.6512	0.054*	
C11	0.29530 (15)	-0.10122 (17)	0.41634 (11)	0.0438 (4)	
C12	0.32548 (15)	-0.18810 (17)	0.25412 (11)	0.0447 (4)	
C13	0.42849 (18)	-0.2055 (2)	0.20670 (13)	0.0649 (6)	
H13	0.5143	-0.2049	0.2382	0.078*	
C14	0.4051 (2)	-0.2239 (3)	0.11315 (14)	0.0850 (8)	
H14	0.4754	-0.2355	0.0815	0.102*	
C15	0.2788 (2)	-0.2254 (3)	0.06550 (14)	0.0777 (7)	
H15	0.2634	-0.2373	0.0020	0.093*	
C16	0.17664 (19)	-0.2093 (2)	0.11236 (13)	0.0640 (5)	
H16	0.0907	-0.2110	0.0804	0.077*	
C17	0.19852 (16)	-0.1905 (2)	0.20641 (12)	0.0541 (5)	
H17	0.1278	-0.1794	0.2377	0.065*	
C18	-0.33204 (19)	0.2586 (2)	0.20723 (13)	0.0665 (6)	
H18	-0.3167	0.1721	0.1801	0.080*	
C19	-0.4276 (2)	0.3093 (3)	0.15904 (15)	0.0787 (7)	
H19	-0.4753	0.2573	0.0999	0.094*	
C20	-0.4518 (2)	0.4367 (3)	0.19863 (16)	0.0793 (7)	
H20	-0.5171	0.4706	0.1670	0.095*	
C21	-0.3796(2)	0.5128 (3)	0.28446 (17)	0.0769 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21	-0.3953	0.5993	0.3110	0.092*
C22	-0.2836 (2)	0.4633 (2)	0.33250 (14)	0.0643 (5)
H22	-0.2347	0.5174	0.3908	0.077*
C23	-0.25859 (16)	0.3344 (2)	0.29541 (12)	0.0507 (4)
C24	-0.15906 (16)	0.27357 (19)	0.34168 (12)	0.0498 (4)
H24	-0.1223	0.2101	0.3017	0.060*
C25	-0.11244 (15)	0.29476 (17)	0.43239 (11)	0.0431 (4)
C26	-0.15538 (17)	0.38927 (19)	0.51113 (12)	0.0516 (4)
H26A	-0.0976	0.4761	0.5297	0.077*
H26B	-0.1493	0.3543	0.5627	0.077*
H26C	-0.2469	0.3982	0.4916	0.077*
C27	-0.01521 (15)	0.21447 (17)	0.45568 (11)	0.0451 (4)
H27	0.0122	0.1537	0.4079	0.054*
C28	0.17376 (15)	0.13993 (19)	0.63940 (12)	0.0474 (4)
C29	0.17182 (15)	0.24127 (19)	0.80442 (12)	0.0482 (4)
C30	0.1829 (2)	0.3675 (2)	0.86669 (14)	0.0740 (6)
H30	0.1683	0.4397	0.8452	0.089*
C31	0.2159 (2)	0.3874 (3)	0.96110 (15)	0.0878 (7)
H31	0.2219	0.4729	1.0029	0.105*
C32	0.23933 (19)	0.2836 (3)	0.99329 (15)	0.0733 (6)
H32	0.2616	0.2974	1.0569	0.088*
C33	0.2302 (2)	0.1594 (3)	0.93208 (15)	0.0766 (7)
H33	0.2476	0.0882	0.9540	0.092*
C34	0.1954 (2)	0.1371 (2)	0.83737 (14)	0.0675 (5)
H34	0.1880	0.0510	0.7961	0.081*
N1	0.44999 (12)	-0.16681 (14)	0.51975 (9)	0.0447 (3)
N2	0.34882 (14)	-0.09748 (16)	0.50394 (10)	0.0485 (4)
N3	0.35427 (14)	-0.17255 (17)	0.34979 (10)	0.0536 (4)
N4	0.03382 (12)	0.22481 (14)	0.53988 (9)	0.0455 (3)
N5	0.12237 (14)	0.14139 (16)	0.55249 (10)	0.0516 (4)
N6	0.13105 (14)	0.22397 (17)	0.70885 (10)	0.0538 (4)
01	0.20160 (11)	-0.04300 (13)	0.40141 (8)	0.0525 (3)
O2	0.25451 (13)	0.06620 (15)	0.65140 (8)	0.0648 (4)
H3′	0.4260 (12)	-0.1964 (17)	0.3742 (11)	0.049 (5)*
H5′	0.1507 (17)	0.0898 (17)	0.5059 (9)	0.060 (6)*
H6′	0.080 (2)	0.276 (2)	0.6905 (15)	0.087 (7)*
H2′	0.3176 (16)	-0.0501 (17)	0.5509 (9)	0.055 (5)*
	× ,		~ /	~ /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0670 (11)	0.0636 (14)	0.0591 (11)	0.0160 (10)	0.0032 (9)	0.0238 (10)
C2	0.0595 (11)	0.0850 (18)	0.0701 (13)	0.0139 (11)	-0.0047 (10)	0.0299 (13)
C3	0.0660 (12)	0.0986 (19)	0.0719 (14)	0.0403 (12)	0.0071 (11)	0.0358 (14)
C4	0.0886 (14)	0.0696 (15)	0.0705 (14)	0.0405 (12)	0.0118 (12)	0.0262 (12)
C5	0.0664 (11)	0.0615 (14)	0.0568 (11)	0.0221 (9)	0.0036 (9)	0.0204 (10)
C6	0.0519 (9)	0.0611 (12)	0.0446 (10)	0.0185 (8)	0.0118 (8)	0.0253 (9)
C7	0.0561 (10)	0.0558 (12)	0.0463 (10)	0.0227 (8)	0.0123 (8)	0.0209 (9)

supporting information

C8	0.0415 (8)	0.0493 (10)	0.0467 (10)	0.0124 (7)	0.0108 (7)	0.0198 (8)
C9	0.0615 (11)	0.0734 (14)	0.0521 (11)	0.0290 (10)	0.0109 (8)	0.0186 (10)
C10	0.0455 (8)	0.0494 (11)	0.0446 (9)	0.0136 (7)	0.0116 (7)	0.0192 (8)
C11	0.0416 (8)	0.0477 (10)	0.0457 (9)	0.0108 (7)	0.0081 (7)	0.0197 (8)
C12	0.0453 (9)	0.0457 (10)	0.0419 (9)	0.0117 (7)	0.0044 (7)	0.0128 (8)
C13	0.0478 (10)	0.0906 (16)	0.0518 (11)	0.0219 (10)	0.0054 (8)	0.0141 (11)
C14	0.0620 (12)	0.138 (2)	0.0514 (12)	0.0239 (13)	0.0164 (10)	0.0196 (14)
C15	0.0725 (13)	0.113 (2)	0.0420 (11)	0.0223 (12)	0.0025 (10)	0.0188 (12)
C16	0.0545 (10)	0.0749 (15)	0.0532 (11)	0.0158 (9)	-0.0066 (9)	0.0134 (10)
C17	0.0432 (9)	0.0663 (13)	0.0519 (11)	0.0134 (8)	0.0044 (8)	0.0185 (9)
C18	0.0621 (11)	0.0881 (17)	0.0470 (11)	0.0220 (10)	0.0057 (9)	0.0169 (11)
C19	0.0634 (12)	0.120 (2)	0.0508 (12)	0.0199 (13)	-0.0005 (9)	0.0295 (13)
C20	0.0599 (12)	0.116 (2)	0.0783 (16)	0.0254 (13)	0.0060 (11)	0.0555 (16)
C21	0.0739 (13)	0.0754 (16)	0.0897 (16)	0.0222 (11)	0.0032 (12)	0.0422 (14)
C22	0.0677 (12)	0.0597 (14)	0.0642 (12)	0.0129 (9)	-0.0033 (9)	0.0257 (11)
C23	0.0463 (9)	0.0648 (13)	0.0449 (10)	0.0096 (8)	0.0081 (7)	0.0240 (9)
C24	0.0504 (9)	0.0522 (11)	0.0458 (10)	0.0135 (8)	0.0078 (7)	0.0133 (8)
C25	0.0403 (8)	0.0432 (10)	0.0439 (9)	0.0064 (7)	0.0046 (7)	0.0137 (8)
C26	0.0530 (9)	0.0535 (12)	0.0508 (10)	0.0179 (8)	0.0109 (8)	0.0163 (9)
C27	0.0445 (8)	0.0455 (10)	0.0431 (9)	0.0114 (7)	0.0069 (7)	0.0103 (8)
C28	0.0397 (8)	0.0527 (11)	0.0461 (10)	0.0114 (7)	0.0022 (7)	0.0120 (8)
C29	0.0404 (8)	0.0587 (12)	0.0454 (9)	0.0135 (7)	0.0081 (7)	0.0147 (9)
C30	0.0992 (15)	0.0679 (15)	0.0585 (13)	0.0323 (12)	0.0211 (11)	0.0154 (11)
C31	0.1139 (19)	0.0819 (18)	0.0553 (14)	0.0197 (14)	0.0196 (13)	0.0005 (13)
C32	0.0642 (12)	0.104 (2)	0.0472 (12)	0.0100 (12)	0.0097 (9)	0.0199 (13)
C33	0.0860 (15)	0.0902 (19)	0.0625 (14)	0.0214 (13)	0.0101 (11)	0.0380 (14)
C34	0.0845 (13)	0.0593 (14)	0.0558 (12)	0.0146 (10)	0.0066 (10)	0.0174 (10)
N1	0.0417 (7)	0.0494 (9)	0.0485 (8)	0.0147 (6)	0.0088 (6)	0.0214 (7)
N2	0.0490 (8)	0.0593 (10)	0.0444 (8)	0.0231 (7)	0.0120 (6)	0.0207 (7)
N3	0.0499 (8)	0.0735 (11)	0.0438 (8)	0.0295 (7)	0.0071 (6)	0.0216 (8)
N4	0.0417 (7)	0.0472 (9)	0.0465 (8)	0.0127 (6)	0.0045 (6)	0.0136 (7)
N5	0.0512 (8)	0.0588 (10)	0.0441 (9)	0.0247 (7)	0.0042 (7)	0.0119 (8)
N6	0.0547 (8)	0.0642 (11)	0.0449 (8)	0.0263 (7)	0.0072 (7)	0.0159 (8)
01	0.0492 (6)	0.0641 (9)	0.0501 (7)	0.0244 (6)	0.0089 (5)	0.0218 (6)
O2	0.0679 (8)	0.0774 (10)	0.0485 (7)	0.0406 (7)	0.0013 (6)	0.0124 (7)

Geometric parameters (Å, °)

C1—C2	1.381 (2)	C19—C20	1.375 (3)
C1—C6	1.389 (3)	C19—H19	0.9300
С1—Н1	0.9300	C20—C21	1.361 (3)
C2—C3	1.362 (3)	C20—H20	0.9300
С2—Н2	0.9300	C21—C22	1.378 (2)
C3—C4	1.364 (3)	C21—H21	0.9300
С3—Н3	0.9300	C22—C23	1.386 (3)
C4—C5	1.385 (2)	C22—H22	0.9300
C4—H4	0.9300	C23—C24	1.464 (2)
C5—C6	1.379 (3)	C24—C25	1.340 (2)

supporting information

С5—Н5	0.9300	C24—H24	0.9300
C6—C7	1.469 (2)	C25—C27	1.450 (2)
С7—С8	1.334 (2)	C25—C26	1.493 (2)
С7—Н7	0.9300	C26—H26A	0.9600
C8—C10	1.453 (2)	C26—H26B	0.9600
C8—C9	1.487 (2)	C26—H26C	0.9600
С9—Н9А	0.9600	C27—N4	1.2766 (19)
C9—H9B	0 9600	C27—H27	0.9300
C9—H9C	0.9600	$C_{28} = 0^{2}$	1,2302(18)
C10N1	1,273(2)	C28_N6	1.2362(10) 1.346(2)
	0.0300	C_{28} N5	1.340(2) 1.358(2)
C_{11} C_{11} C_{11}	1,2260(17)	$\begin{array}{c} C_{20} \\ C_{20$	1.358(2)
	1.2209(17)	$C_{29} = C_{34}$	1.303(3)
CII—N2	1.555(2)	C_{29} C_{30}	1.575 (5)
CII—NS	1.330 (2)	C29—IN6	1.410 (2)
	1.373 (2)	C30—C31	1.380 (3)
C12—C17	1.378 (2)	С30—Н30	0.9300
C12—N3	1.406 (2)	C31—C32	1.354 (3)
C13—C14	1.368 (3)	C31—H31	0.9300
C13—H13	0.9300	C32—C33	1.353 (3)
C14—C15	1.374 (3)	С32—Н32	0.9300
C14—H14	0.9300	C33—C34	1.382 (3)
C15—C16	1.359 (3)	С33—Н33	0.9300
C15—H15	0.9300	С34—Н34	0.9300
C16—C17	1.375 (3)	N1—N2	1.3691 (17)
С16—Н16	0.9300	N2—H2′	0.881 (9)
C17—H17	0.9300	N3—H3′	0.868 (9)
C18 - C19	1 383 (3)	N4—N5	1.3679(18)
C18-C23	1.300(3)	N5H5'	0.879 (9)
C18 H18	0.9300	N6 H6'	0.872(9)
	0.9300	110-110	0.872 (9)
C2—C1—C6	121.3 (2)	C21—C20—H20	120.2
C2—C1—H1	119.4	C19—C20—H20	120.2
C6-C1-H1	119.4	C_{20} C_{21} C_{22}	120.8(2)
$C_{3}-C_{2}-C_{1}$	1200(2)	C20—C21—H21	119.6
$C_3 - C_2 - H_2$	120.0 (2)	$C_{22} = C_{21} = H_{21}$	119.6
$C_1 C_2 H_2$	120.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.1(2)
$C_1 = C_2 = C_1$	120.0 110.84(18)	$C_{21} = C_{22} = C_{23}$	121.1(2)
$C_2 = C_3 = C_4$	119.04 (10)	$C_{21} = C_{22} = H_{22}$	119.5
$C_2 = C_3 = H_3$	120.1	$C_{23} = C_{22} = C_{12}$	119.5
C4—C3—H3	120.1	$C_{22} = C_{23} = C_{18}$	117.31 (16)
C3—C4—C5	120.4 (2)	C22—C23—C24	124./3 (16)
С3—С4—Н4	119.8	C18—C23—C24	117.95 (18)
C5—C4—H4	119.8	C25—C24—C23	130.34 (16)
C6—C5—C4	120.90 (19)	C25—C24—H24	114.8
C6—C5—H5	119.6	C23—C24—H24	114.8
C4—C5—H5	119.6	C24—C25—C27	116.69 (15)
C5—C6—C1	117.52 (16)	C24—C25—C26	125.97 (15)
C5—C6—C7	122.88 (17)	C27—C25—C26	117.30 (14)
C1—C6—C7	119.57 (17)	C25—C26—H26A	109.5

C8—C7—C6	127.81 (16)	С25—С26—Н26В	109.5
С8—С7—Н7	116.1	H26A—C26—H26B	109.5
С6—С7—Н7	116.1	С25—С26—Н26С	109.5
C7—C8—C10	118.17 (15)	H26A—C26—H26C	109.5
C7—C8—C9	124.61 (15)	H26B—C26—H26C	109.5
C10—C8—C9	117.15 (14)	N4—C27—C25	121.85 (15)
С8—С9—Н9А	109.5	N4—C27—H27	119.1
C8—C9—H9B	109.5	С25—С27—Н27	119.1
H9A_C9_H9B	109.5	02-C28-N6	123 87 (15)
C8-C9-H9C	109.5	02 - C28 - N5	120.66 (16)
$H_{0}A - C_{0} - H_{0}C$	109.5	N6-C28-N5	120.00(10) 115.48(14)
H9B_C9_H9C	109.5	C_{34} C_{29} C_{30}	113.40(14) 118.95(17)
N1 C10 C8	120.96 (15)	$C_{34} = C_{29} = C_{30}$	110.93(17) 122.71(17)
N1_C10_H10	120.90 (15)	C_{20} C_{20} N6	122.71(17)
11-10	119.5	C_{20} C_{20} C_{21}	110.29(17)
C_{0}	119.5	$C_{29} = C_{30} = C_{31}$	120.2 (2)
OI = CII = N2	120.94 (15)	C29—C30—H30	119.9
OI—CII—N3	124.61 (14)	C31—C30—H30	119.9
N2—C11—N3	114.45 (13)	C32—C31—C30	120.5 (2)
C13—C12—C17	119.33 (16)	С32—С31—Н31	119.8
C13—C12—N3	117.83 (13)	С30—С31—Н31	119.8
C17—C12—N3	122.81 (15)	C33—C32—C31	119.5 (2)
C14—C13—C12	120.14 (16)	С33—С32—Н32	120.3
C14—C13—H13	119.9	С31—С32—Н32	120.3
С12—С13—Н13	119.9	C32—C33—C34	120.8 (2)
C13—C14—C15	120.64 (19)	С32—С33—Н33	119.6
C13—C14—H14	119.7	С34—С33—Н33	119.6
C15—C14—H14	119.7	C29—C34—C33	120.1 (2)
C16—C15—C14	119.16 (18)	С29—С34—Н34	120.0
C16—C15—H15	120.4	С33—С34—Н34	120.0
C14—C15—H15	120.4	C10—N1—N2	116.30 (14)
C15—C16—C17	120.91 (16)	C11—N2—N1	120.63 (14)
C15—C16—H16	119.5	C11 - N2 - H2'	1193(11)
C17—C16—H16	119.5	N1—N2—H2'	1201(11)
C_{16} C_{17} C_{12}	119.81 (17)	$C_{11} = N_3 = C_{12}$	127.30(13)
C_{16} C_{17} H_{17}	120.1	$C11_N3_H3'$	127.30(13)
$C_{12} = C_{17} = H_{17}$	120.1	C12 N3 H3'	111.3(11) 1204(11)
$C_{12} = C_{17} = M_{17}$	120.1 121.2(2)	C12 - N3 - 115	120.4(11)
$C_{10} = C_{10} = C_{20}$	121.3 (2)	$C_2 = 104 - 103$	110.14(14)
C19—C18—H18	119.4	$C_{20} = 105 = 104$	120.20(13)
C23-C18-H18	119.4		117.3(12)
$C_{20} = C_{19} = C_{18}$	119.9 (2)	$N4 - N5 - H5^{\circ}$	122.2(12)
С20—С19—Н19	120.0	C28—N6—C29	125.66 (14)
С18—С19—Н19	120.0	C28—N6—H6'	113.7 (15)
C21—C20—C19	119.53 (19)	C29—N6—H6′	120.3 (15)
C6—C1—C2—C3	-0.8 (3)	C22—C23—C24—C25	29.1 (3)
C1—C2—C3—C4	0.1 (3)	C18—C23—C24—C25	-152.1 (2)
C2—C3—C4—C5	0.5 (4)	C23—C24—C25—C27	178.40 (17)
C3—C4—C5—C6	-0.4 (3)	C23—C24—C25—C26	0.9 (3)

C4—C5—C6—C1	-0.2 (3)	C24—C25—C27—N4	-178.73 (16)
C4—C5—C6—C7	-177.99 (19)	C26—C25—C27—N4	-1.0 (2)
C2-C1-C6-C5	0.8 (3)	C34—C29—C30—C31	-0.8 (3)
C2-C1-C6-C7	178.68 (18)	N6-C29-C30-C31	176.69 (19)
C5—C6—C7—C8	-47.8 (3)	C29—C30—C31—C32	0.9 (4)
C1—C6—C7—C8	134.4 (2)	C30—C31—C32—C33	-0.1 (4)
C6—C7—C8—C10	-179.13 (17)	C31—C32—C33—C34	-1.0 (3)
C6—C7—C8—C9	-2.4 (3)	C30—C29—C34—C33	-0.2 (3)
C7—C8—C10—N1	171.39 (16)	N6-C29-C34-C33	-177.57 (17)
C9—C8—C10—N1	-5.6 (3)	C32—C33—C34—C29	1.1 (3)
C17—C12—C13—C14	0.6 (3)	C8—C10—N1—N2	-179.88 (14)
N3-C12-C13-C14	178.7 (2)	O1—C11—N2—N1	177.56 (15)
C12—C13—C14—C15	-0.1 (4)	N3—C11—N2—N1	-2.8 (2)
C13—C14—C15—C16	-0.4 (4)	C10—N1—N2—C11	177.09 (15)
C14—C15—C16—C17	0.6 (4)	O1—C11—N3—C12	3.3 (3)
C15—C16—C17—C12	-0.1 (3)	N2-C11-N3-C12	-176.34 (17)
C13—C12—C17—C16	-0.4 (3)	C13—C12—N3—C11	149.8 (2)
N3—C12—C17—C16	-178.43 (18)	C17—C12—N3—C11	-32.2 (3)
C23—C18—C19—C20	-0.4 (3)	C25—C27—N4—N5	178.64 (15)
C18—C19—C20—C21	1.2 (4)	O2—C28—N5—N4	-179.26 (16)
C19—C20—C21—C22	-0.7 (4)	N6—C28—N5—N4	0.2 (2)
C20—C21—C22—C23	-0.7 (3)	C27—N4—N5—C28	-176.31 (16)
C21—C22—C23—C18	1.4 (3)	O2—C28—N6—C29	0.5 (3)
C21—C22—C23—C24	-179.73 (19)	N5-C28-N6-C29	-179.02 (16)
C19—C18—C23—C22	-0.9 (3)	C34—C29—N6—C28	-37.1 (3)
C19—C18—C23—C24	-179.82 (19)	C30-C29-N6-C28	145.5 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N5—H5′…O1	0.88(1)	1.99 (1)	2.8639 (19)	174 (2)
N2—H2′···O2	0.88(1)	1.93 (1)	2.808 (2)	176 (2)
N3—H3′…N1	0.87 (1)	2.13 (2)	2.6146 (18)	115 (1)
N6—H6′…N4	0.87(1)	2.17 (2)	2.6261 (19)	112 (2)
C13—H13…O2 ⁱ	0.93	2.64	3.476 (2)	149
C32—H32···· <i>Cg</i> 1 ⁱⁱ	0.93	2.79	3.518 (2)	136

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+2.