

Received 31 December 2018 Accepted 25 January 2019

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: crystal structure; tetraphosphonate cavitands; inclusion compounds; mephedrone; illicit drugs.

CCDC reference: 1893628

Supporting information: this article has supporting information at journals.iucr.org/e

Elisa Biavardi and Chiara Massera*

Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy. *Correspondence e-mail: chiara.massera@unipr.it

A new supramolecular complex (I) between the tetraphosphonate cavitand Tiiii[C₃H₇,CH₃,C₆H₅] [systematic name: 2,8,14,20-tetrapropyl-5,11,17,23-tetramethyl-6,10:12,16:18,22:24,4-tetrakis(phenylphosphonato-O,O')resorcin[4]arene] and mephedrone hydrochoride $\{C_{11}H_{16}NO^+ \cdot Cl^-; systematic name:$ methyl[1-(4-methylphenyl)-1-oxopropan-2-yl]azanium chloride} has been obtained and characterized both in solution and in the solid state. The complex of general formula $(C_{11}H_{16}NO)$ @Tiiii $[C_3H_7,CH_3,C_6H_5]Cl·CH_3OH$ or $C_{11}H_{16}NO^+ \cdot Cl^- \cdot C_{68}H_{68}O_{12}P_4 \cdot CH_3OH, \ crystallizes \ in \ the \ monoclinic \ space$ group $P2_1/c$ with one lattice methanol molecule per cavitand, disordered over two positions with occupancy factors of 0.665 (6) and 0.335 (6). The mephedrone guest interacts with the P=O groups at the upper rim of the cavitand through two charge-assisted N-H···O hydrogen bonds, while the methyl group directly bound to the amino moiety is stabilized inside the π basic cavity *via* cation $\cdot \cdot \cdot \pi$ interactions. The chloride counter-anion is located between the alkyl legs of the cavitand, forming $C-H\cdots Cl$ interactions with the aromatic and methylenic H atoms of the lower rim. The chloride anion is also responsible for the formation of a supramolecular chain along the *b*-axis direction through $C-H\cdots Cl$ interactions involving the phenyl substituent of one phosphonate group. C- $H \cdots O$ and $C - H \cdots \pi$ interactions between the guest and adjacent cavitands contribute to the formation of the crystal structure.

1. Chemical context

Mephedrone (2-methylamino-1-p-tolylpropan-1-one), often abbreviated as 4-MMC, the acronym of 4-methyl methcathinone, is a synthetic drug belonging to the family of methamphetamines known for its stimulant effects (Winstock et al., 2010; Morris, 2010; Wood et al., 2010). It can be considered a 'designer drug', that is, a compound resulting from the chemical modification of an existing drug, which in this case is cathinone, a natural alkaloid found in the plant Catha edulis. As a result of the major impact these substances have on human health and social security, it is extremely important to have sensitive, selective and fast methods to identify them as a class, independently from all the synthetic modifications that can be devised to market them and to bypass the legal restrictions to which the parent compounds are subjected. Among the existing analytical methods used to detect 4-MMC in human biological samples or in different media (water, mixtures of powders, etc), solid-phase extraction (SPE) and liquid chromatography combined with mass spectrometry (LC/MS) are the most common, as can be seen from the

research communications

extended literature which has been published on the subject in the past few years (Kolmonen et al., 2009: Singh et al., 2010: Santali et al., 2011; Frison et al., 2011; Strano-Rossi et al., 2012; Power et al., 2012; Perera et al., 2012; Lua et al., 2012; Vircks & Mulligan, 2012; Concheiro et al., 2013; Mayer et al., 2013; Mwenesongole et al., 2013; Pedersen et al., 2013; Kanu et al., 2013; Strano-Rossi et al., 2014; de Castro et al., 2014; Mercolini et al., 2016; Salomone et al., 2016; Fontanals et al., 2017; Lendoiro et al., 2017; Mercieca et al., 2018; Robin et al., 2018). Recently, the group of Professor Dalcanale has reported a new method to detect methamphetamine salts with extremely high selectivity in water, using cavitand-grafted silicon microcantilevers (Biavardi et al., 2014); more precisely, MDMA (methylenedioxymethamphetamine), cocaine, amphetamine, and 3-fluoromethamphetamine hydrochlorides have been successfully detected in this way. This method takes advantage of the ability shown by tetraphosphonate cavitands to selectively recognize the ⁺NH₂-CH₃ group (⁺NHR-CH₃ in the case of cocaine) common to all the above-mentioned drug salts through the concomitant formation of $CH_3 \cdots \pi$ interactions and hydrogen bonding. Indeed, resorcinarene-based cavitands (Cram, 1983; Cram & Cram, 1994) decorated at the upper rim with phosphonate groups or quinoxaline moieties have long been exploited for their molecular recognition properties towards charged and neutral molecules (Dutasta, 2004; Vachon et al., 2011; Melegari et al., 2013; Pinalli et al., 2016; Tudisco et al., 2016; Trzciński et al., 2017; Pinalli et al., 2018; Wu et al., 2012; Clément et al., 2015). In order to further assess the recognition properties of tetraphosphonate cavitands towards quaternary ammonium salts of social interest, the supramolecular complex between Tiiii $[C_3H_7, CH_3, C_6H_5]$ and mephedrone hydrochloride is herein reported and analysed, both in the solid state through the detailed analysis of its crystal and molecular structure, and in solution via NMR studies.

2. Structural commentary

The host-guest complex (I) of general formula $(C_{11}H_{16}NO)@Tiiii[C_3H_7, CH_3, C_6H_5]Cl·CH_3OH$ crystallizes in the monoclinic space group P21/c; its molecular structure is shown in Fig. 1. It consists of a 1:1 inclusion compound between mephedrone hydrochloride and a resorcinarene-based tetraphosphonate cavitand with the four P=O groups bridging the upper rim all pointing inwards the aromatic

cavity. At the lower rim, four propyl chains are present, one of which is disordered over two equivalent positions with occupancy factors of 0.5. For each supramolecular complex, one lattice methanol molecule is present, disordered over two positions with occupancy factors of 0.665 (6) and 0.335 (6) (see Fig. 3). The mephedrone cation $(C_{11}H_{16}NO)^+$, which is protonated at the nitrogen atom N1, is located inside the cavity through the formation of two strong, charge-assisted $N-H\cdots O$ hydrogen bonds involving the P=O groups at the upper rim as acceptors $(N1-H1A\cdots O3A)$ and N1-H1B···O3B, see Fig. 2 and Table 1 for the detailed geometrical parameters). The methyl group C1 directly bonded to the amino moiety is located inside the π basic cavity, stabilized *via* a cation $\cdots \pi$ interaction involving the C1-H1D moiety and the aromatic ring C1B-C6B [C1-H1D···Cg1, 3.672 (7) Å and 145.1°, where Cg1 is the centroid of the benzene ring]. According to the electrostatic model, the term 'cation $\cdots \pi$ ' is more appropriate than 'C-H $\cdots \pi$ ' to describe the interactions of N-methylammonium ions (Dougherty, 2013).] Further stabilization is provided by three C- $H_{guest} \cdot \cdot \cdot O = P_{host}$ hydrogen bonds (Fig. 2 and Table 1). The distance of C1 from the mean plane passing through the methylene atoms C8A, C8B, C8C and C8D of the lower rim is 3.001 (5) Å, which gives a measure of how deeply the guest is inserted inside the cavity (see also the discussion in Section 5).

ORTEP view of $(C_{11}H_{16}NO)$ @Tiiii $[C_3H_7,CH_3,C_6H_5]Cl$ (I) with partial atom-labelling scheme and anisotropic displacement parameters drawn at the 20% probability level. The solvent molecules and the H atoms of the cavitand are omitted for clarity; only one orientation of the disordered alkyl chain is shown.

Table 1Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the rings C1B–C6B and C1D–C6D, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1A \cdots O3A$	0.91	1.91	2,773 (5)	157
$N1 - H1B \cdots O3B$	0.91	1.99	2.841(5)	155
$C2-H2\cdots O3D$	1.00	2.25	3.140 (6)	148
$C3-H3A\cdots O3C$	0.98	2.49	3.351 (7)	147
$C3-H3B\cdots O1S$	0.98	2.55	3.51 (2)	164
$O2S - H2S \cdot \cdot \cdot Cl1$	0.84	2.28	3.105 (5)	169
$C1A - H1A1 \cdots Cl1$	0.95	2.91	3.847 (4)	170
$C1B - H1B1 \cdots Cl1$	0.95	2.93	3.870 (5)	170
$C1C - H1C1 \cdots Cl1$	0.95	2.95	3.888 (5)	170
$C1D - H1D1 \cdots Cl1$	0.95	2.85	3.782 (5)	168
$C9A - H9A1 \cdots Cl1$	0.99	2.76	3.738 (5)	172
$C9B - H9B2 \cdots Cl1$	0.99	2.88	3.870 (4)	175
$C9C - H9C1 \cdots Cl1$	0.99	2.71	3.701 (5)	175
$C9D - H9D1 \cdots Cl1$	0.99	2.85	3.838 (5)	178
$C1 - H1D \cdots Cg1$	0.98	2.83	3.672 (7)	145
$C17D^{i}-H17D^{i}\cdots O1$	0.95	2.56	3.204 (6)	125
$C10-H10\cdots O1D^{i}$	0.95	2.69	3.555 (4)	152
$C9-H9\cdots Cg2^{i}$	0.95	2.69	3.594 (5)	159
$C14B - H14B \cdots Cl1^{ii}$	0.95	2.89	3.697 (6)	143

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

The chloride anion is located between the alkyl legs of the cavitand, with a Cl1···N1 distance of 7.097 (5) Å, forming numerous C-H···Cl interactions with the aromatic and methylenic hydrogen atoms of the lower rim (see Table 1), as well as a hydrogen bond with the O2S-H2S group of the methanol molecule of occupancy factor 0.665 (6) [O2S-H2S···Cl1, 3.105 (5) Å and 168.5°]. Moreover, the O1S atom from the other methanol fraction accepts a hydrogen bond from the methyl group C3 of the mephedrone guest [C3-H3B···O1S, 3.51 (2) Å and 164.3°].

3. Supramolecular features

Besides the supramolecular interactions that yield the 1:1 host-guest complex, mephedrone hydrochloride also influences the overall packing of the crystal structure, as can be

Figure 2

Left: view of the main host-guest supramolecular interactions shown as blue and green dotted lines. Only relevant H atoms are shown, while the alkyl chains, the chloride anion and the methanol lattice molecules have been omitted for clarity. Right: side view of the host-guest complex.

Figure 3

Supramolecular interactions (blue dotted lines) involving the chloride anion (represented as a green sphere) and the disordered methanol lattice molecules.

seen from Figs. 4 and 5. The chloride anion is responsible for the formation of a supramolecular chain along the b-axis direction through C14B-H14B···Cl⁻ $(-x, \frac{1}{2} + y, \frac{3}{2} - z)$ contacts involving the phenyl substituents of one of the four phosphonate groups (Fig. 4). On the other side, the cationic part of the guest is involved in C-H···O and C-H··· π interactions with the phenyl ring bound to the P1D=O3D group and the aromatic ring C1D-C6D belonging to the wall of an adjacent cavitand (Fig. 5 and Table 2). More precisely, the oxygen atom O1 of the guest acts as a hydrogen-bond acceptor towards the $C17D^{i}$ -H17 D^{i} group [3.204 (6) Å and 125.0°; symmetry code (i): -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$], while C9–H9 and C10-H10 act as donors towards the centroid Cg2ⁱ $[3.594(5) \text{ Å} \text{ and } 158.7^{\circ}]$ and the oxygen atom $O1D^{i}$ [3.555 (4) Å and 151.8°], respectively. These sets of interactions can be summarized visually by calculating the twodimensional fingerprint plots derived from the Hirshfeld surface analysis (Spackman & McKinnon, 2002; McKinnon et al., 2004), using the program Crystal Explorer 17 (Turner et al., 2017). The overall fingerprint plot for (I) is shown in Fig. 6a and those delineated in H···H (67.8%), C···H/H···C (23.3%), O···H/H···O (6.4%) and Cl···H/H···Cl (1.2%)interactions are shown in Fig. 6b-e, respectively (the methanol solvent and the disordered alkyl chain have been omitted from the calculation). Apart from the $H \cdots H$ contacts, which probably derive from the interactions involving the alkyl chains, the second highest contribution arises from C···H/ H···C contacts ($d_i + d_e \sim 2.58 \text{ Å}$), followed by O···H/H···O $(d_i + d_e \sim 2.48 \text{ Å})$ and Cl···H/H···Cl $(d_i + d_e \sim 2.76 \text{ Å})$, all shorter than the respective sums of the van der Waals radii.

research communications

Figure 4

View of the packing of (I) along the *b*-axis direction, mediated by $C14B-H14B\cdots Cl^{-}$ interactions (blue lines). The C and H atoms highlighted in purple are in general positions, while the chloride anion is at the symmetry position $-x, \frac{1}{2} + y, \frac{3}{2} - z$.

Figure 5

View of the packing of (I) mediated by C-H···O and C-H··· π interactions between the guests and adjacent cavitands. Symmetry code: (i) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$.

4. Studies in solution

In solution, complexation was observed both *via* phosphorous and proton NMR spectroscopy following the shift of the ³¹P signals of the Tiiii[C₃H₇, CH₃, Ph] host and the shift of the ⁺N-CH₃ protons of the mephedrone hydrochloride guest. The titration was performed in deuterated methanol at 253 K, in order to be under slow chemical exchange in the NMR time scale and better observe the complexation event. The NMR tube was filled with 0.4 mL of a deuterated methanol solution containing the cavitand (7.5 mM concentration). The mephedrone hydrochloride titrant solution was prepared by dissolving the guest in 0.1 mL of deuterated methanol (31 mM). Two portions (0.5 eq., 48.5 mL) of the titrant were added by syringe to the NMR tube. During the titration, the phosphorous singlet of the cavitand shifted downfield, from 8.70 (free host) to 11.14 ppm upon addition of one equivalent of the guest (Fig. 7a and 7c), indicating the presence of cation–

Figure 6

The full two-dimensional fingerprint plot (a) and those delineated into $H \cdots H$ (b), $C \cdots H/H \cdots C$ (c), $O \cdots H/H \cdots O$ (d) and $C I \cdots H/H \cdots C I$ (e) contacts for (I).

dipole interactions between the $^+N-CH_3$ and the phosphonate groups at the upper rim. The addition of 0.5 eq. of guest caused the appearance of two phosphorous signals at 8.74 and 11.14 ppm related to the free host and to the complex, respectively (Fig. 7*b*).

In the proton NMR, after the addition of 0.5 equivalent of mephedrone hydrochloride the diagnostic upfield shift of the

Figure 7

 31 P NMR (162 MHz, MeOD, 253 K) spectra of (*a*) free host Tiiii[C₃H₇, CH₃, Ph]; (*b*) addition of 0.5 equivalent of mephedrone HCl to the host solution; (*c*) addition of 1 equivalent of mephedrone HCl to the host solution.

Figure 8

¹H NMR (400 MHz, MeOD, 253 K) spectra of (*a*) free host Tiiii[C₃H₇, CH₃, Ph]; (*b*) addition of 0.5 equivalent of mephedrone HCl to the host solution; (*c*) addition of 1 equivalent of mephedrone HCl to the host solution. The arrows indicate the up-shift of ⁺N-CH₃ protons.

guest ⁺N–CH₃ signals was observed, as expected for the shielding effect caused by its inclusion in the aromatic cavity of the host (Fig. 8*b*). After the addition of one equivalent of guest, the ⁺N–CH₃ singlet appeared still shifted upfield but broadened (Fig. 8*c*).

5. Database survey

As already discussed in Section 1, tetraphosphonate cavitands of general formula Tiiii[R, R1, R2] (where R, R1 and R2 are the substituents at the lower rim, on the four benzene rings of the cavity, and on the phosphonate groups, respectively; Pinalli et al., 2004), are excellent receptors for molecular recognition of neutral and charged guests because of the presence of P=O groups that act as hydrogen-bond acceptors, and of the aromatic cavity that allows the formation of C-H. $\cdot \cdot \pi$ interactions. The substituent *R* at the lower rim can be modified to tune the solubility of the host, to enhance the crystallization process, or to graft the cavity on different surfaces, but does not play any significant role in the recognition process, if not that of interacting with the anionic counterpart of a positively charged guest. A search in the Cambridge Structural Database (Version 5.38, update August 2018; Groom et al., 2016) for a tetraphosphonate scaffold without limitations on R, R1 and R2 yielded 82 hits, with the most populated class (44 hits) being the one of general formula Tiiii[H, CH₃, CH₃]. The substitution of the alkyl chains with hydrogen atoms favours the formation of crystals, albeit lowering the solubility of the macrocycle, and the methyl group on the phosphonate moiety generates less steric hindrance than a phenyl one. Besides these general considerations, the most interesting structural comparisons with the title compound are to be made with supramolecular complexes in which the guests are: (i) the zwitterionic species 1,1-dicyano-2-(dicyanomethyl)-3-(dicyanomethylene)-4,4-bis-

research communications

Figure 9

Molecular sketch of the different guests described in the Database survey.

[4-(dimethylamino)phenyl]but-4-ylium-2-ide (KEGNIV; Wu et al., 2012); (ii) the diasteromeric pair ephedrine and pseudoephedrine hydrochloride (MOXREY and MOXRIC; Biavardi et al., 2015); (iii) MDMA, cocaine, amphetamine and 3-fluoromethamphetamine hydrochloride (SORREY, SORRIC, SORROI and SORRUO; Biavardi et al., 2014). A molecular sketch of the guests is reported in Fig. 9. In the case of KEGNIV, the positive charge of the zwitterionic species is localized on the N,N-dimethylanilino rings, in particular on the NMe₂ moiety, and that has been demonstrated by the supramolecular complex formed with Tiiii in which the guest enters the cavity with the positive fragment to form ion-dipole interactions with the P=O groups. Ephedrine and pseudoephedrine are complexed by the cavitand via a set of supramolecular contacts very similar to those present in the title compound, that is, hydrogen bonding involving the -NH₂⁺ fragment as donor and the phosphonate groups as acceptors, and cation $\cdot \cdot \cdot \pi$ interactions. The distance of the carbon atom of the methyl group interacting with the cavity from the mean plane passing through the methylene atoms C8A, C8B, C8C and C8D of the lower rim (the labelling is the same as in Fig. 2) is 3.023 (4) Å for ephedrine, 3.202 (3) Å for the sterically hindered pseudoephedrine and 3.001 (5) Å for (I). This value is of 3.122 (2), 4.104 (4), 2.853 (3) and 2.983 (5) Å for MDMA, cocaine, amphetamine and 3-fluoromethamphetamine hydrochloride, respectively, all in good agreement with that of the title compound (cocaine is less included inside the cavity because of its bulky substituents).

6. Synthesis and crystallization

¹H NMR spectra were obtained using a Bruker AMX-400 (400 MHz) spectrometer. All chemical shifts (δ) were reported in ppm relative to the proton resonances resulting from incomplete deuteration of the NMR solvents. ³¹P NMR spectra were obtained using a Bruker AMX-400 (162 MHz) spectrometer. All chemical shifts (δ) were recorded in ppm

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{11}H_{16}NO^+ \cdot Cl^- \cdot C_{68}H_{68}O_{12}P_4 \cdot - CH_4O$
Mr	1446.84
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	190
<i>a</i> , <i>b</i> , <i>c</i> (Å)	17.5353 (8), 22.4798 (9), 21.2031 (9)
β (°)	109.455 (1)
$V(Å^3)$	7880.8 (6)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.19
Crystal size (mm)	$0.13 \times 0.10 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII CCD area- detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
T_{\min}, T_{\max}	0.634, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	89697, 15077, 9535
R _{int}	0.073
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.612
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.077, 0.275, 1.02
No. of reflections	15077
No. of parameters	929
No. of restraints	2
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.78, -0.52

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SIR97* (Altomare *et al.*, 1999), *SHELXL2014/7* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2006), *WinGX* (Farrugia, 2012), *PARST* (Nardelli, 1995) and *publCIF* (Westrip, 2010).

relative to external 85% H_3PO_4 at 0.00 ppm. The cavitand Tiiii[C₃H₇, CH₃, C₆H₅] was prepared following published procedures (Biavardi *et al.*, 2008). Mephedrone hydrochloride in its racemic form was purchased from SALAR SpA (Italy) and used as received without further purification.

 $(C_{11}H_{16}NO)$ @Tiiii $[C_3H_7, CH_3, C_6H_5]$ Cl·CH₃OH was obtained by mixing a methanol solution of Tiiii $[C_3H_7, CH_3, C_6H_5]$ (1 eq.) with a dichloromethane solution of $C_{11}H_{16}NOCl$ (1 eq.). The mixture was left to evaporate to yield colourless single crystals of the 1:1 complex which were suitable for X-ray diffraction analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms bound to C, N and O were placed in calculated positions and refined isotropically using a riding model with C—H ranging from 0.95 to 1.00 Å, N—H = 0.91 Å, O—H = 0.98 Å and *U*iso(H) set to 1.2– 1.5*U*eq(C/N/O). For each cavitand:guest complex, a methanol solvent molecule was located in the difference-Fourier map, disordered over two positions with occupancy factors of 0.665 (6) and 0.335 (6). One of the four alkyl chains of the cavitand was also found to be disordered over two equivalent positions with occupancy factors of 0.5, and the relative carbon atoms were refined isotropically. Four reflections showing poor agreement $(031, \overline{2}31, 020 \text{ and } 231)$ were omitted from the final refinement.

Acknowledgements

The Centro Interfacoltà di Misure 'G. Casnati' and the 'Laboratorio di Strutturistica Mario Nardelli' of the University of Parma are kindly acknowledged for the use of NMR and Maldi-MS facilities and of the diffractometer. Permission to use small quantities of illicit drugs has been granted in the framework of the FP7 Dirac project by the Italian Ministero della Salute.

Funding information

Funding for this research was provided by: European Union through the DIRAC project (award No. FP7-SEC-2009-242309); Regione Lombardia-INSTM, SNAF project .

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Biavardi, E., Battistini, G., Montalti, M., Yebeutchou, R. M., Prodi, L. & Dalcanale, E. (2008). *Chem. Commun.* pp. 1638.
- Biavardi, E., Federici, S., Tudisco, C., Menozzi, D., Massera, C., Sottini, A., Condorelli, G. G., Bergese, P. & Dalcanale, E. (2014). *Angew. Chem. Int. Ed.* 53, 9183–9188.
- Biavardi, E., Ugozzoli, F. & Massera, C. (2015). Chem. Commun. 51, 3426–3429.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castro, A. de, Lendoiro, E., Fernández-Vega, H., Steinmeyer, S., López-Rivadulla, M. & Cruz, A. (2014). J. Chromatogr. A, 1374, 93–101.
- Clément, P., Korom, S., Struzzi, C., Parra, E. J., Bittencourt, C., Ballester, P. & Llobet, E. (2015). Adv. Funct. Mater. 25, 4011–4020.
- Concheiro, M., Anizan, S., Ellefsen, K. & Huestis, M. A. (2013). *Anal. Bioanal. Chem.* **405**, 9437–9448.
- Cram, D. J. (1983). Science, 219, 1177–1183.
- Cram, D. J. & Cram, J. M. (1994). Container Molecules and their Guests, Monographs in Supramolecular Chemistry, vol. 4, edited by J. F. Stoddart. Royal Society of Chemistry, Cambridge.
- Dougherty, D. A. (2013). Acc. Chem. Res. 46, 885-893.
- Dutasta, J.-P. (2004). Top. Curr. Chem. 232, 55-91.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fontanals, N., Marcé, R. M. & Borrull, F. (2017). J. Chromatogr. A, **1524**, 66–73.
- Frison, G., Gregio, M., Zamengo, L., Zancanaro, F., Frasson, S. & Sciarrone, R. (2011). Rapid Commun. Mass Spectrom. 25, 387–390.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta
- Cryst. B72, 171–179. Kanu, A. B., Brandt, S. D., Williams, M. D., Zhang, N. & Hill, H. H.
- (2013). Anal. Chem. 85, 8535–8542.
- Kolmonen, M., Leinonen, A., Kuuranne, T., Pelander, A. & Ojanperä, I. (2009). Drug Test. Anal. 1, 250–266.
- Lendoiro, E., Jiménez-Morigosa, C., Cruz, A., Páramo, M., López-Rivadulla, M. & de Castro, A. (2017). Drug Test. Anal. 9, 96–105.
- Lua, I. A., Lin, S.-L., Lin, H. R. & Lua, A. C. (2012). J. Anal. Toxicol. 36, 575–581.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

- Mayer, M., Benko, A., Huszár, A., Sipos, K., Lajtai, A., Lakatos, A. & Porpáczy, Z. (2013). J. Chromatogr. Sci. 51, 851–856.
- McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.
- Melegari, M., Massera, C., Pinalli, R., Yebeutchou, R. M. & Dalcanale, E. (2013). Sens. Actuators B, 179, 74-80.
- Mercieca, G., Odoardi, S., Cassar, M. & Strano Rossi, S. (2018). J. Pharm. Biomed. Anal. 149, 494–501.
- Mercolini, L., Protti, M., Catapano, M. C., Rudge, J. & Sberna, A. E. (2016). J. Pharm. Biomed. Anal. 123, 186–194.
- Morris, K. (2010). Lancet, 375, 1333-1334.
- Mwenesongole, E. M., Gautam, L., Hall, S. W., Waterhouse, J. W. & Cole, M. D. (2013). Anal. Methods 5, 3248–3254.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Pedersen, A. J., Dalsgaard, P. W., Rode, A. J., Rasmussen, B. S., Müller, I. B., Johansen, S. S. & Linnet, K. (2013). J. Sep. Sci. 36, 2081–2089.
- Perera, R. W. H., Abraham, I., Gupta, S., Kowalska, P., Lightsey, D., Marathaki, C., Singh, N. S. & Lough, W. J. (2012). *J. Chromatogr. A*, 1269, 189–197.
- Pinalli, R., Dalcanale, E., Ugozzoli, F. & Massera, C. (2016). *CrystEngComm*, **18**, 5788–5802.
- Pinalli, R., Pedrini, A. & Dalcanale, E. (2018). Chem. Eur. J. 24, 1010– 1019.
- Pinalli, R., Suman, M. & Dalcanale, E. (2004). *Eur. J. Org. Chem.* pp. 451–462.
- Power, J. D., McDermott, S. D., Talbot, B., O'Brien, J. E. & Kavanagh, P. (2012). Rapid Commun. Mass Spectrom. 26, 2601–2611.
- Robin, T., Barnes, A., Dulaurent, S., Loftus, N., Baumgarten, S., Moreau, S., Marquet, P., El Balkhi, S. & Saint-Marcoux, F. (2018). *Anal. Bioanal. Chem.* **410**, 5071–5083.
- Salomone, A., Gazzilli, G., Di Corcia, D., Gerace, E. & Vincenti, M. (2016). Anal. Bioanal. Chem. 408, 2035–2042.
- Santali, E. Y., Cadogan, A.-K., Daeid, N. N., Savage, K. A. & Sutcliffe, O. B. (2011). J. Pharm. Biomed. Anal. 56, 246–255.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, N., Day, P., Katta, V. R., Mohammed, G. P. & Lough, W. J. (2010). J. Pharm. Pharmacol. 62, 1209–1210.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378– 392.
- Strano-Rossi, S., Anzillotti, L., Castrignanò, E., Romolo, F. S. & Chiarotti, M. (2012). J. Chromatogr. A, 1258, 37–42.
- Strano-Rossi, S., Odoardi, S., Fisichella, M., Anzillotti, L., Gottardo, R. & Tagliaro, F. (2014). J. Chromatogr. A, 1372, 145–156.
- Trzciński, J. W., Pinalli, R., Riboni, N., Pedrini, A., Bianchi, F., Zampolli, S., Elmi, I., Massera, C., Ugozzoli, F. & Dalcanale, E. (2017). ACS Sens. 2, 590–598.
- Tudisco, C., Fragalà, M. E., Giuffrida, A. E., Bertani, F., Pinalli, R., Dalcanale, E., Compagnini, G. & Condorelli, G. G. (2016). J. Phys. Chem. C, 120, 12611–12617.
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17*. The University of Western Australia.
- Vachon, J., Harthong, S., Jeanneau, E., Aronica, C., Vanthuyne, N., Roussel, C. & Dutasta, J.-P. (2011). Org. Biomol. Chem. 9, 5086– 5091.
- Vircks, K. E. & Mulligan, C. C. (2012). Rapid Commun. Mass Spectrom. 26, 2665–2672.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Winstock, A. R., Marsden, J. & Mitcheson, L. (2010). BMJ, 340, c1605.
- Wood, D. M., Davies, S., Puchnarewicz, M., Button, J., Archer, R., Ovaska, H., Ramsey, J., Lee, T., Holt, D. W. & Dargan, P. I. (2010).
 J. Med. Toxicol. 6, 327–330.
- Wu, Y. L., Tancini, F., Schweizer, B. W., Paunescu, D., Boudon, C., Gisselbrecht, J.-P., Jarowski, P. D., Dalcanale, E. & Diederich, F. (2012). *Chem. Asian J.* 7, 1185–1190.

Acta Cryst. (2019). E75, 277-283 [https://doi.org/10.1107/S2056989019001464]

Crystal structure of a host-guest complex between mephedrone hydrochloride and a tetraphosphonate cavitand

Elisa Biavardi and Chiara Massera

Computing details

Data collection: APEXII (Bruker, 2008); cell refinement: APEXII (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *PARST* (Nardelli, 1995) and *publCIF* (Westrip, 2010).

Methyl[1-(4-methylphenyl)-1-oxopropan-2-yl]azanium chloride 2,8,14,20-tetrapropyl-5,11,17,23-tetramethyl-6,10:12,16:18,22:24,4-tetrakis(phenylphosphonato-*O*,*O*')resorcin[4]arene methanol monosolvate

Crystal data

 $\begin{array}{l} {\rm C}_{11}{\rm H}_{16}{\rm NO}^+{\rm \cdot CI}^-{\rm \cdot C}_{68}{\rm H}_{68}{\rm O}_{12}{\rm P}_4{\rm \cdot CH}_4{\rm O}\\ M_r = 1446.84\\ {\rm Monoclinic}, P2_1/c\\ a = 17.5353\ (8)\ {\rm \mathring{A}}\\ b = 22.4798\ (9)\ {\rm \mathring{A}}\\ c = 21.2031\ (9)\ {\rm \mathring{A}}\\ \beta = 109.455\ (1)^\circ\\ V = 7880.8\ (6)\ {\rm \mathring{A}}^3\\ Z = 4 \end{array}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω -scan Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.634, T_{\max} = 0.745$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.275$ S = 1.0215077 reflections 929 parameters 2 restraints F(000) = 3056 $D_x = 1.219 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 2781 reflections $\theta = 1.4-25.8^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 190 KPrismatic, colourless $0.13 \times 0.10 \times 0.08 \text{ mm}$

89697 measured reflections 15077 independent reflections 9535 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 25.8^{\circ}, \ \theta_{min} = 1.4^{\circ}$ $h = -21 \rightarrow 21$ $k = -27 \rightarrow 27$ $l = -25 \rightarrow 25$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1708P)^2 + 6.7275P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.78 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.52 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.08550 (8)	-0.09484 (7)	0.83375 (7)	0.0629 (4)	
N1	0.3301 (2)	0.10053 (18)	0.7202 (2)	0.0554 (10)	
H1A	0.3375	0.1203	0.7593	0.066*	
H1B	0.2979	0.1234	0.6864	0.066*	
01	0.4139 (3)	0.19702 (17)	0.7037 (2)	0.0786 (12)	
C1	0.2883 (3)	0.0432 (2)	0.7216 (3)	0.0559 (12)	
H1C	0.2744	0.0239	0.6778	0.084*	
H1D	0.2389	0.0508	0.7322	0.084*	
H1E	0.3242	0.0172	0.7559	0.084*	
C2	0.4103 (3)	0.0926 (2)	0.7107 (3)	0.0559 (12)	
H2	0.4429	0.0636	0.7448	0.067*	
C3	0.4012 (5)	0.0691 (3)	0.6436 (4)	0.094 (2)	
H3A	0.3662	0.0340	0.6347	0.141*	
H3B	0.4545	0.0581	0.6417	0.141*	
H3C	0.3770	0.0997	0.6099	0.141*	
C4	0.4542 (3)	0.1522 (2)	0.7228 (3)	0.0578 (13)	
C5	0.5426 (3)	0.1539 (2)	0.7557 (3)	0.0556 (12)	
C6	0.5884 (4)	0.1030 (2)	0.7777 (3)	0.0725 (16)	
H6	0.5632	0.0651	0.7702	0.087*	
C7	0.6700 (4)	0.1074 (3)	0.8101 (4)	0.086 (2)	
H7	0.7007	0.0721	0.8242	0.103*	
C8	0.7091 (3)	0.1621 (3)	0.8230 (3)	0.0669 (15)	
C9	0.6637 (4)	0.2117 (3)	0.7986 (3)	0.0778 (17)	
H9	0.6892	0.2495	0.8048	0.093*	
C10	0.5824 (4)	0.2080 (2)	0.7656(3)	0.0743 (17)	
H10	0.5526	0.2433	0.7491	0.089*	
C11	0.7975 (4)	0.1679 (3)	0.8644 (4)	0.097 (2)	
H11A	0.8306	0.1625	0.8356	0.145*	
H11B	0.8117	0.1375	0.8995	0.145*	
H11C	0.8074	0.2075	0.8849	0.145*	
P1A	0.38511 (7)	0.16364 (5)	0.90714 (5)	0.0380 (3)	
O1A	0.40936 (17)	0.10664 (12)	0.95332 (13)	0.0384 (6)	
O2A	0.29380 (17)	0.17777 (13)	0.90051 (14)	0.0433 (7)	
O3A	0.39674 (18)	0.15745 (13)	0.84232 (14)	0.0449 (7)	
P1B	0.10885 (7)	0.17333 (5)	0.61816 (6)	0.0407 (3)	
O1B	0.08989 (17)	0.18649 (13)	0.68474 (15)	0.0427 (7)	
O2B	0.04768 (17)	0.12187 (12)	0.58070 (14)	0.0407 (7)	
O3B	0.19354 (18)	0.15819 (13)	0.62903 (16)	0.0475 (7)	
P1C	0.21929 (7)	-0.08274 (5)	0.52556 (6)	0.0417 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

01C	0.12856 (17)	-0.06563 (13)	0.51623 (14)	0.0404 (7)	
O2C	0.23930 (17)	-0.13912 (13)	0.57372 (14)	0.0417 (7)	
O3C	0.2765 (2)	-0.03344 (15)	0.54850 (17)	0.0556 (8)	
P1D	0.50908 (6)	-0.08324 (5)	0.81214 (5)	0.0354 (3)	
01D	0.45599 (16)	-0.14052 (12)	0.78262 (14)	0.0375 (6)	
O2D	0.50278 (16)	-0.07416 (12)	0.88471 (13)	0.0355 (6)	
O3D	0.48583 (18)	-0.03031 (13)	0.76989 (15)	0.0461 (7)	
C10D	0.3303 (3)	-0.1689 (2)	0.9668 (2)	0.0537 (12)	
H10K	0.3883	-0.1796	0.9806	0.064*	
H10J	0.3263	-0.1285	0.9842	0.064*	
C2A	0.3159 (2)	0.02458 (18)	0.91576 (19)	0.0362 (9)	
C3A	0.3928 (2)	0.04831 (18)	0.92624 (19)	0.0355(9)	
C4A	0.4552(2)	0.01803(17)	0.91511(18)	0.0336 (9)	
C5A	0.4385(2)	-0.04078(17)	0.89356 (19)	0.0342(9)	
C6A	0.3637(2)	-0.06805(17)	0.88228(18)	0.0312(9)	
C7A	0.5366(2)	0.000000(17)	0.9266(2)	0.0331(3) 0.0414(10)	
H7A1	0.5315	0.0781	0.8946	0.062*	
H7A2	0.5740	0.0156	0.9206	0.062*	
H7A3	0.5575	0.0615	0.9200	0.062*	
C8A	0.3373 0.2484 (2)	0.0013	0.9723 0.9277 (2)	0.002 0.0403 (10)	
H8A	0.2464 (2)	0.0011 (2)	0.9625	0.048*	
C9A	0.1926 (3)	0.0241(3)	0.9539(2)	0.010	0.5
H9A1	0.1650	-0.0048	0.9184	0.068*	0.5
H9A2	0.2276	0.0007	0.9922	0.068*	0.5
C10A	0.1322 (6)	0.0007 0.0507 (4)	0.9750 (5)	0.000	0.5
H10A	0.0934	0.0307 (4)	0.9361	0.059*	0.5
H10R	0.1581	0.0815	1.0087	0.059*	0.5
C11A	0.0858 (8)	0.0019	1.0007 1.0041 (7)	0.039	0.5
HIID	0.0636	-0.0226	0.9731	0.119*	0.5
H11F	0.0030	0.0324	1 0117	0.119*	0.5
H11E	0.1217	-0.0055	1.0467	0.119*	0.5
COF	0.1217 0.1026 (3)	0.0055	0.0530(2)	0.117 0.0570 (13)	0.5
HOF1	0.1920 (5)	0.0241(3)	0.9539 (2)	0.0570 (15)	0.5
119E1 110E2	0.1738	-0.0108	0.9312	0.068*	0.5
C10E	0.1738 0.2270 (7)	0.0103	0.9242 1.0187 (5)	0.000	0.5
	0.2270(7)	0.0042 (3)	1.0187 (3)	0.000 (3)*	0.5
	0.2330	0.0378	1.0461	0.072*	0.5
	0.2092	-0.0238 -0.0237(7)	1.0207 1.0435(7)	0.072°	0.5
	0.1024 (9)	-0.0237(7)	1.0435 (7)	0.093 (4)*	0.5
	0.1221	-0.0280	1.0433	0.139*	0.5
	0.10/9	-0.0389	1.0090	0.139*	0.5
	0.1339	-0.0304	1.0138	0.139°	0.5
C12A	0.4380(3)	0.22140(18)	0.9010(2)	0.0415(10)	
UI3A	0.4582 (4)	0.2721 (3)	0.9337 (3)	0.0745 (18)	
HI3A CI44	0.4484	0.2742	0.8870	0.089*	
U14A	0.4927 (5)	0.3200(3)	0.9744 (4)	0.087(2)	
HI4A	0.5028	0.3561	0.9552	0.105*	
CI5A	0.5122 (4)	0.3151 (3)	1.0423 (3)	0.0742 (17)	
H15A	0.5395	0.3468	1.0705	0.089*	

C16A	0.4927 (5)	0.2649 (3)	1.0695 (3)	0.084 (2)
H16A	0.5048	0.2623	1.1166	0.101*
C17A	0.4551 (4)	0.2178 (2)	1.0288 (3)	0.0710 (17)
H17A	0.4412	0.1830	1.0480	0.085*
C1B	0.1377 (2)	0.06971 (19)	0.8132 (2)	0.0378 (9)
H1B1	0.1192	0.0314	0.8203	0.045*
C2B	0.0980 (2)	0.09968 (19)	0.7532 (2)	0.0383 (9)
C3B	0.1283(2)	0.15481 (19)	0.7442(2)	0.0401 (10)
C4B	0.1936 (3)	0.18243 (19)	0.7916(2)	0.0433(10)
C5B	0.2294(2)	0.1501 (2)	0.8505(2)	0.0409 (10)
C6B	0.2035(2)	0.09445(19)	0.8628(2)	0.0384(9)
C7B	0.2030(2) 0.2230(3)	0.2430(2)	0.0020(2) 0.7796(3)	0.0528(12)
H7B1	0.22230 (3)	0.2634	0.8226	0.079*
H7B2	0.1773	0.2665	0.7513	0.079*
H7B3	0.2635	0.2387	0.7574	0.079*
C8B	0.2055 0.0260(2)	0.2337 0.07312(19)	0.7971	0.0389 (9)
H8B	-0.0063	0.1069	0.6737	0.047*
COB	-0.0300(3)	0.0374(2)	0.0737 0.7276(2)	0.047
HOB1	-0.0763	0.0228	0.7270 (2)	0.0449(10) 0.054*
H9B2	-0.0003	0.0023	0.7518	0.054*
C10B	-0.0624(3)	0.0025	0.7510 0.7747(3)	0.054 0.0586 (13)
H10E	-0.0903	0.1089	0.7518	0.0500 (15)
H10E	-0.0170	0.0851	0.8146	0.070*
CliB	-0.1216(5)	0.0344(3)	0.8140 0.7964 (4)	0.070
	-0.1605	0.0344 (3)	0.7560	0.100 (2)
	-0.1506	0.0138	0.7509	0.150*
	-0.0017	0.0035	0.8274	0.150*
	-0.091/	0.0033 0.22712(10)	0.8274	0.130°
C12B	0.0098(3)	0.23712(19)	0.5090(2)	0.0447(10)
	0.0180 (3)	0.2771(2)	0.5852 (5)	0.0343(12)
ПІЗБ	0.0028	0.2702	0.0232	0.003°
	-0.0093 (4)	0.3272(2)	0.5457 (5)	0.0004 (13)
HI4B	-0.0448	0.3343	0.5505	0.082^{*}
	0.0146 (4)	0.3371 (3)	0.4913 (3)	0.0/13(10)
HIJB CIGD	-0.0050	0.3/12	0.4042	0.080°
	0.0000 (4)	0.2989 (3)	0.4751 (3)	0.0773 (18)
HI6B C17D	0.0826	0.3068	0.43/6	0.093^{*}
CI/B	0.0939 (4)	0.2482 (2)	0.5142 (3)	0.0661 (15)
HI/B	0.1294	0.2214	0.5032	0.079*
	0.0744 (2)	-0.02396 (18)	0.6637 (2)	0.0362 (9)
HICI	0.069/	-0.041/	0.7028	0.043*
C2C	0.0996 (2)	-0.05894 (18)	0.6198 (2)	0.0362 (9)
C3C	0.1080 (2)	-0.03113 (18)	0.56427 (19)	0.0354 (9)
C4C	0.0937 (2)	0.02916 (19)	0.5505 (2)	0.0384 (9)
CSC	0.0667 (2)	0.06113 (18)	0.5952 (2)	0.0362 (9)
C6C	0.0560 (2)	0.03618 (18)	0.6517 (2)	0.0367 (9)
C7C	0.1049 (3)	0.0577 (2)	0.4899 (2)	0.0440 (10)
H7C1	0.0730	0.0943	0.4790	0.066*
H7C2	0.0868	0.0302	0.4520	0.066*

H7C3	0.1622	0.0671	0.4994	0.066*
C8C	0.1184 (2)	-0.12493 (18)	0.6345 (2)	0.0367 (9)
H8C	0.1102	-0.1449	0.5907	0.044*
C9C	0.0606 (3)	-0.15446 (19)	0.6653 (2)	0.0437 (10)
H9C1	0.0689	-0.1364	0.7097	0.052*
H9C2	0.0043	-0.1457	0.6368	0.052*
C10C	0.0702 (3)	-0.2207(2)	0.6736 (3)	0.0529 (12)
H10H	0.1250	-0.2298	0.7048	0.063*
H10G	0.0649	-0.2389	0.6299	0.063*
C11C	0.0071 (3)	-0.2479(2)	0.7006 (3)	0.0671 (15)
H110	0.0153	-0.2327	0 7457	0.101*
H11P	0.0128	-0.2913	0.7023	0.101*
HIIO	-0.0473	-0.2372	0.6711	0.101*
C12C	0.2126(3)	-0.1168(2)	0.0711 0.4482 (2)	0.0498(11)
C13C	0.2120(3) 0.2679(4)	-0.1017(3)	0.1102(2) 0.4170(3)	0.0715 (16)
HI3C	0.3060	-0.0708	0.4343	0.0715 (10)
C14C	0.3000	-0.1332(3)	0.3590 (3)	0.080
	0.2004 (4)	-0.1235	0.3390 (3)	0.0810 (19)
C15C	0.3040	-0.1233	0.3370 0.3345(3)	0.0738(18)
U15C	0.2118 (4)	-0.1080	0.3343 (3)	0.0738 (18)
	0.2117	-0.1980	0.2933	0.089°
	0.1380 (4)	-0.1910 (3)	0.3043 (3)	0.0/2/(10)
П10C	0.1198	-0.2223	0.3400	0.087°
	0.1574 (3)	-0.1621 (2)	0.4216 (2)	0.0570(15)
HI/C	0.1193	-0.1/29	0.442/	0.068*
CID	0.2356 (2)	-0.13048 (17)	0.7459 (2)	0.0361 (9)
HIDI	0.1975	-0.1283	0.7689	0.043*
C2D	0.3179 (2)	-0.13337 (17)	0.7825 (2)	0.0346 (9)
C3D	0.3721 (2)	-0.13563 (17)	0.7472 (2)	0.0370 (9)
C4D	0.3488 (2)	-0.13616 (19)	0.6780 (2)	0.0384 (9)
C5D	0.2659 (3)	-0.13406 (18)	0.6444 (2)	0.0385 (9)
C6D	0.2079 (2)	-0.13078 (17)	0.6756 (2)	0.0366 (9)
C7D	0.4084 (3)	-0.1409 (2)	0.6415 (2)	0.0512 (12)
H7D1	0.3815	-0.1572	0.5967	0.077*
H7D2	0.4529	-0.1672	0.6662	0.077*
H7D3	0.4300	-0.1013	0.6376	0.077*
C8D	0.3491 (3)	-0.13214 (18)	0.8587 (2)	0.0370 (9)
H8D	0.4032	-0.1521	0.8732	0.044*
C9D	0.2954 (3)	-0.1677 (2)	0.8902 (2)	0.0447 (10)
H9D1	0.2408	-0.1497	0.8762	0.054*
H9D2	0.2899	-0.2090	0.8731	0.054*
C1A	0.3029 (2)	-0.03379 (19)	0.89266 (19)	0.0373 (9)
H1A1	0.2507	-0.0508	0.8837	0.045*
C11D	0.2872 (5)	-0.2126 (3)	0.9978 (3)	0.088 (2)
H11R	0.2305	-0.2006	0.9869	0.133*
H11S	0.3135	-0.2128	1.0465	0.133*
H11T	0.2899	-0.2525	0.9800	0.133*
C12D	0.6095 (3)	-0.11008 (19)	0.8291 (2)	0.0403 (9)
C13D	0.6686 (4)	-0.0701 (3)	0.8263 (4)	0.084 (2)

H13D	0.6555	-0.0293	0.8174	0.101*	
C14D	0.7447 (4)	-0.0892 (3)	0.8361 (5)	0.100 (3)	
H14D	0.7837	-0.0619	0.8312	0.120*	
C15D	0.7671 (3)	-0.1469 (3)	0.8528 (3)	0.0649 (15)	
H15D	0.8217	-0.1590	0.8629	0.078*	
C16D	0.7105 (3)	-0.1858 (3)	0.8548 (3)	0.0718 (16)	
H16D	0.7248	-0.2262	0.8655	0.086*	
C17D	0.6309 (3)	-0.1678 (2)	0.8413 (3)	0.0604 (14)	
H17D	0.5909	-0.1965	0.8406	0.072*	
O1S	0.5707 (10)	0.0241 (7)	0.6032 (8)	0.103 (5)*	0.335 (6)
H1S	0.5450	0.0115	0.5647	0.154*	0.335 (6)
C1S	0.6098 (12)	-0.0253 (8)	0.6455 (11)	0.105 (8)	0.335 (6)
H1S1	0.6675	-0.0167	0.6666	0.158*	0.335 (6)
H1S2	0.6033	-0.0615	0.6184	0.158*	0.335 (6)
H1S3	0.5851	-0.0313	0.6802	0.158*	0.335 (6)
O2S	-0.0947 (3)	-0.1331 (3)	0.7768 (3)	0.0699 (19)	0.665 (6)
H2S	-0.0485	-0.1178	0.7930	0.105*	0.665 (6)
C2S	-0.1305 (5)	-0.1142 (4)	0.7091 (4)	0.075 (3)	0.665 (6)
H2S1	-0.1836	-0.0967	0.7029	0.113*	0.665 (6)
H2S2	-0.1367	-0.1485	0.6793	0.113*	0.665 (6)
H2S3	-0.0956	-0.0845	0.6985	0.113*	0.665 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0503 (7)	0.0783 (9)	0.0617 (8)	-0.0120 (6)	0.0208 (6)	-0.0002 (7)
N1	0.052 (2)	0.053 (2)	0.058 (2)	0.0033 (19)	0.013 (2)	-0.0020 (19)
01	0.083 (3)	0.053 (2)	0.095 (3)	0.008 (2)	0.024 (2)	0.013 (2)
C1	0.046 (3)	0.051 (3)	0.072 (3)	0.000 (2)	0.021 (2)	0.002 (2)
C2	0.053 (3)	0.050(3)	0.066 (3)	0.004 (2)	0.021 (2)	-0.008(2)
C3	0.107 (6)	0.081 (5)	0.101 (5)	-0.029 (4)	0.042 (4)	-0.035 (4)
C4	0.071 (3)	0.045 (3)	0.061 (3)	0.007 (3)	0.026 (3)	0.007 (2)
C5	0.061 (3)	0.047 (3)	0.062 (3)	-0.002 (2)	0.025 (3)	0.000 (2)
C6	0.067 (4)	0.042 (3)	0.111 (5)	-0.002 (3)	0.035 (3)	0.000 (3)
C7	0.052 (3)	0.054 (3)	0.147 (6)	0.001 (3)	0.027 (4)	0.014 (4)
C8	0.062 (3)	0.059 (3)	0.085 (4)	-0.008 (3)	0.031 (3)	-0.002 (3)
C9	0.079 (4)	0.054 (3)	0.092 (4)	-0.016 (3)	0.017 (3)	-0.001 (3)
C10	0.081 (4)	0.041 (3)	0.088 (4)	-0.009 (3)	0.010 (3)	-0.001 (3)
C11	0.063 (4)	0.083 (5)	0.145 (7)	-0.019 (3)	0.035 (4)	-0.011 (4)
P1A	0.0383 (6)	0.0354 (6)	0.0377 (6)	-0.0013 (5)	0.0090 (5)	-0.0070 (4)
O1A	0.0392 (15)	0.0342 (15)	0.0383 (15)	-0.0018 (12)	0.0082 (12)	-0.0061 (12)
O2A	0.0382 (16)	0.0421 (17)	0.0453 (17)	0.0010 (13)	0.0081 (13)	-0.0092 (13)
O3A	0.0487 (18)	0.0447 (17)	0.0395 (16)	-0.0002 (14)	0.0122 (13)	-0.0051 (13)
P1B	0.0378 (6)	0.0340 (6)	0.0476 (6)	0.0005 (5)	0.0107 (5)	0.0004 (5)
O1B	0.0407 (16)	0.0365 (15)	0.0467 (17)	0.0025 (13)	0.0089 (13)	-0.0001 (13)
O2B	0.0400 (16)	0.0313 (15)	0.0455 (16)	0.0029 (12)	0.0073 (13)	0.0007 (12)
O3B	0.0395 (16)	0.0416 (17)	0.0597 (19)	0.0006 (13)	0.0143 (14)	0.0013 (14)
P1C	0.0397 (6)	0.0435 (6)	0.0386 (6)	0.0003 (5)	0.0085 (5)	-0.0026 (5)

01C	0.0395 (16)	0.0388 (16)	0.0377 (15)	0.0004 (13)	0.0061 (12)	-0.0054 (12)
O2C	0.0415 (16)	0.0445 (17)	0.0347 (15)	0.0036 (13)	0.0070 (12)	-0.0047 (13)
O3C	0.0477 (18)	0.054 (2)	0.061 (2)	-0.0095 (16)	0.0119 (16)	-0.0028 (16)
P1D	0.0342 (5)	0.0300 (5)	0.0391 (6)	0.0011 (4)	0.0086 (4)	0.0033 (4)
O1D	0.0314 (14)	0.0350 (15)	0.0401 (15)	0.0029 (12)	0.0040 (12)	0.0005 (12)
O2D	0.0322 (14)	0.0331 (14)	0.0373 (15)	0.0029 (11)	0.0065 (12)	0.0032 (11)
O3D	0.0518 (18)	0.0388 (16)	0.0449 (17)	0.0049 (14)	0.0123 (14)	0.0078 (13)
C10D	0.064 (3)	0.050 (3)	0.046 (3)	-0.012(2)	0.018 (2)	0.007 (2)
C2A	0.037(2)	0.040 (2)	0.0301 (19)	-0.0011 (18)	0.0091 (17)	0.0005 (17)
C3A	0.037 (2)	0.033 (2)	0.034 (2)	-0.0050(17)	0.0080 (17)	-0.0011 (16)
C4A	0.036 (2)	0.033 (2)	0.0300 (19)	-0.0030(17)	0.0079 (16)	0.0005 (16)
C5A	0.037 (2)	0.033 (2)	0.0309 (19)	0.0009 (17)	0.0096 (17)	0.0044 (16)
C6A	0.035(2)	0.033(2)	0.0283(19)	-0.0050(17)	0.0060 (16)	0.0031 (16)
C7A	0.036 (2)	0.038 (2)	0.049 (2)	-0.0051(18)	0.0124 (19)	-0.0031(19)
C8A	0.034(2)	0.051 (3)	0.037(2)	-0.0044(19)	0.0141 (18)	-0.0066(19)
C9A	0.055(3)	0.078 (4)	0.043(3)	-0.011(3)	0.023(2)	-0.007(2)
C9E	0.055 (3)	0.078 (4)	0.043(3)	-0.011(3)	0.023(2)	-0.007(2)
C12A	0.040(2)	0.033(2)	0.049(2)	-0.0010(18)	0.0126(19)	-0.0100(19)
C13A	0.010(2) 0.112(5)	0.055(2) 0.067(4)	0.061(2)	-0.040(3)	0.051(3)	-0.025(3)
C14A	0.124 (6)	0.064(4)	0.099(5)	-0.049(4)	0.071(5)	-0.030(3)
C15A	0.021(0) 0.078(4)	0.057(3)	0.033(3)	-0.018(3)	0.071(3) 0.028(3)	-0.035(3)
C16A	0.124 (6)	0.060(4)	0.052(3)	-0.013(4)	0.020(3)	-0.018(3)
C17A	0.121(0) 0.109(5)	0.000(1) 0.043(3)	0.032(3) 0.044(3)	-0.005(3)	0.004(3)	-0.002(2)
C1B	0.033(2)	0.041(2)	0.043(2)	0.0000(5)	0.0161(18)	-0.002(2)
C2B	0.032(2)	0.043(2)	0.042(2)	0.0011(17) 0.0030(18)	0.0134(18)	-0.0032(18)
C3B	0.032(2)	0.043(2) 0.041(2)	0.042(2) 0.042(2)	0.0030(18) 0.0079(18)	0.0194(10) 0.0099(18)	-0.0019(19)
C4B	0.035(2)	0.041(2) 0.037(2)	0.042(2)	0.0079(18)	0.0077(10)	-0.006(2)
C5B	0.033(2)	0.037(2) 0.047(2)	0.033(3)	0.0032(10)	0.012(2)	-0.0120(19)
C6B	0.035(2)	0.047(2)	0.040(2) 0.039(2)	0.0030(19)	0.0000(10)	-0.0050(18)
C7B	0.054(2) 0.053(3)	0.045(2) 0.034(2)	0.059(2) 0.064(3)	0.0000(10)	0.0192(10)	-0.003(2)
C8B	0.033(3)	0.034(2)	0.007(3)	0.000(2)	0.009(2)	0.003(2)
C9B	0.035(2)	0.036(2)	0.047(2) 0.053(3)	0.0013(17)	0.0130(10)	0.0020(10)
C10B	0.055(2)	0.040(2) 0.057(3)	0.035(3)	0.0001(1))	0.013(2) 0.031(3)	0.004(2)
C11B	0.001(5)	0.037(5)	0.076(3) 0.146(7)	-0.001(4)	0.031(5)	0.010(5)
C12B	0.100(3) 0.044(2)	0.036(2)	0.140(7) 0.050(3)	-0.001(4)	0.009(3)	-0.0021(19)
C12D	0.044(2)	0.030(2) 0.044(3)	0.050(3)	0.0010(1))	0.009(2)	0.0021(1))
C14B	0.033(3)	0.053 (3)	0.003(3) 0.079(4)	0.007(2) 0.019(3)	0.019(2) 0.021(3)	0.002(2)
C15B	0.070(4)	0.055(3)	0.079(4)	0.019(3)	0.021(3)	0.009(3)
C16B	0.073(+)	0.050(3)	0.057(3)	0.017(3)	0.005(3)	0.010(3)
C10D	0.117(3)	0.000(3)	0.051(3)	0.014(4)	0.020(3)	0.013(3)
	0.097(4)	0.044(3)	0.003(3)	-0.0038(17)	0.034(3)	0.004(2)
$C^{2}C$	0.0279(19)	0.038(2) 0.035(2)	0.037(2)	-0.0038(17)	0.0030(17)	-0.0018(17)
C2C	0.029(2)	0.035(2)	0.040(2)	-0.0039(17)	0.0040(17)	-0.0013(17)
	0.033(2)	0.037(2)	0.032(2)	-0.0024(17)	0.0049(10)	0.0031(17)
C5C	0.032(2)	0.071(2) 0.033(2)	0.030(2)	-0.0002(17)	0.0010(17)	0.0002(10)
C5C	0.030(2) 0.028(2)	0.033(2) 0.037(2)	0.040(2)	-0.0019(10)	0.0035(17) 0.0081(17)	-0.0012(17)
C7C	0.020(2)	0.037(2)	0.043(2)	-0.0032(17)	0.0001(17)	0.0042(10)
	0.040(2)	0.042(2)	0.041(2)	-0.001(2)	0.011(2)	0.0040(19)
COL	0.033(2)	0.033(2)	0.030(2)	0.0013(1/)	0.0039(1/)	0.0033(1/)

C9C	0.037 (2)	0.040 (2)	0.049 (3)	-0.0077 (19)	0.0072 (19)	0.0011 (19)
C10C	0.048 (3)	0.039 (2)	0.067 (3)	-0.003 (2)	0.014 (2)	0.004 (2)
C11C	0.070 (4)	0.049 (3)	0.084 (4)	-0.006 (3)	0.027 (3)	0.012 (3)
C12C	0.050 (3)	0.056 (3)	0.037 (2)	0.012 (2)	0.006 (2)	0.005 (2)
C13C	0.075 (4)	0.090 (4)	0.056 (3)	0.000 (3)	0.030 (3)	0.004 (3)
C14C	0.086 (5)	0.112 (5)	0.059 (4)	0.025 (4)	0.041 (3)	0.009 (4)
C15C	0.079 (4)	0.088 (5)	0.043 (3)	0.031 (4)	0.005 (3)	-0.005 (3)
C16C	0.084 (4)	0.075 (4)	0.050 (3)	0.009 (3)	0.010 (3)	-0.013 (3)
C17C	0.059 (3)	0.060 (3)	0.044 (3)	0.006 (2)	0.006 (2)	-0.008(2)
C1D	0.037 (2)	0.032 (2)	0.037 (2)	-0.0037 (17)	0.0101 (17)	0.0004 (17)
C2D	0.034 (2)	0.030 (2)	0.037 (2)	-0.0036 (16)	0.0073 (17)	0.0016 (16)
C3D	0.032 (2)	0.030 (2)	0.041 (2)	-0.0013 (17)	0.0025 (17)	0.0007 (17)
C4D	0.037 (2)	0.038 (2)	0.038 (2)	0.0034 (18)	0.0102 (18)	-0.0012 (18)
C5D	0.043 (2)	0.035 (2)	0.034 (2)	0.0042 (18)	0.0080 (18)	0.0009 (17)
C6D	0.037 (2)	0.0263 (19)	0.040 (2)	-0.0029 (17)	0.0041 (17)	-0.0001 (16)
C7D	0.043 (3)	0.062 (3)	0.047 (3)	0.008 (2)	0.013 (2)	-0.005 (2)
C8D	0.040 (2)	0.031 (2)	0.037 (2)	-0.0026 (17)	0.0076 (18)	0.0062 (17)
C9D	0.050 (3)	0.039 (2)	0.042 (2)	-0.013 (2)	0.011 (2)	0.0041 (19)
C1A	0.036 (2)	0.040 (2)	0.034 (2)	-0.0079 (18)	0.0086 (17)	0.0046 (17)
C11D	0.122 (6)	0.089 (5)	0.057 (3)	-0.039 (4)	0.034 (4)	0.009 (3)
C12D	0.037 (2)	0.038 (2)	0.044 (2)	0.0008 (18)	0.0114 (18)	-0.0003 (18)
C13D	0.058 (3)	0.048 (3)	0.160 (7)	0.006 (3)	0.054 (4)	0.025 (4)
C14D	0.058 (4)	0.076 (4)	0.183 (8)	-0.001 (3)	0.061 (5)	0.032 (5)
C15D	0.041 (3)	0.067 (4)	0.087 (4)	0.006 (3)	0.021 (3)	-0.007 (3)
C16D	0.046 (3)	0.051 (3)	0.113 (5)	0.009 (3)	0.019 (3)	0.008 (3)
C17D	0.045 (3)	0.039 (3)	0.095 (4)	-0.001 (2)	0.021 (3)	0.008 (3)
C1S	0.095 (16)	0.099 (17)	0.15 (2)	-0.026 (13)	0.078 (16)	-0.010 (16)
O2S	0.037 (3)	0.080 (4)	0.094 (5)	-0.021 (3)	0.024 (3)	0.001 (3)
C2S	0.057 (5)	0.054 (5)	0.120 (8)	-0.015 (4)	0.035 (5)	-0.010 (5)

Geometric parameters (Å, °)

N1—C1	1.488 (6)	C3B—C4B	1.393 (6)
N1-C2	1.495 (6)	C4B—C5B	1.400 (6)
N1—H1A	0.9100	C4B—C7B	1.507 (6)
N1—H1B	0.9100	C5B—C6B	1.385 (6)
O1—C4	1.221 (6)	C7B—H7B1	0.9800
C1—H1C	0.9800	C7B—H7B2	0.9800
C1—H1D	0.9800	C7B—H7B3	0.9800
C1—H1E	0.9800	C8B—C9B	1.528 (6)
C2—C3	1.476 (8)	C8B—C6C	1.541 (6)
C2—C4	1.522 (7)	C8B—H8B	1.0000
С2—Н2	1.0000	C9B—C10B	1.525 (7)
С3—НЗА	0.9800	C9B—H9B1	0.9900
С3—Н3В	0.9800	C9B—H9B2	0.9900
С3—Н3С	0.9800	C10B—C11B	1.531 (8)
C4—C5	1.473 (8)	C10B—H10E	0.9900
C5—C10	1.383 (7)	C10B—H10F	0.9900

C5—C6	1.385 (8)	C11B—H11L	0.9800
С6—С7	1.369 (9)	C11B—H11M	0.9800
С6—Н6	0.9500	C11B—H11N	0.9800
С7—С8	1.388 (8)	C12B—C17B	1.385 (7)
С7—Н7	0.9500	C12B—C13B	1.391 (7)
C8—C9	1.367 (8)	C13B—C14B	1.391 (7)
C8—C11	1.512 (9)	C13B—H13B	0.9500
C9—C10	1.365 (8)	C14B—C15B	1.370 (8)
С9—Н9	0.9500	C14B—H14B	0.9500
С10—Н10	0.9500	C15B—C16B	1.370 (9)
С11—Н11А	0.9800	C15B—H15B	0.9500
C11—H11B	0.9800	C16B—C17B	1.398 (7)
C11—H11C	0.9800	C16B—H16B	0.9500
P1A-O3A	1.462 (3)	C17B—H17B	0.9500
PIA-OIA	1 582 (3)	C1C-C6C	1 393 (6)
PIA-O2A	1.592 (3)	C1C-C2C	1.396 (6)
PIA—Cl2A	1 774 (4)	C1C-H1C1	0.9500
01A - C3A	1.477(1)	$C_2C_2C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C$	1 384 (6)
02A - C5B	1.422(5) 1.410(5)	$C_2C - C_8C$	1.504 (0)
P1B_03B	1.465 (3)	$C_{3}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{4}C_{-}C_{-}C_{-}C_{4}C_{-}C_{-}C_{-}C_{4}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	1.322 (0)
P1B-01B	1.582 (3)	$C_{4}C_{-}C_{5}C_{-}C_{-$	1.392 (6)
P1B_02B	1.502 (3)	C4C-C7C	1.592 (0)
P1B_C12B	1.771 (5)	$C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}$	1.300 (0)
$\begin{array}{c} 11D - C12D \\ 01R - C3R \end{array}$	1.771(5)	C7C H7C1	0.0800
01B-C5C	1.409(3)	C7C H7C2	0.9800
$D_{2B} = C_{3C}$	1.415(3) 1.465(2)	$C/C = H/C^2$	0.9800
	1.403(3)	$C^{0}C$	0.9600
	1.584 (3)	$C_{SC} = C_{OC}$	1.525 (5)
PIC-02C	1.392 (3)		1.528 (0)
PIC = CI2C	1.//9 (5)		1.0000
	1.419 (5)		1.501 (6)
02C—C5D	1.418 (5)		0.9900
PID-03D	1.463 (3)	C9C—H9C2	0.9900
PID—OID	1.590 (3)		1.533 (7)
PID—02D	1.592 (3)	CIOC—HIOH	0.9900
PID—CI2D	1.781 (4)	Cloc—HloG	0.9900
OID—C3D	1.416 (5)	CIIC—HIIO	0.9800
O2D—C5A	1.418 (5)	CIIC—HIIP	0.9800
CloD—CliD	1.515 (7)	CIIC—HIIQ	0.9800
CloD—C9D	1.534 (6)	C12C—C13C	1.384 (8)
C10D—H10K	0.9900	C12C—C17C	1.389 (7)
C10D—H10J	0.9900	C13C—C14C	1.413 (9)
C2A—C1A	1.393 (6)	C13C—H13C	0.9500
C2A—C3A	1.396 (6)	C14C—C15C	1.352 (9)
C2A—C8A	1.529 (6)	C14C—H14C	0.9500
C3A—C4A	1.375 (6)	C15C—C16C	1.340 (9)
C4A—C5A	1.398 (5)	C15C—H15C	0.9500
C4A—C7A	1.500 (6)	C16C—C17C	1.389 (7)
C5A—C6A	1.394 (5)	C16C—H16C	0.9500

C6A—C1A	1.391 (6)	C17C—H17C	0.9500	
C6A—C8D	1.518 (6)	C1D—C2D		
C7A—H7A1	0.9800	C1D—C6D	1.406 (6)	
C7A—H7A2	0.9800	C1D—H1D1	0.9500	
C7A—H7A3	0.9800	C2D—C3D	1.392 (6)	
C8A—C9E	1.524 (6)	C2D—C8D	1.524 (6)	
C8A—C9A	1.524 (6)	C3D—C4D	1.387 (6)	
C8A—C6B	1.535 (6)	C4D—C5D	1.391 (6)	
C8A—H8A	1.0000	C4D—C7D	1.497 (6)	
C9A—C10A	1.413 (10)	C5D—C6D	1.388 (6)	
C9A—H9A1	0.9900	C7D—H7D1	0.9800	
С9А—Н9А2	0.9900	C7D—H7D2	0.9800	
C10A—C11A	1.483 (15)	C7D—H7D3	0.9800	
C10A—H10A	0.9900	C8D—C9D	1.545 (6)	
C10A—H10B	0.9900	C8D—H8D	1.0000	
C11A—H11D	0.9800	C9D—H9D1	0.9900	
C11A—H11E	0.9800	C9D—H9D2	0.9900	
C11A—H11F	0.9800	C1A—H1A1	0.9500	
C9E—C10E	1.379 (11)	C11D—H11R	0.9800	
C9E—H9E1	0.9900	C11D—H11S	0.9800	
С9Е—Н9Е2	0.9900	C11D—H11T	0.9800	
C10E—C11E	1.531 (17)	C12D—C17D	1.351 (6)	
C10E—H10C	0.9900	C12D—C13D	1.387 (7)	
C10E—H10D	0.9900	C13D—C14D	1.351 (8)	
C11E—H11G	0.9800	C13D—H13D	0.9500	
C11E—H11H	0.9800	C14D—C15D	1.367 (9)	
C11E—H11I	0.9800	C14D—H14D	0.9500	
C12A—C17A	1.371 (7)	C15D—C16D	1.333 (8)	
C12A—C13A	1.376 (7)	C15D—H15D	0.9500	
C13A—C14A	1.386 (8)	C16D—C17D	1.389 (7)	
C13A—H13A	0.9500	C16D—H16D	0.9500	
C14A—C15A	1.369 (9)	C17D—H17D	0.9500	
C14A—H14A	0.9500	O1S—C1S	1.449 (5)	
C15A—C16A	1.361 (9)	O1S—H1S	0.8400	
C15A—H15A	0.9500	C1S—H1S1	0.9800	
C16A—C17A	1.387 (7)	C1S—H1S2	0.9800	
C16A—H16A	0.9500	C1S—H1S3	0.9800	
C17A—H17A	0.9500	O2S—C2S	1.425 (5)	
C1B—C6B	1.391 (6)	O2S—H2S	0.8400	
C1B—C2B	1.403 (6)	C2S—H2S1	0.9800	
C1B—H1B1	0.9500	C2S—H2S2	0.9800	
C2B—C3B	1.387 (6)	C2S—H2S3	0.9800	
C2B—C8B	1.508 (6)			
C1—N1—C2	113.1 (4)	C4B—C7B—H7B2	109.5	
C1—N1—H1A	109.0	H7B1—C7B—H7B2	109.5	
C2—N1—H1A	109.0	C4B—C7B—H7B3	109.5	
C1—N1—H1B	109.0	H7B1—C7B—H7B3	109.5	

C2—N1—H1B	109.0	H7B2—C7B—H7B3	109.5
H1A—N1—H1B	107.8	C2B—C8B—C9B	113.9 (4)
N1—C1—H1C	109.5	C2B—C8B—C6C	109.0 (3)
N1—C1—H1D	109.5	C9B—C8B—C6C	112.2 (3)
H1C—C1—H1D	109.5	C2B—C8B—H8B	107.1
N1—C1—H1E	109.5	C9B—C8B—H8B	107.1
H1C—C1—H1E	109.5	C6C—C8B—H8B	107.1
H1D—C1—H1E	109.5	C10B—C9B—C8B	113.9 (4)
C3—C2—N1	111.6 (5)	C10B—C9B—H9B1	108.8
C3—C2—C4	111.3 (5)	C8B—C9B—H9B1	108.8
N1—C2—C4	108.6 (4)	C10B—C9B—H9B2	108.8
C3—C2—H2	108.4	C8B—C9B—H9B2	108.8
N1—C2—H2	108.4	H9B1—C9B—H9B2	107.7
C4—C2—H2	108.4	C9B-C10B-C11B	110.1 (5)
С2—С3—НЗА	109.5	C9B-C10B-H10E	109.6
С2—С3—Н3В	109.5	C11B-C10B-H10E	109.6
H3A—C3—H3B	109.5	C9B-C10B-H10F	109.6
С2—С3—Н3С	109.5	C11B—C10B—H10F	109.6
НЗА—СЗ—НЗС	109.5	H10E—C10B—H10F	108.2
НЗВ—СЗ—НЗС	109.5	C10B—C11B—H11L	109.5
O1—C4—C5	122.5 (5)	C10B—C11B—H11M	109.5
O1—C4—C2	117.7 (5)	H11L—C11B—H11M	109.5
C5—C4—C2	119.7 (4)	C10B—C11B—H11N	109.5
C10—C5—C6	117.9 (5)	H11L—C11B—H11N	109.5
C10—C5—C4	119.5 (5)	H11M—C11B—H11N	109.5
C6—C5—C4	122.6 (5)	C17B—C12B—C13B	119.5 (4)
C7—C6—C5	120.1 (5)	C17B—C12B—P1B	118.3 (4)
С7—С6—Н6	120.0	C13B—C12B—P1B	122.2 (4)
С5—С6—Н6	120.0	C12B—C13B—C14B	120.1 (5)
C6—C7—C8	121.8 (6)	C12B—C13B—H13B	119.9
С6—С7—Н7	119.1	C14B—C13B—H13B	119.9
С8—С7—Н7	119.1	C15B—C14B—C13B	119.6 (5)
C9—C8—C7	117.4 (6)	C15B—C14B—H14B	120.2
C9—C8—C11	120.3 (5)	C13B—C14B—H14B	120.2
C7—C8—C11	122.3 (6)	C16B—C15B—C14B	121.3 (5)
С10—С9—С8	121.4 (5)	C16B—C15B—H15B	119.4
С10—С9—Н9	119.3	C14B—C15B—H15B	119.4
С8—С9—Н9	119.3	C15B—C16B—C17B	119.5 (6)
C9—C10—C5	121.3 (6)	C15B—C16B—H16B	120.2
С9—С10—Н10	119.4	C17B—C16B—H16B	120.2
С5—С10—Н10	119.4	C12B—C17B—C16B	120.0 (5)
C8—C11—H11A	109.5	C12B—C17B—H17B	120.0
C8—C11—H11B	109.5	C16B—C17B—H17B	120.0
H11A—C11—H11B	109.5	C6C—C1C—C2C	122.0 (4)
C8—C11—H11C	109.5	C6C-C1C-H1C1	119.0
H11A—C11—H11C	109.5	C2C—C1C—H1C1	119.0
H11B—C11—H11C	109.5	C3C—C2C—C1C	117.3 (4)
O3A—P1A—O1A	114.32 (17)	C3C—C2C—C8C	122.3 (4)

O3A—P1A—O2A	112.78 (17)	C1C—C2C—C8C	120.4 (4)
O1A—P1A—O2A	105.75 (17)	C2C—C3C—C4C	123.8 (4)
O3A—P1A—C12A	117.9 (2)	C2C—C3C—O1C	119.3 (4)
O1A—P1A—C12A	102.66 (18)	C4C—C3C—O1C	116.9 (4)
O2A—P1A—C12A	101.89 (18)	C3C—C4C—C5C	116.0 (4)
C3A—O1A—P1A	121.3 (2)	C3C—C4C—C7C	121.9 (4)
C5B—O2A—P1A	120.6 (3)	C5C—C4C—C7C	122.1 (4)
O3B—P1B—O1B	113.97 (18)	C6C—C5C—C4C	123.5 (4)
O3B—P1B—O2B	112.80 (17)	C6C—C5C—O2B	119.1 (4)
O1B—P1B—O2B	105.85 (16)	C4C—C5C—O2B	117.4 (4)
O3B—P1B—C12B	117.0 (2)	C5C—C6C—C1C	117.3 (4)
O1B—P1B—C12B	102.63 (19)	C5C—C6C—C8B	121.9 (4)
O2B—P1B—C12B	103.30 (18)	C1C—C6C—C8B	120.8 (4)
C3B—O1B—P1B	121.6 (3)	C4C—C7C—H7C1	109.5
C5C—O2B—P1B	121.3 (2)	C4C—C7C—H7C2	109.5
O3C—P1C—O1C	113.94 (18)	H7C1—C7C—H7C2	109.5
O3C—P1C—O2C	114.15 (18)	C4C—C7C—H7C3	109.5
O1C—P1C—O2C	105.73 (16)	H7C1—C7C—H7C3	109.5
O3C—P1C—C12C	117.3 (2)	Н7С2—С7С—Н7С3	109.5
O1C—P1C—C12C	103.55 (19)	C6D—C8C—C9C	114.9 (3)
O2C—P1C—C12C	100.50 (19)	C6D—C8C—C2C	108.1 (3)
C3C—O1C—P1C	121.9 (2)	C9C—C8C—C2C	112.3 (3)
C5D—O2C—P1C	122.6 (3)	C6D—C8C—H8C	107.0
O3D—P1D—O1D	114.22 (17)	C9C—C8C—H8C	107.0
O3D—P1D—O2D	113.11 (17)	C2C—C8C—H8C	107.0
O1D—P1D—O2D	105.32 (15)	C10C—C9C—C8C	114.6 (4)
O3D—P1D—C12D	117.0 (2)	С10С—С9С—Н9С1	108.6
O1D—P1D—C12D	102.41 (18)	C8C—C9C—H9C1	108.6
O2D—P1D—C12D	103.36 (17)	С10С—С9С—Н9С2	108.6
C3D—O1D—P1D	121.0 (2)	С8С—С9С—Н9С2	108.6
C5A—O2D—P1D	120.7 (2)	Н9С1—С9С—Н9С2	107.6
C11D—C10D—C9D	113.0 (4)	C9C—C10C—C11C	111.9 (4)
C11D-C10D-H10K	109.0	С9С—С10С—Н10Н	109.2
C9D—C10D—H10K	109.0	С11С—С10С—Н10Н	109.2
C11D—C10D—H10J	109.0	C9C-C10C-H10G	109.2
C9D—C10D—H10J	109.0	C11C—C10C—H10G	109.2
H10K—C10D—H10J	107.8	H10H—C10C—H10G	107.9
C1A—C2A—C3A	116.9 (4)	C10C—C11C—H11O	109.5
C1A—C2A—C8A	121.2 (4)	C10C—C11C—H11P	109.5
C3A—C2A—C8A	121.8 (4)	H110—C11C—H11P	109.5
C4A—C3A—C2A	124.4 (4)	C10C—C11C—H11Q	109.5
C4A—C3A—O1A	117.3 (3)	H110-C11C-H11Q	109.5
C2A—C3A—O1A	118.2 (4)	H11P—C11C—H11Q	109.5
C3A—C4A—C5A	115.6 (4)	C13C—C12C—C17C	119.4 (5)
C3A—C4A—C7A	122.4 (4)	C13C—C12C—P1C	119.6 (4)
C5A—C4A—C7A	122.0 (4)	C17C—C12C—P1C	120.8 (4)
C6A—C5A—C4A	123.7 (4)	C12C—C13C—C14C	118.7 (6)
C6A—C5A—O2D	119.2 (3)	C12C—C13C—H13C	120.7

C4A—C5A—O2D	117.0 (3)	C14C—C13C—H13C	120.7
C1A—C6A—C5A	117.1 (4)	C15C—C14C—C13C	120.4 (6)
C1A—C6A—C8D	121.6 (4)	C15C—C14C—H14C	119.8
C5A—C6A—C8D	121.3 (4)	C13C—C14C—H14C	119.8
C4A—C7A—H7A1	109.5	C16C—C15C—C14C	121.0 (6)
C4A—C7A—H7A2	109.5	C16C—C15C—H15C	119.5
H7A1—C7A—H7A2	109.5	C14C—C15C—H15C	119.5
C4A—C7A—H7A3	109.5	C15C—C16C—C17C	120.6 (6)
H7A1—C7A—H7A3	109.5	C15C—C16C—H16C	119.7
H7A2—C7A—H7A3	109.5	C17C—C16C—H16C	119.7
C9E—C8A—C2A	113.2 (4)	C12C—C17C—C16C	119.8 (6)
C9A—C8A—C2A	113.2 (4)	C12C—C17C—H17C	120.1
C9E—C8A—C6B	113.1 (4)	C16C—C17C—H17C	120.1
C9A—C8A—C6B	113.1 (4)	C2D—C1D—C6D	121.2 (4)
C2A—C8A—C6B	108.0 (3)	C2D-C1D-H1D1	119.4
С9Е—С8А—Н8А	107.4	C6D—C1D—H1D1	119.4
С2А—С8А—Н8А	107.4	C3D—C2D—C1D	117.9 (4)
C6B—C8A—H8A	107.4	C3D - C2D - C8D	120.1 (4)
C10A - C9A - C8A	121.6 (6)	C1D-C2D-C8D	120.1(1) 122.0(4)
C10A - C9A - H9A1	106.9	C4D-C3D-C2D	123.8 (4)
C8A - C9A - H9A1	106.9	C4D-C3D-O1D	116.6 (4)
C10A - C9A - H9A2	106.9	C^2D C^3D O^1D	119.5(3)
C8A - C9A - H9A2	106.9	C3D - C4D - C5D	115.5(3)
H9A1 - C9A - H9A2	106.7	C3D - C4D - C7D	113.5(1) 122.6(4)
C9A - C10A - C11A	116.4 (9)	C5D - C4D - C7D	122.0(4) 1219(4)
C9A - C10A - H10A	108.2	C6D - C5D - C4D	121.9(4) 124 5 (4)
$C_{11}A = C_{10}A = H_{10}A$	108.2	C6D - C5D - C4D	124.3(4) 118 2 (4)
$C_{10} = C_{10} = H_{10}$	108.2	$C_{0}^{4}D_{-}^{-}C_{5}^{5}D_{-}^{-}O_{2}^{2}C_{-}^{2}C$	117.2(4)
$C_{11A} = C_{10A} = H_{10B}$	108.2	$C_{TD} = C_{TD} = C_{TD}$	117.3(+) 117.1(4)
$H_{10A} = C_{10A} = H_{10B}$	107.3	C_{5D} C_{6D} C_{8C}	117.1(4) 120.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.5	$C_{3}D_{-}C_{6}D_{-}C_{6}C$	120.0(4) 122.1(4)
CIOA CIIA HIIE	109.5	C1D = C0D = C8C	122.1 (4)
HID CIIA HIE	109.5	C4D = C7D = H7D1	109.5
CIOA CIIA HIIE	109.5	$U_{4}D_{-}U_{7}D_{-}H_{7}D_{2}$	109.5
UIID CIIA HIIF	109.5	$\Pi/DI = C/D = \Pi/D2$	109.5
	109.5	$U_{4}D_{-}U_{7}D_{-}H_{7}D_{3}$	109.5
HILE—CITA—HILF	109.5	H/DI - C/D - H/D3	109.5
C10E - C9E - C8A	114.8 (6)	H/D2 - C/D - H/D3	109.5
C10E - C9E - H9E1	108.6	C6A = C8D = C2D	109.1 (3)
Class case liaso	108.6	C6A = C8D = C9D	114.1 (4)
CIOE—C9E—H9E2	108.6	C2D—C8D—C9D	113.1 (3)
C8A—C9E—H9E2	108.6	C6A—C8D—H8D	106.7
H9E1—C9E—H9E2	107.5	C2D—C8D—H8D	106.7
C9E—C10E—C11E	110.3 (9)	C9D—C8D—H8D	106.7
C9E—C10E—H10C	109.6	C10D - C9D - C8D	112.4 (4)
CIIE—CI0E—H10C	109.6	C10D—C9D—H9D1	109.1
C9E—C10E—H10D	109.6	C8D—C9D—H9D1	109.1
C11E—C10E—H10D	109.6	C10D—C9D—H9D2	109.1
H10C-C10E-H10D	108.1	C8D—C9D—H9D2	109.1

C10E—C11E—H11G	109.5	H9D1—C9D—H9D2	107.9
C10E—C11E—H11H	109.5	C6A—C1A—C2A	122.2 (4)
H11G—C11E—H11H	109.5	C6A—C1A—H1A1	118.9
C10E—C11E—H11I	109.5	C2A—C1A—H1A1	118.9
H11G—C11E—H11I	109.5	C10D—C11D—H11R	109.5
H11H—C11E—H11I	109.5	C10D-C11D-H11S	109.5
C17A—C12A—C13A	119.6 (4)	H11R—C11D—H11S	109.5
C17A—C12A—P1A	121.1 (4)	C10D—C11D—H11T	109.5
C13A—C12A—P1A	119.2 (4)	H11R—C11D—H11T	109.5
C12A—C13A—C14A	120.2 (5)	H11S—C11D—H11T	109.5
C12A—C13A—H13A	119.9	C17D-C12D-C13D	117.8 (4)
C14A—C13A—H13A	119.9	C17D—C12D—P1D	123.8 (4)
C15A—C14A—C13A	119.7 (6)	C13D—C12D—P1D	118.3 (4)
C15A - C14A - H14A	120.1	C14D— $C13D$ — $C12D$	120.1(5)
C13A—C14A—H14A	120.1	C14D— $C13D$ — $H13D$	119.9
C16A - C15A - C14A	120.2 (5)	C12D— $C13D$ — $H13D$	119.9
C16A - C15A - H15A	119.9	C13D— $C14D$ — $C15D$	121.6 (6)
C14A - C15A - H15A	119.9	C13D— $C14D$ — $H14D$	119.2
C15A - C16A - C17A	120.3 (6)	C15D— $C14D$ — $H14D$	119.2
C15A - C16A - H16A	119.9	C16D - C15D - C14D	119.2
C17A - C16A - H16A	119.9	C16D - C15D - H15D	120.7
C12A - C17A - C16A	120.0(5)	C14D— $C15D$ — $H15D$	120.7
C12A - C17A - H17A	120.0	C15D— $C16D$ — $C17D$	120.6 (5)
C16A - C17A - H17A	120.0	C15D - C16D - H16D	119.7
C6B-C1B-C2B	121.9 (4)	C17D - C16D - H16D	119.7
C6B-C1B-H1B1	119.0	C12D— $C17D$ — $C16D$	121.0(5)
C2B-C1B-H1B1	119.0	C12D $C17D$ $H17D$	119.5
C3B-C2B-C1B	117.2 (4)	C16D - C17D - H17D	119.5
C3B-C2B-C8B	120.9(4)	C1S = O1S = H1S	109.5
C1B-C2B-C8B	121.9 (4)	01S $-C1S$ $-H1S1$	109.5
C2B-C3B-C4B	124.1 (4)	01S-C1S-H1S2	109.5
$C_2B-C_3B-O_1B$	119.0 (4)	H1S1 - C1S - H1S2	109.5
C4B-C3B-O1B	116.9 (4)	01S-C1S-H1S3	109.5
C3B-C4B-C5B	115.4 (4)	H1S1—C1S—H1S3	109.5
C3B—C4B—C7B	121.8 (4)	H1S2—C1S—H1S3	109.5
C5B—C4B—C7B	122.8 (4)	C2S—O2S—H2S	109.5
C6B—C5B—C4B	124.0 (4)	028—C28—H2S1	109.5
C6B—C5B—O2A	119.2 (4)	O2S—C2S—H2S2	109.5
C4B—C5B—O2A	116.8 (4)	H2S1—C2S—H2S2	109.5
C5B—C6B—C1B	117.4 (4)	O2S—C2S—H2S3	109.5
C5B—C6B—C8A	120.5 (4)	H2S1—C2S—H2S3	109.5
C1B—C6B—C8A	122.1 (4)	H2S2—C2S—H2S3	109.5
C4B—C7B—H7B1	109.5		
C1—N1—C2—C3	67.3 (6)	C2B—C8B—C9B—C10B	56.6 (5)
C1—N1—C2—C4	-169.7 (4)	C6C—C8B—C9B—C10B	-178.9 (4)
C3—C2—C4—O1	86.1 (7)	C8B-C9B-C10B-C11B	176.7 (5)
N1—C2—C4—O1	-37.1 (7)	O3B—P1B—C12B—C17B	38.1 (5)
	· · ·		· /

an an ar	001(0)		
C3—C2—C4—C5	-93.1 (6)	O1B—P1B—C12B—C17B	163.7 (4)
N1—C2—C4—C5	143.7 (5)	O2B—P1B—C12B—C17B	-86.4 (4)
O1—C4—C5—C10	-0.2 (8)	O3B—P1B—C12B—C13B	-139.4 (4)
C2—C4—C5—C10	179.0 (5)	O1B—P1B—C12B—C13B	-13.9 (4)
O1—C4—C5—C6	179.6 (6)	O2B—P1B—C12B—C13B	96.0 (4)
C2—C4—C5—C6	-1.2 (8)	C17B—C12B—C13B—C14B	1.3 (7)
C10—C5—C6—C7	2.1 (9)	P1B-C12B-C13B-C14B	178.8 (4)
C4—C5—C6—C7	-177.6 (6)	C12B—C13B—C14B—C15B	-0.7 (8)
C5—C6—C7—C8	1.1 (11)	C13B—C14B—C15B—C16B	-0.4(9)
C6—C7—C8—C9	-3.6(11)	C14B—C15B—C16B—C17B	0.9 (10)
C6—C7—C8—C11	174.1 (7)	C13B—C12B—C17B—C16B	-0.8(8)
C7-C8-C9-C10	2.9(10)	P1B-C12B-C17B-C16B	-1784(5)
$C_{11} - C_{8} - C_{9} - C_{10}$	-1748(7)	C15B-C16B-C17B-C12B	-0.3(9)
$C_{8} - C_{9} - C_{10} - C_{5}$	0.2(11)	$C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}$	18(6)
C6 $C5$ $C10$ $C9$	-28(0)	C_{1}^{C}	-170 4 (3)
C_{4} C_{5} C_{10} C_{9}	2.6(9)	$C_{1}C_{1}C_{2}C_{1}C_{2}C_{2}C_{2}C_{3}C_{3}C_{4}C_{4}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5}C_{5$	179.4(3)
$C_4 = C_5 = C_{10} = C_7$	170.9(0) 28.7(2)	C1C - C2C - C3C - C4C	0.7(0)
OSA—PIA—OIA—CSA	-38.7(3)	100 - 100	-178.0(4)
OZA—PIA—OIA—C3A	86.0 (3)	C1C - C2C - C3C - O1C	-1/6.2(3)
CI2A—PIA—OIA—C3A	-16/.6(3)	120 - 120 - 130 - 010	5.1 (5)
O3A—PIA—O2A—C5B	38.9 (4)	PIC—OIC—C3C—C2C	-83.3 (4)
O1A—P1A—O2A—C5B	-86.8 (3)	P1C—O1C—C3C—C4C	99.6 (4)
C12A—P1A—O2A—C5B	166.3 (3)	C2C—C3C—C4C—C5C	-2.4 (6)
O3B—P1B—O1B—C3B	-36.1 (4)	O1C—C3C—C4C—C5C	174.6 (3)
O2B—P1B—O1B—C3B	88.4 (3)	C2C—C3C—C4C—C7C	179.0 (4)
C12B—P1B—O1B—C3B	-163.6 (3)	O1C—C3C—C4C—C7C	-4.0 (6)
O3B—P1B—O2B—C5C	38.8 (4)	C3C—C4C—C5C—C6C	1.7 (6)
O1B—P1B—O2B—C5C	-86.5 (3)	C7C—C4C—C5C—C6C	-179.7 (4)
C12B—P1B—O2B—C5C	166.0 (3)	C3C—C4C—C5C—O2B	-176.8 (3)
O3C—P1C—O1C—C3C	-44.2 (4)	C7C—C4C—C5C—O2B	1.8 (6)
O2C—P1C—O1C—C3C	82.0 (3)	P1B-02B-C5C-C6C	80.1 (4)
C12C—P1C—O1C—C3C	-172.8 (3)	P1B-02B-C5C-C4C	-101.3 (4)
O3C—P1C—O2C—C5D	41.0 (4)	C4C—C5C—C6C—C1C	0.7 (6)
O1C—P1C—O2C—C5D	-85.0 (3)	O2B—C5C—C6C—C1C	179.1 (3)
C12C—P1C—O2C—C5D	167.5 (3)	C4C—C5C—C6C—C8B	180.0 (4)
O3D - P1D - O1D - C3D	-36.7(3)	O2B—C5C—C6C—C8B	-1.5(5)
02D - P1D - 01D - C3D	88.0 (3)	$C_{2}C_{-}C_{1}C_{-}C_{6}C_{-}C_{5$	-2.5(6)
C12D P1D $O1D$ $C3D$	-1642(3)	$C_{2}C_{-}C_{1}C_{-}C_{6}C_{-}C_{8}B$	1782(3)
$O3D_P1D_O2D_C5A$	38 3 (3)	$C_{2B}^{2B} = C_{8B}^{2B} = C_{6C}^{2C} = C_{5C}^{5C}$	-89.6(5)
O_{1D} P_{1D} O_{2D} C_{5A}	-871(3)	$C_{2D} = C_{3D} = C_{3C} = C_{3C}$	1/3 3 (4)
C_{12} P_{12} O_{22} C_{33} C_{34}	165 8 (3)	$C^{2}R C^{8}R C^{6}C C^{1}C$	1+3.3(+)
C12D - T1D - O2D - C3A	105.8(3)	$C_{2}D = C_{3}D = C_{4}C = C_{1}C$	37.7(4)
CIA - C2A - C3A - C4A	0.2(0)	$C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}$	-37.4(3)
$C_{A} = C_{A} = C_{A} = C_{A}$	-1/8.6(4)	$C_{3}C_{-}C_{2}C_{-}C_{8}C_{-}C_{6}D$	88.4 (4)
CIA - C2A - C3A - OIA	-1/6.6(3)	C1C - C2C - C8C - C6D	-90.4 (4)
$C_{A} - C_{A} - C_{A} - O_{A}$	4.6 (6)	$C_{3}C_{-}C_{2}C_{-}C_{8}C_{-}C_{9}C_{-}C_{0}C_{0}C_{-}C_{0}C_{0}C_{-}C_{0}C_{0}C_{-}C_{0}C_{0}C_{-}C_{0}C_{0}C_{-$	-143.8(4)
PIA-OIA-C3A-C4A	99.2 (4)	C1C—C2C—C8C—C9C	57.5 (5)
PIA—OIA—C3A—C2A	-83.8 (4)	C6D—C8C—C9C—C10C	-62.4 (5)
C2A—C3A—C4A—C5A	-1.7 (6)	C2C—C8C—C9C—C10C	173.4 (4)
O1A—C3A—C4A—C5A	175.1 (3)	C8C—C9C—C10C—C11C	-176.4 (4)

$C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{7} \wedge$	170.5(4)	03C P1C C12C C13C	86(5)
$C_{2A} = C_{3A} = C_{4A} = C_{7A}$	179.3(4)	O_1C P_1C $C_{12}C$ $C_{12}C$	0.0(3)
OIA - CJA - C4A - C/A	-3.7(0)	OIC - PIC - CI2C - CI3C	133.1(4)
	1.2 (6)		-115.7 (4)
C/A—C4A—C5A—C6A	-180.0 (4)	03C—PIC—CI2C—CI7C	-177.2 (4)
C3A—C4A—C5A—O2D	-177.1 (3)	O1C—P1C—C12C—C17C	-50.8 (4)
C7A—C4A—C5A—O2D	1.7 (5)	O2C—P1C—C12C—C17C	58.4 (4)
P1D—O2D—C5A—C6A	81.8 (4)	C17C—C12C—C13C—C14C	-0.2 (8)
P1D—O2D—C5A—C4A	-99.8 (4)	P1C-C12C-C13C-C14C	174.0 (4)
C4A—C5A—C6A—C1A	0.7 (6)	C12C—C13C—C14C—C15C	0.2 (9)
O2DC5AC6AC1A	179.0 (3)	C13C—C14C—C15C—C16C	0.2 (10)
C4A—C5A—C6A—C8D	179.9 (3)	C14C—C15C—C16C—C17C	-0.6 (9)
O2D—C5A—C6A—C8D	-1.9(5)	C13C—C12C—C17C—C16C	-0.2(7)
C1A—C2A—C8A—C9E	35 4 (5)	P1C-C12C-C17C-C16C	-1743(4)
C_{3A} C_{2A} C_{8A} C_{9E}	-145.8(4)	$C_{15}C_{-}C_{16}C_{-}C_{17}C_{-}C_{12}C_{-}C_{-}C_{12}C_{-}C_{1$	0.6 (8)
C1A - C2A - C8A - C9A	354(5)	C6D - C1D - C2D - C3D	10(6)
C_{3A} C_{2A} C_{8A} C_{9A}	-145.8(4)	C6D $C1D$ $C2D$ $C3D$	1.0(0) 1701(4)
$C_{1A} = C_{2A} = C_{8A} = C_{9A}$	-90.7(4)	$C_{0}D_{-}C_{1}D_{-}C_{2}D_{-}C_{3}D_{-}C_{4$	-1.1.(6)
$C_{1A} = C_{2A} = C_{8A} = C_{6B}$	90.7 (4)	$C^{0}D$ $C^{2}D$ $C^{2}D$ $C^{4}D$	1.1(0)
$C_{A} = C_{A} = C_{A} = C_{A} = C_{A}$	88.1 (4)	C_{8D} C_{2D} C_{3D} C_{4D}	-1/9.2(4)
C_{2A} C_{8A} C_{9A} C_{10A}	1/2.8 (6)	CID - C2D - C3D - OID	-1/8.0(3)
C6B—C8A—C9A—C10A	-63.9 (7)	C_{8D} — C_{2D} — C_{3D} — OID	3.9 (6)
C8A—C9A—C10A—C11A	-1/5.6 (8)	PID—OID—C3D—C4D	99.1 (4)
C2A—C8A—C9E—C10E	70.3 (7)	P1D—O1D—C3D—C2D	-83.9 (4)
C6B—C8A—C9E—C10E	-166.4 (6)	C2D—C3D—C4D—C5D	0.2 (6)
C8A—C9E—C10E—C11E	171.0 (8)	01D—C3D—C4D—C5D	177.2 (3)
O3A—P1A—C12A—C17A	-155.6 (4)	C2D—C3D—C4D—C7D	-177.7 (4)
O1A—P1A—C12A—C17A	-29.0 (5)	O1D-C3D-C4D-C7D	-0.7 (6)
O2A—P1A—C12A—C17A	80.4 (5)	C3D-C4D-C5D-C6D	0.9 (6)
O3A—P1A—C12A—C13A	28.1 (5)	C7D-C4D-C5D-C6D	178.8 (4)
O1A—P1A—C12A—C13A	154.7 (4)	C3D—C4D—C5D—O2C	-175.3 (3)
O2A—P1A—C12A—C13A	-95.9 (5)	C7D—C4D—C5D—O2C	2.6 (6)
C17A—C12A—C13A—C14A	-2.4(9)	P1C-02C-C5D-C6D	87.6 (4)
P1A-C12A-C13A-C14A	173.9 (5)	P1C-02C-C5D-C4D	-96.0(4)
C12A— $C13A$ — $C14A$ — $C15A$	48(11)	C4D - C5D - C6D - C1D	-10(6)
C_{13A} C_{14A} C_{15A} C_{16A}	-46(11)	02C - C5D - C6D - C1D	175 2 (3)
C_{14A} C_{15A} C_{16A} C_{17A}	20(11)	C4D - C5D - C6D - C8C	176.3(4)
C_{13A} C_{12A} C_{17A} C_{16A}	-0.2(0)	$O_{1}^{2}C$ $C_{2}^{5}D$ $C_{6}^{6}D$ $C_{6}^{8}C$	-7.5(6)
$\mathbf{P}_{1A} = \mathbf{C}_{12A} = \mathbf{C}_{17A} = \mathbf{C}_{16A}$	0.2(9)	$C_2 C_2 C_3 D_2 C_0 D_2 C_0 C_0 C_0 C_0 C_0 C_0 C_0 C_0 C_0 C_0$	7.5(0)
$C_{15A} = C_{12A} = C_{17A} = C_{10A}$	1/0.5(5)	C_{2D} C_{1D} C_{0D} C_{3D}	0.0(0)
CIDA - CIDA - CI/A - CIZA	0.4(11)	$C_2D = C_1D = C_0D = C_0C$	-1/7.3(4)
C_{0B} C_{1B} C_{2B} C_{3B}	1.7 (6)	$C_9CC_8CC_6DC_5D$	148.0 (4)
C6B—C1B—C2B—C8B	-179.2 (4)	C2C—C8C—C6D—C5D	-85.7 (5)
C1B—C2B—C3B—C4B	-1.9 (6)	C9C—C8C—C6D—C1D	-34.8 (5)
C8B—C2B—C3B—C4B	179.0 (4)	C2C—C8C—C6D—C1D	91.5 (4)
C1B—C2B—C3B—O1B	-179.7 (3)	C1A—C6A—C8D—C2D	88.8 (4)
C8B—C2B—C3B—O1B	1.2 (6)	C5A—C6A—C8D—C2D	-90.4 (4)
P1B-01B-C3B-C2B	-82.8 (4)	C1A-C6A-C8D-C9D	-38.9 (5)
P1B-01B-C3B-C4B	99.3 (4)	C5A-C6A-C8D-C9D	142.0 (4)
C2B—C3B—C4B—C5B	1.1 (6)	C3D-C2D-C8D-C6A	88.4 (4)
O1B—C3B—C4B—C5B	178.9 (4)	C1D-C2D-C8D-C6A	-89.6 (4)

COD COD CAD COD	170 7 (4)		142 4 (4)
C2B—C3B—C4B—C/B	-1/8./(4)	C3D-C2D-C8D-C9D	-143.4 (4)
O1B—C3B—C4B—C7B	-0.9 (6)	C1D—C2D—C8D—C9D	38.6 (5)
C3B—C4B—C5B—C6B	0.1 (6)	C11D—C10D—C9D—C8D	-169.4 (5)
C7B—C4B—C5B—C6B	179.9 (4)	C6A-C8D-C9D-C10D	-57.6 (5)
C3B—C4B—C5B—O2A	-177.8 (3)	C2D-C8D-C9D-C10D	176.8 (4)
C7B—C4B—C5B—O2A	2.0 (6)	C5A—C6A—C1A—C2A	-2.4 (6)
P1A-02A-C5B-C6B	85.2 (4)	C8D—C6A—C1A—C2A	178.4 (4)
P1A-02A-C5B-C4B	-96.8 (4)	C3A—C2A—C1A—C6A	2.0 (6)
C4B—C5B—C6B—C1B	-0.3 (6)	C8A—C2A—C1A—C6A	-179.2 (4)
O2A-C5B-C6B-C1B	177.5 (3)	O3D—P1D—C12D—C17D	-151.1 (4)
C4B—C5B—C6B—C8A	177.5 (4)	O1D—P1D—C12D—C17D	-25.4 (5)
O2A—C5B—C6B—C8A	-4.7 (6)	O2D—P1D—C12D—C17D	83.9 (5)
C2B—C1B—C6B—C5B	-0.6 (6)	O3D—P1D—C12D—C13D	25.5 (5)
C2B-C1B-C6B-C8A	-178.4 (4)	O1D—P1D—C12D—C13D	151.2 (5)
C9E—C8A—C6B—C5B	145.5 (4)	O2D—P1D—C12D—C13D	-99.5 (5)
C9A—C8A—C6B—C5B	145.5 (4)	C17D—C12D—C13D—C14D	-0.5 (10)
C2A—C8A—C6B—C5B	-88.4 (5)	P1D-C12D-C13D-C14D	-177.3 (6)
C9E—C8A—C6B—C1B	-36.9 (6)	C12D—C13D—C14D—C15D	-4.0 (13)
C9A—C8A—C6B—C1B	-36.9 (6)	C13D-C14D-C15D-C16D	4.8 (12)
C2A—C8A—C6B—C1B	89.2 (5)	C14D—C15D—C16D—C17D	-1.2 (10)
C3B—C2B—C8B—C9B	-144.5 (4)	C13D—C12D—C17D—C16D	4.0 (9)
C1B—C2B—C8B—C9B	36.4 (5)	P1D-C12D-C17D-C16D	-179.4 (5)
C3B—C2B—C8B—C6C	89.4 (5)	C15D—C16D—C17D—C12D	-3.3 (10)
C1B—C2B—C8B—C6C	-89.7 (5)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the rings C1B–C6B and C1D–C6D, respectively.

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H1A···O3A	0.91	1.91	2.773 (5)	157
N1—H1 <i>B</i> ···O3 <i>B</i>	0.91	1.99	2.841 (5)	155
C2—H2…O3D	1.00	2.25	3.140 (6)	148
C3—H3 <i>A</i> ···O3 <i>C</i>	0.98	2.49	3.351 (7)	147
C3—H3 <i>B</i> ···O1 <i>S</i>	0.98	2.55	3.51 (2)	164
O2 <i>S</i> —H2 <i>S</i> ···Cl1	0.84	2.28	3.105 (5)	169
C1 <i>A</i> —H1 <i>A</i> 1···Cl1	0.95	2.91	3.847 (4)	170
C1 <i>B</i> —H1 <i>B</i> 1···Cl1	0.95	2.93	3.870 (5)	170
C1 <i>C</i> —H1 <i>C</i> 1···Cl1	0.95	2.95	3.888 (5)	170
C1D—H1D1…C11	0.95	2.85	3.782 (5)	168
C9A—H9A1…Cl1	0.99	2.76	3.738 (5)	172
C9 <i>B</i> —H9 <i>B</i> 2···Cl1	0.99	2.88	3.870 (4)	175
C9 <i>C</i> —H9 <i>C</i> 1···Cl1	0.99	2.71	3.701 (5)	175
C9D—H9D1…C11	0.99	2.85	3.838 (5)	178
C1—H1D···Cg1	0.98	2.83	3.672 (7)	145
$C17D^{i}$ —H17 D^{i} ····O1	0.95	2.56	3.204 (6)	125
C10—H10····O1 <i>D</i> ⁱ	0.95	2.69	3.555 (4)	152

			supporting informa		
C9—H9…Cg2 ⁱ	0.95	2.69	3.594 (5)	159	
C14 <i>B</i> —H14 <i>B</i> ····Cl1 ⁱⁱ	0.95	2.89	3.697 (6)	143	

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x, y+1/2, -z+3/2.