

Received 28 January 2019 Accepted 29 January 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: cobalt; 1,2-bis(diphenylphosphanyl)benzene; bidentate phosphane; bisphosphane; pseudotetrahedral; backbonding; crystal structure.

CCDC reference: 1894405

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal structure of bromidopentakis(tetrahydrofuran- κO)magnesium bis[1,2-bis(diphenylphosphanyl)benzene- $\kappa^2 P, P'$]cobaltate(-1) tetrahydrofuran disolvate

Patience B. Girigiri, Stephanie H. Carpenter, William W. Brennessel and Michael L. Neidig*

Department of Chemistry, University of Rochester, Rochester, NY 14627, USA. *Correspondence e-mail: michael.neidig@rochester.edu

Structural characterization of the ionic title complex, $[MgBr(THF)_5]$ - $[Co(dpbz)_2]$ ·2THF [THF is tetrahydrofuran, C₄H₈O; dpbz is 1,2-bis(diphenylphosphanyl)benzene, C₃₀H₂₄P₂], revealed a well-separated cation and anion cocrystallized with two THF solvent molecules that interact with the cation *via* weak C-H···O contacts. The geometry about the cobalt center is pseudotetrahedral, as is expected for a d^{10} metal center, only deviating from an ideal tetrahedral geometry because of the restrictive bite angles of the bidentate phosphane ligands. Three THF ligands of the cation and one co-crystallized THF solvent molecule are each disordered over two orientations. In the extended structure, the cations and THF solvent molecules are arranged in (100) sheets that alternate with layers of anions, the latter of which show various π -interactions, which may explain the particular packing arrangement.

1. Chemical context

Phosphane ligands, especially aryl ones, have been used for many years to support transition metals in low oxidation states (Chatt & Watson, 1961; Chatt & Rowe, 1961). Bidentate phosphanes, or bisphosphanes, such as 1,2-bis(diphenylphosphanyl)benzene (dbpz), have the added benefit of the chelate effect (Cotton *et al.*, 1999). In an attempt to synthesize a cobalt(I) analog of the known iron(I) complex FeX(dpbz)₂, X = Cl, Br, a species proposed to be an active catalyst in Negishi cross-coupling reactions (Adams *et al.*, 2012), CoBr₂ was reacted with four equivalents of *p*-tolylMgBr in tetrahydrofuran (THF) at 298 K. The unexpected result was a cobalt complex in the formal –1 oxidation state, formulated as [MgBr(THF)₅][Co(dpbz)₂]·2THF **1** (Fig. 1). Herein we examine the crystal structure of **1** and compare it with the free bisphosphane and related cobalt species.

2. Structural commentary

The asymmetric unit of **1** contains one $[MgBr(THF)_5]^+$ cation, one $[Co(dpbz)_2]^-$ anion, and two co-crystallized THF solvent

Table 1Selected geometric parameters (Å, °).

Co1-P1	2.1049 (6)	P2-C19	1.867 (2)
Co1-P2	2.0988 (6)	P2-C25	1.847 (2)
Co1-P3	2.0968 (6)	P3-C31	1.859 (2)
Co1-P4	2.1050 (6)	P3-C37	1.846 (2)
P1-C1	1.870(2)	P3-C43	1.870 (2)
P1-C7	1.876 (2)	P4-C36	1.863 (2)
P1-C13	1.849 (2)	P4-C49	1.843 (2)
P2-C6	1.854 (2)	P4-C55	1.874 (2)
P1-Co1-P4	120.60 (3)	P3-Co1-P1	122.08 (3)
P2-Co1-P1	90.18 (2)	P3-Co1-P2	118.74 (3)
P2-Co1-P4	118.59 (2)	P3-Co1-P4	89.75 (2)

molecules, all in general positions. The cation and anion are well separated. The average terminal P–Ph bond length in the anion of 1.859 (5) Å (Table 1) is about 0.02 Å longer than that observed in the free ligand [1.840 (2) Å, Levason *et al.*, 2006], which is consistent with backbonding from the d^{10} , formally Co⁻¹ center into the σ^* orbitals of the P–C bonds. The average terminal P–Ph bond length in **1** of 1.861 (4) Å is identical to that found in [Co(dppe)₂]⁻ (dppe is 1,2-bis(diphenylphosphanyl)ethane), the only other structurally characterized four-coordinate bis(bisphosphane) cobalt(-1) complex to date (Brennessel *et al.*, 2002).

The metal-phosphorus bond lengths are probably the best indicator that backbonding is occurring. The average Co-P bond lengths in **1** and $[Co(dppe)_2]^-$ are 2.1014 (12) and 2.109 (1) Å, respectively. This distance increases by approximately 0.1 Å in structures containing $[Co(dppe)_2]^+$ cations, for which the cobalt center is formally in the +1 oxidation state. The average Co-P bond lengths are 2.2032 (13) and 2.1930 (6) Å, respectively, for $[Co(dppe)_2][C_{60}] \cdot 1,2$ -dichlorobenzene (Konarev *et al.*, 2011) and $[Co(dppe)_2][Ge_9{Si(Si-Me_3)_3}] \cdot C_7H_8$ (Kysliak *et al.*, 2016). The neutral Co⁰ complex Co(dppp)₂ (dppp = 1,2-bis(diphenylphosphanyl)propane; Kysliak *et al.*, 2016) has an average Co-P bond length of 2.173 (1) Å, which unsurprisingly lies between that of **1** and the two Co¹⁺ cations.

Figure 1

Anisotropic displacement ellipsoid plot of **1** drawn at the 50% probability level with hydrogen atoms and solvent molecules omitted. Only the major component of the THF ligand disorder is shown. The reciprocal position of the two ions has been modified for clarity.

Table 2 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.97	2.48	3.438 (4)	167
0.97	2.59	3.555 (8)	179
0.97	2.63	3.565 (6)	162
	<i>D</i> —Н 0.97 0.97 0.97	D-H H···A 0.97 2.48 0.97 2.59 0.97 2.63	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

As is expected for a d^{10} cobalt center, the geometry of **1** is essentially tetrahedral, with a twist angle between the two P— Co—P planes of 89.465 (15) °, for which 90 ° would be ideal. The major deviation from perfect tetrahedral geometry, however, is due to the restrictive bite angles of the dpbz ligands [average 89.97 (3)°, Table 1].

Each terminal phenyl ring from one dpbz ligand is oriented to allow for possible parallel off-center π -system interactions (Martinez & Iverson, 2012) with those from the second dpbz ligand. The ring pair C25–C30/C37–C42 has the shortest centroid–centroid distance of 3.5325 (16) Å and the smallest angle between ring planes of 3.26 (13)°. Ring pairs C19–C24/ C55–C60 and C13–C18/C49–C54 also have reasonable distances and angles of 3.8179 (15) and 4.0796 (16) Å and 11.66 (8) and 8.67 (16)°, respectively. Only the fourth pair, C13–C18/C43–C48, seems unlikely to have any significant intermolecular interaction with its analogous values of 4.4142 (11) Å and 36.99 (7)°.

3. Supramolecular features

Both co-crystallized THF solvent molecules interact with the cation *via* weak $C-H\cdots O$ bonds (Table 2). The cations and

Figure 2

In the bc planes are sheets of cations (red) and THF solvent molecules (blue) alternating with sheets of anions (purple). Hydrogen atoms have been omitted.

research communications

Figure 3

Anisotropic displacement ellipsoid plot of **1** drawn at the 50% probability level showing the extended intra- and intermolecular π -system interactions with hydrogen atoms omitted. The [001] direction (*c* axis) is to the right. (See Fig. 2 for view down [001].) Symmetry-equivalent molecules were generated by crystallographic twofold screw axes with symmetry operators $x, \frac{3}{2} - y, -\frac{1}{2} + z$ and $x, \frac{3}{2} - y, \frac{1}{2} + z$.

THF molecules of solvation are found in sheets normal to [100] that alternate with sheets of the anions (Fig. 2). Within each layer of anions there appear to be numerous potential π system interactions (Martinez & Iverson, 2012; McGaughey et al., 1998). Along [001] is an alternation between short intramolecular offset parallel stacking and longer intermolecular interactions with centroid-centroid distances of 3.533 (2) and 5.252 (2) Å, respectively (Fig. 3). On the opposite side of each molecule and also along the [001] direction is a second analogous set of potential π -system interactions, but with longer centroid–centroid distances of 4.080 (2) and 5.786 (2) Å; however, these rings are nearly coplanar (i.e. the open faces are not directed toward one another) and therefore they are unlikely to have any significant attractive intermolecular interactions. Upon further inspection, the onedimensional chains along [001] are linked to other parallel chains by phenyl rings that are oriented correctly for edge-toface $C-H \cdot \cdot \pi$ attractive interactions (Fig. 4), thus providing a possible explanation for the two-dimensional packing motif of anions in the bc planes.

4. Database survey

The only other structure containing a four-coordinate cobalt(-1) anion with two aryl bisphosphanes is the potassium 18-crown-6 salt of $[Co(dppe)_2]^-$ (Brennessel *et al.*, 2002). Multiple species containing four-coordinate metals with two dpbz ligands are found in the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom *et al.*, 2016) with the following counts: Ni(dpbz)₂: five, Pt(dpbz)₂: two, $[Cu(dpbz)_2]^+$: one, $[Ag(dpbz)_2]^+$: five, $[Au(dpbz)_2]^+$: thirteen.

Figure 4

Anisotropic displacement ellipsoid plot of **1** drawn at the 50% probability level of the edge-to-face π -system contacts that link the chains aligned along [001] in the [010] direction as well, thus offering an explanation for the observed two-dimensional sheets of anions. Hydrogen atoms except for those on carbon atoms C51 and C52 (and their symmetry equivalents) were omitted. The symmetry-equivalent molecule was generated by a crystallographic inversion center with symmetry operator 1 - x, 2 - y, 1 - z.

Additionally there is one occurrence each of the square-planar cations $[Rh(dpbz)_2]^+$ and $[Ni(dpbz)_2]^{2+}$.

5. Synthesis and crystallization

CoBr₂ (99%, Sigma–Aldrich), dpbz (98%, Strem), *p*-tolyl-MgBr (1.0 *M* in THF, Sigma–Aldrich), THF (Sigma–Aldrich, anhydrous, 99.9%, inhibitor-free), and *n*-pentane (Sigma–Aldrich, >99%, anhydrous) were used in the synthesis of **1** without further purification. All reactions were performed in an MBraun inert-atmosphere (N₂) glovebox. CoBr₂ (27 mg, 0.12 mmol) and dpbz (99 mg, 0.22 mmol, 1.8 equiv.) were dissolved in 1 mL THF. *p*-TolylMgBr (494 μ L, 4 equiv.) was added to the cobalt solution at 0.33 mmol min⁻¹ at room temperature. The resulting dark-red solution was allowed to stir at room temperature at 770 r.p.m. for 30 min. The solution was then filtered through Celite. Pentane (1 mL) was layered on top of the solution, and the solution was stored in a 243 K freezer until orange–brown crystalline blocks of **1** were observed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Three THF ligands and one co-

Table 3Experimental details.

Crystal data Chemical formula $[MgBr(C_4H_8O)_5][Co(C_{30}H_{24}P_2)_2]$ --2C4H8O 1560.74 Μ. Crystal system, space group Monoclinic, $P2_1/c$ Temperature (K) 100 15.1096 (2), 38.1917 (3), a, b, c (Å) 14.1266 (1) $\beta (^{\circ})$ V (Å³) 106.102(1)7832.11 (14) Z 4 Cu Ka Radiation type $\mu \,({\rm mm}^{-1})$ 3.60 Crystal size (mm) $0.42 \times 0.13 \times 0.07$ Data collection Diffractometer Rigaku XtaLAB Synergy, Dualflex HvPix Multi-scan (CrysAlis PRO; Absorption correction Rigaku OD, 2018) T_{\min}, T_{\max} 0.290 1.000 No. of measured, independent and 73364, 16393, 14853 observed $[I > 2\sigma(I)]$ reflections Rint 0.048 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.634 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.048, 0.127, 1.06 16393 No. of reflections No. of parameters 974 91 No. of restraints H-atom treatment H-atom parameters constrained $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³) 0.64, -1.69

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

crystallized THF solvent molecule were modeled as disordered over two sets of site each: O2/C65–C68, 0.650 (8):0.350 (8), O3/C69–C72, 0.615 (8):0.385 (8), O5/C77– C80, 0.63 (2):0.37 (2), O7/C85–C88, 0.609 (4):0.391 (4). Analogous bond lengths and angles between the two positions of each disordered THF molecule were restrained to be similar. Anisotropic displacement parameters for proximal atoms were constrained to be equivalent.

H atoms were refined using riding models: aromatic, C–H = 0.93 Å, and methylene, C–H = 0.97 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$.

The maximum residual peak of 0.64 e Å⁻³ and the deepest hole of -1.69 e Å⁻³ are found 0.84 and 0.83 Å from atoms H74*A* and Br1, respectively.

Acknowledgements

PBG thanks the University of Rochester David T. Kearns Center for Leadership and Diversity and Professor Neidig for the opportunity to participate in this research.

Funding information

This project was supported by a National Science Foundation CAREER Award to MLN (CHE-1454370). The NSF is also gratefully acknowledged for support for the acquisition of an X-ray diffractometer (CHE-1725028).

References

- Adams, C. J., Bedford, R. B., Carter, E., Gower, N. J., Haddow, M. F., Harvey, J. N., Huwe, M., Cartes, M. A., Mansell, S. M., Mendoza, C., Murphy, D. M., Neeve, E. C. & Nunn, J. (2012). *J. Am. Chem. Soc.* 134, 10333–10336.
- Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211–1215.
- Chatt, J. & Rowe, G. A. (1961). Nature, 191, 1191.
- Chatt, J. & Watson, H. R. (1961). Nature, 189, 1003–1004.
- Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). *Advanced Inorganic Chemistry* 6th ed., pp. 27–29. New York: John Wiley & Sons, Inc.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Konarev, D. V., Kuźmin, A. V., Simonov, S. V., Khasanov, S. S., Yudanova, E. I. & Lyubovskaya, R. N. (2011). *Dalton Trans.* 40, 4453–4458.
- Kysliak, O., Schrenk, C. & Schnepf, A. (2016). Chem. Eur. J. 22, 18787–18793.
- Levason, W., Reid, G. & Webster, M. (2006). Acta Cryst. C62, 0438-0440.
- Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.
- McGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. **273**, 15458–15463.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Acta Cryst. (2019). E75, 304-307 [https://doi.org/10.1107/S2056989019001671]

Crystal structure of bromidopentakis(tetrahydrofuran- κO)magnesium bis[1,2-bis(diphenylphosphanyl)benzene- $\kappa^2 P, P'$]cobaltate(-1) tetrahydrofuran disolvate

Patience B. Girigiri, Stephanie H. Carpenter, William W. Brennessel and Michael L. Neidig

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Bromidopentakis(tetrahydrofuran- κO)magnesium bis[1,2-bis(diphenylphosphanyl)benzene- $\kappa^2 P, P'$]cobaltate(-1) tetrahydrofuran disolvate

Crystal data

```
[MgBr(C_4H_8O)_5][Co(C_{30}H_{24}P_2)_2] \cdot 2C_4H_8O

M_r = 1560.74

Monoclinic, P2_1/c

a = 15.1096 (2) Å

b = 38.1917 (3) Å

c = 14.1266 (1) Å

\beta = 106.102 (1)°

V = 7832.11 (14) Å<sup>3</sup>

Z = 4
```

Data collection

Rigaku XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Mirror monochromator ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{min} = 0.290, T_{max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.127$ S = 1.0616393 reflections 974 parameters F(000) = 3288 $D_x = 1.324 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 33363 reflections $\theta = 3.5-77.4^{\circ}$ $\mu = 3.60 \text{ mm}^{-1}$ T = 100 KBlock, brown $0.42 \times 0.13 \times 0.07 \text{ mm}$

73364 measured reflections 16393 independent reflections 14853 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 77.9^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -17 \rightarrow 19$ $k = -48 \rightarrow 42$ $l = -17 \rightarrow 17$

91 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 8.1124P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.64 \ e \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -1.69 \ e \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Three THF ligands and one cocrystallized THF solvent molecule are modeled as disordered over two positions: O2/C65-C68, 0.650 (8):0.350 (8), O3/C69-C72, 0.615 (8):0.385 (8), O5/C77-C80, 0.63 (2):0.37 (2), O7/C85-C88, 0.609 (4):0.391 (4). Analogous bond lengths and angles between the two positions of each disordered THF molecule were restrained to be similar. Anisotropic displacement parameters for proximal atoms were constrained to be equivalent.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Col	0.56200 (2)	0.88268 (2)	0.29552 (2)	0.01606 (9)	
P1	0.67543 (4)	0.90934 (2)	0.38763 (4)	0.01799 (11)	
P2	0.64893 (4)	0.85876 (2)	0.22175 (4)	0.01868 (11)	
P3	0.47536 (4)	0.85100 (2)	0.35207 (4)	0.01739 (11)	
P4	0.44633 (4)	0.91051 (2)	0.21208 (4)	0.01730 (11)	
C1	0.78342 (16)	0.89463 (6)	0.35948 (16)	0.0219 (4)	
C2	0.87300 (17)	0.90505 (7)	0.40934 (18)	0.0271 (5)	
H2	0.882334	0.920804	0.461381	0.032*	
C3	0.94796 (18)	0.89211 (7)	0.38189 (19)	0.0321 (5)	
Н3	1.007331	0.898804	0.416351	0.038*	
C4	0.93442 (19)	0.86910 (8)	0.3028 (2)	0.0352 (6)	
H4	0.984716	0.860446	0.284349	0.042*	
C5	0.84630 (17)	0.85912 (7)	0.25175 (18)	0.0284 (5)	
Н5	0.837316	0.844301	0.197676	0.034*	
C6	0.77029 (16)	0.87121 (6)	0.28094 (16)	0.0228 (4)	
C7	0.71708 (15)	0.90607 (6)	0.52539 (15)	0.0200 (4)	
C8	0.68730 (16)	0.87745 (6)	0.56995 (16)	0.0216 (4)	
H8	0.649168	0.860760	0.531045	0.026*	
C9	0.71407 (17)	0.87364 (6)	0.67193 (17)	0.0262 (5)	
H9	0.692940	0.854599	0.700506	0.031*	
C10	0.77197 (17)	0.89796 (7)	0.73140 (17)	0.0264 (5)	
H10	0.789580	0.895353	0.799533	0.032*	
C11	0.80335 (17)	0.92628 (6)	0.68783 (17)	0.0248 (5)	
H11	0.843014	0.942527	0.726858	0.030*	
C12	0.77547 (16)	0.93034 (6)	0.58588 (16)	0.0227 (4)	
H12	0.796104	0.949558	0.557585	0.027*	
C13	0.68770 (16)	0.95732 (6)	0.37907 (15)	0.0223 (4)	
C14	0.64101 (17)	0.97900 (6)	0.42872 (16)	0.0246 (5)	
H14	0.604953	0.969028	0.465297	0.029*	
C15	0.64753 (19)	1.01517 (6)	0.42440 (18)	0.0307 (5)	
H15	0.617267	1.029186	0.459358	0.037*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C16	0.6992 (2)	1.03052 (6)	0.36797 (19)	0.0343 (6)
H16	0.704354	1.054750	0.365632	0.041*
C17	0.74250 (19)	1.00939 (7)	0.31555 (19)	0.0346 (6)
H17	0.775663	1.019538	0.276206	0.042*
C18	0.73743 (18)	0.97309 (6)	0.32057 (17)	0.0277(5)
H18	0.767287	0.959235	0.284812	0.033*
C19	0.64638 (16)	0.87156 (6)	0.09346 (16)	0.0227(4)
C20	0 65586 (18)	0.84885(7)	0 01949 (17)	0.0280(5)
H20	0.667014	0.825189	0.033357	0.034*
C21	0.6487(2)	0.86137 (8)	-0.07511(19)	0.0346 (6)
H21	0.653822	0.845911	-0.124195	0.042*
C22	0.033022 0.63415(19)	0.89669 (8)	-0.09651(18)	0.042
U22	0.620573	0.004047	-0.150615	0.0350 (0)
C23	0.029373 0.62645(17)	0.904947 0.01057 (7)	-0.02300(18)	0.040°
023	0.02043(17)	0.91937(7)	-0.02309(18)	0.0291(3)
H23	0.01/383	0.943347	-0.030007	0.035*
C24	0.03193 (10)	0.90709 (6)	0.07081 (17)	0.0240 (5)
H24	0.625892	0.922629	0.11931/	0.029*
C25	0.65782 (16)	0.81068 (6)	0.21354 (16)	0.0224 (4)
C26	0.73116 (18)	0.79079 (7)	0.26938 (19)	0.0304 (5)
H26	0.782408	0.801993	0.309945	0.036*
C27	0.7287 (2)	0.75444 (7)	0.2652 (2)	0.0388 (6)
H27	0.778131	0.741617	0.303426	0.047*
C28	0.6540 (2)	0.73719 (7)	0.2053 (2)	0.0368 (6)
H28	0.653172	0.712870	0.201900	0.044*
C29	0.5805 (2)	0.75637 (7)	0.15036 (19)	0.0319 (5)
H29	0.529601	0.744936	0.109823	0.038*
C30	0.58174 (18)	0.79270 (6)	0.15510 (17)	0.0274 (5)
H30	0.530978	0.805271	0.118672	0.033*
C31	0.35262 (16)	0.86047 (6)	0.28835 (15)	0.0201 (4)
C32	0.27655 (16)	0.84320 (6)	0.30413 (17)	0.0231 (4)
H32	0.285582	0.824841	0.349060	0.028*
C33	0.18766 (17)	0.85306 (6)	0.25364 (18)	0.0272 (5)
H33	0.137412	0.840906	0.262961	0.033*
C34	0.17416 (17)	0.88139 (6)	0.18868 (18)	0.0266 (5)
H34	0.114784	0.888345	0.155026	0.032*
C35	0.24949 (16)	0.89911 (6)	0.17452 (16)	0.0229 (4)
H35	0.240158	0.918037	0.131435	0.028*
C36	0.33930 (16)	0.88898 (6)	0.22401 (15)	0.0200 (4)
C37	0.48157 (16)	0.80276 (6)	0.34774 (15)	0.0202(4)
C38	0.56174 (17)	0.78692 (6)	0.40489 (17)	0.0256(5)
H38	0 609041	0 800857	0 442388	0.031*
C39	0.57257(19)	0.75087 (6)	0.40711(17)	0.0290 (5)
H39	0.625634	0.740837	0.447858	0.035*
C40	0.5045(2)	0.72977 (6)	0.34878 (19)	0.0313 (5)
H40	0 511021	0 705546	0 350722	0.038*
C41	0.4267(2)	0.74522(7)	0.2875(2)	0.0373 (6)
H41	0 381890	0.731312	0.245942	0.045*
C42	0.41401 (10)	0.78124 (6)	0.245542	0.0308 (5)
UT4	U.TIT/I (19)	0.70127(0)	0.20700 (19)	0.0000 (0)

H42	0.361715	0.791149	0.246673	0.037*	
C43	0.46386 (16)	0.85598 (5)	0.47980 (16)	0.0199 (4)	
C44	0.45917 (17)	0.82847 (6)	0.54279 (16)	0.0237 (5)	
H44	0.455585	0.805586	0.519505	0.028*	
C45	0.45976 (19)	0.83461 (6)	0.64000 (18)	0.0294 (5)	
H45	0.459109	0.815859	0.681794	0.035*	
C46	0.46132 (18)	0.86856 (7)	0.67472 (17)	0.0270 (5)	
H46	0.462255	0.872724	0.739850	0.032*	
C47	0.46148 (17)	0.89631 (6)	0.61135 (17)	0.0249 (5)	
H47	0.460033	0.919183	0.633482	0.030*	
C48	0.46377 (16)	0.89022 (6)	0.51557 (16)	0.0222 (4)	
H48	0.465280	0.909073	0.474367	0.027*	
C49	0.42490 (16)	0.95620 (6)	0.24138 (15)	0.0207 (4)	
C50	0.36400 (16)	0.96529 (6)	0.29604 (16)	0.0228 (4)	
H50	0.331658	0.947800	0.317968	0.027*	
C51	0.35115 (18)	0.99999 (6)	0.31800 (18)	0.0278 (5)	
H51	0 310294	1 005477	0 354377	0.033*	
C52	0.39851(18)	1.02656 (6)	0.28634(18)	0.0269 (5)	
H52	0 388231	1.02030 (0)	0.299325	0.0209 (0)	
C53	0.300231 0.46147(17)	1.01792 (6)	0.23501(17)	0.032 0.0254 (5)	
H53	0 494433	1.035528	0.214478	0.030*	
C54	0.47575 (16)	0.98322 (6)	0.21399 (16)	0.020	
H54	0.519613	0.90322 (0)	0.181308	0.0219 (4)	
C55	0.517013 0.41173(15)	0.91347 (6)	0.07424(15)	0.020 0.0207 (4)	
C56	0.41175(15) 0.38055(17)	0.91347(0) 0.94338(6)	0.07424(15) 0.01859(16)	0.0207 (4) 0.0253 (5)	
H56	0.371206	0.963866	0.050098	0.0203 (0)	
C57	0.36315 (18)	0.903000 0.94309 (7)	-0.08338(17)	0.030 0.0287 (5)	
H57	0.343390	0.963431	-0 119193	0.0287 (3)	
C58	0.37506 (18)	0.903431 0.01275 (7)	-0.13187(16)	0.034 0.0282(5)	
H58	0.363781	0.91275(7)	-0.200015	0.0202 (3)	
C59	0.303781 0.40407 (17)	0.88249 (6)	-0.07749(17)	0.034	
H50	0.40407 (17)	0.861881	-0.109503	0.0204 (0)	
C60	0.411402 0.42100 (16)	0.88287 (6)	0.109505	0.030	
U60	0.42133 (10)	0.862402	0.02393 (10)	0.0218 (4)	
Rr1	0.441202 0.07583 (2)	0.802402 0.75114 (2)	0.039370 0.27301 (3)	0.020° 0.05868 (12)	
Ma1	0.07915(2)	0.73114(2) 0.68385(2)	0.27391(3) 0.30221(6)	0.03808(12)	
Mg1	0.07913(0) 0.00250(12)	0.08385(2)	0.30221(0) 0.33147(12)	0.02803(18)	
02	0.09239(12) 0.2044(6)	0.02940(4)	0.33147(12)	0.0201(3)	0 650 (8)
02 C65	0.2044(0) 0.2808(13)	0.0002(4)	0.4108(0) 0.3063(0)	0.0328(14) 0.0435(10)	0.050(8)
U65 A	0.2608 (13)	0.7075 (4)	0.3903 (9)	0.0433 (19)	0.050(8)
1105A 1165D	0.200331	0.719528	0.333338	0.052*	0.050(8)
П03Б	0.330333 0.3122 (7)	0.091038 0.7336(2)	0.394133 0.4705 (7)	0.032°	0.030(8)
	0.3132(7)	0.7550 (2)	0.4793(7)	0.001(2)	0.030(8)
П00А Ц66Р	0.312449	0.737270	0.434073	0.073*	0.030(8)
C67	0.2730 (5)	0.7201/4 0.72076 (12)	0.517051	0.075	0.000 (8)
U67A	0.2439 (3)	0.72970 (13)	0.5401 (4)	0.0320(13)	0.050 (8)
110/A U67D	0.272313	0.734103	0.009470	0.003*	0.030 (8)
110/D C69	0.171//7	0.743330	0.5216 (6)	0.005°	0.000 (8)
008	0.2130 (0)	0.091/1 (19)	0.3210 (0)	0.0409 (17)	0.000 (8)

H68A	0.263053	0.676108	0.559338	0.049*	0.650 (8)
H68B	0.158368	0.687026	0.537742	0.049*	0.650 (8)
O2′	0.2129 (11)	0.6891 (7)	0.4020 (12)	0.0328 (14)	0.350 (8)
C65′	0.283 (3)	0.7096 (8)	0.3735 (18)	0.0435 (19)	0.350 (8)
H65C	0.259385	0.718214	0.306607	0.052*	0.350 (8)
H65D	0.337444	0.695667	0.378115	0.052*	0.350 (8)
C66′	0.3036 (16)	0.7397 (5)	0.4469 (13)	0.061 (2)	0.350 (8)
H66C	0.366119	0.748169	0.457361	0.073*	0.350 (8)
H66D	0.260966	0.759007	0.425123	0.073*	0.350 (8)
C67′	0.2905 (10)	0.7227 (3)	0.5392 (8)	0.0528 (15)	0.350 (8)
H67C	0.349808	0.718043	0.585804	0.063*	0.350 (8)
H67D	0.255683	0.738016	0.570256	0.063*	0.350 (8)
C68′	0.2388 (12)	0.6888 (4)	0.5082 (12)	0.0409 (17)	0.350 (8)
H68C	0.277851	0.668846	0.533571	0.049*	0.350 (8)
H68D	0.184670	0.687730	0.532226	0.049*	0.350 (8)
O3	-0.0021 (10)	0.6865 (6)	0.4036 (10)	0.034 (2)	0.615 (8)
C69	-0.053 (2)	0.6572 (5)	0.429 (2)	0.0478 (18)	0.615 (8)
H69A	-0.015193	0.636296	0.440744	0.057*	0.615 (8)
H69B	-0.108062	0.652537	0.375647	0.057*	0.615 (8)
C70	-0.0782 (5)	0.6678 (2)	0.5203 (5)	0.0741 (19)	0.615 (8)
H70A	-0.134850	0.656603	0.523682	0.089*	0.615 (8)
H70B	-0.029452	0.661916	0.579042	0.089*	0.615 (8)
C71	-0.0899 (8)	0.7065 (3)	0.5088 (7)	0.092 (3)	0.615 (8)
H71A	-0.150997	0.712406	0.467801	0.111*	0.615 (8)
H71B	-0.079965	0.717898	0.572281	0.111*	0.615 (8)
C72	-0.018 (3)	0.7169 (6)	0.460 (3)	0.069 (3)	0.615 (8)
H72A	-0.038528	0.736769	0.417164	0.083*	0.615 (8)
H72B	0.038596	0.723300	0.509514	0.083*	0.615 (8)
O3′	0.0124 (19)	0.6851 (10)	0.4153 (18)	0.034 (2)	0.385 (8)
C69′	-0.054 (3)	0.6578 (9)	0.420 (4)	0.0478 (18)	0.385 (8)
H69C	-0.023401	0.637953	0.457594	0.057*	0.385 (8)
H69D	-0.086481	0.649934	0.353927	0.057*	0.385 (8)
C70′	-0.1195 (8)	0.6747 (4)	0.4689 (8)	0.0741 (19)	0.385 (8)
H70C	-0.170933	0.685534	0.421139	0.089*	0.385 (8)
H70D	-0.142676	0.657841	0.507567	0.089*	0.385 (8)
C71′	-0.0591 (12)	0.7015 (5)	0.5333 (13)	0.092 (3)	0.385 (8)
H71C	-0.016780	0.690800	0.590404	0.111*	0.385 (8)
H71D	-0.095267	0.719204	0.554886	0.111*	0.385 (8)
C72′	-0.009 (5)	0.7164 (9)	0.464 (5)	0.069 (3)	0.385 (8)
H72C	-0.048369	0.732368	0.417296	0.083*	0.385 (8)
H72D	0.046244	0.728652	0.499914	0.083*	0.385 (8)
O4	-0.04687 (12)	0.67674 (5)	0.19181 (13)	0.0308 (4)	
05	0.14741 (14)	0.67323 (6)	0.19244 (15)	0.0393 (4)	
C61	0.0442 (2)	0.60163 (7)	0.2688 (2)	0.0357 (6)	
H61A	0.048397	0.604591	0.201990	0.043*	
H61B	-0.020300	0.601421	0.267637	0.043*	
C62	0.0908 (2)	0.56810 (7)	0.3130 (2)	0.0388 (6)	
H62A	0.143673	0.562937	0.288974	0.047*	

H62B	0.048477	0.548477	0.298570	0.047*	
C63	0.1199 (2)	0.57638 (7)	0.4218 (2)	0.0378 (6)	
H63A	0.170251	0.561467	0.457036	0.045*	
H63B	0.068850	0.573869	0.450490	0.045*	
C64	0.15005 (19)	0.61415 (6)	0.42258 (19)	0.0307 (5)	
H64A	0.140981	0.626320	0.479427	0.037*	
H64B	0.214657	0.615542	0.424626	0.037*	
C73	-0.1252 (2)	0.69921 (7)	0.1900 (2)	0.0387 (6)	
H73A	-0.104208	0.721455	0.221390	0.046*	
H73B	-0.164713	0.688165	0.224965	0.046*	
C74	-0.1766 (3)	0.70470 (10)	0.0843 (3)	0.0631 (10)	
H74A	-0.174948	0.729176	0.066577	0.076*	
H74B	-0.240390	0.697599	0.072408	0.076*	
C75	-0.1287 (2)	0.68231 (8)	0.0248 (2)	0.0430 (7)	
H75A	-0.089869	0.696463	-0.004307	0.052*	
H75B	-0.173152	0.669851	-0.027032	0.052*	
C76	-0.0716 (2)	0.65707 (7)	0.10046 (19)	0.0340 (6)	
H76A	-0.107210	0.636466	0.106415	0.041*	
H76B	-0.016999	0.649800	0.082313	0.041*	
C77	0.1439 (18)	0.6960 (4)	0.1093 (10)	0.0552 (19)	0.63 (2)
H77A	0.191600	0.713717	0.126867	0.066*	0.63 (2)
H77B	0.084462	0.707410	0.087106	0.066*	0.63 (2)
C78	0.1598 (10)	0.6716 (3)	0.0293 (8)	0.065 (2)	0.63 (2)
H78A	0.102009	0.665872	-0.018558	0.077*	0.63 (2)
H78B	0.200498	0.682462	-0.004627	0.077*	0.63 (2)
C77′	0.136 (3)	0.6945 (7)	0.1048 (19)	0.0552 (19)	0.37 (2)
H77C	0.156540	0.718280	0.122321	0.066*	0.37 (2)
H77D	0.071724	0.695078	0.066605	0.066*	0.37 (2)
C78′	0.1951 (15)	0.6769 (3)	0.0463 (15)	0.065 (2)	0.37 (2)
H78C	0.254901	0.688101	0.058996	0.077*	0.37 (2)
H78D	0.164921	0.677615	-0.023935	0.077*	0.37 (2)
C79	0.2041 (2)	0.63911 (11)	0.0853 (2)	0.0565 (9)	
H79A	0.163914	0.618969	0.066437	0.068*	0.63 (2)
H79B	0.262407	0.634057	0.072041	0.068*	0.63 (2)
H79C	0.148479	0.625563	0.058270	0.068*	0.37 (2)
H79D	0.256559	0.627066	0.073572	0.068*	0.37 (2)
C80	0.2183 (2)	0.64766 (9)	0.1924 (2)	0.0442 (7)	
H80A	0.211180	0.626936	0.229260	0.053*	
H80B	0.279190	0.657418	0.220931	0.053*	
06	-0.05333 (17)	0.49866 (6)	0.22536 (16)	0.0474 (5)	
C81	-0.0188 (3)	0.49417 (10)	0.1421 (2)	0.0534 (8)	
H81A	0.038407	0.481068	0.160298	0.064*	
H81B	-0.007326	0.516744	0.116385	0.064*	
C82	-0.0908 (2)	0.47449 (9)	0.0663 (3)	0.0492 (8)	
H82A	-0.062744	0.458644	0.029350	0.059*	
H82B	-0.131323	0.490446	0.020755	0.059*	
C83	-0.1428 (3)	0.45449 (9)	0.1261 (3)	0.0595 (10)	
H83A	-0.208385	0.459082	0.102317	0.071*	

H83B	-0.132509	0.429510	0.122733	0.071*	
C84	-0.1046 (2)	0.46776 (10)	0.2301 (3)	0.0582 (9)	
H84A	-0.154348	0.472953	0.259008	0.070*	
H84B	-0.065064	0.450215	0.270418	0.070*	
07	-0.0684 (6)	0.5669 (2)	0.5248 (6)	0.0581 (11)	0.391 (4)
C85	-0.1238 (7)	0.5650 (3)	0.5912 (8)	0.0498 (14)	0.391 (4)
H85A	-0.171262	0.582890	0.575925	0.060*	0.391 (4)
H85B	-0.086465	0.568282	0.658530	0.060*	0.391 (4)
C86	-0.1665 (8)	0.5290 (3)	0.5781 (8)	0.059 (2)	0.391 (4)
H86A	-0.127405	0.512239	0.622100	0.071*	0.391 (4)
H86B	-0.226620	0.529216	0.590166	0.071*	0.391 (4)
C87	-0.1741 (10)	0.5205 (3)	0.4720 (9)	0.085 (2)	0.391 (4)
H87A	-0.170803	0.495447	0.461927	0.102*	0.391 (4)
H87B	-0.230730	0.529562	0.428331	0.102*	0.391 (4)
C88	-0.0918 (8)	0.5389 (3)	0.4575 (8)	0.0597 (19)	0.391 (4)
H88A	-0.040437	0.522732	0.468120	0.072*	0.391 (4)
H88B	-0.105216	0.547718	0.390648	0.072*	0.391 (4)
07′	-0.0982 (4)	0.57383 (12)	0.4729 (4)	0.0581 (11)	0.609 (4)
C85′	-0.1206 (4)	0.58116 (18)	0.5618 (4)	0.0498 (14)	0.609 (4)
H85C	-0.173875	0.596458	0.549324	0.060*	0.609 (4)
H85D	-0.069352	0.592606	0.608368	0.060*	0.609 (4)
C86′	-0.1416 (5)	0.5462 (2)	0.6032 (5)	0.059 (2)	0.609 (4)
H86C	-0.100306	0.542011	0.668204	0.071*	0.609 (4)
H86D	-0.204677	0.545470	0.607165	0.071*	0.609 (4)
C87′	-0.1266 (8)	0.51961 (19)	0.5302 (6)	0.085 (2)	0.609 (4)
H87C	-0.066081	0.508980	0.552718	0.102*	0.609 (4)
H87D	-0.173175	0.501398	0.518011	0.102*	0.609 (4)
C88′	-0.1352 (6)	0.54173 (19)	0.4404 (5)	0.0597 (19)	0.609 (4)
H88C	-0.101999	0.531100	0.398034	0.072*	0.609 (4)
H88D	-0.199375	0.544161	0.403442	0.072*	0.609 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.02125 (18)	0.01477 (17)	0.01464 (16)	0.00069 (13)	0.00911 (13)	0.00017 (12)
P1	0.0234 (3)	0.0164 (2)	0.0162 (2)	-0.00055 (19)	0.0087 (2)	-0.00049 (18)
P2	0.0241 (3)	0.0183 (3)	0.0165 (2)	0.0010(2)	0.0104 (2)	-0.00129 (19)
P3	0.0245 (3)	0.0140 (2)	0.0164 (2)	0.00024 (19)	0.0102 (2)	0.00049 (18)
P4	0.0234 (3)	0.0152 (2)	0.0155 (2)	0.00125 (19)	0.0091 (2)	0.00117 (18)
C1	0.0258 (11)	0.0219 (11)	0.0202 (10)	0.0008 (8)	0.0100 (8)	0.0019 (8)
C2	0.0251 (12)	0.0293 (12)	0.0284 (11)	-0.0031 (9)	0.0101 (9)	-0.0021 (9)
C3	0.0230 (12)	0.0400 (14)	0.0349 (13)	-0.0034 (10)	0.0110 (10)	-0.0006 (11)
C4	0.0272 (13)	0.0466 (16)	0.0372 (14)	0.0029 (11)	0.0179 (11)	-0.0023 (12)
C5	0.0257 (12)	0.0358 (13)	0.0281 (12)	0.0011 (10)	0.0146 (10)	-0.0041 (10)
C6	0.0279 (12)	0.0232 (11)	0.0204 (10)	0.0005 (9)	0.0119 (9)	0.0012 (8)
C7	0.0246 (11)	0.0194 (10)	0.0181 (10)	0.0025 (8)	0.0096 (8)	0.0005 (8)
C8	0.0249 (11)	0.0205 (10)	0.0214 (10)	0.0024 (8)	0.0100 (9)	0.0014 (8)
C9	0.0295 (12)	0.0256 (11)	0.0266 (11)	0.0038 (9)	0.0130 (9)	0.0066 (9)

C10	0.0294 (12)	0.0338 (13)	0.0178 (10)	0.0068 (10)	0.0094 (9)	0.0004 (9)
C11	0.0278 (12)	0.0237 (11)	0.0227 (11)	0.0044 (9)	0.0069 (9)	-0.0028(9)
C12	0.0270 (11)	0.0201 (10)	0.0217 (10)	0.0028 (9)	0.0081 (9)	0.0010 (8)
C13	0.0290 (12)	0.0212 (11)	0.0166 (9)	-0.0013 (9)	0.0063 (8)	0.0023 (8)
C14	0.0335 (12)	0.0193 (11)	0.0208 (10)	-0.0002(9)	0.0074 (9)	0.0008 (8)
C15	0.0421 (14)	0.0213 (11)	0.0246 (11)	0.0037 (10)	0.0023 (10)	-0.0011 (9)
C16	0.0441 (15)	0.0173 (11)	0.0352 (13)	-0.0042(10)	0.0004 (11)	0.0071 (10)
C17	0.0374 (14)	0.0322 (13)	0.0319 (13)	-0.0078 (11)	0.0057 (11)	0.0132 (11)
C18	0.0326 (13)	0.0266 (12)	0.0251 (11)	-0.0028(10)	0.0099 (10)	0.0059 (9)
C19	0.0223 (11)	0.0269 (11)	0.0213 (10)	-0.0016 (9)	0.0101 (8)	-0.0001 (9)
C20	0.0381 (14)	0.0301 (12)	0.0215 (11)	-0.0004 (10)	0.0175 (10)	-0.0015 (9)
C21	0.0447 (15)	0.0408 (15)	0.0233 (12)	-0.0049 (12)	0.0178 (11)	-0.0050 (10)
C22	0.0359 (14)	0.0452 (15)	0.0210(11)	-0.0046 (11)	0.0131 (10)	0.0061 (10)
C23	0.0299 (13)	0.0325 (13)	0.0269 (12)	-0.0017 (10)	0.0113 (10)	0.0070 (10)
C24	0.0252 (11)	0.0275 (12)	0.0227 (11)	-0.0021 (9)	0.0126 (9)	0.0003 (9)
C25	0.0305 (12)	0.0212 (11)	0.0198 (10)	0.0015 (9)	0.0144 (9)	-0.0011 (8)
C26	0.0336 (13)	0.0265 (12)	0.0323 (12)	0.0050 (10)	0.0110 (10)	-0.0008 (10)
C27	0.0443 (16)	0.0272 (13)	0.0470 (15)	0.0134 (11)	0.0159 (13)	0.0037 (11)
C28	0.0541 (17)	0.0200 (12)	0.0433 (15)	0.0052 (11)	0.0251 (13)	-0.0024 (10)
C29	0.0461 (15)	0.0240 (12)	0.0292 (12)	-0.0046 (10)	0.0166 (11)	-0.0058 (10)
C30	0.0377 (14)	0.0226 (11)	0.0237 (11)	0.0007 (10)	0.0117 (10)	-0.0012 (9)
C31	0.0289 (11)	0.0172 (10)	0.0173 (9)	0.0004 (8)	0.0115 (8)	-0.0022(8)
C32	0.0253 (11)	0.0219 (11)	0.0258 (11)	-0.0009 (9)	0.0132 (9)	0.0004 (9)
C33	0.0271 (12)	0.0269 (12)	0.0320 (12)	-0.0045 (9)	0.0155 (10)	-0.0031 (9)
C34	0.0238 (12)	0.0276 (12)	0.0289 (12)	0.0032 (9)	0.0082 (9)	-0.0016 (9)
C35	0.0252 (11)	0.0221 (11)	0.0229 (10)	0.0018 (9)	0.0090 (9)	-0.0005 (8)
C36	0.0277 (11)	0.0184 (10)	0.0167 (9)	-0.0004 (8)	0.0107 (8)	-0.0023 (8)
C37	0.0290 (11)	0.0189 (10)	0.0167 (9)	0.0006 (8)	0.0129 (8)	-0.0012 (8)
C38	0.0328 (13)	0.0219 (11)	0.0225 (10)	0.0034 (9)	0.0084 (9)	-0.0031 (9)
C39	0.0413 (14)	0.0242 (12)	0.0225 (11)	0.0094 (10)	0.0107 (10)	0.0002 (9)
C40	0.0489 (16)	0.0163 (11)	0.0331 (13)	0.0034 (10)	0.0185 (11)	-0.0026 (9)
C41	0.0405 (15)	0.0237 (13)	0.0464 (15)	-0.0011 (11)	0.0099 (12)	-0.0118 (11)
C42	0.0354 (14)	0.0219 (12)	0.0319 (12)	0.0011 (10)	0.0038 (10)	-0.0070 (10)
C43	0.0248 (11)	0.0163 (10)	0.0212 (10)	-0.0001 (8)	0.0109 (8)	-0.0001 (8)
C44	0.0359 (13)	0.0195 (10)	0.0209 (10)	-0.0001 (9)	0.0162 (9)	0.0014 (8)
C45	0.0427 (14)	0.0253 (12)	0.0245 (11)	0.0028 (10)	0.0164 (10)	0.0050 (9)
C46	0.0342 (13)	0.0316 (13)	0.0189 (10)	0.0031 (10)	0.0136 (9)	-0.0015 (9)
C47	0.0305 (12)	0.0212 (11)	0.0256 (11)	0.0013 (9)	0.0123 (9)	-0.0061 (9)
C48	0.0302 (12)	0.0172 (10)	0.0216 (10)	0.0009 (8)	0.0113 (9)	0.0012 (8)
C49	0.0270 (11)	0.0177 (10)	0.0176 (10)	0.0006 (8)	0.0064 (8)	0.0003 (8)
C50	0.0310 (12)	0.0195 (10)	0.0221 (10)	-0.0001 (9)	0.0144 (9)	-0.0001 (8)
C51	0.0356 (13)	0.0229 (11)	0.0296 (12)	0.0013 (10)	0.0166 (10)	-0.0036 (9)
C52	0.0355 (13)	0.0161 (10)	0.0295 (12)	0.0021 (9)	0.0096 (10)	-0.0024 (9)
C53	0.0313 (12)	0.0178 (11)	0.0269 (11)	-0.0012 (9)	0.0077 (9)	0.0044 (9)
C54	0.0256 (11)	0.0203 (11)	0.0213 (10)	0.0004 (8)	0.0091 (8)	0.0015 (8)
C55	0.0238 (11)	0.0231 (11)	0.0180 (10)	-0.0003 (8)	0.0103 (8)	0.0004 (8)
C56	0.0332 (12)	0.0233 (11)	0.0208 (10)	0.0035 (9)	0.0100 (9)	0.0015 (8)
C57	0.0360 (13)	0.0271 (12)	0.0232 (11)	0.0002 (10)	0.0083 (10)	0.0049 (9)

C58	0.0341 (13)	0.0364 (13)	0.0155 (10)	-0.0030 (10)	0.0092 (9)	0.0014 (9)
C59	0.0279 (12)	0.0273 (12)	0.0238 (11)	-0.0022(9)	0.0118 (9)	-0.0031 (9)
C60	0.0244 (11)	0.0215 (11)	0.0215 (10)	0.0002 (8)	0.0094 (9)	0.0015 (8)
Br1	0.04265 (19)	0.02299 (15)	0.1025 (3)	-0.00182(12)	0.00695 (18)	0.01037 (16)
Mg1	0.0286 (4)	0.0227 (4)	0.0349 (4)	-0.0027 (3)	0.0092 (3)	-0.0004(3)
01	0.0312 (9)	0.0215 (8)	0.0269 (8)	-0.0027(7)	0.0102 (7)	-0.0027(6)
02	0.0312 (18)	0.0277 (11)	0.039 (3)	-0.0074 (14)	0.0084 (18)	-0.005(2)
C65	0.0319 (17)	0.028 (2)	0.070 (6)	-0.0095 (15)	0.013 (4)	0.000 (4)
C66	0.055 (3)	0.030 (4)	0.086 (7)	-0.014(3)	-0.001(4)	0.002 (4)
C67	0.063 (4)	0.023 (2)	0.049 (2)	0.011 (2)	-0.022(3)	-0.0091 (18)
C68	0.047 (5)	0.0291 (19)	0.037(3)	0.004 (2)	-0.003(2)	-0.0057(17)
02'	0.0312(18)	0.0277(11)	0.039(3)	-0.0074(14)	0.0084(18)	-0.005(2)
C65′	0.0319(17)	0.028(2)	0.070 (6)	-0.0095(15)	0.013 (4)	0.000(4)
C66'	0.055(3)	0.020(2) 0.030(4)	0.086(7)	-0.014(3)	-0.001(4)	0.002(4)
C67'	0.063(4)	0.023(2)	0.049(2)	0.011(2)	-0.022(3)	-0.002(1)
C68'	0.003(1) 0.047(5)	0.029(2)	0.017(2) 0.037(3)	0.011(2) 0.004(2)	-0.022(3)	-0.0057(17)
03	0.034(5)	0.0251(15)	0.037(3)	0.004(4)	0.005(2)	-0.013(3)
C69	0.037(3)	0.055(2)	0.030(5)	-0.0039(16)	0.000(1) 0.027(3)	-0.003(3)
C70	0.0457(17)	0.000(2) 0.120(5)	0.047(3) 0.051(4)	0.0059(10)	0.027(3)	0.005(5)
C71	0.003(1) 0.113(9)	0.124 (6)	0.031(1) 0.044(5)	0.033(1)	0.039(5)	-0.007(4)
C72	0.013(7)	0.124(0) 0.060(2)	0.044(3) 0.051(3)	0.071(3)	0.023(5)	-0.032(2)
03'	0.000(7) 0.034(5)	0.000(2) 0.035(2)	0.031(3)	0.020(3)	0.007(3)	-0.013(3)
C69'	0.037(3)	0.055(2)	0.030(5) 0.047(5)	-0.0039(16)	0.000(1) 0.027(3)	-0.003(3)
C70′	0.065(4)	0.000(2) 0.120(5)	0.011(3)	0.0059(10)	0.027(3)	0.005(3)
C71′	0.003(4) 0.113(9)	0.124 (6)	0.031(4) 0.044(5)	0.055(4)	0.039(5)	-0.007(4)
C72'	0.013(7)	0.124(0)	0.044(3)	0.071(3)	0.023(5)	-0.032(2)
04	0.000(7)	0.000(2) 0.0343(10)	0.031(3)	0.020(3)	0.007(3)	-0.032(2)
05	0.0291(9) 0.0358(10)	0.0343(10) 0.0463(11)	0.0292(9)	0.0012(7)	0.0002(7) 0.0197(8)	0.0059(7)
C61	0.0300(10) 0.0407(15)	0.0709(11)	0.0362(13)	-0.0042(11)	0.0197(0)	-0.0085(11)
C62	0.0407(15) 0.0438(16)	0.0248(13)	0.0302(15)	0.0042(11)	0.0006(11)	-0.0080(11)
C63	0.0471(16)	0.0210(12)	0.0421(15)	-0.0012(11)	0.0000(12)	0.0026(11)
C64	0.0365(14)	0.0230(12) 0.0242(12)	0.0121(12) 0.0300(12)	-0.0012(10)	0.0169(12)	0.0026 (11)
C73	0.0305(14) 0.0326(14)	0.0242(12) 0.0311(14)	0.0500(12)	0.0012(10)	0.0009(10) 0.0079(12)	-0.0000(5)
C74	0.0320(14)	0.0311(14) 0.0407(18)	0.0505(10)	0.0055(11) 0.0168(18)	-0.0041(18)	-0.0001(12)
C75	0.000(3) 0.0474(17)	0.0407(10) 0.0438(16)	0.033(2)	-0.0034(13)	0.0041(10) 0.0050(12)	0.0001(13)
C76	0.0474(17) 0.0408(15)	0.0336(10)	0.0341(14) 0.0273(12)	-0.0023(11)	0.0030(12)	-0.0018(10)
C77	0.0400(15)	0.0550(14)	0.0275(12)	-0.0023(11)	0.0000(11)	0.0010(10)
C78	0.051(1)	0.001(5)	0.030(2) 0.039(4)	0.000(2)	0.023(2) 0.022(4)	0.027(2)
C77'	0.051(0)	0.105(3)	0.055(4)	-0.006(2)	0.022(4)	0.022(3)
C78'	0.051(4)	0.004(5) 0.109(5)	0.030(2)	0.000(2)	0.023(2) 0.022(4)	0.027(2)
C79	0.031(0)	0.105(3)	0.035(4)	0.014(4)	0.022(4)	-0.0014(17)
C80	0.0411(10) 0.0328(15)	0.060(3)	0.0442(16)	0.0007(17) 0.0087(13)	0.0147(14) 0.0185(12)	0.0014(17) 0.0094(14)
06	0.0520(15) 0.0610(14)	0.000(2) 0.0383(11)	0.0449(10) 0.0480(12)	-0.0062(10)	0.0105(12) 0.0235(10)	-0.0034(9)
C81	0.0010(14)	0.0505(11)	0.0456(12)	-0.0177(17)	0.0203 (10) 0.0202 (15)	-0.0034(9)
C82	0.030(2)	0.003(2)	0.0546 (19)	0 0049 (14)	0.0202(15)	-0.0021(10)
C83	0.0475 (19)	0.0470 (19)	0.096 (3)	-0.0077(15)	0.0000(10)	-0.0279(19)
C84	0.0416(18)	0.061 (2)	0.067(2)	-0.0089(15)	0.0075 (16)	0.0274(18)
07	0.071 (3)	0.001(2)	0.007(2)	-0.005(2)	0.0075(10)	0.0277(10)
01	0.071 (0)	0.007 (4)	0.000 (0)	0.000 (2)	0.040 (0)	0.001(4)

C85	0.043 (2)	0.065 (5)	0.042 (3)	0.007 (3)	0.013 (2)	-0.003 (3)
C86	0.044 (4)	0.086 (7)	0.051 (4)	0.006 (3)	0.018 (3)	0.027 (4)
C87	0.139 (8)	0.056 (3)	0.075 (5)	0.017 (4)	0.054 (5)	0.025 (4)
C88	0.083 (6)	0.059 (3)	0.040 (3)	0.027 (4)	0.021 (4)	0.009 (2)
O7′	0.071 (3)	0.059 (2)	0.058 (3)	-0.005 (2)	0.040 (3)	0.004 (2)
C85′	0.043 (2)	0.065 (5)	0.042 (3)	0.007 (3)	0.013 (2)	-0.003 (3)
C86′	0.044 (4)	0.086 (7)	0.051 (4)	0.006 (3)	0.018 (3)	0.027 (4)
C87′	0.139 (8)	0.056 (3)	0.075 (5)	0.017 (4)	0.054 (5)	0.025 (4)
C88′	0.083 (6)	0.059 (3)	0.040 (3)	0.027 (4)	0.021 (4)	0.009 (2)

Geometric parameters (Å, °)

Co1—P1	2.1049 (6)	C65—H65A	0.9700
Co1—P2	2.0988 (6)	С65—Н65В	0.9700
Co1—P3	2.0968 (6)	C65—C66	1.516 (8)
Co1—P4	2.1050 (6)	C66—H66A	0.9700
P1C1	1.870(2)	C66—H66B	0.9700
Р1—С7	1.876 (2)	C66—C67	1.532 (10)
P1—C13	1.849 (2)	С67—Н67А	0.9700
P2—C6	1.854 (2)	C67—H67B	0.9700
P2—C19	1.867 (2)	C67—C68	1.517 (7)
P2—C25	1.847 (2)	C68—H68A	0.9700
P3—C31	1.859 (2)	C68—H68B	0.9700
P3—C37	1.846 (2)	O2'—C65'	1.456 (13)
P3—C43	1.870 (2)	O2′—C68′	1.441 (12)
P4—C36	1.863 (2)	С65′—Н65С	0.9700
P4—C49	1.843 (2)	C65′—H65D	0.9700
P4—C55	1.874 (2)	C65'—C66'	1.523 (14)
C1—C2	1.399 (3)	C66′—H66C	0.9700
C1—C6	1.396 (3)	C66′—H66D	0.9700
С2—Н2	0.9300	C66'—C67'	1.518 (14)
C2—C3	1.386 (4)	С67′—Н67С	0.9700
С3—Н3	0.9300	C67'—H67D	0.9700
C3—C4	1.391 (4)	C67′—C68′	1.512 (12)
C4—H4	0.9300	C68′—H68C	0.9700
C4—C5	1.380 (4)	C68′—H68D	0.9700
С5—Н5	0.9300	O3—C69	1.458 (10)
C5—C6	1.402 (3)	O3—C72	1.466 (8)
С7—С8	1.397 (3)	C69—H69A	0.9700
C7—C12	1.396 (3)	C69—H69B	0.9700
С8—Н8	0.9300	C69—C70	1.500 (14)
С8—С9	1.392 (3)	C70—H70A	0.9700
С9—Н9	0.9300	C70—H70B	0.9700
C9—C10	1.388 (4)	C70—C71	1.494 (11)
C10—H10	0.9300	C71—H71A	0.9700
C10-C11	1.391 (3)	C71—H71B	0.9700
C11—H11	0.9300	C71—C72	1.491 (13)
C11—C12	1.393 (3)	С72—Н72А	0.9700

C12—H12	0.9300	С72—Н72В	0.9700
C13—C14	1.396 (3)	O3'—C69'	1.458 (13)
C13—C18	1.398 (3)	O3'—C72'	1.465 (13)
C14—H14	0.9300	С69′—Н69С	0.9700
C14—C15	1.388 (3)	C69′—H69D	0.9700
C15—H15	0.9300	C69′—C70′	1.502 (17)
C15—C16	1.390 (4)	С70′—Н70С	0.9700
C16—H16	0.9300	C70'—H70D	0.9700
C16—C17	1.378 (4)	C70′—C71′	1.500 (16)
С17—Н17	0.9300	С71′—Н71С	0.9700
C17—C18	1.391 (4)	C71′—H71D	0.9700
C18—H18	0.9300	C71′—C72′	1.500 (17)
C19—C20	1,396 (3)	C72'—H72C	0.9700
C19—C24	1.397 (3)	C72'—H72D	0.9700
C20—H20	0.9300	O4—C73	1.457 (3)
C20—C21	1.395 (3)	O4—C76	1.450 (3)
C21—H21	0.9300	05—C77	1.449 (5)
$C_{21} - C_{22}$	1 386 (4)	05—C77′	1 450 (8)
С22—Н22	0.9300	05-080	1450(4)
C^{22} C^{23}	1 386 (4)	C61 - H61A	0.9700
C23—H23	0.9300	C61—H61B	0.9700
C^{23} C^{24}	1 390 (3)	$C_{61} - C_{62}$	1 510 (4)
C24—H24	0.9300	C62—H62A	0.9700
$C_{25} = C_{26}$	1 394 (3)	C62 - H62B	0.9700
$C_{25} = C_{30}$	1 396 (3)	C62 - C63	1 511 (4)
C26—H26	0.9300	C63—H63A	0.9700
$C_{26} = C_{27}$	1 389 (4)	C63—H63B	0.9700
C27—H27	0.9300	C63—C64	1.512 (3)
C27—C28	1.377 (4)	C64—H64A	0.9700
C28—H28	0.9300	C64—H64B	0.9700
C28—C29	1.376 (4)	C73—H73A	0.9700
C29—H29	0.9300	C73—H73B	0.9700
$C_{29} - C_{30}$	1.389 (3)	C73—C74	1.495 (5)
С30—Н30	0.9300	C74—H74A	0.9700
C31—C32	1.396 (3)	C74—H74B	0.9700
C31—C36	1.397 (3)	C74—C75	1.515 (5)
C32—H32	0.9300	C75—H75A	0.9700
C_{32} C_{33}	1 387 (3)	C75—H75B	0.9700
С33—Н33	0.9300	C75—C76	1.518 (4)
C33—C34	1,397 (3)	C76—H76A	0.9700
C34—H34	0.9300	C76—H76B	0.9700
C34—C35	1.386 (3)	С77—Н77А	0.9700
С35—Н35	0.9300	С77—Н77В	0.9700
C35—C36	1.398 (3)	C77—C78	1.533 (8)
C37—C38	1.394 (3)	C78—H78A	0.9700
C37—C42	1.393 (3)	C78—H78B	0.9700
С38—Н38	0.9300	C78—C79	1.525 (6)
C38—C39	1.386 (3)	С77′—Н77С	0.9700

С39—Н39	0.9300	C77′—H77D	0.9700
C39—C40	1.384 (4)	C77′—C78′	1.531 (9)
C40—H40	0.9300	C78′—H78C	0.9700
C40—C41	1.384 (4)	C78′—H78D	0.9700
C41—H41	0.9300	C78′—C79	1.539 (8)
C41—C42	1.387 (3)	С79—Н79А	0.9700
C42—H42	0.9300	С79—Н79В	0.9700
C43—C44	1 391 (3)	C79—H79C	0.9700
C43—C48	1 402 (3)	C79—H79D	0.9700
C44—H44	0.9300	C79 - C80	1 504 (5)
C44— $C45$	1 391 (3)	C80—H80A	0.9700
C45—H45	0.9300	C80—H80B	0.9700
C45 C46	1 384 (3)	06 081	1.423(4)
C46 H46	0.0300	06 C84	1.423(4)
$C_{40} = 1140$	1.399(2)	C_{0}	0.0700
C40 - C47	1.300 (3)	C_{01} H01A	0.9700
C47 - H47	0.9300	C81—H81B	0.9700
(4) - (48)	1.383 (3)		1.500 (5)
C48—H48	0.9300	C82—H82A	0.9700
C49—C50	1.399 (3)	C82—H82B	0.9700
C49—C54	1.404 (3)	C82—C83	1.511 (5)
С50—Н50	0.9300	С83—Н83А	0.9700
C50—C51	1.387 (3)	C83—H83B	0.9700
C51—H51	0.9300	C83—C84	1.510 (6)
C51—C52	1.386 (3)	C84—H84A	0.9700
C52—H52	0.9300	C84—H84B	0.9700
C52—C53	1.386 (3)	O7—C85	1.422 (10)
С53—Н53	0.9300	O7—C88	1.409 (11)
C53—C54	1.388 (3)	C85—H85A	0.9700
С54—Н54	0.9300	С85—Н85В	0.9700
C55—C56	1.393 (3)	C85—C86	1.508 (12)
C55—C60	1.399 (3)	C86—H86A	0.9700
С56—Н56	0.9300	C86—H86B	0.9700
C56—C57	1.391 (3)	C86—C87	1.506 (13)
С57—Н57	0.9300	С87—Н87А	0.9700
С57—С58	1.383 (4)	С87—Н87В	0.9700
С58—Н58	0.9300	C87—C88	1.492 (13)
C58—C59	1,390 (3)	C88—H88A	0.9700
C59—H59	0.9300	C88—H88B	0.9700
C59 - C60	1 383 (3)	07' - C85'	1417(7)
C60—H60	0.9300	07' - C88'	1.117(7)
Br1 Mg1	2 5000 (0)	C85' H85C	0.0700
$M_{g1} = 01$	2.5990(9) 2 1166 (18)	$C_{85'} = H_{85D}$	0.9700
Mg1 = O1	2.1100 (10)	$C_{85} = 1185D$	1 527 (8)
$M_{g1} = 02$	2.120(0) 2 120(12)	C86' H86C	1.327 (0) 0.0700
$M_{\alpha 1} = 02$	2.127(12) 2.122(7)	$C_{00} = 100C$	0.9700
$M_{\alpha 1} = 0.027$	2.132(7) 2.114(11)	$C_{00} = 00D$	0.9700
$M_{a1} = 0.04$	2.114(11) 2.1177(10)	C00 - C07	1.307 (11)
Mg1-04	2.11//(19)	$C_{0,1} = H_{0,1}$	0.9700
Mg1—US	2.126 (2)	$C\delta/ -H\delta/D$	0.9700

O1—C61	1.445 (3)	C87′—C88′	1.500 (8)
O1—C64	1.460 (3)	C88′—H88C	0.9700
O2—C65	1.464 (7)	C88′—H88D	0.9700
O2—C68	1.450 (7)		
P1—Co1—P4	120.60 (3)	O2—C68—H68A	111.3
P2—Co1—P1	90.18 (2)	O2—C68—H68B	111.3
P2—Co1—P4	118.59 (2)	С67—С68—Н68А	111.3
P3—Co1—P1	122.08 (3)	C67—C68—H68B	111.3
P3—Co1—P2	118.74 (3)	H68A—C68—H68B	109.2
P3—Co1—P4	89.75 (2)	C65'—O2'—Mg1	120 (2)
C1—P1—Co1	109.40 (8)	C68'—O2'—Mg1	128.5 (14)
C1—P1—C7	98.00 (10)	C68'—O2'—C65'	106.5 (12)
C7—P1—Co1	126.18 (7)	O2'—C65'—H65C	110.9
C13—P1—Co1	121.21 (8)	O2'—C65'—H65D	110.9
C13—P1—C1	100.06 (10)	O2'—C65'—C66'	104.3 (14)
C13—P1—C7	97.06 (10)	H65C—C65′—H65D	108.9
C6—P2—Co1	109.95 (7)	С66'—С65'—Н65С	110.9
C6—P2—C19	97.01 (10)	C66'—C65'—H65D	110.9
C19—P2—Co1	121.38 (8)	С65'—С66'—Н66С	111.4
C25—P2—Co1	122.03 (7)	C65'—C66'—H66D	111.4
C25—P2—C6	101.73 (11)	H66C—C66′—H66D	109.2
C25—P2—C19	100.47 (10)	C67'—C66'—C65'	102.0 (11)
C31—P3—Co1	110.35 (7)	С67'—С66'—Н66С	111.4
C31—P3—C43	95.75 (10)	C67'—C66'—H66D	111.4
C37—P3—Co1	121.35 (7)	С66'—С67'—Н67С	110.2
C37—P3—C31	103.36 (10)	С66'—С67'—Н67D	110.2
C37—P3—C43	98.79 (9)	H67C—C67′—H67D	108.5
C43—P3—Co1	122.95 (7)	C68'—C67'—C66'	107.3 (9)
C36—P4—Co1	109.46 (7)	С68'—С67'—Н67С	110.2
C36—P4—C55	96.99 (10)	C68'—C67'—H67D	110.2
C49—P4—Co1	121.52 (7)	O2'—C68'—C67'	105.3 (11)
C49—P4—C36	100.76 (10)	O2'—C68'—H68C	110.7
C49—P4—C55	99.23 (10)	O2'—C68'—H68D	110.7
C55—P4—Co1	124.14 (7)	C67'—C68'—H68C	110.7
C2—C1—P1	125.93 (18)	C67'—C68'—H68D	110.7
C6—C1—P1	114.93 (17)	H68C—C68′—H68D	108.8
C6—C1—C2	119.1 (2)	C69—O3—Mg1	124.7 (11)
С1—С2—Н2	119.7	C69—O3—C72	107.3 (7)
C3—C2—C1	120.6 (2)	C72—O3—Mg1	128.1 (13)
С3—С2—Н2	119.7	O3—C69—H69A	110.5
С2—С3—Н3	120.0	O3—C69—H69B	110.5
C2—C3—C4	120.0 (2)	O3—C69—C70	106.3 (8)
С4—С3—Н3	120.0	H69A—C69—H69B	108.7
C3—C4—H4	120.0	С70—С69—Н69А	110.5
C5—C4—C3	120.0 (2)	С70—С69—Н69В	110.5
C5—C4—H4	120.0	С69—С70—Н70А	111.2
С4—С5—Н5	119.8	С69—С70—Н70В	111.2

C4—C5—C6	120.4 (2)	H70A—C70—H70B	109.1
С6—С5—Н5	119.8	C71—C70—C69	102.9 (10)
C1—C6—P2	115.32 (17)	С71—С70—Н70А	111.2
C1—C6—C5	119.8 (2)	С71—С70—Н70В	111.2
C5—C6—P2	124.85 (18)	С70—С71—Н71А	111.1
C8—C7—P1	117.54 (17)	C70—C71—H71B	111.1
C12—C7—P1	124.33 (16)	H71A—C71—H71B	109.0
C12—C7—C8	118.1 (2)	C72—C71—C70	103.5 (12)
С7—С8—Н8	119.6	С72—С71—Н71А	111.1
C9—C8—C7	120.7 (2)	С72—С71—Н71В	111.1
С9—С8—Н8	119.6	O3—C72—C71	106.9 (8)
С8—С9—Н9	119.7	O3—C72—H72A	110.3
C10—C9—C8	120.7 (2)	O3—C72—H72B	110.3
С10—С9—Н9	119.7	С71—С72—Н72А	110.3
С9—С10—Н10	120.4	С71—С72—Н72В	110.3
C9—C10—C11	119.2 (2)	H72A—C72—H72B	108.6
C11—C10—H10	120.4	C69'—O3'—Mg1	119.6 (19)
C10—C11—H11	119.9	C69'—O3'—C72'	108.5 (13)
C10—C11—C12	120.1 (2)	C72'—O3'—Mg1	126 (2)
C12—C11—H11	119.9	O3'—C69'—H69C	110.7
C7—C12—H12	119.4	O3'—C69'—H69D	110.7
C11—C12—C7	121.2 (2)	O3'—C69'—C70'	105.3 (11)
C11—C12—H12	119.4	H69C—C69′—H69D	108.8
C14—C13—P1	118.76 (17)	С70'—С69'—Н69С	110.7
C14—C13—C18	118.1 (2)	C70'—C69'—H69D	110.7
C18—C13—P1	123.06 (18)	С69'—С70'—Н70С	111.4
C13—C14—H14	119.5	C69′—C70′—H70D	111.4
C15—C14—C13	121.1 (2)	H70C—C70′—H70D	109.3
C15—C14—H14	119.5	C71′—C70′—C69′	101.9 (15)
C14—C15—H15	119.9	С71′—С70′—Н70С	111.4
C14—C15—C16	120.2 (2)	C71′—C70′—H70D	111.4
C16—C15—H15	119.9	C70′—C71′—H71C	111.5
C15—C16—H16	120.4	C70′—C71′—H71D	111.5
C17—C16—C15	119.1 (2)	C70'—C71'—C72'	101 (2)
С17—С16—Н16	120.4	H71C—C71′—H71D	109.3
С16—С17—Н17	119.5	C72'—C71'—H71C	111.5
C16—C17—C18	121.0 (2)	C72'—C71'—H71D	111.5
С18—С17—Н17	119.5	O3'—C72'—C71'	102.3 (14)
C13—C18—H18	119.8	O3'—C72'—H72C	111.3
C17—C18—C13	120.4 (2)	O3'—C72'—H72D	111.3
C17—C18—H18	119.8	C71′—C72′—H72C	111.3
C20—C19—P2	125.82 (18)	C71′—C72′—H72D	111.3
C20—C19—C24	118.3 (2)	H72C—C72′—H72D	109.2
C24—C19—P2	115.87 (16)	C73—O4—Mg1	119.83 (16)
С19—С20—Н20	119.8	C76—O4—Mg1	132.79 (16)
C21—C20—C19	120.5 (2)	C76—O4—C73	106.4 (2)
C21—C20—H20	119.8	C77—O5—Mg1	124.1 (6)
C20—C21—H21	119.7	C77—O5—C80	105.3 (7)
			()

C22 - C21 - C20	1205(2)	C77′—O5—Mg1	123 2 (9)
C^{22} C^{21} H^{21}	1197	C77' - 05 - C80	106.9(10)
$C_{21} = C_{22} = H_{22}$	120.3	C80	129 57 (16)
C_{23} C_{22} C_{21} C_{21}	119 5 (2)	O1 - C61 - H61A	110.6
C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	120.3	O1-C61-H61B	110.6
$C_{22} = C_{23} = H_{23}$	110.0	01 - C61 - C62	105.8(2)
$C_{22} = C_{23} = H_{23}$	119.9 120.2(2)	$H_{61}A - C_{61} - H_{61}B$	103.8 (2)
$C_{22} = C_{23} = C_{24}$	110.0	C_{62} C_{61} H_{61A}	110.6
$C_{24} = C_{23} = H_{23}$	119.9	C62 - C61 - H61R	110.6
$C_{19} = C_{24} = C_{124}$	117.3	C_{02} C_{01} C_{01} C_{01} C_{02} C_{01} C	111.2
$C_{23} = C_{24} = C_{19}$	121.0 (2)	C01 - C02 - H02A	111.5
C_{23} C_{24} H_{24} H_{24}	119.5	$C_{01} = C_{02} = H_{02}B$	111.5
$C_{20} = C_{20} = P_2$	124.51 (19)	01 - 02 - 03	102.3 (2)
$C_{26} = C_{25} = C_{30}$	117.5 (2)	H62A - C62 - H62B	109.2
C30—C25—P2	117.65 (18)	C63—C62—H62A	111.3
C25—C26—H26	119.6	C63—C62—H62B	111.3
C27—C26—C25	120.9 (3)	С62—С63—Н63А	111.4
C27—C26—H26	119.6	C62—C63—H63B	111.4
С26—С27—Н27	119.6	C62—C63—C64	102.0 (2)
C28—C27—C26	120.8 (3)	H63A—C63—H63B	109.2
C28—C27—H27	119.6	С64—С63—Н63А	111.4
C27—C28—H28	120.4	C64—C63—H63B	111.4
C29—C28—C27	119.2 (2)	O1—C64—C63	105.8 (2)
С29—С28—Н28	120.4	O1—C64—H64A	110.6
С28—С29—Н29	119.8	O1—C64—H64B	110.6
C28—C29—C30	120.4 (3)	C63—C64—H64A	110.6
С30—С29—Н29	119.8	C63—C64—H64B	110.6
С25—С30—Н30	119.4	H64A—C64—H64B	108.7
C29—C30—C25	121.2 (2)	O4—C73—H73A	110.3
С29—С30—Н30	119.4	O4—C73—H73B	110.3
C32—C31—P3	125.87 (17)	O4—C73—C74	107.1 (3)
C32—C31—C36	119.7 (2)	H73A—C73—H73B	108.5
C36—C31—P3	114.28 (17)	С74—С73—Н73А	110.3
C31—C32—H32	119.6	C74—C73—H73B	110.3
C_{33} $-C_{32}$ $-C_{31}$	120.8 (2)	C73—C74—H74A	110.5
C33—C32—H32	119.6	C73-C74-H74B	110.5
C_{32} C_{32} H_{33}	120.2	C73 - C74 - C75	106.2(3)
C_{32} C_{33} C_{34}	110.2	H74A - C74 - H74B	108.7
C_{34} C_{33} H_{33}	120.2	C75 $C74$ $H74A$	110.5
$C_{33} = C_{33} = H_{34}$	120.2	C75 C74 H74R	110.5
$C_{35} = C_{34} = C_{33}$	120.1 110.8(2)	C74 $C75$ $H75A$	110.5
$C_{35} = C_{34} = C_{35}$	119.0 (2)	C74 - C75 - H75R	111.1
$C_{33} - C_{34} - H_{34}$	120.1	C/4 - C/3 - H/3B	111.1 102.5(2)
$C_{24} = C_{25} = C_{26}$	117.3	$U_{14} = U_{13} = U_{10}$	105.5 (2)
$C_{24} = C_{25} = C_{25}$	121.0 (2)	$\Pi/3A - U/3 - H/3B$	109.0
C30-C30-H33	119.5	U/0 - U/3 - H/3A	111.1
C_{31} — C_{36} — P_{4}	115.53 (17)	C/6—C/5—H/5B	111.1
C31—C36—C35	119.1 (2)	04—C/6—C/5	104.7 (2)
C35—C36—P4	125.39 (17)	04—C76—H76A	110.8
C38—C37—P3	117.26 (17)	O4—C76—H76B	110.8

C42—C37—P3	125.07 (18)	С75—С76—Н76А	110.8
C42—C37—C38	117.6 (2)	С75—С76—Н76В	110.8
С37—С38—Н38	119.2	H76A—C76—H76B	108.9
C39—C38—C37	121.5 (2)	O5—C77—H77A	110.8
С39—С38—Н38	119.2	O5—C77—H77B	110.8
С38—С39—Н39	120.0	O5—C77—C78	104.9 (8)
C40—C39—C38	120.1 (2)	H77A—C77—H77B	108.8
C40—C39—H39	120.0	C78—C77—H77A	110.8
C39 - C40 - H40	120.5	C78—C77—H77B	110.8
$C_{39} - C_{40} - C_{41}$	1191(2)	C77—C78—H78A	110.9
C_{41} C_{40} H_{40}	120.5	C77_C78_H78B	110.9
C40-C41-H41	110.7	H784_C78_H78B	108.9
C_{40} C_{41} C_{42}	120.6 (3)	C70 C78 C77	100.9
$C_{40} - C_{41} - C_{42}$	120.0 (5)	C79 C78 H78A	104.3 (7)
C_{42} C_{41} C_{141} C_{27} C_{42} U_{42}	119.7	C79 - C78 - 1178A	110.9
$C_{3} = C_{42} = C_{42}$	119.5	C/9 - C/8 - H/8B	110.9
C41 - C42 - C37	121.0 (2)	05 - C/7 - H/7C	110.7
C41—C42—H42	119.5	05 - C// - H//D	110./
C44—C43—P3	125.10 (16)	05	105.4 (14)
C44—C43—C48	117.9 (2)	H77C—C77′—H77D	108.8
C48—C43—P3	116.90 (16)	С78'—С77'—Н77С	110.7
C43—C44—H44	119.5	C78'—C77'—H77D	110.7
C45—C44—C43	121.1 (2)	C77'—C78'—H78C	111.2
C45—C44—H44	119.5	C77′—C78′—H78D	111.2
C44—C45—H45	119.9	C77′—C78′—C79	103.0 (14)
C46—C45—C44	120.2 (2)	H78C—C78′—H78D	109.1
C46—C45—H45	119.9	C79—C78′—H78C	111.2
C45—C46—H46	120.3	C79—C78′—H78D	111.2
C45—C46—C47	119.3 (2)	С78—С79—Н79А	110.7
C47—C46—H46	120.3	С78—С79—Н79В	110.7
C46—C47—H47	119.7	С78′—С79—Н79С	112.3
C48—C47—C46	120.5 (2)	C78′—C79—H79D	112.3
C48—C47—H47	119.7	H79A—C79—H79B	108.8
C43—C48—H48	119.6	H79C—C79—H79D	109.9
C47—C48—C43	120.8 (2)	C80—C79—C78	105.4 (5)
C47—C48—H48	119.6	C80—C79—C78′	97.5 (9)
C50—C49—P4	122.85 (17)	С80—С79—Н79А	110.7
C50-C49-C54	117.6 (2)	C80—C79—H79B	110.7
C_{54} C_{49} P_{4}	119.39(17)	C80—C79—H79C	112.3
C49 - C50 - H50	119.55 (17)	C80—C79—H79D	112.3
C_{51} C_{50} C_{49}	121.0(2)	05-080-079	104.3(2)
$C_{51} C_{50} H_{50}$	121.0 (2)	05 - 080 - 075	110.9
$C_{50} = C_{50} = H_{50}$	119.5	$O_5 = C_{80} = H_{80R}$	110.9
$C_{50} = C_{51} = C_{50}$	119.0 120.7(2)	C_{70} C_{80} H_{80A}	110.9
$C_{52} = C_{51} = C_{50}$	120.7(2)	$C_{7} = C_{0} = H_{0} D_{0}$	110.9
C_{51} C_{52} U_{52}	119.0		110.9
$C_{51} - C_{52} - H_{52}$	120.5	$H\delta UA - U\delta U - H\delta UB$	108.9
051-052-053	119.0 (2)	C81 - C0 - C84	105.6 (3)
C53—C52—H52	120.5	06—081—H81A	110.3
C52—C53—H53	119.7	O6—C81—H81B	110.3

C52—C53—C54	120.6 (2)	O6—C81—C82	106.9 (3)
С54—С53—Н53	119.7	H81A—C81—H81B	108.6
С49—С54—Н54	119.5	C82—C81—H81A	110.3
C53—C54—C49	120.9 (2)	C82—C81—H81B	110.3
С53—С54—Н54	119.5	C81—C82—H82A	111.0
C56—C55—P4	126.10 (17)	C81—C82—H82B	111.0
C56—C55—C60	117.8 (2)	C81—C82—C83	103.9 (3)
C60—C55—P4	116.04 (16)	H82A—C82—H82B	109.0
С55—С56—Н56	119.5	C83—C82—H82A	111.0
C57—C56—C55	121.0 (2)	C83—C82—H82B	111.0
С57—С56—Н56	119.5	С82—С83—Н83А	110.8
С56—С57—Н57	119.8	С82—С83—Н83В	110.8
C58—C57—C56	120.4 (2)	H83A—C83—H83B	108.8
С58—С57—Н57	119.8	C84—C83—C82	104.9 (3)
С57—С58—Н58	120.4	С84—С83—Н83А	110.8
C57—C58—C59	119.2 (2)	С84—С83—Н83В	110.8
С59—С58—Н58	120.4	O6—C84—C83	107.3 (3)
С58—С59—Н59	119.8	O6—C84—H84A	110.2
C60—C59—C58	120.4 (2)	O6—C84—H84B	110.2
С60—С59—Н59	119.8	C83—C84—H84A	110.2
С55—С60—Н60	119.4	C83—C84—H84B	110.2
C59—C60—C55	121.2 (2)	H84A—C84—H84B	108.5
С59—С60—Н60	119.4	C88—O7—C85	108.9 (8)
O1—Mg1—Br1	175.61 (6)	07—C85—H85A	110.5
01 - Mg1 - 02	84.9 (4)	07—C85—H85B	110.5
01 - Mg1 - 02'	86.6 (8)	07-C85-C86	106.0 (8)
01 - Mg1 - 03	87.6 (6)	H85A—C85—H85B	108.7
01—Mg1—04	92.05 (8)	C86—C85—H85A	110.5
$\Omega_1 - Mg_1 - \Omega_5$	85 15 (8)	C86—C85—H85B	110.5
Ω^2 —Mg1—Br1	90 8 (4)	C85—C86—H86A	111.1
$\Omega^2 - Mg1 - \Omega^3$	92.4 (5)	C85—C86—H86B	111.1
$\Omega^2 - Mg1 - Br1$	89.0 (8)	H86A—C86—H86B	109.1
Ω_3 —Mg1—Br1	93.8 (6)	C87 - C86 - C85	103.4 (8)
O3' - Mg1 - Br1	95.8 (0) 95.8 (11)	C87 - C86 - H86A	111 1
O3' - Mg1 - O1	85 1 (11)	C87—C86—H86B	111.1
03' - Mg1 - 02'	93 5 (10)	C_{86} C_{87} H_{87A}	111.5
03' - Mg1 - 04	92 3 (9)	C86—C87—H87B	111.5
Ω_3' Mg1 Ω_5	170.2(11)	H87A-C87-H87B	109.3
04—Mg1—Br1	92 21 (6)	C88 - C87 - C86	101.4 (9)
04 Mg1 -02	176.7(4)	C88 - C87 - C80	101.4 ())
$O_4 Mg1 O_2'$	173.9 (6)	C88 C87 H87B	111.5
04 Mg1 O3	86.2 (5)	$07 \ C88 \ C87$	100 1 (8)
04 Mg1 O5	80.2 (3)	07 - 088 + 1884	109.1 (8)
$O_{2} = Mg_{1} = O_{2}$	07.55 (0) 03.06 (6)	07 - C88 + H88B	109.9
05 - Mg1 - 02	93.50(0)	C87_C88_H88A	109.9
05 - Mg1 - 02	86 4 (6)	C87_C88_H88P	109.9
05 - Mg1 = 02	170.2 (6)		109.9
$C_{1} = 0$	170.2 (0)	1100A - 000 - 1100D	100.3 107.2(5)
Co1—O1—Mg1	120.08 (10)	000 - 07 - 000	107.5 (5)

C61—O1—C64	108.74 (19)	O7'—C85'—H85C	110.3
C64—O1—Mg1	124.51 (14)	O7'—C85'—H85D	110.3
C65—O2—Mg1	118.2 (9)	O7'—C85'—C86'	107.0 (5)
C68—O2—Mg1	127.7 (7)	H85C—C85′—H85D	108.6
C68—O2—C65	106.3 (6)	С86′—С85′—Н85С	110.3
O2—C65—H65A	110.5	C86'—C85'—H85D	110.3
O2—C65—H65B	110.5	С85′—С86′—Н86С	111.0
O2—C65—C66	106.3 (7)	C85'—C86'—H86D	111.0
H65A—C65—H65B	108.7	H86C—C86′—H86D	109.0
С66—С65—Н65А	110.5	C87'—C86'—C85'	104.0 (5)
С66—С65—Н65В	110.5	C87′—C86′—H86C	111.0
С65—С66—Н66А	110.9	C87′—C86′—H86D	111.0
С65—С66—Н66В	110.9	С86'—С87'—Н87С	111.4
C65—C66—C67	104.2 (6)	C86′—C87′—H87D	111.4
H66A—C66—H66B	108.9	H87C—C87′—H87D	109.3
С67—С66—Н66А	110.9	C88′—C87′—C86′	101.8 (5)
С67—С66—Н66В	110.9	С88′—С87′—Н87С	111.4
С66—С67—Н67А	111.5	C88′—C87′—H87D	111.4
С66—С67—Н67В	111.5	O7'—C88'—C87'	106.8 (6)
H67A—C67—H67B	109.3	O7'—C88'—H88C	110.4
C68—C67—C66	101.6 (5)	O7'—C88'—H88D	110.4
С68—С67—Н67А	111.5	C87′—C88′—H88C	110.4
С68—С67—Н67В	111.5	C87′—C88′—H88D	110.4
O2—C68—C67	102.2 (7)	H88C—C88′—H88D	108.6
Co1—P1—C1—C2	-176.18 (19)	C36—P4—C49—C54	-161.79 (18)
Co1—P1—C1—C6	3.97 (19)	C36—P4—C55—C56	102.6 (2)
Co1—P1—C7—C8	17.7 (2)	C36—P4—C55—C60	-79.98 (19)
Co1—P1—C7—C12	-162.17 (16)	C36—C31—C32—C33	2.7 (3)
Co1—P1—C13—C14	83.10 (19)	C37—P3—C31—C32	45.8 (2)
Co1—P1—C13—C18	-93.1 (2)	C37—P3—C31—C36	-138.16 (16)
Co1—P2—C6—C1	-2.31 (19)	C37—P3—C43—C44	-1.9 (2)
Co1—P2—C6—C5	178.27 (19)	C37—P3—C43—C48	175.40 (18)
Co1—P2—C19—C20	-142.05 (19)	C37—C38—C39—C40	2.6 (4)
Co1—P2—C19—C24	36.7 (2)	C38—C37—C42—C41	2.4 (4)
Co1—P2—C25—C26	-103.6 (2)	C38—C39—C40—C41	1.0 (4)
Co1—P2—C25—C30	69.39 (18)	C39—C40—C41—C42	-2.8 (4)
Co1—P3—C31—C32	176.95 (17)	C40—C41—C42—C37	1.1 (4)
Co1—P3—C31—C36	-6.98 (17)	C42—C37—C38—C39	-4.3 (3)
Co1—P3—C37—C38	66.63 (18)	C43—P3—C31—C32	-54.7 (2)
Co1—P3—C37—C42	-109.3 (2)	C43—P3—C31—C36	121.37 (16)
Co1—P3—C43—C44	-138.55 (19)	C43—P3—C37—C38	-70.98 (18)
Co1—P3—C43—C48	38.7 (2)	C43—P3—C37—C42	113.1 (2)
Co1—P4—C36—C31	3.70 (17)	C43—C44—C45—C46	2.6 (4)
Co1—P4—C36—C35	-176.30 (17)	C44—C43—C48—C47	1.6 (4)
Co1—P4—C49—C50	-98.33 (19)	C44—C45—C46—C47	0.6 (4)
Co1—P4—C49—C54	77.26 (19)	C45—C46—C47—C48	-2.6 (4)
Co1—P4—C55—C56	-138.13 (18)	C46—C47—C48—C43	1.5 (4)

Co1—P4—C55—C60	39.3 (2)	C48—C43—C44—C45	-3.6 (4)
P1-C1-C2-C3	179.60 (19)	C49—P4—C36—C31	-125.46 (16)
P1-C1-C6-P2	-1.1 (2)	C49—P4—C36—C35	54.5 (2)
P1-C1-C6-C5	178.40 (18)	C49—P4—C55—C56	0.5 (2)
P1—C7—C8—C9	-178.85 (17)	C49—P4—C55—C60	177.87 (18)
P1-C7-C12-C11	179.77 (17)	C49—C50—C51—C52	-0.1 (4)
P1-C13-C14-C15	-179.72(18)	C50-C49-C54-C53	-4.1(3)
P1-C13-C18-C17	178.61 (19)	C50-C51-C52-C53	-2.1(4)
P2-C19-C20-C21	177.2 (2)	C51—C52—C53—C54	1.2 (4)
P_{2} C_{19} C_{24} C_{23}	-17842(19)	$C_{52} - C_{53} - C_{54} - C_{49}$	2.0(4)
$P_2 = C_{25} = C_{26} = C_{27}$	174 1 (2)	$C_{54} - C_{49} - C_{50} - C_{51}$	31(3)
$P_2 = C_{25} = C_{30} = C_{29}$	-17555(18)	C_{55} P4-C36-C31	13372(17)
$P_3 = C_{31} = C_{32} = C_{33}$	178 55 (17)	$C_{55} = P_{4} = C_{36} = C_{35}$	-463(2)
$P_3 = C_{31} = C_{36} = P_4$	20(2)	$C_{55} = P_4 = C_{49} = C_{50}$	1216(2)
$P_3 = C_{31} = C_{36} = C_{35}$	-177.99(16)	$C_{55} = P_4 = C_{49} = C_{50}$	-62.79(19)
$P_3 = C_37 = C_38 = C_39$	179 49 (18)	C_{55} C_{56} C_{57} C_{58}	11(4)
$P_3 = C_37 = C_{30} = C_{30}$	179.49(10) 178.3(2)	$C_{55} = C_{50} = C_{57} = C_{58}$	1.1(4)
$P_{2} = C_{42} = C_{42} = C_{41}$	170.5(2)	$C_{50} = C_{50} = C_{50} = C_{50}$	1.0(3)
$P_{3} = C_{43} = C_{44} = C_{43}$	1/5.0(2) -175.85(10)	$C_{50} = C_{51} = C_{50} = C_{59}$	0.4(4)
$P_{3} = C_{43} = C_{40} = C_{47}$	-1/3.83(19)	C_{5}^{5} C_{5}^{5} C_{6}^{5} C_{5}^{5}	-0.9(4)
P4 = C49 = C50 = C51	170.01 (19)	$C_{50} = C_{50} = C_{50} = C_{55}$	-0.2(4)
P4 = C49 = C34 = C33	-1/9.91(18)	$C_{00} = C_{33} = C_{30} = C_{37}$	-2.1(4)
P4 = C55 = C50 = C57	175.25 (19)	Mg1 = 01 = C61 = C62	169.44(17)
P4-C35-C60-C39	-1/5.99(18)	Mg1-01-064-063	105.75(17)
CI = PI = C/ = C8	-103.54(18)	Mg1-02-C65-C66	129.4 (10)
C1— $P1$ — $C/$ — $C12$	76.6 (2)	Mg1—O2—C68—C67	-107.0 (9)
CI—PI—CI3—CI4	-156.77 (19)	Mg1—O2′—C65′—C66′	117 (2)
C1—P1—C13—C18	27.0 (2)	Mg1—O2′—C68′—C67′	-124.5 (18)
C1—C2—C3—C4	1.3 (4)	Mg1—O3—C69—C70	165.0 (13)
C2—C1—C6—P2	179.09 (17)	Mg1—O3—C72—C71	172.0 (16)
C2—C1—C6—C5	-1.5 (3)	Mg1—O3'—C69'—C70'	-152 (2)
C2—C3—C4—C5	-0.1 (4)	Mg1—O3'—C72'—C71'	178 (2)
C3—C4—C5—C6	-1.9 (4)	Mg1—O4—C73—C74	145.5 (2)
C4—C5—C6—P2	-177.9 (2)	Mg1-04-C76-C75	-133.0 (2)
C4—C5—C6—C1	2.7 (4)	Mg1—O5—C77—C78	-153.6 (9)
C6—P2—C19—C20	99.4 (2)	Mg1—O5—C77′—C78′	-178.6 (16)
C6—P2—C19—C24	-81.83 (19)	Mg1-05-C80-C79	151.2 (2)
C6—P2—C25—C26	19.1 (2)	O1—C61—C62—C63	32.8 (3)
C6—P2—C25—C30	-167.86 (17)	O2—C65—C66—C67	-5.4 (15)
C6—C1—C2—C3	-0.6 (4)	C65—O2—C68—C67	41.1 (12)
C7—P1—C1—C2	-43.2 (2)	C65—C66—C67—C68	29.3 (10)
C7—P1—C1—C6	136.93 (17)	C66—C67—C68—O2	-43.0 (7)
C7—P1—C13—C14	-57.3 (2)	C68—O2—C65—C66	-22.3 (16)
C7—P1—C13—C18	126.4 (2)	O2'—C65'—C66'—C67'	33 (3)
C7—C8—C9—C10	-0.9 (4)	C65'—O2'—C68'—C67'	29 (3)
C8—C7—C12—C11	-0.1 (3)	C65'—C66'—C67'—C68'	-16 (2)
C8—C9—C10—C11	-0.2 (4)	C66'—C67'—C68'—O2'	-7 (2)
C9-C10-C11-C12	1.1 (3)	C68'—O2'—C65'—C66'	-39 (3)
C10-C11-C12-C7	-1.0 (3)	O3—C69—C70—C71	32 (2)

C12—C7—C8—C9	1.0 (3)	C69—O3—C72—C71	-8 (3)
C13—P1—C1—C2	55.5 (2)	C69—C70—C71—C72	-36 (3)
C13—P1—C1—C6	-124.38 (18)	C70—C71—C72—O3	28 (3)
C13—P1—C7—C8	155.21 (18)	C72—O3—C69—C70	-15 (3)
C13—P1—C7—C12	-24.6 (2)	O3'—C69'—C70'—C71'	-29 (4)
C13—C14—C15—C16	1.7 (4)	C69'—O3'—C72'—C71'	25 (5)
C14—C13—C18—C17	2.3 (4)	C69'—C70'—C71'—C72'	44 (4)
C14—C15—C16—C17	0.9 (4)	C70'—C71'—C72'—O3'	-42 (5)
C15—C16—C17—C18	-1.8 (4)	C72'—O3'—C69'—C70'	3 (5)
C16—C17—C18—C13	0.2 (4)	O4—C73—C74—C75	4.0 (4)
C18—C13—C14—C15	-3.3 (3)	O5—C77—C78—C79	-19.2 (19)
C19—P2—C6—C1	124.76 (18)	O5—C77′—C78′—C79	22 (3)
C19—P2—C6—C5	-54.7 (2)	C61—O1—C64—C63	-11.4 (3)
C19—P2—C25—C26	118.6 (2)	C61—C62—C63—C64	-38.8 (3)
C19—P2—C25—C30	-68.35 (19)	C62—C63—C64—O1	31.4 (3)
C19—C20—C21—C22	1.4 (4)	C64—O1—C61—C62	-13.5 (3)
C20—C19—C24—C23	0.4 (4)	C73—O4—C76—C75	35.2 (3)
C20—C21—C22—C23	-0.1 (4)	C73—C74—C75—C76	16.7 (4)
C21—C22—C23—C24	-1.0 (4)	C74—C75—C76—O4	-31.7 (3)
C22—C23—C24—C19	0.8 (4)	C76—O4—C73—C74	-24.5 (3)
C24—C19—C20—C21	-1.6 (4)	С77—О5—С80—С79	-40.3 (11)
C25—P2—C6—C1	-132.97 (17)	С77—С78—С79—С80	-4.8 (14)
C25—P2—C6—C5	47.6 (2)	C78—C79—C80—O5	27.1 (7)
C25—P2—C19—C20	-3.9 (2)	C77′—O5—C80—C79	-35 (2)
C25—P2—C19—C24	174.82 (18)	C77'—C78'—C79—C80	-41 (2)
C25—C26—C27—C28	0.5 (4)	C78′—C79—C80—O5	46.9 (8)
C26—C25—C30—C29	-2.0 (3)	C80—O5—C77—C78	37.2 (18)
C26—C27—C28—C29	-1.1 (4)	C80—O5—C77′—C78′	7 (3)
C27—C28—C29—C30	0.2 (4)	O6—C81—C82—C83	-25.5 (4)
C28—C29—C30—C25	1.4 (4)	C81—O6—C84—C83	-30.0 (4)
C30—C25—C26—C27	1.1 (4)	C81—C82—C83—C84	7.0 (4)
C31—P3—C37—C38	-169.09 (17)	C82—C83—C84—O6	13.6 (4)
C31—P3—C37—C42	15.0 (2)	C84—O6—C81—C82	34.9 (4)
C31—P3—C43—C44	102.6 (2)	O7—C85—C86—C87	-29.7 (12)
C31—P3—C43—C48	-80.09 (19)	C85—O7—C88—C87	7.5 (13)
C31—C32—C33—C34	-2.2 (3)	C85—C86—C87—C88	32.6 (12)
C32—C31—C36—P4	178.34 (16)	C86—C87—C88—O7	-25.5 (13)
C32—C31—C36—C35	-1.7 (3)	C88—O7—C85—C86	14.1 (12)
C32—C33—C34—C35	0.7 (4)	O7'—C85'—C86'—C87'	1.2 (8)
C33—C34—C35—C36	0.3 (3)	C85'—O7'—C88'—C87'	-36.0 (8)
C34—C35—C36—P4	-179.81 (17)	C85'—C86'—C87'—C88'	-20.8 (9)
C34—C35—C36—C31	0.2 (3)	C86'—C87'—C88'—O7'	35.3 (9)
C36—P4—C49—C50	22.6 (2)	C88'—O7'—C85'—C86'	21.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C62—H62 <i>B</i> ···O6	0.97	2.48	3.438 (4)	167

Acta Cryst. (2019). E75, 304-307

			supporting information		
С63—Н63В…О7	0.97	2.59	3.555 (8)	179	
С63—Н63В…О7′	0.97	2.63	3.565 (6)	162	