

Received 3 December 2018 Accepted 15 January 2019

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; thermal paper; sensitiser; $C = H \cdots \pi$ intermolecular interaction.

CCDC reference: 1890872

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of benzyl 2-naphthyl ether, a sensitiser for thermal paper

Takuya Kikuchi,^a Saori Gontani,^a Kyohei Miyanaga,^b Takaaki Kurata,^b Yoshiki Akatani^c and Shinya Matsumoto^a*

^aGraduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogayaku, Yokohama 240-8501, Japan, ^bFunctional Chemicals R&D Laboratories, Nippon Kayaku Corporation Limited, Shimo 3-31-2, Kita-ku, Tokyo 115-8588, Japan, and ^cColor Materials Division in Functional Chemicals Group, Nippon Kayaku Corporation Limited, Shimo 3-31-2, Kita-ku, Tokyo 115-8588, Japan. *Correspondence e-mail: matsumoto-shinya-py@ynu.ac.jp

The title compound [systematic name: 2-(benzyloxy)naphthalene], $C_{17}H_{14}O$, which is used as a sensitiser for thermal paper, has a twisted conformation with a dihedral angle of 48.71 (12)° between the phenyl ring and the naphthyl ring system. In the crystal, one molecule interacts with six neighbouring molecules *via* intermolecular C-H··· π interactions to form a herringbone molecular arrangement.

1. Chemical context

Thermal printing is a rapid and inexpensive printing technology widely used in commercial applications such as receipts, faxes and tickets (Gregory, 1991; Mendum et al., 2011). Many structural reports are available for thermosensitive dyes and developers (Matsumoto et al., 2010; Kodama et al., 2013; Gontani et al., 2017; Ohashi et al., 2017). On the other hand, we found only one report on the crystal structure of a compound commonly used as a sensitiser for the thermosensitive layer (Rudolph et al., 2010), which can facilitate the dye coloration process by lowering the melting point of the dye/developer composite on thermal paper (US EPA, 2014). The title compound, benzyl 2-naphthyl ether, 1, is known as another commonly used sensitiser. Herein, we report the crystal structure of 1 as fundamental data for the investigation of its influence on the solid-state physicochemical properties of the thermosensitive layer of the thermal paper.

2. Structural commentary

The title compound (Fig. 1) is a simple ether compound in which a benzyl group is connected to a naphthyl group via an ether bond. The two aromatic rings are twisted, which is

Figure 1

The molecular structure of the title compound, **1**, with displacement ellipsoids drawn at the 50% probability level.

mainly attributable to the rotation about the C11-C12 bond. The dihedral angle between the mean planes of the naphthyl ring system (C1-C10) and the phenyl ring (C12-C17) is 48.71 (12)°. The related torsion angles for this dihedral angle are -44.9 (3)° (O1-C11-C12-C17), 178.7 (2)° (C1-O1-C11-C12) and -5.6 (3)° (C6-C1-O1-C11).

3. Supramolecular features

In the crystal, one molecule interacts with six neighbouring molecules *via* intermolecular $C-H\cdots\pi$ interactions (Table 1; Fig. 2). The molecules are linked by a $C-H\cdots\pi$ interaction between the benzene C1–C6 rings (C3–H3···Cg1ⁱ; symmetry code as in Table 1), forming a zigzag chain along the *a*-axis direction. The chains are connected into a layer structure parallel to the *ab* plane *via* a $C-H\cdots\pi$ interaction between the benzene C4/C5/C7–C10 ring and the methylene hydrogen atom (C11–H11A···Cg2ⁱⁱ; Table 1). A weak C–H··· π interaction between the C12–C17 phenyl rings (C16–H16···Cg3ⁱⁱⁱ; Table 1) links the layers and thus the molecules form a herringbone arrangement when viewed along the *a* axis, as shown in Fig. 3.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C4/C5/C7–C10 and C12–C17 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3\cdots Cg1^{i}$	0.93	2.71	3.439 (2)	135
$C11 - H11A \cdots Cg2^{ii}$	0.97	2.63	3.512 (3)	150
$C16-H16\cdots Cg3^{iii}$	0.93	2.87	3.586 (3)	135

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

A packing diagram of the title compound, $\mathbf{1}$, viewed along the *a* axis, showing a herringbone arrangement. H atoms have been omitted for clarity.

4. Database survey

Three analogous compounds of 1, namely, 2-benzyloxy-1naphthaldehyde, 2 [CSD (Groom *et al.*, 2016) refcode SOLVUL; Gao *et al.*, 2009], 2-benzyloxy-3-methoxynaphthalene, 3 (MEBYIC; Huang *et al.*, 2004) and 2-benzyloxy-3-hydroxynaphthalene, 4 (SICGEQ; Peters *et al.*, 1998), have been reported. Compounds, 2, 3 and 4, crystallize in the centrosymmetric space groups $P2_1/c$, $P2_1/c$ and $P\overline{1}$, respectively. Fig. 4 shows an overlay of the molecular geometries of compounds 1–4, which indicates significant geometrical differences in the conformation of the benzyl unit caused by the rotations around the C1–O1 and C11–C12 bonds. Fig. 5

Figure 2

A packing diagram of the title compound, **1**, showing intermolecular $C-H \cdots \pi$ interactions (dashed lines). [Symmetry codes: (A) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2};$ (B) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2};$ (C) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1;$ (D) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1;$ (E) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (F) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1.]$

Figure 4

An overlay of the molecular conformation of four analogous benzyl-2naphthyl ether derivatives, **1** (blue), **2** (red), **3** (yellow) and **4** (green). All H atoms have been omitted for clarity.

shows packing diagrams for compounds 2–4. In the crystals of 2–4, the molecules form zigzag chains $via C-H \cdots O$ inter-

actions. In 2, the chains are linked by π - π interactions into a three-dimensional network, whereas C-H··· π interactions contribute to the arrangement of the chains in 3 and 4.

5. Synthesis and crystallization

The title compound was purchased from Tokyo Kasei Kogyo Co., Ltd., and used without further purification. X-ray diffraction quality colourless platelets were obtained using a liquid–liquid diffusion method, with combination of chloroform and ethanol at 278 K.

6. Refinement

The crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C-H = 0.93 Å) and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$.

research communications

Table 2 Experimental details.

 T_{\min}, T_{\max}

tions

Refinement

 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$

No. of reflections

No. of parameters

H-atom treatment

Absolute structure

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

 $R_{\rm int}$

Crystal data Chemical formula М., Crystal system, space group Temperature (K) *a*, *b*, *c* (Å) $V(Å^3)$ ZRadiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction

C17H14O 234.30 Orthorhombic, P212121 298 6.10537 (10), 7.58687 (13), 26.8196 (5) 1242.30 (4) 4 Cu Ka 0.59 $0.61 \times 0.42 \times 0.04$ Rigaku XtaLAB PRO Multi-scan (CrysAlis PRO; Rigaku OD, 2015) 0.396, 0.976

No. of measured, independent and 3724, 2017, 1841 observed $[F^2 > 2.0\sigma(F^2)]$ reflec-0.033 0.594 $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.042, 0.107, 1.01 2017 163 H-atom parameters constrained 0.12, -0.20Flack x determined using 601 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter -0.3(3)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick. 2015a). SHELXL2014 (Sheldrick, 2015b) and CrystalStructure (Rigaku, 2018).

References

- Gao, R., Li, W.-H., Liu, P. & Wang, P.-A. (2009). Acta Cryst. E65, o534. Gontani, S., Ohashi, T., Miyanaga, K., Kurata, T., Akatani, Y. &
- Matsumoto, S. (2017). Dves Pigments, 139, 549-555. Gregory, P. (1991). High-technology Applications of Organic Color-
- ants. New York: Plenum Press. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta
- Cryst. B72, 171-179. Huang, K.-S., Wang, E.-C. & Chen, H.-M. (2004). Jnl Chin. Chem. Soc. 51, 585-605.
- Kodama, S., Johmoto, K., Sekine, A., Fujii, K. & Uekusa, H. (2013). CrvstEngComm. 15, 4667-4675.
- Matsumoto, S., Takeshima, S., Satoh, S. & Kabashima, K. (2010). Dyes Pigments, 85, 139-142.
- Mendum, T., Stoler, E., VanBenschoten, H. & Warner, J. C. (2011). Green Chem. Lett. Rev. 4, 81-86.
- Ohashi, T., Gontani, S., Miyanaga, K., Kurata, T., Akatani, Y. & Matsumoto, S. (2017). Dyes Pigments, 142, 198-200.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Peters, K., Peters, E.-M., Wuzik, A. & Bringmann, G. (1998). Z. Kristallogr. NCS213, 565-567.
- Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Rudolph, F. A. M., Fuller, A. L., Slawin, A. M. Z., Bühl, M., Aitken, R. A. & Woollins, J. D. (2010). J. Chem. Crystallogr. 40, 253-265.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- US EPA (2014). Bisphenol A Alternative in Thermal Paper. Final report. United States Environmental Protection Agency.

supporting information

Acta Cryst. (2019). E75, 242-245 [https://doi.org/10.1107/S2056989019000690]

Crystal structure of benzyl 2-naphthyl ether, a sensitiser for thermal paper

Takuya Kikuchi, Saori Gontani, Kyohei Miyanaga, Takaaki Kurata, Yoshiki Akatani and Shinya Matsumoto

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *CrystalStructure* (Rigaku, 2018); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2018).

2-(Benzyloxy)naphthalene

Crystal data

$C_{17}H_{14}O$ $M_r = 234.30$ Orthorhombic, $P2_12_12_1$ a = 6.10537 (10) Å b = 7.58687 (13) Å c = 26.8196 (5) Å	$D_{\rm x} = 1.253 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2523 reflections $\theta = 6.1-71.1^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$ T = 298 K
$V = 1242.30 (4) Å^{3}$ Z = 4 F(000) = 496.00	Plate, colourless $0.61 \times 0.42 \times 0.04 \text{ mm}$
Data collection Rigaku XtaLAB PRO diffractometer Detector resolution: 5.811 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) $T_{min} = 0.396, T_{max} = 0.976$ 3724 measured reflections	2017 independent reflections 1841 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.033$ $\theta_{max} = 66.4^\circ, \ \theta_{min} = 3.3^\circ$ $h = -3 \rightarrow 7$ $k = -9 \rightarrow 8$ $l = -31 \rightarrow 31$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.107$ S = 1.01 2017 reflections 163 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0559P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.12$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Absolute structure: Flack x determined using 601 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013)

Absolute structure parameter: -0.3 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F². R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating Rfactor (gt).

	~			TT */TT	
	<i>x</i>	<i>y</i>	2	$O_{\rm iso} / O_{\rm eq}$	
01	0.5853 (3)	0.5557 (2)	0.39703 (5)	0.0492 (4)	
C1	0.6358 (4)	0.5250 (3)	0.44606 (8)	0.0394 (5)	
C5	0.5738 (4)	0.5198 (3)	0.53498 (7)	0.0380 (5)	
C3	0.9115 (3)	0.4027 (3)	0.50010 (8)	0.0432 (5)	
H3	1.0488	0.3518	0.5045	0.052*	
C4	0.7789 (4)	0.4363 (3)	0.54226 (8)	0.0393 (5)	
C12	0.3435 (4)	0.6519 (3)	0.33234 (8)	0.0446 (5)	
C6	0.5058 (3)	0.5652 (3)	0.48601 (8)	0.0405 (5)	
H6	0.3728	0.6223	0.4811	0.049*	
C7	0.8415 (4)	0.3848 (3)	0.59097 (9)	0.0494 (6)	
H7	0.9760	0.3300	0.5960	0.059*	
C2	0.8426 (4)	0.4432 (3)	0.45349 (9)	0.0447 (5)	
H2	0.9310	0.4173	0.4262	0.054*	
C10	0.4399 (4)	0.5505 (3)	0.57705 (8)	0.0466 (5)	
H10	0.3060	0.6072	0.5731	0.056*	
C11	0.3713 (4)	0.6215 (4)	0.38720 (8)	0.0491 (6)	
H11A	0.3492	0.7313	0.4051	0.059*	
H11B	0.2628	0.5374	0.3987	0.059*	
C8	0.7069 (5)	0.4148 (4)	0.63052 (9)	0.0561 (6)	
H8	0.7496	0.3798	0.6623	0.067*	
C9	0.5047 (5)	0.4980 (3)	0.62363 (9)	0.0547 (6)	
Н9	0.4136	0.5177	0.6509	0.066*	
C13	0.1486 (4)	0.6077 (4)	0.30972 (9)	0.0572 (6)	
H13	0.0402	0.5509	0.3280	0.069*	
C17	0.5030 (5)	0.7337 (4)	0.30452 (9)	0.0557 (6)	
H17	0.6365	0.7617	0.3192	0.067*	
C16	0.4669 (6)	0.7750 (4)	0.25472 (10)	0.0650 (8)	
H16	0.5752	0.8315	0.2363	0.078*	
C14	0.1122 (5)	0.6472 (5)	0.25993 (10)	0.0721 (9)	
H14	-0.0195	0.6162	0.2449	0.086*	
C15	0.2717 (5)	0.7322 (4)	0.23289 (10)	0.0706 (9)	
H15	0.2467	0.7607	0.1996	0.085*	
-					

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0436 (8)	0.0647 (10)	0.0394 (8)	0.0042 (7)	0.0028 (7)	0.0050 (7)
C1	0.0388 (11)	0.0405 (11)	0.0387 (11)	-0.0026 (9)	0.0009 (9)	0.0015 (8)
C5	0.0394 (11)	0.0352 (10)	0.0393 (11)	-0.0026 (8)	0.0009 (9)	-0.0017 (9)
C3	0.0325 (9)	0.0461 (11)	0.0510(13)	0.0024 (9)	0.0007 (11)	-0.0012 (10)
C4	0.0366 (10)	0.0367 (10)	0.0448 (11)	-0.0015 (9)	-0.0019 (10)	-0.0017 (9)
C12	0.0473 (12)	0.0465 (11)	0.0401 (11)	0.0038 (10)	-0.0003 (10)	-0.0054 (9)
C6	0.0342 (10)	0.0439 (11)	0.0435 (11)	0.0035 (8)	0.0025 (10)	0.0006 (9)
C7	0.0474 (12)	0.0489 (12)	0.0517 (13)	0.0047 (11)	-0.0082 (12)	0.0020 (10)
C2	0.0342 (10)	0.0509 (12)	0.0490 (12)	-0.0003 (9)	0.0086 (10)	-0.0012 (10)
C10	0.0438 (12)	0.0505 (12)	0.0454 (12)	0.0058 (10)	0.0058 (11)	-0.0035 (10)
C11	0.0433 (12)	0.0619 (14)	0.0423 (12)	0.0026 (11)	0.0017 (10)	0.0014 (10)
C8	0.0682 (16)	0.0590 (14)	0.0411 (12)	0.0024 (13)	-0.0041 (13)	0.0023 (11)
C9	0.0633 (15)	0.0595 (14)	0.0414 (12)	0.0015 (13)	0.0100 (12)	-0.0025 (11)
C13	0.0472 (12)	0.0702 (16)	0.0542 (14)	-0.0016 (12)	-0.0033 (12)	-0.0035 (12)
C17	0.0600 (14)	0.0602 (15)	0.0470 (13)	-0.0119 (12)	-0.0011 (13)	-0.0033 (11)
C16	0.085 (2)	0.0626 (16)	0.0473 (14)	-0.0058 (16)	0.0077 (15)	0.0040 (12)
C14	0.0624 (17)	0.099 (2)	0.0545 (16)	0.0074 (17)	-0.0178 (15)	-0.0066 (16)
C15	0.092 (2)	0.0753 (19)	0.0444 (13)	0.0178 (18)	-0.0101 (16)	0.0030 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C1	1.370 (2)	C2—H2	0.9300
01—C11	1.423 (3)	C10—C9	1.370 (3)
C1—C6	1.368 (3)	C10—H10	0.9300
C1—C2	1.421 (3)	C11—H11A	0.9700
C5—C10	1.413 (3)	C11—H11B	0.9700
C5—C4	1.417 (3)	C8—C9	1.399 (4)
C5—C6	1.420 (3)	C8—H8	0.9300
C3—C2	1.354 (3)	С9—Н9	0.9300
C3—C4	1.414 (3)	C13—C14	1.387 (4)
С3—Н3	0.9300	C13—H13	0.9300
C4—C7	1.416 (3)	C17—C16	1.390 (4)
C12—C17	1.374 (3)	C17—H17	0.9300
C12—C13	1.377 (3)	C16—C15	1.367 (4)
C12—C11	1.499 (3)	C16—H16	0.9300
С6—Н6	0.9300	C14—C15	1.375 (4)
С7—С8	1.361 (4)	C14—H14	0.9300
С7—Н7	0.9300	C15—H15	0.9300
C1—O1—C11	116.36 (18)	O1—C11—C12	109.85 (19)
C6C1O1	125.7 (2)	O1	109.7
C6C1C2	120.2 (2)	C12—C11—H11A	109.7
O1—C1—C2	114.1 (2)	O1-C11-H11B	109.7
C10—C5—C4	118.4 (2)	C12—C11—H11B	109.7
C10—C5—C6	122.0 (2)	H11A—C11—H11B	108.2

119.61 (19)	С7—С8—С9	120.4 (2)
121.3 (2)	С7—С8—Н8	119.8
119.4	С9—С8—Н8	119.8
119.4	C10—C9—C8	120.4 (2)
122.2 (2)	С10—С9—Н9	119.8
118.47 (19)	С8—С9—Н9	119.8
119.3 (2)	C12—C13—C14	120.7 (3)
118.9 (2)	C12—C13—H13	119.7
121.5 (2)	C14—C13—H13	119.7
119.5 (2)	C12—C17—C16	120.8 (3)
120.1 (2)	C12—C17—H17	119.6
120.0	C16—C17—H17	119.6
120.0	C15—C16—C17	119.8 (3)
120.6 (2)	C15—C16—H16	120.1
119.7	C17—C16—H16	120.1
119.7	C15—C14—C13	119.7 (3)
120.3 (2)	C15—C14—H14	120.1
119.8	C13—C14—H14	120.1
119.8	C16—C15—C14	120.2 (3)
120.9 (2)	C16—C15—H15	119.9
119.5	C14—C15—H15	119.9
119.5		
-5.6 (3)	C4—C5—C10—C9	-1.2(3)
174.04 (19)	C6—C5—C10—C9	176.9 (2)
175.9 (2)	C1-01-C11-C12	178.72 (19)
-2.3 (3)	C17—C12—C11—O1	-44.9 (3)
178.9 (2)	C13—C12—C11—O1	139.5 (2)
0.8 (3)	C4—C7—C8—C9	-0.3 (4)
0.8 (3)	C5—C10—C9—C8	0.9 (4)
-177.4 (2)	C7—C8—C9—C10	-0.1 (4)
177.4 (2)	C17—C12—C13—C14	-0.8 (4)
-2.2 (3)	C11—C12—C13—C14	174.9 (3)
-176.7 (2)	C13—C12—C17—C16	1.4 (4)
1.4 (3)	C11—C12—C17—C16	-174.2 (2)
-178.1 (2)	C12—C17—C16—C15	-0.7 (4)
0.0 (3)	C12—C13—C14—C15	-0.4 (4)
1.6 (3)	C17—C16—C15—C14	-0.6 (5)
0.7 (3)	C13—C14—C15—C16	1.2 (5)
-178.9 (2)		
	$\begin{array}{c} 119.61 \ (19) \\ 121.3 \ (2) \\ 119.4 \\ 119.4 \\ 122.2 \ (2) \\ 118.47 \ (19) \\ 119.3 \ (2) \\ 121.5 \ (2) \\ 121.5 \ (2) \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.6 \ (2) \\ 119.7 \\ 119.7 \\ 120.3 \ (2) \\ 119.8 \\ 119.8 \\ 120.9 \ (2) \\ 119.8 \\ 120.9 \ (2) \\ 119.5 \\ 1$	119.61 (19)C7-C8-C9121.3 (2)C7-C8-H8119.4C9-C8-H8119.4C10-C9-C8122.2 (2)C10-C9-H9118.47 (19)C8-C9-H9119.3 (2)C12-C13-C14118.9 (2)C12-C13-H13121.5 (2)C14-C13-H13119.5 (2)C12-C17-C16120.1 (2)C12-C17-H17120.0C16-C17-H17120.0C15-C16-C17120.6 (2)C15-C14-C13120.3 (2)C15-C14-H14119.7C15-C14-C13120.3 (2)C15-C14-H14119.8C13-C14-H14119.8C16-C15-C14120.9 (2)C16-C15-H15119.5C14-C15-H15119.5C14-C15-H15119.5C13-C12-C11-O175.9 (2)C1-O1-C11-C12-2.3 (3)C17-C12-C11-O10.8 (3)C5-C10-C9-C8-177.4 (2)C7-C8-C9-C10177.4 (2)C17-C12-C13-C14-2.2 (3)C11-C12-C13-C14-176.7 (2)C13-C12-C17-C161.4 (3)C11-C12-C13-C14-7.7.4 (2)C17-C12-C13-C14-7.7.4 (2)C17-C12-C13-C14-7.7.4 (2)C17-C12-C13-C14-7.7.4 (2)C17-C12-C13-C14-7.7.6 (2)C13-C12-C17-C16-178.1 (2)C12-C17-C16-178.1 (2)C12-C17-C16-178.1 (2)C12-C13-C14-C15-16 (3)C17-C16-C15-C140.7 (3)C13-C14-C15-C16-178.9 (2)C13-C14-C15

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C4/C5/C7–C10 and C12–C17 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3····Cg1 ⁱ	0.93	2.71	3.439 (2)	135

			supportin	supporting information		
С11—Н11А…Сд2 ^{іі}	0.97	2.63	3.512 (3)	150		
С16—Н16…Сд3ііі	0.93	2.87	3.586 (3)	135		

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) x-1/2, -y+3/2, -z+1; (iii) -x+1, y+1/2, -z+1/2.